
On Switches and Oscillators
Program Equivalence in Biology?

Luca Cardelli
Microsoft Research

Turin 2011-05-05

http://lucacardelli.name

http://www.bioch.ox.ac.uk/aspsite/index.asp?pageid=593

• Some questions that nature has
(apparently) answered:
o Building ‘good’ bistable systems

o Building ‘switches’ (switchable bistable system)

o Building switches with hysteresys
(needed for good oscillators)

o Building ‘limit cycle’ oscillators that do not
dampen or diverge

o Building robust oscillators that resist parameter
variations

2011-05-06Luca Cardelli 2

Outline

2011-05-06Luca Cardelli 3

Outline

• Subject to ‘chemical constraints’
o Not all reactions can be easily implemented

o Not all molecules can perform all functions

• The ‘logical’ solutions
o Need to be adapted due to chemical constraints

o Can we then still recognize them (if they exist)?

Switches

2011-05-06Luca Cardelli 5

The Cell Cycle Switch

xxxxyyyy

2011-05-06Luca Cardelli 6

Direct Competition

• x catalyzes the transformation of y into x

• y catalyzes the transformation of x into y

• This system is bistable, but
o Convergence to a stable state is slow (a random walk).

o Any perturbation of a stable state can initiate a random
walk to the other stable state.

o With 100 molecules of x and y, convergence
is quick, but with 10000 molecules, even at
the same concentration (adjusting the rate)
you will wait for a long time.

x y
x + y → x + x
y + x → y + y

directive sample 0.0002

1000

directive plot x(); y(); b()

val rt = 10.0

new xcat@rt:chan

new ycat@rt:chan

let x() =

do !xcat; x()

or ?ycat; y()

and y() =

do !ycat; y()

or ?xcat; x()

run 100 of x()

run 100 of y()

2011-05-06Luca Cardelli 7

Approximate Majority

• A fundamental ‘population protocol’
o Agents in a population start in state x or state y.

o A pair of agents is chosen randomly at each step, they
interact and change state.

o The whole population must eventually agree on a
majority value (x or y) with probability 1.

2011-05-06Luca Cardelli 8

Properties

[Angluin et al.]

N.B. this holds even if the x,y populations
are initially of equal size!

“Parallel time” is the number of steps divided by the number of agents.
Hence the algorithm terminates with high probability in O(log n).

2011-05-06Luca Cardelli 9

vs. Stochastic Chemistry

[Angluin et al.]

2011-05-06Luca Cardelli 10

Chemical Implementation

x + y → y + b
y + x → x + b
b + x → x + x
b + y → y + y

x yb

x y

This too is a bistable system, but:
• It converges slowly, by a random

walk, hence O(n2).
• It is unstable: any random

fluctuation from an all-x or all-y
state can send it (by a random
walk) to the other state.

x cb y

This one gives no significant
improvement over the above.

2011-05-06Luca Cardelli 11

Majority of x=y (CRN)
x + y -> y + b
y + x -> x + b
b + x -> x + x
b + y -> y + y

Gillespie simulation of the chemical
reactions in SPiM.
• 10x more molecules at same concentration (i.e. lower

rate) converge in ‘comparable’ time.
• Not shown: 10x more molecules in same volume, (i.e.

higher concentration) converge 10x faster.

N.B. a deterministic (ODE)
simulation with x=y would not
converge at all!

20k molecules, rate 10.0/s

200k molecules, rate 1.0/s (same concentration)

directive sample 0.0002 1000
directive plot x(); y(); b()

val r = 10.0
new xy@r:chan new yx@r:chan

new bx@r:chan new by@r:chan

let x() =
do ?xy; b()
or !yx; x()
or !bx; x()

and y() =
do !xy; y()
or ?yx; b()
or !by; y()

and b() =
do ?bx; x()
or ?by; y()

run 10000 of x()
run 10000 of y()

directive sample 0.0002 1000
directive plot x(); y(); b()

val r = 1.0
new xy@r:chan new yx@r:chan

new bx@r:chan new by@r:chan

let x() =
do ?xy; b()
or !yx; x()
or !bx; x()

and y() =
do !xy; y()
or ?yx; b()
or !by; y()

and b() =
do ?bx; x()
or ?by; y()

run 100000 of x()
run 100000 of y()

directive sample 0.0002 1000
directive plot x(); y(); b()

val r = 0.1
new xy@r:chan new yx@r:chan

new bx@r:chan new by@r:chan

let x() =
do ?xy; b()
or !yx; x()
or !bx; x()

and y() =
do !xy; y()
or ?yx; b()
or !by; y()

and b() =
do ?bx; x()
or ?by; y()

run 1000000 of x()
run 1000000 of y()

2000k molecules, rate 0.1/s (same concentration)

2011-05-06Luca Cardelli 12

Bistable Element

• I had rediscovered (but not analyzed so well) the same
system, while looking for a memory circuit.

• The point here was not computing majority, but
switching easily and quickly and stably: it’s a switch.

A + B -> B + C
B + A -> A + C
C + A -> A + A
C + B -> B + B

2011-05-06Luca Cardelli 13

As a Flip-Flop

x yb

Y

X

Outputs x,y:

x + y → y + b
y + x → x + b
b + x → x + x
b + y → y + y

Inputs X,Y:

x + Y → Y + b
b + Y → Y + y
y + X → X + b
b + X → X + y

directive sample 50.0 1000
directive plot x(); y(); b(); X(); Y(); Time()

val r = 1.0
new xy@r:chan new yx@r:chan
new bx@r:chan new by@r:chan
new killX:channew killY:chan
new time:chan

let x() =
do ?xy; b()
or !yx; x()
or !bx; x()

and y() =
do !xy; y()
or ?yx; b()
or !by; y()

and b() =
do ?bx; x()
or ?by; y()

and Y() =
do !xy; Y() or !by; Y() or ?killY; ()

and X() =
do !yx; X() or !bx; X() or ?killX; ()

let clock(p:proc(int), t:float) =
(* Produce one p(m) every t sec with precision dt,

with m incremented from 0 *)
(val dt= 100.0 run step(p, 0, t, dt, dt))
and step(p:proc(int), m:int, t:float, n:float, dt:float) =
if n<=0.0 then (p(m)|step(p,m+1,t,dt,dt))
else delay@dt/t; step(p,m,t,n-1.0,dt)

let Time() = ?time; ()

let schedule(n:int) =
(Time();

if n<200 then Y()
else if n<400 then !killY
else if n<600 then X()
else if n<800 then !killX
else ()

)

run 1000 of x()
run clock(schedule,0.05)

Can be switched by
external (catalytic)
signals that are only
20% of the x,y levels.

Init: 1000 x
Y growing from 0
(t=0) to 200
(t=200) then back
to 0 (t=400)
X growing from 0
(t=400) to 200
(t=600) then back
to 0 (t=800).

2011-05-06Luca Cardelli 14

Chemical Constraints

• This circuit is ‘chemically demanding’
o It requires x molecules to be ‘next’ to y molecules

beacause they interact directly

o It requires both x and y to be catalysts, and in fact
autocatalysts, and in fact each-other’s autocatalyst!

x yb

2011-05-06Luca Cardelli 15

Program Transformations

• An example of relaxing those constraints
o This circuit works just as well as the original, but it no

longer requires x to be ‘next’ to y. They no longer
interact directly. Instead, they interact through an
additional x0-y0 equilibrium.

x yb

y0

x0

directive sample 0.0002 1000
directive plot x(); y(); b()

val r = 10.0
new xy0@r:chan new yx0@r:chan
new x0y0@r:chan new y0x0@r:chan
new bx@r:chan new by@r:chan

let x() =
do ?xy0; b()
or !bx; x()
or !y0x0; x()

and y() =
do ?yx0; b()
or !by; y()
or !x0y0; y()

and b() =
do ?bx; x()
or ?by; y()

and y0() =
do !xy0(); y0()
or ?y0x0; x0()

and x0() =
do !yx0(); x0()
or ?x0y0; y0()

run 5000 of x() run 5000 of x0()
run 5000 of y() run 5000 of y0()

x=y

2011-05-06Luca Cardelli 16

Program Transformations

• Another example of relaxing constraints
o Invent an Approximate Majority network that requires

only x to be a catalyst. How?

o Enter the Cell Cycle switches…

2011-05-06Luca Cardelli 17

Some Notation

• Catalytic reaction

• Non-linear reaction

The hollow circle may represent any ‘non-linear’ reaction (e.g.
enzymatic, hill) in addition to this ‘double-phosphorylation’
network, which however is the standard interpretation here.

x y

z

x yb

z

x y

z

=

=

x + z → z + y

2011-05-06Luca Cardelli 18

Zero-Input Switches

• ‘Zero-input switch’ = majority circuit:
just working off the initial conditions.

• Step 1: the original AM Network

x yb=x y

2011-05-06Luca Cardelli 19

Zero-Input Switches

• Step 2: remove auto-catalysis
o By introducing intermediate species w, r.

o Here w breaks the y auto-catalysis, and r breaks the x
auto-catalysis, while preserving the feedbacks.

o w and r need to ‘relax back’ (to z and t) when they are
not catalyzed: s and t provide the back pressure.

x y
z

s

x y

w

rp

t

2011-05-06Luca Cardelli 20

Zero-Input Switches

• Step 3: transform a double-positive loop
on y into a double-negative loop on x.
o Instead of y (actively) activating itself through w, we

have z activating y (which is passive). To counteract,
now x has to swich from inhibiting y to inhibiting z.

• So that y no longer catalyzes anything.

z

s

x y

w

rp

t

z

s

x y

w

rp

t

2011-05-06Luca Cardelli 21

Zero-Input Switches

• Still an AM circuit

z

s

x y

w

rp

t

s

x yb

w zu

p rq

t

directive sample
0.0005 1000
directive plot x(); y();
b()
(* z(); w(); r(); s(); t();
p(); q() *)

val rt = 10.0

new xcat@rt:chan
new zcat@rt:chan
new rcat@rt:chan
new scat@rt:chan
new tcat@rt:chan

let x() =
do !xcat; x()
or ?zcat; b()

and y() =
?rcat; b()

and b() =
do ?rcat; x()
or ?zcat; y()

and z() =
do !zcat; z()
or ?xcat; u()

and r() =
do !rcat; r()
or ?tcat; q()

and s() =
!scat(); s()

and w() =
?scat; u()

and u() =
do ?scat; z()
or ?xcat; w()

and t() =
!tcat; t()

and p() =
?xcat; q()

and q() =
do ?xcat; r()
or ?tcat; p()

run 1000 of s()
run 1000 of t()

run 10000 of p()
run 10000 of z()

run 4500 of y()
run 5500 of x()

=

(Although the equal-likelihood
outcome here is around 4500 y
vs 5500 x, and there are other
paremeters)

2011-05-06Luca Cardelli 22

The Cell Cycle Switch

xxxxyyyy

tttt

ssss
z

s

x y

w

rp

t

zzzz
rrrr

pppp

wwww

2011-05-06Luca Cardelli 23

Zero-Input Switches

• Other designs
o A version with no external bias (s,t) where y is still

non-catalytic and x and z are self-catalytic.

o Both x and z have an ‘inactive’ form, y and w,
although the both are double catalysts.

directive sample 0.0002 1000
directive plot x(); y(); b()
(*; z(); w(); s() *)

val rt = 10.0

new xcat@rt:chan
new zcat@rt:chan

let x() =
do !xcat; x()
or ?zcat; b()

and y() =
?xcat; b()

and b() =
do ?xcat; x()
or ?zcat; y()

and z() =
do !zcat; z()
or ?xcat; u()

and w() =
?zcat; u()

and u() =
do ?zcat; z()
or ?xcat; w()

run 5000 of z()
run 5000 of w()

run 5000 of x()
run 5000 of y()

z

x y

w

2011-05-06Luca Cardelli 24

One-Input Switches

• Hysteresis in AM-like switches
directive sample 0.01 1000
directive plot x(); y(); sx(); sy() (* b(); *)

val rt = 10.0
new xcat@rt:chan
new ycat@rt:chan
new sxcat@rt:chan new sxkill:chan
new sycat@rt:chan new sykill:chan

let x() =
do ?ycat; b()
or ?sycat; b()

and y() =
do !ycat; y()
or ?sxcat; b()

and b() =
do ?sxcat; x()
or ?ycat; y()
or ?sycat; y()

and sy() = do !sycat; sy() or ?sykill; ()
and sx() = do !sxcat; sx() or ?sxkill; ()

run 10000 of y()
run 100 of sy()

let clock(p:proc(int), t:float) =
(* Produce one p(m) every t sec with precision
dt,

with m incremented from 0 *)
(val dt= 100.0 run step(p, 0, t, dt, dt))
and step(p:proc(int), m:int, t:float, n:float,
dt:float) =
if n<=0.0 then (p(m)|step(p,m+1,t,dt,dt))
else delay@dt/t; step(p,m,t,n-1.0,dt)

let schedule(n:int) =
if n < 5000 then sx()
else if n < 10000 then !sxkill;()
else ()

run clock(schedule,0.000001)

x y

sy

sx

rx=0.0
sy=100

One-Input Switches

x y

sy

sx

directive sample 0.02 1000
directive plot x(); y(); sx(); sy() (* b(); *)

val rt = 10.0
val rx = 1.0
new xcat@rx:chan
new ycat@rt:chan
new sxcat@rt:chan new sxkill:chan
new sycat@rt:chan new sykill:chan

let x() =
do !xcat; x()
or ?ycat; b()
or ?sycat; b()

and y() =
do !ycat; y()
or ?xcat; b()
or ?sxcat; b()

and b() =
do ?xcat; x()
or ?sxcat; x()
or ?ycat; y()
or ?sycat; y()

and sy() = do !sycat; sy() or ?sykill; ()
and sx() = do !sxcat; sx() or ?sxkill; ()

run 10000 of y()
run 1000 of sy()

let clock(p:proc(int), t:float) =
(* Produce one p(m) every t sec with precision
dt,

with m incremented from 0 *)
(val dt= 100.0 run step(p, 0, t, dt, dt))
and step(p:proc(int), m:int, t:float, n:float,
dt:float) =
if n<=0.0 then (p(m)|step(p,m+1,t,dt,dt))
else delay@dt/t; step(p,m,t,n-1.0,dt)

let schedule(n:int) =
if n < 5000 then sx()
else if n < 10000 then !sxkill;()
else ()

run clock(schedule,0.000001)

rx=5.0
sy=1000

rx=0.1
sy=1000

rx=0.1
sy=100

2011-05-06Luca Cardelli 26

One-Input Switches

• Hysteresis in cell cycle switches

z

s

x y

w

rp

t

sy

sx

directive sample 0.02 1000

directive plot x(); y(); sx(); sy()

(* ; b(); z(); w(); u(); s(); p(); q(); r(); t() *)

val rt = 100.0

new xcat@rt:chan

new zcat@rt:chan

new scat@rt:chan

new tcat@rt:chan

new rcat@rt:chan

new sxcat@rt:chan new sxkill:chan

new sycat@rt:chan new sykill:chan

let x() =

do !xcat; x()

or ?zcat; b()

or ?sycat; b()

and y() =

do ?rcat; b()

or ?sxcat; b()

and b() =

do ?rcat; x()

or ?sxcat; x()

or ?zcat; y()

or ?sycat; y()

and z() =

do !zcat; z()

or ?xcat; u()

and r() =

do !rcat; r()

or ?tcat; q()

and w() =

?scat; u()

and u() =

do ?xcat; w()

or ?scat; z()

and s() =

!scat; s()

and t() =

!tcat; t()

and p() =

?xcat; q()

and q() =

do ?xcat; r()

or ?tcat; p()

and sy() = do !sycat; sy() or ?sykill; ()

and sx() = do !sxcat; sx() or ?sxkill; ()

run 1000 of y()

run 1000 of z()

run 1000 of p()

run 200 of s()

run 1000 of t()

run 100 of sy()

let clock(ps:proc(int), tm:float) =

(* Produce one ps(m) every tm sec with precision dt,

with m incremented from 0 *)

(val dt= 100.0 run step(ps, 0, tm, dt, dt))

and step(ps:proc(int), m:int, tm:float, n:float, dt:float) =

if n<=0.0 then (ps(m)|step(ps,m+1,tm,dt,dt))

else delay@dt/tm; step(ps,m,tm,n-1.0,dt)

let schedule(n:int) =

if n < 1000 then sx()

else if n < 2000 then !sxkill;()

else ()

run clock(schedule,0.00001)

p=r=0

w=z=0

initial conditions:
1000 of y
1000 of z
1000 of p
1000 of t
200 of s
100 of sy

varying sx 0 to 1000
to 0

2011-05-06Luca Cardelli 27

twice s, half t, and half sy

five times t

2011-05-06Luca Cardelli 28

Two-input Switches

• (not really relevant here)

x y

sy

sx

Oscillators

2011-05-06Luca Cardelli 30

The Trammel of Archimedes

• A device to draw ellipses
o Two interconnected switches.

o When one switch is on (off) it flips the other switch on
(off). When the other switch is on (off) it flips the first
switch off (on).

en.wikipedia.org/wiki/Trammel_of_Archimedes

x1 y1

x2 y2

2011-05-06Luca Cardelli 31

The Shishi Odoshi

• A Japanese scarecrow (scare-deer)
o Used by Bela Novak to illustrate the cell cycle switch.

http://www.youtube.com/watch?v=VbvecTIftcE&NR=1&feature=fvwp

up dn

em
pty

full

tap

empty + tap � tap + full
up + full � full + dn
full + dn � dn + empty
dn + empty � empty + up To make it into a full trammel (dotted line), we

could make the up position mechanically open the
tap (i.e. take up = tap)

2011-05-06Luca Cardelli 32

The 2AM Limit-Cycle Oscillator

• Two AM switches in a Trammel pattern

directive sample 0.001 10000
directive plot x1(); y1(); b1(); x2();
y2(); b2()

val r = 10.0
new x1cat@r:chan
new y1cat@r:chan
new x2cat@r:chan
new y2cat@r:chan

val s = 8.0
new x1cat2@s:chan
new y1cat2@s:chan
new x2cat1@s:chan
new y2cat1@s:chan

let x1() =
do !x1cat; x1()
or !x1cat2; x1()
or ?y1cat; b1()
or ?y2cat1; b1()

and y1() =
do !y1cat; y1()
or !y1cat2; y1()
or ?x1cat; b1()
or ?x2cat1; b1()

and b1() =
do ?x1cat; x1()
or ?x2cat1; x1()
or ?y1cat; y1()
or ?y2cat1; y1()

let x2() =
do !x2cat; x2()
or !x2cat1; x2()
or ?y2cat; b2()
or ?x1cat2; b2()

and y2() =
do !y2cat; y2()
or !y2cat1; y2()
or ?x2cat; b2()
or ?y1cat2; b2()

and b2() =
do ?x2cat; x2()
or ?y1cat2; x2()
or ?y2cat; y2()
or ?x1cat2; y2()

run 3666 of x1()
run 3000 of y1()
run 3333 of b1()

run 3333 of x2()
run 3333 of y2()
run 3333 of b2()

x1 y1

x2 y2

The red reactions need to be slower
(even slightly) than the black reactions,
but otherwise the oscillation is robust.
Oscillation stops at 10 vs. 10 and 1 vs.
10. Here the rates are 8 vs 10.0 top, and
2 vs 10, bottom.

(Simple limit-cycle oscillators in the
literature have very critical rate ranges.)

2011-05-06Luca Cardelli 33

Influx Oscillators

• Similar but:
o The two-input switches are replaced by one-input

switches which are reset by constant influxes.

x1 y1

x2 y2

c2

c1
directive sample 0.002 1000
directive plot x1(); y1(); b1(); x2(); y2(); b2(); c1();
c2()

val r = 10.0
new x1cat@r:chan
new y1cat@r:chan
new x2cat@r:chan
new y2cat@r:chan

val s = 10.0
new x1cat2@s:chan
new y1cat2@s:chan
new x2cat1@s:chan
new y2cat1@s:chan

val t = 100.0
new c1ch@t:chan new c2ch@t:chan

let c1gen() = delay@100000.0; (c1gen() | c1())
and c1() = !c1ch; ()
let c2gen() = delay@100000.0; (c2gen() | c2())
and c2() = !c2ch; ()

let x1() =
do !x1cat; x1()
or !x1cat2; x1()
or ?c1ch; b1()

and y1() =
do !y1cat2; y1()
or ?x1cat; b1()
or ?x2cat1; b1()

and b1() =
do ?x1cat; x1()
or ?x2cat1; x1()
or ?c1ch; y1()

let x2() =
do !x2cat; x2()
or !x2cat1; x2()
or ?c2ch; b2()

and y2() =
do !y2cat1; y2()
or ?x2cat; b2()
or ?y1cat2; b2()

and b2() =
do ?x2cat; x2()
or ?y1cat2; x2()
or ?c2ch; y2()

run 1000 of x1()
run 6666 of y1()
run 2333 of b1()

run 3333 of x2()
run 3333 of y2()
run 3333 of b2()

run 4000 of c1gen()
run 4000 of c2gen()

r=s=10,c1g=c2g=3000

r=s10,c1g=c2g=4000

Works best with s=r.

Needs constant influx of c1,c2

2011-05-06Luca Cardelli 34

Novak-Tyson Oscillator

• First switch
o Is the ‘transformed’ AM switch in

one-input configuration (driven by
constant influx of cyclin).

• Second switch
o Is a simple two-stage switch

working as a delay (the first switch
is so good in terms of hysteresis
that the second switch is not very
critical for oscillation).

o It can be replaced by a one-stage
switch (Ferrell’s cell cycle
osciallor) but oscillation is a bit
harder to obtain.

• Connection
o Single links, as in the influx

oscillator.

z

s

x y

w

rp

t

f

v

h

c

ik

l

2011-05-06Luca Cardelli 35

Novak-Tyson Oscillator
directive sample 0.02 1000
directive plot x(); y(); b(); z(); w(); r(); s(); t(); p(); q(); f(); g();
h(); v(); i(); j(); k(); l(); c()

val rt = 100.0
val rt2 = 1.0
val rt3 = 200.0
val rc = 10000.0

new c@rt:chan
new xcat@rt:chan new zcat@rt:chan new rcat@rt:chan
new scat@rt:chan new tcat@rt:chan new vcat@rt:chan
new lcat@rt:chan

new fcat@rt3:chan new icat@rt3:chan
new xcat2@rt2:chan

let ci() = delay@rc; (cy()|ci())
and cy() = !c; ()

let x() = do !xcat; x() or !xcat2; x() or ?zcat; b() or ?icat; b()
and y() = do ?rcat; b() or ?c; b()
and b() = do ?rcat; x() or ?c; x() or ?zcat; y() or ?icat; y()
and z() = do !zcat; z() or ?xcat; u()
and r() = do !rcat; r() or ?tcat; q()
and s() = !scat; s()
and w() = ?scat; u()
and u() = do ?scat; z() or ?xcat; w()
and t() = !tcat; t()
and p() = ?xcat; q()
and q() = do ?xcat; r() or ?tcat; p()
and f() = do !fcat; f() or ?vcat; g()
and g() = do ?vcat; h() or ?xcat2; f()
and h() = ?xcat2; g()
and v() = !vcat; v()
and i() = do !icat; i() or ?lcat; j() or ?c; i()
and j() = do ?lcat; k() or ?fcat; i()
and k() = ?fcat; j()
and l() = !lcat; l()

run 100 of s()
run 100 of t()
run 10 of v()
run 10 of l()

run 1000 of y()
run 1000 of z()
run 1000 of p()
run 1000 of h()
run 1000 of k()

run 1000 of ci()

w = z = 0

t/2

p=r=0, or t/4, or t*2:
no oscillation

2011-05-06Luca Cardelli 36

Without double-positive loop

Normal

t=0, r/10

t=0, r/2 t=0, r/4 t=0, r/5

t=0, r/12 t=0, r/15 t=0, r/20

(then, block t and change amount of r)

2011-05-06Luca Cardelli 37

Without double-negative loop

Normal
z/10

z=0

(then, with x no longer acting on z, change amount of z)

z/100

z/5 z/3 z/2 z/1

2011-05-06Luca Cardelli 38

(z+w)/10 t=0, r/10

t/10, (p+r)/10 t/14, (p+r)/14

Conclusions

2011-05-06Luca Cardelli 40

Conclusions

• A range of ‘network transformation’
o Can explain the structure of some natural network

o From some non-trivial underlying algorithms

o Discovering the transformation can elucidate the
structure and function of the networks

o But how can we say that these transformations
‘preserve (essential) behavior’?

