Two-Domain DNA
Strand Displacement

Luca Cardelli
Microsoft Research

DCM Edinburgh, 2010-07-09
http://lucacardelli.name

Nanoscale Engineering

L _I

» Sensing
o Reacting to forces
o Binding to molecules

Actuating

o Releasing molecules
o Producing forces

Constructing

o Chassis
o Growth

Computing
o Signal Processing
o Decision Making

Nucleic Acids can do all this.

And interface to biology.
And are programmable.

L €1 _I

Strand Displacement
Basics

DNA Hybridization

Bjorn Hogberg

NGOG GO GCA I -
11111111101 Shihlab
)Y) O A A ¢

Dana-Farber Cancer Institute

« Strands with opposite orientation and complementary
base pairs stick to each other (Watson-Crick duality).

« This is all we are going to use

o We are not going to exploit DNA replication, transcription, translation,
restriction and ligation enzymes, etc., which enable other classes of tricks.

L €1

Domains

Subsequences on a DNA strand are called domains.
PROVIDED they are “independent” of each other.

CTTGAGAATCGGATATTTCGGATCG CGATTAAATCﬁETG

l.e., differently named domains must not hybridize:

With each other

With each other’s complement

With subsequences of each other

With concatenations of other domains (or their complements)
Etc.

O O O O O

Choosing domains (subsequences) that are suitably
independent is a tricky issue that is still somewhat of an open
problem (with a vast literature). But it can work in practice.

Short Domains

—_—
t

—
t
t ' ' S

e

Reversible Hybridization

Long Domains

A
X
D

Irreversible Hybridization

X
N —

Strand Displacement

“Toehold Mediated”

Strand Displacement

__

t X
<

Toehold Binding

Strand Displacement

Branch Migration

Strand Displacement

#
t X
F

Displacement

Strand Displacement

Irreversible release

Bad Match

t X Z
—_— S
t X y

Bad Match

Bad Match

Bad Match

Cannot proceed
Hence will undo

Signals & Gates

Four-Domain Architecture

No “garbage collection”

A : (active waste removal)
K]
o s
identifier R
o 2 310 q; \1 2 3 2 3 10 4 11 7
W + T + >
1, 2* 3¢ o 20 5
X i 1i 0,
G; waste
B species species
\2 3 10 4 11 7 identifier identifier
2 3 10 4 11 10 4 11 Gma = = s \ f \
. o m.ﬁm _. gumnnmmmu.t +| 104 5 6|+ 17 8 9
Gx 10% 4% 11¥7* 3% 10% 4% 11* 7+
O, T waste X2 X3

DNA as a universal substrate for chemical kinetics

David Soloveichik*', Georg Seelig®®', and Erik Winfree®'

PNAS | March 23, 2010 | vol. 107 | no. 12 | 5393-5398

A

Three-Domain Architecture

X X
. b’

a

&, " :
Xp Y 0 Gxt_ Xb
‘ lIIIIlI[l].lI.iIIIII "‘IIIILIIIlLb

T
o Xet Xpt Y ab Xtt Xp- Yt at
a fresh; X generic
© x2
h-—ﬁ
X| Xy—>y

Strand Algebras for DNA Computing

LLuca Cardelli

DNA Computing and Molecular Programming.

With garbage collection
(separate pass)

C Xt Xp _ Yt

JlIIIIIIlI l[llIIIIlII’

th Xpt Y- at

15th International Conference, DNA 15, LNCS 5877, Springer 2009, pp 12-24.

_I

A

“Lulu’s Trouble”

(from D.Soloveichik)

Two-Domain Architecture

L

"« Signals: 1 toehold + 1 recognition region

Garbage collection

é 1] H = ”
built into” the gates

t X

« Gates: “top-nicked double strands”
(or equivalently double strands with open toeholds)

— — —
t t t
G WU — —
t x t y t t x t y t
T EE— B~ EEEEEE—

Transducer x—y

Transducer x—y

Input
t X
— ——
t a y ot
N U U
t x t a t a X t y t a t
< ~

tais a private signal (a different ‘a’ for each xy pair)

Transducer x—y

tttttttttttt

Transducer x—y

—
X t
— —
t a y t
S > S >, >, S
t t a t a t y t a t
< <

Transducer x—y

tttttttttttt

Transducer x—y

——
X t
— —
a t y t
> = = = > =
t X t a t a X t y t a t
< <

So far, a tx signal has produced an at cosignal.
But we want signals as output, not cosignals.

Transducer x—y

tttttttttttt

Transducer x—y

— —
X t t
—
y t
>, S S >, S >
tttttt
< <

Transducer x—y

tttttttttttt

Transducer x—y

— —
x ot t a
Output
—_—
t oy
N S S S S >
t X t a t a X t oy t a t
< <

Here is our output ty signal.

But we are not done yet:

1) We need to make the output irreversible.
2) We need to remove the garbage.

We can use (2) to achieve (1).

Transducer x—y

Transducer x—y

Transducer x—y

Transducer x—y

Transducer x—y

Output

t Y

Done.

Note the tata motif and how it helps in collection.

Fork x—y+2z

Input
—
X z t
— —
t a y
>, >, > >, >, >,
X t a t a X t z t y
<
Output
t z
Output
—_— —_—
a X t y
>, >, > >, >,
X t a t a X t X t y
<

(Amplifier: x—=x+x)

Catalyst x+y—y+z

Input N ytis kindly
-~ t oy 2zt provided by the
npu i
A s .-~ left hand side.
X t a Y t
S S > -~ N N N -~
X t Yy t a t a X t z t Yy t a t
<
Output
t z
Output
— —
a X t y
>, >, >, - S S S g
X t Yy t a t a X t X t Yy t a t

(Autocatalyst: x+y—y+y)

A+B—->B+C

Experiments

x] Tsimage s urenty e axpayea.

Georg Seelig, Matt Olson

x 10° 2—-domain min (A+B->B+C) @ 35C,10nM

—A,B=[0,0]

—A,B =[1,0]
—A,B=[1,0.1]
—AB=[1,1]

0 1 2 3 4 5 6

1

Autocatalytic O

X+y—y+y
V+z—z+Z
Z+X—>X+X

scillator

Ll

directive sample 100.0 1000
directive plot <tA x>; <tA y>;
<tA z>

(* directive scale 100.0 *)

new t@1.0,100.0

def C(N, x, vy, z) =

new a

(N* <tA a>

| N* <z tA>

| N* [tA]:[x tA]:[y tA]:[a tA]:[a]
| N* [X]:[tA z]:[tA y]:[tA a):[tA]
)

(

C(100, x,y,vy)
| C(100,vy, z, 2)
| C(100, z, x, x)
| 10 * <tA x>
[1% <tAy>
| 1% <tA z>

)

Join Xx+y—z

Input
———
y b t
Input
— ———

X t a

> >, >, > >, >,
X y t a t a X t b t

<
—
t b y t

Join Xx+y—z

Input
——
t b t
—— ——
t a
o > > > >, >,
X t t a t a X t b t

<
—
t b y t

Join Xx+y—z

Input
—
y b t
— — —

t a

AN AN - AN AN
y t a t a X t b t

<
—
t b y t

Join Xx+y—z

Join X+y—z

— —
y t b t
— — —
X t t a z t
>, =, AN =, >, >, >, =,
t X t y t a t a X b t z t a t
< <

We cannot have a collector just waiting for yt,
because there may be innocent yt elsewhere in
the system, like here!

— ———
t a y ot
>~ ~ ~ S S ~
S t a t a x t y t a t
< <

Transducer x—y

Instead, the collection of yt
must be triggered only by a
signal signifying that an x+y—z
gate has fired. That signal is tb,
which will trigger the collection
of yt after output tz is produced.

bt is a private signal
(a different ‘b’ for each xyz triple)

Join Xx+y—z

Join Xx+y—z

Join Xx+y—z

Join Xx+y—z

Join Xx+y—z

Join Xx+y—z

——— —— —

t b t
Output
t z

>, > > > >
t a t a X t b t z
<
—
t b y t
<

Join Xx+y—z

—_—
t
Output
t z
S S S SN\ S
t a t a X t b t z
<
—_— S
t b y t

Join Xx+y—z

——— — —

t t b
Output
t z

>, > > > >
t a t a X t b t z
<
—
t b y t

Join Xx+y—z

—_— —_— —_—

t t b
Output
t z

S S S ~ S S
t a t a X t b t z
<
—_— S
t b y t
<

Join Xx+y—z

N — —
t t b
Output
—
X t 4
> > > > >

t a t a X t b t z

<

—
t b y t

Join Xx+y—z

N —
t t b
Output
—
X t 4
> > P > >
t a t a X t b t z
<
—
t b y t
<

Join Xx+y—z

N —
t t b
Output
— —
a X t 4
> > > > >
t a t a X t b t z
<
—
t b y t
<

Join Xx+y—z

—
t b
Output
— —
a X t 4
> > > > >
t a t a X t b t z
<
t b y t

Join Xx+y—z

Output
— —
a X t 4
> > > > >
t a t a X t b t z
<
t b y t
<

Join Xx+y—z

Output
— —
a X t V4
> > > > >
t a t a X t b t y4
<
—_—
b y
> >
t b y t
<

General nxm Join-Fork

Easily generalized to 3+ inputs (with 2+ collectors) etc.
Easily generalized to 2+ outputs (like Fork) etc.

— —
¢ ¢t Z E
a chTszTat

t t
—_— —_— —_—
t w t t

Figure 9: 3-Join J,,,. | tw | tx | ty — tz: initial state plus inputs tw, 7x, ty.

_I

A

Petri Net Transitions

Computing power equivalent to Petri Nets (not Turing
complete).

Not completely trivial: gates are consumed by activation,
hence a persistent Petri net transition requires a stable
population of gates.

Join

Fork

Verification

Verification Issues

Individual Components

o Reversible reactions (infinite traces)

o Interferences (deadlocks etc.) between copies of the same gate

o Interferences (deadlocks etc.) between copies of different gates

o Removal of active byproducts (garbage collection) is tricky
Populations

o Gates come in (large) populations

o Each population shares private domains (technologically unavoidable)

o Correctness of populations means proofs with large state spaces

o Proofs about arbitrary population size?

Environment
o The nano-environment is stochastic (noise, failures, etc.)

O

O

Biology is messy
But we should al least make sure our designs are /ogically correct

€

Correctness

» The spec of a transducer: T,, + tx — ty

Is it true at all?

Is it true possibly, or necessarily, or probabilistically (measure 1)?
Is it true in the context of a population of identical transducers?
Is it true /n all possible contexts?

Is it (more) true for large populations?

Is it true for infinite populations (continuous limit)?

0O O O O O O

Nick Algebra

C o w

Wn

|w

Nick Algebra

= X Xt single strand
=@ :t:Xx:tx:xt:xx:DD double strand
=S : D : UlU : (vx)U soup

nick operator

Algebraic Equality

= is an equivalence relation,
and a congruence over the term syntax

Q]HDZT_Dg) — (D1TD2)TD3
oD = D'g = D

U]|(U2|U3) — (U]|U2)|U3
U1|U2 » U2|U1
g|lU = Ulg = U

(v)U = (vy)(U{y/x}) it ye pa(U)
(vx)o = o
(vx)(U;|U,) = U;[(vx)U, if xe palU,)

(v)(vy)U = (vy)(vx)U

Reduction

D, itixttD, | tx <« D,tx't'D, | xt
D,itTxTD, | tx — D,"txtD,
D,iIxttD, | xt —» D,IxttD,
D, ttxyt'D, | tx | yt — D,tx'yttD,

tx © — L T x t <
i-e-: DI _t x D2 Tox — 1 T x D2
t - — R
- L T L * x
D > o if D not reactive

u, - U, = U, |U-> U, |U
Uu, - U, = wxu, - (vxU,

exchange

left coverage
right coverage
cooperation

waste
dilution
isolation

U] - Uz, Uz — U3, U3 — U4 — U] — U4 miXing

€

| Reachability

. U, ->*U, iff U, —-..->U,

o Thatis, U; mayreduce to U,.

. U, =7 U, iff VU, U, =*U=U->*U,
o Thatis, U, wi//reduce to U,. (It cannot avoid the possibility of reducing to U,).

o U —=Y U means that U is reversible.

o If U, is the only terminal state then U; —Y U, means that U, mustreduce to U,.

Gate Definitions

» T,., = t'xtfatfa | ta | xity'tait | yt
., = (Va)((Txay)n)

* Frovy = ...

xayz

* Fyyz = (Va)(Fyay)™)

Y nyaz

¥ Jnxyz - (Va)((-lxyaz)n)

Correctness

L

-

* Proposition: May-Correctness

Tn,ltx" —=* tyn

Fyz [TXN =% tyn|tz"

Iy | XNty —* 2z
o Easy case analysis and induction on n.

» Proposition: T',, Will-Correctness

Ty [tx =7 ty

Exhaustive case analysis enumerating all states of the system.

Can be done by hand for T1,,, and maybe szy, but not really for T3Xy etc.
Will-correctness for fork/join is harder (more states).

Will-correctness for combinations of gates is harder
(does not compose and requires analysis of joint state space).

o We are using modelchecking to verify some of these properties.
[Andrew Phillips & David Parker in PRISM]

O O O O

Interfering Transducers

Although T, ., | T, | tx »Y tX

xay yax

We have T,, | T | tx |ty =Y tx |ty

That means that a large population of such gates in
practice does not deadlock easily: each pair of

deadlocked gates can be unblocked by another pair
correctly producing a ty as an intermediate product.

Wisdom of the masses: individuals can be wrong, but the
population is right. It is very unlikely that a significant

fraction of gates ends up being deadlocked.

Conclusions

A new architecture for general DNA gates

@)
@)
©)
@)

Simple signals, simple gate structures.

Self-cleaning: no garbage left by operation (except inert).
Enabling new ways of assembling gates.

Some experimental evidence that it works.

A correspondingly simple algebra

O

For verifying gate designs mechanically.

Verification issues

O

o Are the fork/join gates in Nick Algebra a correct implementation of

Verification techniques for gate populations.

(Strand Algebra and) Petri nets?

