
TwoTwoTwoTwo----DomainDomainDomainDomain DNA DNA DNA DNA
Strand DisplacementStrand DisplacementStrand DisplacementStrand Displacement

Luca Cardelli
Microsoft Research

DCM Edinburgh, 2010-07-09
http://lucacardelli.name

Nanoscale Engineering

• Sensing
o Reacting to forces

o Binding to molecules

• Actuating
o Releasing molecules

o Producing forces

• Constructing
o Chassis

o Growth

• Computing
o Signal Processing

o Decision Making

Sensing

Constructing Actuating

Computing

Nucleic Acids can do all this.

And interface to biology.
And are programmable.

Strand Displacement
Basics

DNA Hybridization

Bernard Yurke

• Strands with opposite orientation and complementary
base pairs stick to each other (Watson-Crick duality).

• This is all we are going to use
o We are not going to exploit DNA replication, transcription, translation,

restriction and ligation enzymes, etc., which enable other classes of tricks.

• Subsequences on a DNA strand are called domains.

• PROVIDED they are “independent” of each other.

• I.e., differently named domains must not hybridize:
o With each other

o With each other’s complement

o With subsequences of each other

o With concatenations of other domains (or their complements)

o Etc.

• Choosing domains (subsequences) that are suitably
independent is a tricky issue that is still somewhat of an open
problem (with a vast literature). But it can work in practice.

x zy

Domains

CTTGAGAATCGGATATTTCGGATCGCGATTAAATCAAATG

Short Domains

t

t

t

Reversible Hybridization

Long Domains

x

x
x

Irreversible Hybridization

Strand Displacement

t x

xt

“Toehold Mediated”

Strand Displacement

xt

Toehold Binding

Strand Displacement

xt

Branch Migration

Strand Displacement

xt

Displacement

Strand Displacement

xt

x

Irreversible release

t

Bad Match

x

x

y

zt

t

Bad Match

x y

z

x

t

Bad Match

x y

z

x

xt

Bad Match

y

z

Cannot proceed
Hence will undo

Signals & Gates

Four-Domain Architecture
No “garbage collection”
(active waste removal)

Three-Domain Architecture

DNA Computing and Molecular Programming.
15th International Conference, DNA 15, LNCS 5877, Springer 2009, pp 12-24.

With garbage collection
(separate pass)

“Lulu’s Trouble”

(from D.Soloveichik)

Two-Domain Architecture

• Signals: 1 toehold + 1 recognition region

• Gates: “top-nicked double strands”
(or equivalently double strands with open toeholds)

txt y t txt y t

t t t

xt

Garbage collection
“built into” the gates

Transducer x→y

t a

xt t a t a x t y t a t

y t

t x

Input

Transducer x→y

t x

t a

xt t a t a x t y t a t

y t

Input

tatatata is a private signal (a different ‘a’ for each xy pair)

x

Transducer x→y

t a

t t a t a x t y t a t

y t

Transducer x→y

t a

xt t a t a x t y t a t

y t

x t

Active
waste

Transducer x→y

xt t a t a x t y t a t

y t

x t

a t

Transducer x→y

t axt a x t y t a t

y t

x t

t

So far, a txtxtxtx signal has produced an atatatat cosignal.
But we want signals as output, not cosignals.

Transducer x→y

t axt a x t y t a t

y t

x t

t

t a

a t

Transducer x→y

t axt a x t y

y t

x t

t

t a

a t

Transducer x→y

t axt a x t y t

x t

t

t y

t a

a t

Transducer x→y

t axt a x y t

x t

Output

t t

Here is our output tytytyty signal.

But we are not done yet:
1) We need to make the output irreversible.
2) We need to remove the garbage.
We can use (2) to achieve (1).

t y

t a

a t

Transducer x→y

t axt a x y tt

Output

t

x

t y

t a

a t

Transducer x→y

t axt a y tx t

Output

t

x

t y

t a t

Transducer x→y

t axt a y tx t

Output

a x

t y

t a a t

Transducer x→y

t axt y tx t

Output

a x

t a a t

Transducer x→y

t axt y tx t

t y

Output

Done.

Note the tatatatatatatata motif and how it helps in collection.

Fork x→y+z

t x

t a

xt t a t a x t y t a t

y t

Input

t z

z t

a x t y

t a a tt axt y tx t

Output

xt

t z

Output

(Amplifier: x→x+x)

Catalyst x+y→y+z

t y

t a

xt t a t a x t y t a t

y t

Input

t z

z t

a x t y

t a a tt ayt y tx t

Output

xt

t z

Output

y t

t x

Input

xt

ytytytyt is kindly
provided by the
left hand side.

(Autocatalyst: x+y→y+y)

Autocatalytic Oscillator

directive sample 100.0 1000
directive plot <t^ x>; <t^ y>;
<t^ z>
(* directive scale 100.0 *)

new t@1.0,100.0

def C(N, x, y, z) =
new a
(N* <t^ a>
| N* <z t^>
| N* [t^]:[x t^]:[y t^]:[a t^]:[a]
| N* [x]:[t^ z]:[t^ y]:[t^ a]:[t^]
)

(
C(100, x, y, y)

| C(100, y, z, z)
| C(100, z, x, x)
| 10 * <t^ x>
| 1 * <t^ y>
| 1 * <t^ z>
)

x+y→y+y
y+z→z+z
z+x→x+x

t

Join x+y→z

t y

t a

xt t a t a x t z t a t

z t

Input

t b

b t

y t

t x

Input

t b y

t

Join x+y→z

t y

t a

a t a x t z t a t

z t

Input

t b

b t

y t

t b y

xt t

t

Join x+y→z

t y

t a

a t a x t z t a t

z t

Input

t b

b t

y t

t b y

xt t

x t

t

Join x+y→z

t a

a t a x t z t a t

z t

t b

b t

t

t b y

xt t y

x t

t

Join x+y→z

t a

a t a x t z t a t

z t

t b

b t

t

t b y

xt t y

x t

y t

We cannot have a collector just waiting for ytytytyt,
because there may be innocent ytytytyt elsewhere in
the system, like here!

t a

xt t a t a x t y t a t

y t

Transducer x→y

Instead, the collection of ytytytyt
must be triggered only by a
signal signifying that an x+y→z
gate has fired. That signal is tbtbtbtb,
which will trigger the collection
of ytytytyt after output tztztztz is produced.

btbtbtbt is a private signal
(a different ‘b’ for each xyz triple)

t

Join x+y→z

t a x t z t a t

z t

t b

b t

t

t b y

xt t y

x t

y t

a

t

Join x+y→z

t a x t z t a t

z t

t b

b t

t

t b y

xt t y

x t

y t

a

a t

t

Join x+y→z

t a x t z t a t

z t

t b

b t

t

t b y

xt t y

x t

y t

a

t

Join x+y→z

t a x t z t a t

z t

t b

b t

t

t b y

xt t y

x t

y t

a

at

t

Join x+y→z

t a x t z t a tt b

b t

t

t b y

xt t y

x t

y t

a

at

t

Join x+y→z

t a x t z t a tt b

b t

t

t b y

xt t y

x t

y t

a

at

t z

Output

t

Join x+y→z

t a x t z t a tt bt

t b y

xt t y

x t

y t

a

at

t z

Output

t

Join x+y→z

t a x t z t a tt bt

t b y

xt t y

x t

y t

a

at

t z

Output

bt

t

Join x+y→z

t a t z t a tt bt

t b y

xt t y

y t

a

at

t z

Output

bt

x

x

t

Join x+y→z

t a t z t a tt bt

t b y

xt t y

y t

a

at

t z

Output

bt

x

x

t

Join x+y→z

t t z t a tt bt

t b y

xt t y

y t

a

t z

Output

bt

xa

a x

t

Join x+y→z

t t z t a tt bt

t b y

xt t y

y t

a

t z

Output

bt

xa

a x

Join x+y→z

t t z t a tt bt

t b

xt t y a

t z

Output

bt

xa

ty

a x

t

Join x+y→z

t t z t a tt bt

t b y

xt t y a

t z

Output

xa

a x

t

Join x+y→z

t t z t a tt bt

t b y

xt t y a

t z

Output

xa

b y

General n×m Join-Fork

• Easily generalized to 3+ inputs (with 2+ collectors) etc.

• Easily generalized to 2+ outputs (like Fork) etc.

Petri Net Transitions

• Computing power equivalent to Petri Nets (not Turing
complete).

• Not completely trivial: gates are consumed by activation,
hence a persistent Petri net transition requires a stable
population of gates.

x1 x2

y2 y3y1

JoinJoinJoinJoin

ForkForkForkFork

Verification

Verification Issues

• Individual Components
o Reversible reactions (infinite traces)

o Interferences (deadlocks etc.) between copies of the same gate

o Interferences (deadlocks etc.) between copies of different gates

o Removal of active byproducts (garbage collection) is tricky

• Populations
o Gates come in (large) populations

o Each population shares private domains (technologically unavoidable)

o Correctness of populations means proofs with large state spaces

o Proofs about arbitrary population size?

• Environment
o The nano-environment is stochastic (noise, failures, etc.)

o Biology is messy

o But we should al least make sure our designs are logically correct

Correctness

• The spec of a transducer: Txy + tx → ty
o Is it true at all?

o Is it true possibly, or necessarily, or probabilistically (measure 1)?

o Is it true in the context of a population of identical transducers?

o Is it true in all possible contexts?

o Is it (more) true for large populations?

o Is it true for infinite populations (continuous limit)?

Nick Algebra

Nick Algebra
S ::= t.x ⋮ x.t single strand

D ::= ø ⋮ t ⋮ x ⋮ t.x ⋮ x.t ⋮ x.x ⋮ D†D double strand

U ::= S ⋮ D ⋮ U|U ⋮ (νx)U soup

S

D

t x x t

xtt xtt x t x y

nicknicknicknick operator

Algebraic Equality
= is an equivalence relation,

and a congruence over the term syntax

D1
†(D2

†D3) = (D1
†D2)

†D3

ø†D = D†ø = D

U1|(U2|U3) = (U1|U2)|U3

U1|U2 = U2|U1

ø|U = U|ø = U

(νx)U = (νy)(U{y/x}) if y∉pd(U)

(νx)ø = ø

(νx)(U1|U2) = U1|(νx)U2 if x∉pd(U1)

(νx)(νy)U = (νy)(νx)U

Reduction

D1
†t†xt†D2 | tx ↔ D1

†tx†t†D2 | xt exchange

D1
†t†x†D2 | tx → D1

†tx†D2 left coverage

D1
†x†t†D2 | xt → D1

†xt†D2 right coverage

D1
†t†xy†t†D2 | tx | yt → D1

†tx†yt†D2 cooperation

i.e.:

D → ø if D not reactive waste

U1 → U2 ⇒ U1 | U → U2 | U dilution

U1 → U2 ⇒ (νx)U1 → (νx)U2 isolation

U1 = U2, U2 → U3, U3 = U4 ⇒ U1 → U4 mixing

Reachability

• U1 →* U2 iff U1 → … → U2

o That is, U1 may reduce to U2.

• U1 →∀ U2 iff ∀U, U1 →* U ⇒ U →* U2

o That is, U1 will reduce to U2. (It cannot avoid the possibility of reducing to U2).

o U →∀ U means that U is reversible.

o If U2 is the only terminal state then U1 →∀ U2 means that U1 must reduce to U2.

Gate Definitions

• Txay = t†xt†at†a | ta | x†ty†ta†t | yt

• Tn
xy = (νa)((Txay)

n)

• Fxayz = …

• Fn
xyz = (νa)((Fxayz)

n)

• Jxyaz = …

• Jnxyz = (νa)((Jxyaz)
n)

Correctness

• Proposition: MayProposition: MayProposition: MayProposition: May----CorrectnessCorrectnessCorrectnessCorrectness

Tn
xy|tx

n →* tyn

Fn
xyz|tx

n →* tyn|tzn

Jnxyz|tx
n|tyn →* tzn

o Easy case analysis and induction on n.

• Proposition: TProposition: TProposition: TProposition: T1111
xyxyxyxy WillWillWillWill----CorrectnessCorrectnessCorrectnessCorrectness

T1
xy | tx →∀ ty

o Exhaustive case analysis enumerating all states of the system.

o Can be done by hand for TTTT1111
xyxyxyxy, and maybe TTTT2222

xyxyxyxy, but not really for TTTT3333
xyxyxyxy etc.

o Will-correctness for fork/join is harder (more states).

o Will-correctness for combinations of gates is harder
(does not compose and requires analysis of joint state space).

o We are using modelchecking to verify some of these properties.
[Andrew Phillips & David Parker in PRISM]

Interfering Transducers

• Although Txay | Tyax | tx ↛∀ tx

• We have Txay | Tyax | tx | ty →∀ tx | ty

• That means that a large population of such gates in
practice does not deadlock easily: each pair of
deadlocked gates can be unblocked by another pair
correctly producing a ty as an intermediate product.

• Wisdom of the masses: individuals can be wrong, but the
population is right. It is very unlikely that a significant
fraction of gates ends up being deadlocked.

Conclusions

• A new architecture for general DNA gates
o Simple signals, simple gate structures.

o Self-cleaning: no garbage left by operation (except inert).

o Enabling new ways of assembling gates.

o Some experimental evidence that it works.

• A correspondingly simple algebra
o For verifying gate designs mechanically.

• Verification issues
o Verification techniques for gate populations.

o Are the fork/join gates in Nick Algebra a correct implementation of
(Strand Algebra and) Petri nets?

