
AlgebrasAlgebrasAlgebrasAlgebras and Languagesand Languagesand Languagesand Languages
forforforfor Molecular ProgrammingMolecular ProgrammingMolecular ProgrammingMolecular Programming

Luca Cardelli
Microsoft Research

MergingKnowledge, Trento, 2010-12-01
http://lucacardelli.name

Nanoscale Engineering

• Sensing
o Reacting to forces

o Binding to molecules

• Actuating
o Releasing molecules

o Producing forces

• Constructing
o Chassis

o Growth

• Computing
o Signal Processing

o Decision Making

Sensing

Constructing Actuating

Computing

Nucleic Acids can do all this.

And interface to biology.
And are programmable.

Curing

A doctor in each cell

Sensing

Constructing Actuating

Computing

Execution?

• Chemistry is not easily executable
o Is chemistry a programming language?

o Please Mr Chemist, execute me these reactions I just made up!

• Proteins are not easily programmable

• Most molecular-scale notations are descriptive
(modeling) languages

• How can we actually execute molecular
languages? With real molecules?

Strand Displacement
Basics

DNA Hybridization

Bernard Yurke

• Strands with opposite orientation and complementary
base pairs stick to each other (Watson-Crick duality).

• This is all we are going to use
o We are not going to exploit DNA replication, transcription, translation,

restriction and ligation enzymes, etc., which enable other classes of tricks.

• Subsequences on a DNA strand are called domains.

• PROVIDED they are “independent” of each other.

• I.e., differently named domains must not hybridize:
o With each other

o With each other’s complement

o With subsequences of each other

o With concatenations of other domains (or their complements)

o Etc.

• Choosing domains (subsequences) that are suitably
independent is a tricky issue that is still somewhat of an open
problem (with a vast literature). But it can work in practice.

x zy

Domains

CTTGAGAATCGGATATTTCGGATCGCGATTAAATCAAATG

Short Domains

t

t

t

Reversible Hybridization

Long Domains

x

x
x

Irreversible Hybridization

Strand Displacement

t x

xt

“Toehold Mediated”

Strand Displacement

xt

Toehold Binding

Strand Displacement

xt

Branch Migration

Strand Displacement

xt

Displacement

Strand Displacement

xt

x

Irreversible release

t

Bad Match

x

x

y

zt

t

Bad Match

x y

z

x

t

Bad Match

x y

z

x

xt

Bad Match

y

z

Cannot proceed
Hence will undo

Signals & Gates

Four-Domain Architecture
No “garbage collection”
(active waste removal)

Three-Domain Architecture

DNA Computing and Molecular Programming.
15th International Conference, DNA 15, LNCS 5877, Springer 2009, pp 12-24.

With garbage collection
(separate pass)

“Lulu’s Trouble”

(from D.Soloveichik)

Two-Domain Architecture

• Signals: 1 toehold + 1 recognition region

• Gates: “top-nicked double strands”
(or equivalently double strands with open toeholds)

In S. B. Cooper, E. Kashefi, P. Panangaden (Eds.):
Developments in Computational Models (DCM 2010).
EPTCS 25, 2010, pp. 33-47. May 2010.

txt y t

xt

Garbage collection
“built into” the gates

nick

t a

xt t a t a x t y t a t

y t

Transducer x→y

t x

Input

Transducer x→y

tatatata is a private signal (a different ‘a’ for each xy pair)

t a

xt t a t a x t y t a t

y t

t x

Input

Built by self-assembly!

Transducer x→y

x

t a

t t a t a x t y t a t

y t

Transducer x→y

t a

xt t a t a x t y t a t

y t

x t

Active
waste

Transducer x→y

xt t a t a x t y t a t

y t

x t

Transducer x→y

a t

t axt a x t y t a t

y t

x t

t

So far, a txtxtxtx signal has produced an atatatat cosignal.
But we want signals as output, not cosignals.

Transducer x→y

t axt a x t y t a t

y t

x t

t

Transducer x→y

t a

a tt axt a x t y

y t

x t

t

Transducer x→y

t a

a tt axt a x t y t

x t

t

Transducer x→y

t y

t a

a tt axt a x y t

x t
Output

t t

Here is our output tytytyty signal.

But we are not done yet:
1) We need to make the output irreversible.
2) We need to remove the garbage.
We can use (2) to achieve (1).

Transducer x→y

t y

t a

a tt axt a x y t

x t
Output

t t

Transducer x→y

t y

t a

a tt axt a x y tt

Output

t

Transducer x→y

x

t y

t a

a tt axt a y tx t

Output

t

Transducer x→y

x

t y

t a tt axt a y tx t

Output

Transducer x→y

a x

t y

t a a tt axt y tx t

Output

a x

t a a tt axt y tx t

Transducer x→y

t y

Output

Done.

N.B. the gate is consumed: it is the energy source.

Reaction Graph for x→y

General n×m Join-Fork

• Easily generalized to 2+ inputs (with 1+ collectors).

• Easily generalized to 2+ outputs.

Georg Seelig, Matt Olson

(U.Washington)

A + B → B + C

Experiments

Compilation
and

Verification

Strand Algebra

• We have seen a (2-domain strand displacement)
implementation of a class of computational gates

• More abstractly described as a strand algebra: an
intermediate language for molecular computing
o Signals: x

o Gates: [x1,..,xn].[y1,..,ym]

o Parallel composition: |

o Populations: (…)*

x1 | .. | xn | [x1,..,xn].[y1,..,ym] → y1 | .. | ym

Input SignalsInput Signals
(consumed)

Output SignalsOutput Signals
(produced)

GateGate
(consumed)

Computational Power

• Equivalent to Petri Nets
o Not Turing complete, but a rich class nonetheless.

o The correspondence is not completely trivial: gates are consumed by
activation, hence a persistent Petri net transition requires a stable
population of gates.

• Many other abstract
machines are expressible
o Boolean networks

o Interacting Automata

o Population Protocols

o Chemistry itself

x1 x2

y2 y3y1

Join

Fork

Molecular Compilation

3-domain
Signals

2-domain
Signals

4-domain
Signals

Strand
Algebra

Gate
Design

Device
Design

Structural
Language

Petri
Nets

Strand
Algebra

Intermediate
Language

Circuit
Design

…

Boolean
Networks

Correctness?

Optimization Issues

• Reduce number of species

• Optimize kinetics

• Etc.

Verification Issues

• Environment
o The nano-environment is messy (stochastic noise, failures, etc.)

o But we should al least ensure our designs are logically correct

• Verifying Components
o Reversible reactions (infinite traces)

o Interferences (deadlocks etc.) between copies of the same gate

o Interferences (deadlocks etc.) between copies of different gates

o Removal of active byproducts (garbage collection) is tricky

• Verifying Populations
o Gates come in (large) populations

o Each population shares private domains
(technologically unavoidable)

o Correctness of populations means proofs with large state spaces

Correctness

• The spec of a transducer:

x.y | x → y

o Is it true at all?

o Is it true possibly, necessarily, or probabilistically ?

o Is it true in the context of a
population of identical transducers?

o Is it true in all possible contexts?

o Is it true (only) for infinite populations?

Interfering Transducers

• Let a be the private transducer domain,
but let’s share it between x.y and y.x

• Interference: x.ay | y.ax | x ↛∀ x

• But still: x.ay | y.ax | x | y →∀ x | y

• A large population of such gates
in practice does not deadlock easily.

• The wisdom of crowds: individuals can be
wrong, but the population is all right.

Stuck gates in

of 200

Stuck gates in
a population

of 200

Modelchecking DNA Systems

• Using the PRISM stochastic modelchecker
o Termination probability of interfering transducers

x | x.ay | y.az

L. Cardelli, M. Kwiatkowska, M. Lakin, D. Parker and A. Phillips.
Design and Analysis of DNA Circuits using Probabilistic Model Checking.
http://qav.comlab.ox.ac.uk/papers/dna-pmc.pdf. September 2010

Incorrect Incorrect
Termination

Correct Correct
Termination

Conclusions

• A new architecture for molecular circuits
o Simple signals, simple gate structures.

o Self-cleaning: no garbage left by operation (except inert).

o Enabling new ways of assembling gates.

o Experimental evidence that it works.

• A correspondingly simple algebra
o As an intermediate language for molecular compilers.

o For verifying gate designs mechanically.

• Molecular Programming
o Telling (some class of) molecules how to behave.

o Controlling (biological) systems at the nano scale.

Acknowledgments

• Microsoft Research
o Andrew Phillips

• Caltech
o Winfree Lab

• U.Washington
o Seelig Lab

