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Nanoscale Control Systems

• Sensing
o Reacting to forces

o Binding to molecules

• Actuating
o Releasing molecules

o Producing forces

• Constructing
o Chassis

o Growth

• Computing
o Signal Processing

o Decision Making

Sensing

Constructing Actuating

Computing

Nucleic Acids can do all this.

And interface to biology.



Sensing
Sensing

Constructing Actuating

Computing

Adenine riboswitch aptamer
Structural basis for discriminative regulation of gene 
expression by adenine- and guanine-sensing mRNAs. 
Chem Biol. 2004 Dec;11(12):1729-41.

Aptamers: natural or artificially 
evolved DNA molecules that stick 
to other molecules (highly 
selectively).

Target molecule



Constructing
Sensing
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Computing

Chengde Mao, Purdue Andrew Turberfield, Oxford

Crosslinking 



Actuating
Sensing

Constructing Actuating

Computing

Bernard Yurke, Boise State

DNA tweezers 
DNA walkers



Computing

• Sensors and Actuators 
at the 'edge' of the system
o They can use disparate technologies and phenomena

• Computation in the 'kernel' of the system

• Compositionality in the kernel
o The components should use uniform inputs and outputs

o The components should be ‘computationally complete’

Sensing

Constructing Actuating

Computing



• Using bacterial machinery (e.g.) as the hardware. 
Using embedded gene networks as the software.

• MIT Registry of Standard Biological Parts

• GenoCAD
o Meaningful sequences [Cai et al.]

• GEC
o [Pedersen & Phillips]

“Embedded” Computing



“Autonomous” Computing

• Mix & go
o All (or most) parts are synthesized

o No manual cycling (cf. early DNA computing)

o In some cases, all parts are made of DNA (no 
enzyme/proteins)

• Self-assembled and self-powered
o Can run on its own (e.g. environmental sensing)

o Or be embedded into organisms, but running 
‘separately’



Curing

A doctor in each cell

Sensing

Constructing Actuating

Computing



Autonomous 

DNA Computing



Why Compute with DNA?

• Non-goals
o Not to solve NP-complete problems.

o Not to replace electronics.

o Not necessarily using genes or producing proteins.

• For general ‘molecular programming’
o To precisely control the organization and dynamics of 

matter and information at the molecular level. 

o To interact algorithmically with biological entities.

o The use of DNA is “accidental”: no genes involved.

o In fact, no material of biological origin.



• Subsequences on a DNA strand are called domains.
PROVIDED they are “independent” of each other.

• I.e., differently named domains must not hybridize:
o With each other
o With each other’s complement
o With subsequences of each other
o With concatenations of other domains (or their complements)
o Etc.

• Choosing domains (subsequences) that are suitably 
independent is a tricky issue that is still somewhat of an open 
problem (with a vast literature). But it can work in practice.

x zy

Domains

CTTGAGAATCGGATATTTCGGATCGCGATTAAATCAAATG



Short Domains
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Reversible Hybridization



Long Domains
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Irreversible Hybridization



Strand Displacement

t x

xt

“Toehold Mediated”



Strand Displacement

xt

Toehold Binding



Strand Displacement

xt

Branch Migration



Strand Displacement
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Strand Displacement
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Irreversible release
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Bad Match
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Cannot proceed
Hence will undo



Four-Domain Architecture
No “garbage collection” 
(active waste removal)



Three-Domain Architecture

DNA Computing and Molecular Programming. 
15th International Conference, DNA 15, 
LNCS 5877, Springer 2009, pp 12-24. 

With garbage collection 
(separate pass)



“Lulu’s Trouble”

(from D.Soloveichik)



Two-Domain Architecture

• Signals: 1 toehold + 1 recognition region

• Gates: “top-nicked double strands”
(or equivalently double strands with open toeholds)

In S. B. Cooper, E. Kashefi, P. Panangaden (Eds.): 
Developments in Computational Models (DCM 2010). 
EPTCS 25, 2010, pp. 33-47. May 2010.

txt y t

xt

Garbage collection 
“built into” the gates
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Transducer x→y

t x

Input



Transducer x→y

tatatata is a private signal (a different ‘a’ for each xy pair)

t a

xt t a t a x t y t a t

y t

t x

Input

Built by self-assembly!



Transducer x→y

x
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Transducer x→y

t a

xt t a t a x t y t a t

y t

x t

Active
waste



Transducer x→y

xt t a t a x t y t a t

y t

x t



Transducer x→y

a t

t axt a x t y t a t

y t

x t
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So far, a txtxtxtx signal has produced an atatatat cosignal.
But we want signals as output, not cosignals.



Transducer x→y

t axt a x t y t a t
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Transducer x→y
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Transducer x→y
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Transducer x→y

t y

t a

a tt axt a x y t

x t
Output

t t

Here is our output tytytyty signal.

But we are not done yet:
1) We need to make the output irreversible.
2) We need to remove the garbage.
We can use (2) to achieve (1).



Transducer x→y
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Transducer x→y

t y
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Transducer x→y
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Transducer x→y
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Transducer x→y

a x

t y

t a a tt axt y tx t

Output



a x

t a a tt axt y tx t

Transducer x→y

t y

Output

Done.

N.B. the gate is consumed: it is the energy source. 



Reaction Graph for x→y



General n×m Join-Fork

• Easily generalized to 2+ inputs (with 1+ collectors).

• Easily generalized to 2+ outputs.



Animations

• Animations



Experiments

Matt Olson and Georg Seelig, U.Washingon.

Two-domain gate for  A+B → B+C



Experimental Challenges

• Quality of synthetic DNA
o Chemical synthesis is limited in length and quality.

o Two-domain scheme enables bacterial synthesis

• Followed by enzyme digestion to introduce 'nicks'

• Or nicking by a photosensitive artificial backbone

• Circuit optimization
o Coming up with simpler systems for simplified 

experiments (shorter DNA sequences and smaller 
number of species)

o Coming up with faster systems (more irreversible 
operations, and garbage collection).



Ex. Irreversible Output
Standard Transducer

Irreversible-output Transducer



Ex. Oscillator

• Three autocatalytic reactions
X + Y -> Y + Y

Y + Z -> Z + Z

Z + X -> X + X

• This is a closed system
o (Or perhaps a performance-critical subsystem)

o Idea: use an optimized "internal" protocol that 
preserves the "public" interface of the system

• Use extra toeholds (instead of private domains) to connect 
the two halves of each gate (saving a domain).

• Trick:1extra toehold (instead of 3) is sufficient: there is a 
unique variable (x,y,z) connecting the two halves of gates.

Y Z

X
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Optimized Oscillator

directive sample 86400.0 300

directive plot <t^ x>; <t^ y>; <t^ z>; <t^ w>

directive leak 1.0e-9  (* 1.0 /M/s  * 1.0e-9 nM *)  (* /nM/s *)

directive scale 100.0 (* for stochastic simulation *)

def kt = 1.0e+6 (* /M/s *)

def exp_DeltaG_over_RT = 3.75479e-7 (* T=25C, DeltaG=-8.76 kcal/mol
*) 

def bind = kt*1.0e-9 (* /nM/s *)

def unbind =  kt*exp_DeltaG_over_RT (* /s *)

new t@bind,unbind

new u@bind,unbind

(* x + y -> y + z *)

def Cat(N, x, y, z) =

new a

( N * t^*:[x t^]:[y u^]:[a] 

| N * <u^ a>

| N * [x]:[t^ z]:[t^ y]:u^* 

| N * <z t^>

) 

( Cat(100,x,y,y) 

| Cat(100,y,z,z)

| Cat(100,z,x,x)

| 10 * <t^ x> 

| 1 * <t^ y>

| 1* <t^ z>

) 

directive sample 86400.0 300

directive plot <t^ x>; <t^ y>; <t^ z>

directive leak 1.0e-9  (* 1.0 /M/s  * 1.0e-9 nM *)  (* /nM/s *)

directive scale 1.0 (* for stochastic simulation *)

def kt = 1.0e+6 (* /M/s *)

def exp_DeltaG_over_RT = 3.75479e-7 (* T=25C, DeltaG=-8.76 
kcal/mol *) 

def bind = kt*1.0e-9 (* /nM/s *)

def unbind =  kt*exp_DeltaG_over_RT (* /s *)

new t@bind,unbind

(* x + y -> y + z *)

def Cat(N, x, y, z) =

new a

( N * t^*:[x t^]:[y t^]:[a t^]:[a] 

| N * <t^ a>

| N * [x]:[t^ y]:[t^ z]:[t^ a]:t^* 

| N * <z t^>

) 

( Cat(100,x,y,y) 

| Cat(100,y,z,z)

| Cat(100,z,x,x)

| 10 * <t^ x> 

| 1 * <t^ y>

| 1* <t^ z>

) 

1day 1day

6days 6days

Original Optimized



x yb

Ex. Approximate Majority

• Four catalytic/autocatalytic reactions
x + y -> y + b

y + x -> x + b

b + x -> x + x

b + y -> y + y

• This is a closed system
o (Or perhaps a performance-critical subsystem)

o Same idea.

• But now 1 extra toehold is not sufficient (x and y catalyze two 
reactions). However 2 (instead of 4) toeholds are sufficient.
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Optimized AM (Yuan-Jyue Chen)

Original Optimized

directive sample 30000.0 1000

directive plot <t^ x>; <t^ y>; <t^ b>

directive leak 1.0e-9  (* 1.0 /M/s  * 1.0e-9 nM *)  (* /nM/s *)

directive scale 1.0 (* for stochastic simulation *)

def kt = 1.0e+6 (* /M/s *)

def exp_DeltaG_over_RT = 3.75479e-7 (* T=25C, DeltaG=-8.76 
kcal/mol *) 

def bind = kt*1.0e-9 (* /nM/s *)

def unbind =  kt*exp_DeltaG_over_RT (* /s *)

new t@bind,unbind

def Cat(N, x, y, z) =

new a

( N * t^*:[x t^]:[y t^]:[a t^]:[a] 

| N * <t^ a>

| N * [x]:[t^ y]:[t^ z]:[t^ a]:t^* 

| N * <z t^>

) 

( Cat(100, x, y, b)       (* 100 nM *)

| Cat(100, y, x, b)       (* 100 nM *)

| Cat(100, b, x, x)       (* 100 nM *)

| Cat(100, b, y, y)       (* 100 nM *)

| 10 * <t^ x>             (* 10 nM *)

| 9 * <t^ y>               (* 9 nM *)

) 

directive sample 30000.0 1000

directive plot <t^ x>; <t^ y>; <t^ b>

directive leak 1.0e-9  (* 1.0 /M/s  * 1.0e-9 nM *)  (* /nM/s *)

directive scale 1.0 (* for stochastic simulation *)

def kt = 1.0e+6 (* /M/s *)

def exp_DeltaG_over_RT = 3.75479e-7 (* T=25C, DeltaG=-8.76 
kcal/mol *) 

def bind = kt*1.0e-9 (* /nM/s *)

def unbind =  kt*exp_DeltaG_over_RT (* /s *)

new t@bind,unbind

new u@bind,unbind

(* x + y -> y + z *)

def Cat(N, x, y, z, u) =

( N * t^*:[x t^]:[y u^]:[a] 

| N * <u^ a>

| N * [x]:[t^ z]:[t^ y]:u^* 

| N * <z t^>

) 

( Cat(100, x, y, b, u1)       (* 100 nM *)

| Cat(100, y, x, b, u1)       (* 100 nM *)

| Cat(100, b, x, x, u2)       (* 100 nM *)

| Cat(100, b, y, y, u2)       (* 100 nM *)

| 10 * <t^ x>             (* 10 nM *)

| 9 * <t^ y>               (* 9 nM *)

) 



Verification Issues

• Environment
o The nano-environment is messy (stochastic noise, failures, etc.)
o But we should al least ensure our designs are logically correct

• Verifying Components
o Reversible reactions (infinite traces)
o Interferences (deadlocks etc.) between copies of the same gate
o Interferences (deadlocks etc.) between copies of different gates
o Removal of active byproducts (garbage collection) is tricky

• Verifying Populations
o Gates come in (large) populations
o Each population shares private domains 

(technologically unavoidable)
o Correctness of populations means proofs with large state spaces



Correctness

• The spec of a transducer: 

x.y | x → y

o Is it true at all?

o Is it true possibly, necessarily, or probabilistically ?

o Is it true in the context of a 
population of identical transducers?

o Is it true in all possible contexts?

o If false, does it become true for infinite populations?



Interfering Transducers

• Let a be the private transducer domain,
but let’s share it between x.y and y.x

• Interference: x.ay | y.ax | x  ↛∀ x

• But still: x.ay | y.ax | x | y  →∀ x | y

• A large population of such gates 
in practice does not deadlock easily.

• The wisdom of crowds: individuals can 
be wrong, but the population is all right. 

Stuck gates in 

of 200

Stuck gates in 
a population 

of 200



Modelchecking DNA Systems

• Using the PRISM stochastic modelchecker
o Termination probability of interfering transducers

x | x.ay | y.az

L. Cardelli, M. Kwiatkowska, M. Lakin, D. Parker and A. Phillips. 
Design and Analysis of DNA Circuits using Probabilistic Model Checking.
http://qav.comlab.ox.ac.uk/papers/dna-pmc.pdf.  September 2010

Incorrect Incorrect 
Termination

Correct Correct 
Termination



Conclusions



Summary

• Molecular Structures
o Hard to build… but they can build themselves!

• Molecular Languages
o Natural and unnatural

o Concurrent, quantitative

• Molecular Compilation
o Molecular architectures, verification, optimization

• Molecular Programming
o In silico, in vitro, in vivo…
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