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Nanoscale Engineering

• Sensing
o Reacting to forces

o Binding to molecules

• Actuating
o Releasing molecules

o Producing forces

• Constructing
o Chassis

o Growth

• Computing
o Signal Processing

o Decision Making

Sensing

Constructing Actuating

Computing

Nucleic Acids can do all this.

And interface to biology.
And are programmable.



Curing

A doctor in each cell

Sensing

Constructing Actuating

Computing



Execution?

• Chemistry is not easily executable
o Is chemistry a programming language?

o Please Mr Chemist, execute me these reactions I just made up!

• Proteins are not easily programmable

• Most molecular-scale notations are descriptive 
(modeling) languages

• How can we actually execute molecular 
languages? With real molecules?



Strand Displacement
Basics



DNA Hybridization

Bernard Yurke

• Strands with opposite orientation and complementary 
base pairs stick to each other (Watson-Crick duality).

• This is all we are going to use
o We are not going to exploit DNA replication, transcription, translation, 

restriction and ligation enzymes, etc., which enable other classes of tricks.



• Subsequences on a DNA strand are called domains.

• PROVIDED they are “independent” of each other.

• I.e., differently named domains must not hybridize:
o With each other

o With each other’s complement

o With subsequences of each other

o With concatenations of other domains (or their complements)

o Etc.

• Choosing domains (subsequences) that are suitably 
independent is a tricky issue that is still somewhat of an open 
problem (with a vast literature). But it can work in practice.
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Domains

CTTGAGAATCGGATATTTCGGATCGCGATTAAATCAAATG



Short Domains
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Reversible Hybridization



Long Domains
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Irreversible Hybridization



Strand Displacement
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“Toehold Mediated”



Strand Displacement
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Toehold Binding



Strand Displacement
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Strand Displacement
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Strand Displacement
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Cannot proceed
Hence will undo



Signals & Gates



Four-Domain Architecture
No “garbage collection” 
(active waste removal)



Three-Domain Architecture

DNA Computing and Molecular Programming. 
15th International Conference, DNA 15, LNCS 5877, Springer 2009, pp 12-24. 

With garbage collection 
(separate pass)



“Lulu’s Trouble”

(from D.Soloveichik)



Two-Domain Architecture

• Signals: 1 toehold + 1 recognition region

• Gates: “top-nicked double strands”
(or equivalently double strands with open toeholds)

In S. B. Cooper, E. Kashefi, P. Panangaden (Eds.): 
Developments in Computational Models (DCM 2010). 
EPTCS 25, 2010, pp. 33-47. May 2010.
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Garbage collection 
“built into” the gates
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Transducer x→y

tatatata is a private signal (a different ‘a’ for each xy pair)
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Built by self-assembly!



Transducer x→y
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Transducer x→y
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Transducer x→y
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Transducer x→y
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So far, a txtxtxtx signal has produced an atatatat cosignal.
But we want signals as output, not cosignals.



Transducer x→y
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Transducer x→y
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Transducer x→y
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Transducer x→y

t y
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a tt axt a x y t

x t
Output

t t

Here is our output tytytyty signal.

But we are not done yet:
1) We need to make the output irreversible.
2) We need to remove the garbage.
We can use (2) to achieve (1).



Transducer x→y

t y

t a

a tt axt a x y t

x t
Output

t t



Transducer x→y
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Transducer x→y
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Transducer x→y
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Transducer x→y
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a x

t a a tt axt y tx t

Transducer x→y

t y

Output

Done.

N.B. the gate is consumed: it is the energy source. 



Reaction Graph for x→y



General n×m Join-Fork

• Easily generalized to 2+ inputs (with 1+ collectors).

• Easily generalized to 2+ outputs.



Georg Seelig, Matt Olson

(U.Washington)

A + B → B + C

Experiments



Compilation
and

Verification



Strand Algebra

• We have seen a (2-domain strand displacement) 
implementation of a class of computational gates

• More abstractly described as a strand algebra: an 
intermediate language for molecular computing
o Signals: x

o Gates: [x1,..,xn].[y1,..,ym]

o Parallel composition: |

o Populations: (…)*

x1 | .. | xn | [x1,..,xn].[y1,..,ym] → y1 | .. | ym

Input SignalsInput Signals
(consumed)

Output SignalsOutput Signals
(produced)

GateGate
(consumed)



Computational Power

• Equivalent to Petri Nets
o Not Turing complete, but a rich class nonetheless.

o The correspondence is not completely trivial: gates are consumed by 
activation, hence a persistent Petri net transition requires a stable 
population of gates.

• Many other abstract 
machines are expressible 
o Boolean networks

o Interacting Automata

o Population Protocols

o Chemistry itself

x1 x2

y2 y3y1

Join

Fork



Molecular Compilation

3-domain 
Signals

2-domain 
Signals

4-domain 
Signals

Strand
Algebra
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Structural
Language

Petri
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Strand
Algebra

Intermediate
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Circuit 
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…

Boolean
Networks

Correctness?



Optimization Issues

• Reduce number of species

• Optimize kinetics

• Etc.



Verification Issues

• Environment
o The nano-environment is messy (stochastic noise, failures, etc.)

o But we should al least ensure our designs are logically correct

• Verifying Components
o Reversible reactions (infinite traces)

o Interferences (deadlocks etc.) between copies of the same gate

o Interferences (deadlocks etc.) between copies of different gates

o Removal of active byproducts (garbage collection) is tricky

• Verifying Populations
o Gates come in (large) populations

o Each population shares private domains 
(technologically unavoidable)

o Correctness of populations means proofs with large state spaces



Correctness

• The spec of a transducer: 

x.y | x → y

o Is it true at all?

o Is it true possibly, necessarily, or probabilistically ?

o Is it true in the context of a 
population of identical transducers?

o Is it true in all possible contexts?

o Is it true (only) for infinite populations?



Interfering Transducers

• Let a be the private transducer domain,
but let’s share it between x.y and y.x

• Interference: x.ay | y.ax | x  ↛∀ x

• But still: x.ay | y.ax | x | y  →∀ x | y

• A large population of such gates 
in practice does not deadlock easily.

• The wisdom of crowds: individuals can be 
wrong, but the population is all right. 

Stuck gates in 

of 200

Stuck gates in 
a population 

of 200



Modelchecking DNA Systems

• Using the PRISM stochastic modelchecker
o Termination probability of interfering transducers

x | x.ay | y.az

L. Cardelli, M. Kwiatkowska, M. Lakin, D. Parker and A. Phillips. 
Design and Analysis of DNA Circuits using Probabilistic Model Checking.
http://qav.comlab.ox.ac.uk/papers/dna-pmc.pdf.  September 2010

Incorrect Incorrect 
Termination

Correct Correct 
Termination



Conclusions

• A new architecture for molecular circuits
o Simple signals, simple gate structures.

o Self-cleaning: no garbage left by operation (except inert).

o Enabling new ways of assembling gates.

o Experimental evidence that it works.

• A correspondingly simple algebra 
o As an intermediate language for molecular compilers.

o For verifying gate designs mechanically.

• Molecular Programming
o Telling (some class of) molecules how to behave.

o Controlling (biological) systems at the nano scale.
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