
Two-Domain DNA

Strand Displacement

Luca Cardelli
Microsoft Research

TAB Cambridge 2011-06-14

http://lucacardelli.name

Nanoscale Control Systems

• Sensing
o Reacting to forces

o Binding to molecules

• Actuating
o Releasing molecules

o Producing forces

• Constructing
o Chassis

o Growth

• Computing
o Signal Processing

o Decision Making

Sensing

Constructing Actuating

Computing

Nucleic Acids can do all this.

And interface to biology.

Sensing
Sensing

Constructing Actuating

Computing

Adenine riboswitch aptamer
Structural basis for discriminative regulation of gene
expression by adenine- and guanine-sensing mRNAs.
Chem Biol. 2004 Dec;11(12):1729-41.

Aptamers: natural or artificially
evolved DNA molecules that stick
to other molecules (highly
selectively).

Target molecule

Constructing
Sensing

Constructing Actuating

Computing

Chengde Mao, Purdue Andrew Turberfield, Oxford

Crosslinking

Actuating
Sensing

Constructing Actuating

Computing

Bernard Yurke, Boise State

DNA tweezers
DNA walkers

Computing

• Sensors and Actuators
at the 'edge' of the system
o They can use disparate technologies and phenomena

• Computation in the 'kernel' of the system

• Compositionality in the kernel
o The components should use uniform inputs and outputs

o The components should be ‘computationally complete’

Sensing

Constructing Actuating

Computing

• Using bacterial machinery (e.g.) as the hardware.
Using embedded gene networks as the software.

• MIT Registry of Standard Biological Parts

• GenoCAD
o Meaningful sequences [Cai et al.]

• GEC
o [Pedersen & Phillips]

“Embedded” Computing

“Autonomous” Computing

• Mix & go
o All (or most) parts are synthesized

o No manual cycling (cf. early DNA computing)

o In some cases, all parts are made of DNA (no
enzyme/proteins)

• Self-assembled and self-powered
o Can run on its own (e.g. environmental sensing)

o Or be embedded into organisms, but running
‘separately’

Curing

A doctor in each cell

Sensing

Constructing Actuating

Computing

Autonomous

DNA Computing

Why Compute with DNA?

• Non-goals
o Not to solve NP-complete problems.

o Not to replace electronics.

o Not necessarily using genes or producing proteins.

• For general ‘molecular programming’
o To precisely control the organization and dynamics of

matter and information at the molecular level.

o To interact algorithmically with biological entities.

o The use of DNA is “accidental”: no genes involved.

o In fact, no material of biological origin.

• Subsequences on a DNA strand are called domains.
PROVIDED they are “independent” of each other.

• I.e., differently named domains must not hybridize:
o With each other
o With each other’s complement
o With subsequences of each other
o With concatenations of other domains (or their complements)
o Etc.

• Choosing domains (subsequences) that are suitably
independent is a tricky issue that is still somewhat of an open
problem (with a vast literature). But it can work in practice.

x zy

Domains

CTTGAGAATCGGATATTTCGGATCGCGATTAAATCAAATG

Short Domains

t

t

t

Reversible Hybridization

Long Domains

x

x
x

Irreversible Hybridization

Strand Displacement

t x

xt

“Toehold Mediated”

Strand Displacement

xt

Toehold Binding

Strand Displacement

xt

Branch Migration

Strand Displacement

xt

Displacement

Strand Displacement

xt

x

Irreversible release

t

Bad Match

x

x

y

zt

t

Bad Match

x y

z

x

t

Bad Match

x y

z

x

xt

Bad Match

y

z

Cannot proceed
Hence will undo

Four-Domain Architecture
No “garbage collection”
(active waste removal)

Three-Domain Architecture

DNA Computing and Molecular Programming.
15th International Conference, DNA 15,
LNCS 5877, Springer 2009, pp 12-24.

With garbage collection
(separate pass)

“Lulu’s Trouble”

(from D.Soloveichik)

Two-Domain Architecture

• Signals: 1 toehold + 1 recognition region

• Gates: “top-nicked double strands”
(or equivalently double strands with open toeholds)

In S. B. Cooper, E. Kashefi, P. Panangaden (Eds.):
Developments in Computational Models (DCM 2010).
EPTCS 25, 2010, pp. 33-47. May 2010.

txt y t

xt

Garbage collection
“built into” the gates

t a

xt t a t a x t y t a t

y t

Transducer x→y

t x

Input

Transducer x→y

tatatata is a private signal (a different ‘a’ for each xy pair)

t a

xt t a t a x t y t a t

y t

t x

Input

Built by self-assembly!

Transducer x→y

x

t a

t t a t a x t y t a t

y t

Transducer x→y

t a

xt t a t a x t y t a t

y t

x t

Active
waste

Transducer x→y

xt t a t a x t y t a t

y t

x t

Transducer x→y

a t

t axt a x t y t a t

y t

x t

t

So far, a txtxtxtx signal has produced an atatatat cosignal.
But we want signals as output, not cosignals.

Transducer x→y

t axt a x t y t a t

y t

x t

t

Transducer x→y

t a

a tt axt a x t y

y t

x t

t

Transducer x→y

t a

a tt axt a x t y t

x t

t

Transducer x→y

t y

t a

a tt axt a x y t

x t
Output

t t

Here is our output tytytyty signal.

But we are not done yet:
1) We need to make the output irreversible.
2) We need to remove the garbage.
We can use (2) to achieve (1).

Transducer x→y

t y

t a

a tt axt a x y t

x t
Output

t t

Transducer x→y

t y

t a

a tt axt a x y tt

Output

t

Transducer x→y

x

t y

t a

a tt axt a y tx t

Output

t

Transducer x→y

x

t y

t a tt axt a y tx t

Output

Transducer x→y

a x

t y

t a a tt axt y tx t

Output

a x

t a a tt axt y tx t

Transducer x→y

t y

Output

Done.

N.B. the gate is consumed: it is the energy source.

Reaction Graph for x→y

General n×m Join-Fork

• Easily generalized to 2+ inputs (with 1+ collectors).

• Easily generalized to 2+ outputs.

Animations

• Animations

Experiments

Matt Olson and Georg Seelig, U.Washingon.

Two-domain gate for A+B → B+C

Experimental Challenges

• Quality of synthetic DNA
o Chemical synthesis is limited in length and quality.

o Two-domain scheme enables bacterial synthesis

• Followed by enzyme digestion to introduce 'nicks'

• Or nicking by a photosensitive artificial backbone

• Circuit optimization
o Coming up with simpler systems for simplified

experiments (shorter DNA sequences and smaller
number of species)

o Coming up with faster systems (more irreversible
operations, and garbage collection).

Ex. Irreversible Output
Standard Transducer

Irreversible-output Transducer

Ex. Oscillator

• Three autocatalytic reactions
X + Y -> Y + Y

Y + Z -> Z + Z

Z + X -> X + X

• This is a closed system
o (Or perhaps a performance-critical subsystem)

o Idea: use an optimized "internal" protocol that
preserves the "public" interface of the system

• Use extra toeholds (instead of private domains) to connect
the two halves of each gate (saving a domain).

• Trick:1extra toehold (instead of 3) is sufficient: there is a
unique variable (x,y,z) connecting the two halves of gates.

Y Z

X

2012-11-07Luca Cardelli 51

Optimized Oscillator

directive sample 86400.0 300

directive plot <t^ x>; <t^ y>; <t^ z>; <t^ w>

directive leak 1.0e-9 (* 1.0 /M/s * 1.0e-9 nM *) (* /nM/s *)

directive scale 100.0 (* for stochastic simulation *)

def kt = 1.0e+6 (* /M/s *)

def exp_DeltaG_over_RT = 3.75479e-7 (* T=25C, DeltaG=-8.76 kcal/mol
*)

def bind = kt*1.0e-9 (* /nM/s *)

def unbind = kt*exp_DeltaG_over_RT (* /s *)

new t@bind,unbind

new u@bind,unbind

(* x + y -> y + z *)

def Cat(N, x, y, z) =

new a

(N * t^*:[x t^]:[y u^]:[a]

| N * <u^ a>

| N * [x]:[t^ z]:[t^ y]:u^*

| N * <z t^>

)

(Cat(100,x,y,y)

| Cat(100,y,z,z)

| Cat(100,z,x,x)

| 10 * <t^ x>

| 1 * <t^ y>

| 1* <t^ z>

)

directive sample 86400.0 300

directive plot <t^ x>; <t^ y>; <t^ z>

directive leak 1.0e-9 (* 1.0 /M/s * 1.0e-9 nM *) (* /nM/s *)

directive scale 1.0 (* for stochastic simulation *)

def kt = 1.0e+6 (* /M/s *)

def exp_DeltaG_over_RT = 3.75479e-7 (* T=25C, DeltaG=-8.76
kcal/mol *)

def bind = kt*1.0e-9 (* /nM/s *)

def unbind = kt*exp_DeltaG_over_RT (* /s *)

new t@bind,unbind

(* x + y -> y + z *)

def Cat(N, x, y, z) =

new a

(N * t^*:[x t^]:[y t^]:[a t^]:[a]

| N * <t^ a>

| N * [x]:[t^ y]:[t^ z]:[t^ a]:t^*

| N * <z t^>

)

(Cat(100,x,y,y)

| Cat(100,y,z,z)

| Cat(100,z,x,x)

| 10 * <t^ x>

| 1 * <t^ y>

| 1* <t^ z>

)

1day 1day

6days 6days

Original Optimized

x yb

Ex. Approximate Majority

• Four catalytic/autocatalytic reactions
x + y -> y + b

y + x -> x + b

b + x -> x + x

b + y -> y + y

• This is a closed system
o (Or perhaps a performance-critical subsystem)

o Same idea.

• But now 1 extra toehold is not sufficient (x and y catalyze two
reactions). However 2 (instead of 4) toeholds are sufficient.

2012-11-07Luca Cardelli 53

Optimized AM (Yuan-Jyue Chen)

Original Optimized

directive sample 30000.0 1000

directive plot <t^ x>; <t^ y>; <t^ b>

directive leak 1.0e-9 (* 1.0 /M/s * 1.0e-9 nM *) (* /nM/s *)

directive scale 1.0 (* for stochastic simulation *)

def kt = 1.0e+6 (* /M/s *)

def exp_DeltaG_over_RT = 3.75479e-7 (* T=25C, DeltaG=-8.76
kcal/mol *)

def bind = kt*1.0e-9 (* /nM/s *)

def unbind = kt*exp_DeltaG_over_RT (* /s *)

new t@bind,unbind

def Cat(N, x, y, z) =

new a

(N * t^*:[x t^]:[y t^]:[a t^]:[a]

| N * <t^ a>

| N * [x]:[t^ y]:[t^ z]:[t^ a]:t^*

| N * <z t^>

)

(Cat(100, x, y, b) (* 100 nM *)

| Cat(100, y, x, b) (* 100 nM *)

| Cat(100, b, x, x) (* 100 nM *)

| Cat(100, b, y, y) (* 100 nM *)

| 10 * <t^ x> (* 10 nM *)

| 9 * <t^ y> (* 9 nM *)

)

directive sample 30000.0 1000

directive plot <t^ x>; <t^ y>; <t^ b>

directive leak 1.0e-9 (* 1.0 /M/s * 1.0e-9 nM *) (* /nM/s *)

directive scale 1.0 (* for stochastic simulation *)

def kt = 1.0e+6 (* /M/s *)

def exp_DeltaG_over_RT = 3.75479e-7 (* T=25C, DeltaG=-8.76
kcal/mol *)

def bind = kt*1.0e-9 (* /nM/s *)

def unbind = kt*exp_DeltaG_over_RT (* /s *)

new t@bind,unbind

new u@bind,unbind

(* x + y -> y + z *)

def Cat(N, x, y, z, u) =

(N * t^*:[x t^]:[y u^]:[a]

| N * <u^ a>

| N * [x]:[t^ z]:[t^ y]:u^*

| N * <z t^>

)

(Cat(100, x, y, b, u1) (* 100 nM *)

| Cat(100, y, x, b, u1) (* 100 nM *)

| Cat(100, b, x, x, u2) (* 100 nM *)

| Cat(100, b, y, y, u2) (* 100 nM *)

| 10 * <t^ x> (* 10 nM *)

| 9 * <t^ y> (* 9 nM *)

)

Verification Issues

• Environment
o The nano-environment is messy (stochastic noise, failures, etc.)
o But we should al least ensure our designs are logically correct

• Verifying Components
o Reversible reactions (infinite traces)
o Interferences (deadlocks etc.) between copies of the same gate
o Interferences (deadlocks etc.) between copies of different gates
o Removal of active byproducts (garbage collection) is tricky

• Verifying Populations
o Gates come in (large) populations
o Each population shares private domains

(technologically unavoidable)
o Correctness of populations means proofs with large state spaces

Correctness

• The spec of a transducer:

x.y | x → y

o Is it true at all?

o Is it true possibly, necessarily, or probabilistically ?

o Is it true in the context of a
population of identical transducers?

o Is it true in all possible contexts?

o If false, does it become true for infinite populations?

Interfering Transducers

• Let a be the private transducer domain,
but let’s share it between x.y and y.x

• Interference: x.ay | y.ax | x ↛∀ x

• But still: x.ay | y.ax | x | y →∀ x | y

• A large population of such gates
in practice does not deadlock easily.

• The wisdom of crowds: individuals can
be wrong, but the population is all right.

Stuck gates in

of 200

Stuck gates in
a population

of 200

Modelchecking DNA Systems

• Using the PRISM stochastic modelchecker
o Termination probability of interfering transducers

x | x.ay | y.az

L. Cardelli, M. Kwiatkowska, M. Lakin, D. Parker and A. Phillips.
Design and Analysis of DNA Circuits using Probabilistic Model Checking.
http://qav.comlab.ox.ac.uk/papers/dna-pmc.pdf. September 2010

Incorrect Incorrect
Termination

Correct Correct
Termination

Conclusions

Summary

• Molecular Structures
o Hard to build… but they can build themselves!

• Molecular Languages
o Natural and unnatural

o Concurrent, quantitative

• Molecular Compilation
o Molecular architectures, verification, optimization

• Molecular Programming
o In silico, in vitro, in vivo…

Acknowledgments

• Microsoft Research
o Andrew Phillips

• Caltech
o Winfree Lab

• U.Washington
o Seelig Lab

