Biochemical Systems as Reactive Systems

Luca Cardelli
Microsoft Research

Cambridge 2011-02-22
http://lucacardelli.name

Processes and Functions

Functions

$$
f(x)=\sqrt{ } x
$$

"read input into x; then write $\sqrt{ } x$ to output"

(binding) input variable output expression
(bound) variable occurrence

Composing Functions

$$
g(x)=(f \circ f)(x) \quad(=f(f(x)))
$$

Composing Functions

$$
g(x)=(f \circ f)(x)
$$

"create a new channel and use it to compose two copies of f"

$$
\begin{gathered}
\text { channe/ creation (restriction/hiding/boxing) } \\
\text { (parallel/process) composition } \\
\text { ?input }(\mathrm{x}) ; \text { !temp }(\sqrt{ } \mathrm{x}) \\
\text { ?temp }(\mathrm{y}) ; \text { !output }(\sqrt{ } \mathrm{y})
\end{gathered}
$$

Many inputs and outputs

$$
\mathrm{P}=\quad \text { ?in } \mathrm{in}_{1}(\mathrm{x}) ; \mathrm{in}_{2}(\mathrm{y}) ; \text { !out }{ }_{1}(\mathrm{x}+\mathrm{y}) ; \mathrm{P}
$$

$$
\oplus \text { ?in }_{3}(\mathrm{z}) ; \text { !out }_{2}(\sqrt{ } \mathrm{z}) ; \text { !out }_{1}(2 \mathrm{z}) ; 0
$$

That's π-calculus

- To compose processes P we need:
- Composition:
$P \mid P$
(with identity elem. 0)
- Channel cration: (v x) P
(with x bound in P)
- Recursion:
*P (equal to $\mathrm{P} \mid$ *P)
- To execute actions we need:
- Channel reading: ?c(x); P (with x bound in P)
- Channel writing: ! $\mathrm{C}(\mathrm{M})$; P (with message M)
\circ Choice: $\quad P \oplus P \quad$ (with identity elem. 0)
- ... and channels can be sent as messages!

Generalizing Functions and Automata

- Unlike functions...
- Processes have multiple, explicitly named, input and output channels.
- Processes can run in parallel, can deadlock on their inputs, and can be nondeterministic in their outputs.
- Unlike automata (FSA)...
- Processes can transmit data (not just change state).
- While automata 'talk' to input strings, processes 'talk' to other processes: processes are communicating automata.
- Processes are not "finite state"; they can express unbounded computation in time (divergence) and space (proliferation).

Algebraic Properties

- Functions have one binder and one rule:
- Function application:

If $f(x)={ }_{\text {def }} M\{x\}$ then $f(a)=M\{a / x\}$

- Processes have two binders and two rules:
- Communication (input '?' binder)

$$
(? c(x) ; P\{x\}) \oplus P^{\prime}\left|(!c(a) ; Q) \oplus Q^{\prime}=P\{a / x\}\right| Q
$$

- Scope extrusion (new ' v ' binder)

If x not occurring in Q then $((v x) P) \mid Q=(v x)(P \mid Q)$

Implementations

- SPiM (Stochastic Pi Machine)
- http://lepton.research.microsoft.com/VisualSPiM/
- Runs in a browser with Silverlight.

Processes and Chemistry

Continuous Chemical Systems

Reactions:

$$
\begin{array}{lll}
\mathrm{A} & \rightarrow^{r} & \mathrm{~B}_{1}+\ldots+\mathrm{B}_{n} \\
\mathrm{~A}_{1}+\mathrm{A}_{2} & \rightarrow^{r} & \mathrm{~B}_{1}+\ldots+\mathrm{B}_{n} \\
\mathrm{~A}+\mathrm{A} & \rightarrow^{r} & \mathrm{~B}_{1}+\ldots+\mathrm{B}_{n}
\end{array}
$$

Degradation

Asymmetric Collision
Symmetric Collision

Continuous reaction kinetics, respectively:

$$
\begin{array}{ll}
{[A]^{\bullet}=-r[A]} & \text { Exponential Decay } \\
{\left[A_{i}\right]^{\bullet}=-r\left[A_{1}\right]\left[A_{2}\right]} & \text { Mass Action Law } \\
{[A]^{\bullet}=-2 r[A]^{2}} & \begin{array}{l}
\text { Mass Action Law } \\
\text { (assuming } A \neq B_{i} \neq A_{j} \text { for all } i, j \text {) }
\end{array}
\end{array}
$$

π-calculus for Chemistry

- To compose soups P we need:
- Stochastic channels: (v x_{r}) P r is the rate of an exponential distribution: the rate of communication on that channel
- Composition:
- Recursion:
$P \mid P \quad$ (with identity elem. 0)
*P (equal to $P \mid * P$)
- To execute species we need:
- Collision: ? $\mathrm{x}_{\mathrm{r}} ; \mathrm{P} \quad$ (with no input variables)
- Co-collision: ! $x_{r} ; P$ (with no output messages)
- Delay: $\quad \tau_{r} ; P \quad\left(=\left(v x_{r}\right) ? x_{r} ; P \mid!x_{r} ; 0\right.$ for any x not in $\left.P\right)$
- Choice: $\quad \mathrm{P} \oplus \mathrm{P} \quad$ (with identity elem. 0)

Discrete Chemical Systems (1)

Reaction:

$$
A \rightarrow^{r} B_{1}+\ldots+B_{n}
$$

Discrete reaction kinetics:

$$
\mathrm{A}=\tau_{\mathrm{r}} ;\left(\mathrm{B}_{1}|\ldots| \mathrm{B}_{\mathrm{n}}\right)
$$

The mathematical meaning of that is a Continuous Time Markov Chain (for a specific set of initial conditions, e.g. a single A molecule), here represented as a transition graph:

Hence the π-calculus description abstracts from initial conditions (like ODEs). For each set of initial conditions, a CTMC can be systematically extracted from the stochastic π-calculus models.

Discrete Chemical Systems (2)

(Uniquely named) reaction:
c: $A_{1}+A_{2} \rightarrow^{r} B_{1}+\ldots+B_{n}$

Discrete reaction kinetics:
$A_{1}=?_{r} ;\left(B_{1}|\ldots| B_{i}\right) \quad$ (the name of the reaction becomes the channel)
$A_{2}=!C_{r} ;\left(B_{i}|\ldots| B_{n}\right) \quad$ (splitting results is arbitrary: $1 \leq i \leq n$)

With initial conditions $A_{1} \mid A_{2}$ (single molecules), the CTMC is:

Discrete Chemical Systems (3)

(Uniquely named) reaction:
$\mathrm{C}: \mathrm{A}+\mathrm{A} \rightarrow^{r} \mathrm{~B}_{1}+\ldots+\mathrm{B}_{\mathrm{n}}$

Discrete reaction kinetics:

$$
A=? c_{r / 2} ;\left(B_{1}|\ldots| B_{i}\right) \oplus!C_{r / 2} ;\left(B_{i}|\ldots| B_{n}\right) \quad 1 \leq i \leq n
$$

With initial conditions $\mathrm{A} \mid \mathrm{A}$ (two molecules), the CTMC is as follows; note that each copy of A can do an input or an output, so there are two possible paths to the outcome:

That is:

From Reactions to Processes

$$
\begin{aligned}
& v_{1}: A+B \rightarrow k_{1} C+C \\
& v_{2}: A+C \rightarrow k_{2} D \\
& v_{3}: C \rightarrow k_{3} E+F \\
& v_{4}: F+F \rightarrow k_{4} B
\end{aligned}
$$

Interaction Matrix

Fill the matrix by columns:

Degradation reaction $v_{i}: X \rightarrow{ }^{k i} P_{i}$ add $\tau ; P_{i}$ to $\left\langle X, v_{i}\right\rangle$.
Asymmetric reaction $v_{i}: X+Y \rightarrow{ }^{k i} P_{i}$ add ? $; \mathrm{P}_{\mathrm{i}}$ to $\left\langle\mathrm{X}, \mathrm{v}_{\mathrm{i}}\right\rangle$ and ! $; 0$ to $\left.<\mathrm{Y}, \mathrm{v}_{\mathrm{i}}\right\rangle$ Symmetric reaction $v_{i}: X+X \rightarrow{ }^{k i} P_{i}$ add ? $; \mathrm{P}_{\mathrm{i}}$ and $!; 0$ to $<\mathrm{X}, \mathrm{v}_{\mathrm{i}}>$

$$
\begin{aligned}
& \text { Read out the processes by rows: } \\
& \qquad \begin{array}{l}
\mathrm{A}=? \mathrm{v}_{1(\mathrm{kl})} ;(\mathrm{C} \mid \mathrm{C}) \oplus ? \mathrm{v}_{2(k 2)} ; \mathrm{D} \\
\mathrm{~B}=!\mathrm{v}_{1(\mathrm{k})} ;
\end{array} \\
& \mathrm{C}=!\mathrm{v}_{2(\mathrm{k})} ; 0 \oplus \tau_{\mathrm{k} 3} ;(\mathrm{E} \mid \mathrm{F}) \\
& \mathrm{D}=0 \\
& \mathrm{E}=0 \\
& \mathrm{~F}=? \mathrm{v}_{4(\mathrm{k} 4 / 2)} ; \mathrm{B} \oplus!\mathrm{v}_{4(\mathrm{k} 4 / 2)} ; 0
\end{aligned}
$$

That Chemical System in SPiM

$$
\begin{aligned}
& \mathrm{A}=? \mathrm{v}_{1(\mathrm{kl})} ;(\mathrm{C} \mid \mathrm{C}) \oplus ? \mathrm{v}_{2(\mathrm{k} 2)} ; \mathrm{D} \\
& \mathrm{~B}=!\mathrm{v}_{1(\mathrm{k}) \mathrm{l}} ; 0 \\
& \mathrm{C}=!\mathrm{v}_{2(\mathrm{k} 2)} ; 0 \oplus \tau_{\mathrm{k} 3} ;(\mathrm{E} \mid \mathrm{F}) \\
& \mathrm{D}=0 \\
& \mathrm{E}=0 \\
& \mathrm{~F}=? \mathrm{v}_{4(\mathrm{k} 4 / 2)} ; \mathrm{B} \oplus!\mathrm{v}_{4(\mathrm{k} 4 / 2)} ; 0
\end{aligned}
$$

Gillespie-style stochastic simulation

directive sample 10.0
directive plot $A() ; B() ; C() ; D() ; E() ; F()$
val k1 $=0.001$ new v1@k1:chan
val $k 2=0.001$ new v2@k1:chan
val $k 3=1.0$
val $k 4=0.001$ new v4@k4/2.0:chan
let $A()=$ do ? $\mathrm{v} 1 ;(C() \mid C())$ or ? $\mathrm{v} 2 ; D()$
and $B()=$! $v 1$
and $C()=$ do !v2 or delay@k3;(E()|F())
and $D()=()$
and $E()=()$
and $F()=$ do ? $\mathrm{v} 4 ; B()$ or !v4
run 300 of $(A()|B()| C()|D()| E() \mid F())$

Modeling Techinques

- That is a systematic way to translate reactions to processes.
- But there can be better ways to do it.
- That is, ways that producemore compact and/or modular mode/s, but with the same kinetics.

Ex: Catalysis

- Two reactions, same catalyst C
- According to the general scheme the catalyst uses one channel for each reaction it catalyzes

$$
\begin{array}{ll}
\mathrm{a}: \quad \mathrm{A}+\mathrm{C} \rightarrow \mathrm{r} \mathrm{C}+\mathrm{B} & \mathrm{C}=!\mathrm{a}_{\mathrm{r}} ; \mathrm{C} \oplus!\mathrm{b}_{\mathrm{r}} ; \mathrm{C} \\
\mathrm{~b}: \quad \mathrm{D}+\mathrm{C} \rightarrow^{r} \mathrm{C}+\mathrm{E} & \mathrm{~A}=? \mathrm{a}_{\mathrm{r}} ; \mathrm{B} \\
& \mathrm{D}=? \mathrm{~b}_{\mathrm{r}} ; \mathrm{E}
\end{array}
$$

- Modularizing: the catalyst has its own catalysis channel c, used for all the reactions it catalyzes:

$$
\begin{array}{ll}
\mathrm{A}+\mathrm{C} \rightarrow{ }^{r} \mathrm{C}+\mathrm{B} & \mathrm{C}=!\mathrm{c}_{\mathrm{r}} ; \mathrm{C} \\
\mathrm{D}+\mathrm{C} \rightarrow{ }^{r} \mathrm{C}+\mathrm{E} & \mathrm{~A}=? \mathrm{c}_{\mathrm{r}} ; \mathrm{B} \\
& \mathrm{D}=? \mathrm{c}_{\mathrm{r}} ; \mathrm{E}
\end{array}
$$

Processes and Biochemistry

π-calculus for Biochemistry

- Biochemistry here means: direct modeling of complexation and polymerization.
- We now go back to the full (and stochastic) π calculus: we need to pass channels as messages!

Complexation

$A+B \quad{ }^{s} \leftrightarrow^{r} \quad A: B$

There is no good notation for this reaction in chemistry: $A: B$ is considered as a separate species (which leads to combinatorial explosion of models).

But there is a way to write this precisely in π-calculus. There is a single public association channel a_{r} at rate r , and many private dissociations channels d_{s} at rate s, one for each complexation event (created by v):

$$
\begin{array}{ll}
\mathrm{A}_{\text {free }}\left(\mathrm{d}_{\text {a }}\right) & =\left(v \mathrm{~d}_{s}\right)!\mathrm{a}_{\mathrm{r}}\left(\mathrm{~d}_{s}\right) ; \mathrm{A}_{\text {bound }}\left(\mathrm{d}_{s}\right) \\
\mathrm{A}_{\text {bound }} \\
& =!\mathrm{d}_{s} ; \mathrm{A}_{\text {free }} \\
\mathrm{B}_{\text {free }} & =? \mathrm{a}_{\mathrm{r}}\left(\mathrm{~d}_{s}\right) ; \mathrm{B}_{\text {bound }}\left(\mathrm{d}_{s}\right) \\
\mathrm{B}_{\text {bound }}\left(\mathrm{d}_{\mathrm{s}}\right) & =? \mathrm{~d}_{\mathrm{s}} ; \mathrm{B}_{\text {free }}
\end{array}
$$

Note that we are describing A independently of B: as in the catalysis example, A could form complexes with many different species over the a_{r} channel.

$$
\begin{aligned}
& \text { More compactly: } \\
& \begin{array}{l}
A=\left(v d_{s}\right)!a_{r}\left(d_{s}\right) ;!d_{s} ; A \\
B=? a_{r}\left(d_{s}\right) ; ? d_{s} ; B
\end{array}
\end{aligned}
$$

Polymerization

- Polymerization is iterated complexation
- It can be represente in π-calculus finitely, with one process (definition) for each monomer.
- Note that polymerization cannot be described finitely in chemistry (or ODEs) because there it needs one reaction for each length of polymer.
- The reason it works in π-calculus is because of the v operator. It enables the finite representation of systems of potentially unbounded complexity.
- Like real biochemistry, where the structure of each monomer is coded in a finite piece of DNA, and yet unbounded-length polymers happen.

Processes and Genes

Higher-level Modeling

- The modeling level is up to you
- We have seen how to use π-calculus to model chemical and biochemical events.
- But it can be used to model any kind of 'events':
- A process can represent: a molecule, a gene, a cell, an organism, etc.
- A communication on a channel can represent: a molecular collision, a transcripion activation, a communication between cells, an interaction between organism (epidemics), etc.
- Let's see how to model gene networks
- No longer single-molecule interactions, but rather interactions between genes and transcription factors.

The Classical ODE Approach

[Chen, He, Church]

n : number of genes
$\frac{d \mathrm{r}}{d t}=f(\mathrm{p})-V \mathrm{r}$
r mRNA concentrations (n-dim vector)
p protein concentrations (n-dim vector)
$\frac{d \mathrm{p}}{d t}=L \mathrm{r}-U \mathrm{r} \quad f(\mathrm{p})$ transcription functions:
(n -dim vector polynomials on p)

Nullary Gate

A stochastic rate r is always associated with each channel a_{r} (at channel creation time) and delay t_{r}, but is often omitted when unambiguous.

Production and Degradation

A transcription factor is a process (not a message or a channel): it has behavior such as interaction on p and degradation.

Unary Pos Gate

Unary Neg Gate

$r=1.0, e=0.1, h=0.01, d=0.001$

Signal Amplification

$\operatorname{pos}(a, b) \mid \operatorname{pos}(b, c)$

With little degradation
$r=1.0, e=0.01, h=0.1, d=0.00001$

Signal Normalization

$$
\left.\begin{array}{lcc}
\frac{a}{1} \stackrel{b}{n} \stackrel{c}{n} \stackrel{c}{\text { neg }}
\end{array} \operatorname{neg}(a, b) \right\rvert\, \operatorname{neg}(b, c)
$$

a non-zero input level, a, whether weak or strong, is renormalized to a standard level, c.

Self Feedback Circuits

$$
\begin{gathered}
\frac{\square a}{\operatorname{pos}} \\
\operatorname{pos}(a, a)
\end{gathered}
$$

$$
\begin{gathered}
\frac{\square a}{n e g} \\
\operatorname{neg}(a, a)
\end{gathered}
$$

(Can overwhelm degradation, depending on parameters)

Two-gate Feedback Circuits
 b

Monostable:

For some degradation rates is quite stable:

But with a small change in degradation, it goes wild:

$$
r=1.0, e=0.1, h=0.01, d=0.0001
$$

$6000 \square$

$$
\begin{aligned}
& \operatorname{neg}(b, a) \mid \\
& \operatorname{neg}(a, b)
\end{aligned}
$$

Bistable:
$r=1.0, e=0.1, h=0.01, d=0.001$

5 runs with $r(a)=0.1$, $r(b)=1.0$ shows that circuit is now biased towards expressing b

Repressilator

$$
\begin{aligned}
& \operatorname{neg}(a, b) \\
& \operatorname{neg}(b, c) \\
& \operatorname{neg}(c, a)
\end{aligned}
$$

Same circuit, three different degradation models by changing the tr component:

Conclusions

Conclusions

- π-calculus
- A mathematical notation for reactive systems
- In stochastic form, suitable for representing discrete chemistry, biochemistry, etc.
- Some unique properties: ability to finitely express systems of unbounded complexity, like networks of complexing proteins.
- Further Reading
- R. Milner: Communicating and Mobile Systems: The Pi Calculus
- A. Regev, E. Shapiro. Cellular Abstractions: Cells as Computation. NATURE vol 419, 2002-09-26, 343.
- L. Cardelli: From Processes to ODEs by Chemistry. TCS 2008, DOI: http://dx.doi.org/10.1007/978-0-387-09680-3_18
- A. Phillips,L. Cardelli, A Correct Abstract Machine for the Stochastic Pi-calculus, in Concurrent Models in Molecular Biology, 2004.

