
Network Transformations

of Switches and Oscillators

Luca Cardelli
Microsoft Research

Oxford 2011-05-17

http://lucacardelli.name

2011-05-20Luca Cardelli 2

Motivation

• Building synthetic (DNA) oscillators
o But this talk is not about that

x1 y1

x2 y2

• Questions that nature has answered
o Building ‘good’ bistable systems
o Building ‘switches’ (switchable bistable system)
o Building switches with hysteresys (needed for good oscillators)
o Building limit-cycle oscillators
o Building robust oscillators that resist parameter variations

• Engineering solutions to the same problems
o Are they related?
o In nature there are chemical constraints

• Not all reactions can be easily implemented
• Not all molecules can perform all functions we want them to

• From the point of view of network structure
o Transforming a network and preserve some function
o “Program transformations”

2011-05-20Luca Cardelli 3

Outline

Switches

xxxxyyyy

Why this network structure?

2011-05-20Luca Cardelli 5

The Cell Cycle Switch

• Double positive feedback on x
• Double negative feedback on x
• No feedback on y
Why on earth ??

2011-05-20Luca Cardelli 6

A Bad Algorithm

• Direct x-y competition
o x catalyzes the transformation of y into x
o y catalyzes the transformation of x into y

• This system is bistable, but
o Convergence to a stable state is slow (a random walk).
o Any perturbation of a stable state can initiate a random

walk to the other stable state.
o With 100 molecules of x and y, convergence

is quick, but with 10000 molecules, even at
the same concentration, you will wait for a
long time.

x + y → x + x
y + x → y + y

directive sample 0.0002

1000

directive plot x(); y(); b()

val rt = 10.0

new xcat@rt:chan

new ycat@rt:chan

let x() =

do !xcat; x()

or ?ycat; y()

and y() =

do !ycat; y()

or ?xcat; x()

run 100 of x()

run 100 of y()

x y

2011-05-20Luca Cardelli 7

A Very Good Algorithm

• Approximate Majority
o Decide which of two populations is in majority

• A fundamental ‘population protocol’
o Agents in a population start in state x or state y.

o A pair of agents is chosen randomly at each step,
they interact ("collide") and change state.

o The whole population must eventually agree on a
majority value (all x or all y) with probability 1.

2011-05-20Luca Cardelli 8

Properties

[Angluin et al.]

N.B. this bound holds even if the x,y populations
are initially of equal size!

“Parallel time” is the number of steps divided by the number of agents.
Hence the algorithm terminates with high probability in O(log n)
steps per agent.

2011-05-20Luca Cardelli 9

Chemical Implementation

x + y → y + b
y + x → x + b
b + x → x + x
b + y → y + y

x y

This too is a bistable system, but:
• It converges slowly, by a random

walk, hence O(n2).
• It is unstable: any random

fluctuation from an all-x or all-y
state can send it (by a random
walk) to the other state.

x cb y

This one gives no significant
improvement over the above.

Alternatives:

x yb

2011-05-20Luca Cardelli 10

Majority of x>y

directive sample 0.0002 1000
directive plot x(); y(); b()

val r = 0.1
new xy@r:chan new yx@r:chan

new bx@r:chan new by@r:chan

let x() =
do ?xy; b()
or !yx; x()
or !bx; x()

and y() =
do !xy; y()
or ?yx; b()
or !by; y()

and b() =
do ?bx; x()
or ?by; y()

run 1000000 of x()
run 1000000 of y()

2000k molecules
1100k x
900k y

x + y → y + b
y + x → x + b
b + x → x + x
b + y → y + y

Eventually:
all x
no y
no b

Gillespie simulation
of the chemical
reactions in SPiM.

All rates are equal.

2011-05-20Luca Cardelli 11

Majority of x=y (!!)

x + y → y + b
y + x → x + b
b + x → x + x
b + y → y + y

directive sample 0.0002 1000
directive plot x(); y(); b()

val r = 0.1
new xy@r:chan new yx@r:chan

new bx@r:chan new by@r:chan

let x() =
do ?xy; b()
or !yx; x()
or !bx; x()

and y() =
do !xy; y()
or ?yx; b()
or !by; y()

and b() =
do ?bx; x()
or ?by; y()

run 1000000 of x()
run 1000000 of y()

2000k molecules

Gillespie simulation
of the chemical
reactions in SPiM.

All rates are equal.

N.B. a deterministic (ODE) simulation with x=y
would not converge ever!

Eventually either:
all x all y
no y no x
no b no b

The final majority is robust (insensitive to possible noise)
because a significant majority always stays a majority:

2011-05-20Luca Cardelli 12

A Digression about Other Switches

• The AM network is an ‘optimal’ switch in a
computational sense. How does it compare with
other switches?

• Let us first compare the ‘kernel’ of AM without
feedbacks (i.e. ‘double phosphorylation’) with
the Goldbeter-Koshland switch

• And then compare the full AM network with GK
plus the same feedbacks as AM

2011-05-20Luca Cardelli 13

Double-Phosphorylation Switch

directive sample 100000.0 1000
directive plot x(); y(); b(); F();E() (*;Time() *)
val a = 0.0001
new e@a:channew f@a:chan
new killE:chan new killF: chan
new time:chan

let E() = do !e; E() or ?killE; ()
and F() = do !f; F() or ?killF; ()
and x() = ?e; b()
and y() = ?f; b()
and b() = do ?e; y() or ?f; x()

let clock(p:proc(int), t:float) =
(* Produce one p(m) every t sec with precision dt,

with m incremented from 0 *)
(val dt= 100.0 run step(p, 0, t, dt, dt))
and step(p:proc(int), m:int, t:float, n:float, dt:float) =
if n<=0.0 then (p(m)|step(p,m+1,t,dt,dt))
else delay@dt/t; step(p,m,t,n-1.0,dt)

let Time() = ?time; ()

let schedule(n:int) =
(Time();

if n<1000 then ()
else if n<4000 then E()
else if n<8000 then !killE
else ()

)

run 10000 of x()
run 100 of F()
run clock(schedule,10.0)

x yb

E

F

x + E → E + b
b + E → E + y
y + F → F + b
b + F → F + x

Initially 10000 x, no y, 100 F, no E.
E growing from 0 (t=100) to 3000 (t=400) then back to 0 (t=800)

x y x

Ultrasensitive
(but no hysteresis)

AM without
feedbacks

kinase/
phosphatase

F=100

E=0

E=3000

E=0

E=100 E=100

2011-05-20Luca Cardelli 14

The Goldbeter-Koshland Switch

directive sample 600.0 1000
directive plot S();P();F();E();ES();FP() (*;Time() *)
val a = 1.0
val d = 1.0
val k = 1.0
new es@a:channew fp@a:chan
new killE:chan new killF: chan
new time:chan

(* S + E <-> SE -> P + E
P + F <-> PF -> S + F

*)

let S() = ?es; ()
and E() = do !es; ES() or ?killE; ()
and ES() = do delay@d; (S()|E()) or delay@k; (P()|E())
and P() = ?fp; ()
and F() = do !fp; FP() or ?killF; ()
and FP() = do delay@d; (P()|F()) or delay@k; (S()|F())

let clock(p:proc(int), t:float) =
(* Produce one p(m) every t sec with precision dt,

with m incremented from 0 *)
(val dt= 100.0 run step(p, 0, t, dt, dt))
and step(p:proc(int), m:int, t:float, n:float, dt:float)
=
if n<=0.0 then (p(m)|step(p,m+1,t,dt,dt))
else delay@dt/t; step(p,m,t,n-1.0,dt)

let Time() = ?time; ()

let schedule(n:int) =
(Time();

if n<1000 then ()
else if n<3000 then E()
else if n<6000 then !killE
else ()

)

run 10000 of S()
run 1000 of F()
run clock(schedule,0.1)

S + E d↔a SE →k P + E
P + F d↔a PF →k S + F

Initially 10000 S, no P, 1000 F, no E.
E growing from 0 (t=100) to 2000 (t=300) then back to 0 (t=500)
The first switch happens at t=200, the second at t=400.

S P

E

F

enzymatic

S P S

E=0
E=1000

E=2000
E=1000

E=0

F=1000

Ultrasensitive
(but no hysteresis)

E/F ratio can be lower: GK is a ‘better’ more sensitive switch.

2011-05-20Luca Cardelli 15

Can GK do majority switching?

S P

enzymatic
directive sample 0.001 1000
directive plot S();P();PS();SP()
val a = 1.0
val d = 1.0
val k = 1.0
new sp@a:channew ps@a:chan

let S() = do ?ps; () or !sp; SP()
and PS() = do delay@d; (P()|S()) or delay@k; (P()|P())

and P() = do ?sp; () or !ps; PS()
and SP() = do delay@d; (S()|P()) or delay@k; (S()|S())

run 10000 of S()
run 10000 of P()

S + P d↔a PS →k P + P
P + S d↔a SP →k S + S

S > P

GK in "AM configuration" does not compute a majority.
- The initial minority goes down to 0
- The initial majority goes down to majt=0 – mint=0

- When majt=0 ~ mint=0 the system cannot decide.

S = P

GK in "AM configuration"

2011-05-20Luca Cardelli 16

‘Double phosphorylation’ motif is key

x yb x y
b

c

x yb
c

AM autocatalytic GK

split-AM

≠

≠
It is not just a non-linearity of the x-y transition
mechanism that matters:
it is the 'double phosphorylation' network structure
of AM, with a common 'undecided' state.

x y =

enzymatic

2011-05-20Luca Cardelli 17

Chemical Constraints

• The AM circuit is ‘chemically demanding’
o It requires x molecules to be ‘next’ to y molecules

beacause they interact directly

o It requires both x and y to be catalysts, and in fact
autocatalysts, and in fact each-other’s autocatalyst!

x yb

2011-05-20Luca Cardelli 18

Network Transformations

• An example of relaxing those constraints
o This circuit works just as well as the original, but it no

longer requires x to be ‘next’ to y. They no longer
interact directly. Instead, they interact through an
additional x0-y0 equilibrium.

directive sample 0.0002 1000
directive plot x(); y(); b()

val r = 10.0
new xy0@r:chan new yx0@r:chan
new x0y0@r:chan new y0x0@r:chan
new bx@r:chan new by@r:chan

let x() =
do ?xy0; b()
or !bx; x()
or !y0x0; x()

and y() =
do ?yx0; b()
or !by; y()
or !x0y0; y()

and b() =
do ?bx; x()
or ?by; y()

and y0() =
do !xy0(); y0()
or ?y0x0; x0()

and x0() =
do !yx0(); x0()
or ?x0y0; y0()

run 5000 of x() run 5000 of x0()
run 5000 of y() run 5000 of y0()

x=y

cf.

x yb

y0

x0

2011-05-20Luca Cardelli 19

Network Transformations

• Another example of relaxing constraints
o Build an Approximate Majority network that requires

only x to be a catalyst. How?

o Enter the Cell Cycle switches…

2011-05-20Luca Cardelli 20

Some Notation

• Catalytic reaction

• Double ‘kinase-phosphatase’ reactions

x y

z

=x + z → z + y

x yb

z

w

x y

z

w

=

2011-05-20Luca Cardelli 21

Zero-Input Switches

• ‘Zero-input switch’ = majority circuit:
just working off the initial conditions,
with no other inputs.

• Step 1: the original AM Network

x yb=x y

2011-05-20Luca Cardelli 22

Zero-Input Switches

• Step 2: remove auto-catalysis
o By introducing intermediate species w, r.

o Here w breaks the y auto-catalysis, and r breaks the x
auto-catalysis, while preserving the feedbacks.

o w and r need to ‘relax back’ (to z and t) when they are
not catalyzed: s and t provide the back pressure.

x y

s

t

x y

p r

w z

• Step 3: transform a double-positive loop on y
into a double-negative loop on x.
o Instead of y (actively) activating itself through w, we have z

activating y (which is passive). To counteract, now x has to
switch from inhibiting y to inhibiting z.

• So that y no longer catalyzes anything
o All species have one active and one inactive form

2011-05-20Luca Cardelli 23

Zero-Input Switches

s

t

x y

p r

w z

s

t

p r

x y

w z

2011-05-20Luca Cardelli 24

Zero-Input Switches

• Still an AM circuit

s

x yb

w zu

p rq

t

directive sample
0.0005 1000
directive plot x(); y();
b()
(* z(); w(); r(); s(); t();
p(); q() *)

val rt = 10.0

new xcat@rt:chan
new zcat@rt:chan
new rcat@rt:chan
new scat@rt:chan
new tcat@rt:chan

let x() =
do !xcat; x()
or ?zcat; b()

and y() =
?rcat; b()

and b() =
do ?rcat; x()
or ?zcat; y()

and z() =
do !zcat; z()
or ?xcat; u()

and r() =
do !rcat; r()
or ?tcat; q()

and s() =
!scat(); s()

and w() =
?scat; u()

and u() =
do ?scat; z()
or ?xcat; w()

and t() =
!tcat; t()

and p() =
?xcat; q()

and q() =
do ?xcat; r()
or ?tcat; p()

run 1000 of s()
run 1000 of t()

run 10000 of p()
run 10000 of z()

run 4500 of y()
run 5500 of x()

=

(The equal-likelihood outcome
here is around 4500 y vs 5500 x,
and can be adjusted by s/t ratio)

All rates are equal.

s

t

p r

x y

w z

2011-05-20Luca Cardelli 25

The Cell Cycle Switch

xxxxyyyy

tttt

ssss

zzzz
rrrr

pppp

wwww
s

t

p r

x y

w z

(Some of the bistable states can be
enzymatic rather than AM.)

2011-05-20Luca Cardelli 26

More Zero-Input Switches

• Other designs
o A version with no external bias (s,t) where y is still

non-catalytic and x and z are self-catalytic.

o Both x and z have an ‘inactive’ form, y and w,
although the both are double catalysts.

directive sample 0.0003 1000
directive plot x(); y(); b()
(*; z(); w(); s() *)

val rt = 10.0

new xcat@rt:chan
new zcat@rt:chan

let x() =
do !xcat; x()
or ?zcat; b()

and y() =
?xcat; b()

and b() =
do ?xcat; x()
or ?zcat; y()

and z() =
do !zcat; z()
or ?xcat; u()

and w() =
?zcat; u()

and u() =
do ?zcat; z()
or ?xcat; w()

run 5000 of z()
run 5000 of w()

run 5000 of x()
run 5000 of y()

x y

w z

• Hysteresis in AM-like switches

One-Input Switches

directive sample 0.02 1000
directive plot x(); y(); sx(); sy() (* b(); *)

val rt = 10.0
val rx = 5.0
new xcat@rx:chan
new ycat@rt:chan
new sxcat@rt:chan new sxkill:chan
new sycat@rt:channew sykill:chan

let x() =
do !xcat; x()
or ?ycat; b()
or ?sycat; b()

and y() =
do !ycat; y()
or ?xcat; b()
or ?sxcat; b()

and b() =
do ?xcat; x()
or ?sxcat; x()
or ?ycat; y()
or ?sycat; y()

and sy() = do !sycat; sy() or ?sykill; ()
and sx() = do !sxcat; sx() or ?sxkill; ()

run 10000 of y()
run 1000 of sy()

let clock(p:proc(int), t:float) =
(* Produce one p(m) every t sec with precision dt,

with m incremented from 0 *)
(val dt= 100.0 run step(p, 0, t, dt, dt))
and step(p:proc(int), m:int, t:float, n:float, dt:float) =
if n<=0.0 then (p(m)|step(p,m+1,t,dt,dt))
else delay@dt/t; step(p,m,t,n-1.0,dt)

let schedule(n:int) =
if n < 10000 then sx()
else if n < 20000 then !sxkill;()
else ()

run clock(schedule,0.000001)

rx=5.0
sy=1000

rx=0.1
sy=100

x y

sx

sy

rx

2011-05-20Luca Cardelli 28

One-Input Switches

• Hysteresis vs. feedbacks in cell cycle switch

directive sample 0.02 1000

directive plot x(); y(); sx(); sy()

(* ; b(); z(); w(); u(); s(); p(); q(); r(); t() *)

val rt = 100.0

new xcat@rt:chan

new zcat@rt:chan

new scat@rt:chan

new tcat@rt:chan

new rcat@rt:chan

new sxcat@rt:chan new sxkill:chan

new sycat@rt:chan new sykill:chan

let x() =

do !xcat; x()

or ?zcat; b()

or ?sycat; b()

and y() =

do ?rcat; b()

or ?sxcat; b()

and b() =

do ?rcat; x()

or ?sxcat; x()

or ?zcat; y()

or ?sycat; y()

and z() =

do !zcat; z()

or ?xcat; u()

and r() =

do !rcat; r()

or ?tcat; q()

and w() =

?scat; u()

and u() =

do ?xcat; w()

or ?scat; z()

and s() =

!scat; s()

and t() =

!tcat; t()

and p() =

?xcat; q()

and q() =

do ?xcat; r()

or ?tcat; p()

and sy() = do !sycat; sy() or ?sykill; ()

and sx() = do !sxcat; sx() or ?sxkill; ()

run 1000 of y()

run 1000 of z()

run 1000 of p()

run 200 of s()

run 1000 of t()

run 100 of sy()

let clock(ps:proc(int), tm:float) =

(* Produce one ps(m) every tm sec with precision dt,

with m incremented from 0 *)

(val dt= 100.0 run step(ps, 0, tm, dt, dt))

and step(ps:proc(int), m:int, tm:float, n:float, dt:float) =

if n<=0.0 then (ps(m)|step(ps,m+1,tm,dt,dt))

else delay@dt/tm; step(ps,m,tm,n-1.0,dt)

let schedule(n:int) =

if n < 1000 then sx()

else if n < 2000 then !sxkill;()

else ()

run clock(schedule,0.00001)

initial conditions:
1000 of y
1000 of z
1000 of p
1000 of t
200 of s
100 of sy

varying sx 0 to 1000 to 0

s

t

p r

x y

w z

sx

sy

p=r=0 w=z=0

Without pos-pos
feedback

Without neg-neg
feedback

2s, ½t, ½sy

reference
system

all rates are equal.

2011-05-20Luca Cardelli 29

Two-input Switches

• I had rediscovered (but not analyzed so well) the same
system, while looking for a memory circuit.

• The point here was not computing majority, but
switching easily and quickly and stably.

A + B -> B + C
B + A -> A + C
C + A -> A + A
C + B -> B + B

x y

sx

sy

Oscillators

2011-05-20Luca Cardelli 31

The Trammel of Archimedes

• A device to draw ellipses
o Two interconnected switches.

o When one switch is on (off) it flips the other switch on
(off). When the other switch is on (off) it flips the first
switch off (on).

en.wikipedia.org/wiki/Trammel_of_Archimedes

x1 y1

x2 y2

2011-05-20Luca Cardelli 32

The Shishi Odoshi

• A Japanese scarecrow (scare-deer)
o Used by Bela Novak to illustrate the cell cycle switch.

http://www.youtube.com/watch?v=VbvecTIftcE&NR=1&feature=fvwp

up dn

em
pty

full

tap

empty + tap � tap + full
up + full � full + dn
full + dn � dn + empty
dn + empty � empty + up To make it into a full trammel (dotted line), we

could make the up position mechanically open the
tap (i.e. take up = tap)

2011-05-20Luca Cardelli 33

The 2AM Limit-Cycle Oscillator

• Two AM switches in a Trammel pattern

directive sample 0.001 10000
directive plot x1(); y1(); b1(); x2();
y2(); b2()

val r = 10.0
new x1cat@r:chan
new y1cat@r:chan
new x2cat@r:chan
new y2cat@r:chan

val s = 8.0
new x1cat2@s:chan
new y1cat2@s:chan
new x2cat1@s:chan
new y2cat1@s:chan

let x1() =
do !x1cat; x1()
or !x1cat2; x1()
or ?y1cat; b1()
or ?y2cat1; b1()

and y1() =
do !y1cat; y1()
or !y1cat2; y1()
or ?x1cat; b1()
or ?x2cat1; b1()

and b1() =
do ?x1cat; x1()
or ?x2cat1; x1()
or ?y1cat; y1()
or ?y2cat1; y1()

let x2() =
do !x2cat; x2()
or !x2cat1; x2()
or ?y2cat; b2()
or ?x1cat2; b2()

and y2() =
do !y2cat; y2()
or !y2cat1; y2()
or ?x2cat; b2()
or ?y1cat2; b2()

and b2() =
do ?x2cat; x2()
or ?y1cat2; x2()
or ?y2cat; y2()
or ?x1cat2; y2()

run 3666 of x1()
run 3000 of y1()
run 3333 of b1()

run 3333 of x2()
run 3333 of y2()
run 3333 of b2()

The red reactions need to be slower
(even slightly) than the black reactions,
but otherwise the oscillation is robust.
Oscillation stops at 10 vs. 10 and 1 vs.
10. Here the rates are 8(red) vs 10(black)
top, and 2 vs 10, bottom.

(Simple limit-cycle oscillators in the
literature have very critical rate ranges.)

x1 y1

x2 y2

2011-05-20Luca Cardelli 34

The Switch Module

x y

inXY

inYX

outX outY
catX

catY

x1 y1

x2 y2

outY1

outX2

outY2

outX1

This is flipped!

2011-05-20Luca Cardelli 35

Replacing Switch Modules

Or

Replace

With

x y

inXY

inYX

outX outY

s

t

p r

x y

w z
outX

outY

inXY

inYX

s

t

p r

x y

w z

outX

outY

inXY

inYX

Etc..

2011-05-20Luca Cardelli 36

Modified Oscillator

s

t

p r

x y

w z

y2x2

directive sample 0.001

10000

directive plot x(); y(); b();

x2(); y2(); b2(); z(); r()

val rt = 10.0

val st = 8.0

new xcat@rt:chan

new zcat@rt:chan

new rcat@rt:chan

new scat@rt:chan

new tcat@rt:chan

new x2cat@rt:chan

new y2cat@rt:chan

new zcat1@st:chan

new rcat1@st:chan

new x2cat1@st:chan

new y2cat1@st:chan

let x() =

do !xcat; x()

or ?zcat; b()

or ?y2cat1; b()

and y() =

do ?rcat; b()

or ?x2cat1; b()

and b() =

do ?rcat; x()

or ?x2cat1; x()

or ?zcat; y()

or ?y2cat1; y()

and z() =

do !zcat; z()

or !zcat1; z()

or ?xcat; u()

and r() =

do !rcat; r()

or !rcat1; r()

or ?tcat; q()

and s() =

!scat(); s()

and w() =

?scat; u()

and u() =

do ?scat; z()

or ?xcat; w()

and t() =

!tcat; t()

and p() =

?xcat; q()

and q() =

do ?xcat; r()

or ?tcat; p()

let x2() =

do !x2cat; x2()

or !x2cat1; x2()

or ?y2cat; b2()

or ?rcat1; b2()

and y2() =

do !y2cat; y2()

or !y2cat1; y2()

or ?x2cat; b2()

or ?zcat1; b2()

and b2() =

do ?x2cat; x2()

or ?zcat1; x2()

or ?y2cat; y2()

or ?rcat1; y2()

run 3000 of s()

run 3000 of t()

run 10000 of p()

run 10000 of z()

run 1000 of x()

run 6666 of y()

run 2333 of b()

run 3333 of x2()

run 3333 of y2()

run 3333 of b2()

x2cat

x2cat1

y2cat

zcat1

rcat1

y2cat1

2011-05-20Luca Cardelli 37

Constant-Influx Oscillator

directive sample 0.001 10000
directive plot x1(); y1(); b1(); x2();
y2(); b2()

val r = 10.0
new x1cat@r:chan
new y1cat@r:chan
new x2cat@r:chan
new y2cat@r:chan

val s = 8.0
new x1cat2@s:chan
new y1cat2@s:chan
new x2cat1@s:chan
new y2cat1@s:chan

let x1() =
do !x1cat; x1()
or !x1cat2; x1()
or ?y1cat; b1()
or ?y2cat1; b1()

and y1() =
do !y1cat; y1()
or !y1cat2; y1()
or ?x1cat; b1()
or ?x2cat1; b1()

and b1() =
do ?x1cat; x1()
or ?x2cat1; x1()
or ?y1cat; y1()
or ?y2cat1; y1()

let x2() =
do !x2cat; x2()
or ?y2cat; b2()
or ?x1cat2; b2()

and y2() =
do !y2cat; y2()
or !y2cat1; y2()
or ?x2cat; b2()
or ?y1cat2; b2()

and b2() =
do ?x2cat; x2()
or ?y1cat2; x2()
or ?y2cat; y2()
or ?x1cat2; y2()

let cy() =
!x2cat1; cy()

run 3666 of x1()
run 3000 of y1()
run 3333 of b1()

run 3333 of x2()
run 3333 of y2()
run 3333 of b2()

run 2000 of cy()

x1 y1

x2 y2

As in the Shishi Odoshi
(and the cell cycle)

2011-05-20Luca Cardelli 38

Constant influx

s

t

p r

x y

w z

y2x2

x2cat

x2cat1

y2cat

zcat1

rcat1

y2cat1

directive sample 0.001

10000

directive plot x(); y(); b();

x2(); y2(); b2(); z(); r()

val rt = 10.0

val st = 8.0

new xcat@rt:chan

new zcat@rt:chan

new rcat@rt:chan

new scat@rt:chan

new tcat@rt:chan

new x2cat@rt:chan

new y2cat@rt:chan

new zcat1@st:chan

new rcat1@st:chan

new x2cat1@st:chan

new y2cat1@st:chan

let x() =

do !xcat; x()

or ?zcat; b()

or ?y2cat1; b()

and y() =

do ?rcat; b()

or ?x2cat1; b()

and b() =

do ?rcat; x()

or ?x2cat1; x()

or ?zcat; y()

or ?y2cat1; y()

and z() =

do !zcat; z()

or !zcat1; z()

or ?xcat; u()

and r() =

do !rcat; r()

or !rcat1; r()

or ?tcat; q()

and s() =

!scat(); s()

and w() =

?scat; u()

and u() =

do ?scat; z()

or ?xcat; w()

and t() =

!tcat; t()

and p() =

?xcat; q()

and q() =

do ?xcat; r()

or ?tcat; p()

let x2() =

do !x2cat; x2()

or ?y2cat; b2()

or ?rcat1; b2()

and y2() =

do !y2cat; y2()

or !y2cat1; y2()

or ?x2cat; b2()

or ?zcat1; b2()

and b2() =

do ?x2cat; x2()

or ?zcat1; x2()

or ?y2cat; y2()

or ?rcat1; y2()

let cy() =

!x2cat1; cy()

run 3000 of s()

run 4200 of t()

run 10000 of p()

run 10000 of z()

run 1000 of x()

run 6666 of y()

run 2333 of b()

run 3333 of x2()

run 3333 of y2()

run 3333 of b2()

run 3000 of cy()

Still working fine with the
replaced switch.

2011-05-20Luca Cardelli 39

The Novak-Tyson Oscillator

• First switch
o Is the ‘transformed’ AM

switch in one-input
configuration (driven by
constant influx of cyclin).

• Second switch
o Is a simple two-stage switch

working as a delay (the first
switch is so good in terms of
hysteresis that the second
switch is not very critical for
oscillation).

• Connection
o The feedback from second to

first switch is a bit complex,
since both x and y are
repressed by degrading
cyclin. And there are more
details still.

z

s

x y

w

rp

t

f

v

h

ik

l

cyclin

cdc2

CAK

MPF

2011-05-20Luca Cardelli 40

One of Ferrell’s Oscillators

z

s

x y

w

rp

t

f

v

h

cyclin

cdc2

CAK

MPF

• Second switch
o Replaced by a one-stage

switch. The oscillation still
works, but is it harder to
obtain (parameter tuning).

Conclusions

2011-05-20Luca Cardelli 42

Conclusions

• A vast literature on cell cycle switching
o Ferrell et.al., Novak-Tyson et.al., etc.

Mostly ODE based analysis, plus noise
o Many bistable transitions have different implementations

in different cell cycle phases and organisms
(phosphorylation, enzymes, synthesis/degradation, etc.)

o We focused on a mechanism that can only be seen
stochastically (quick majority switching with x=y)

• A range of ‘network transformation’
o Can explain the structure of some natural networks
o From some non-trivial underlying algorithms
o Discovering the transformation can elucidate the structure

and function of the networks
o But how can we say that these transformations ‘preserve

(essential) behavior’?

2011-05-20Luca Cardelli 43

Acknowledgements

• David Soloveichik

• Attila Csikasz-Nagy

