
TwoTwoTwoTwo----DomainDomainDomainDomain DNA DNA DNA DNA
Strand DisplacementStrand DisplacementStrand DisplacementStrand Displacement

Luca Cardelli
Microsoft Research

Tokyo, 2010-06-19
http://lucacardelli.name

Nanoscale Engineering

• Sensing
o Reacting to forces

o Binding to molecules

• Actuating
o Releasing molecules

o Producing forces

• Constructing
o Chassis

o Growth

• Computing
o Signal Processing

o Decision Making

Sensing

Constructing Actuating

Computing

Nucleic Acids can do all this.

And interface to biology.
And are programmable.

Strand Displacement
Basics

Sequence of Base Pairs (GACT alphabet)

DNA

Interactive DNA Tutorial
(http://www.biosciences.bham.ac.uk/labs/minchin/tutorials/dna.html)

GC Base Pair
Guanine-Cytosine

TA Base Pair
Thymine-Adenine

Hybridization

Bernard Yurke

• Strands with opposite orientation and complementary
base pairs stick to each other (Watson-Crick duality).

• This is all we are going to use
o We are not going to exploit DNA replication, transcription, translation,

restriction and ligation enzymes, etc., which enable other classes of tricks.

• Subsequences on a DNA strand are called domains.

• PROVIDED they are “independent” of each other.

• I.e., differently named domains must not hybridize:
o With each other

o With each other’s complement

o With subsequences of each other

o With concatenations of other domains (or their complements)

o Etc.

• How to choose domains (subsequences) that are suitably
independent is a tricky issue that is still somewhat of an open
problem (with a vast literature). But it can work in practice.

x zy

Domains

CTTGAGAATCGGATATTTCGGATCGCGATTAAATCAAATG

Short Domains

t

t

t

Long Domains

x

x
x

Strand Displacement

t x

xt

“Toehold Mediated”

Strand Displacement

xt

Toehold Binding

Strand Displacement

xt

Branch Migration

Strand Displacement

xt

Displacement

Strand Displacement

xt

x

Irreversible

t

Bad Match

x

x

y

zt

t

Bad Match

x y

z

x

t

Bad Match

x y

z

x

xt

Bad Match

y

z

Cannot proceed
Hence will undo

t

Toehold Exchange

t x

x t

Toehold Exchange

txt

Toehold Exchange

txt

Toehold Exchange

txt

t

t

Toehold Exchange

xt

x

Reversible

Cooperative Displacement

t

t x

y tx

ty

Cooperative Displacement

y t

ty

t x

x

Cooperative Displacement

y t

ty

t

Single input
will reverse

Cooperative Displacement

t y tx

Cooperative Displacement

t y tx

x y

Double input
is irreversible

Summary (1)

t x

xt xt

x
Signal

Gate

SS Waste

DS Waste

x

x

SS Waste

DS Waste

tx
Co-Signal

tx Co-Gatet

Strand
Displacement

(Co-)Strand
Displacement

x

Summary (2)

t

t x

x t

t

txt

x
Signal

Gate

Co-Signal

Co-Gate

t

t x

y tx

ty

Signal Co-Signal

t y tx

y

SS Waste

DS WasteDual gate

Toehold
Exchange

Cooperative
Displacement

Signals & Gates

Four-Domain Signals

Three-Domain Signals

DNA Computing and Molecular Programming.
15th International Conference, DNA 15, LNCS 5877, Springer 2009, pp 12-24.

Two-Domain Signals

In S. B. Cooper, E. Kashefi, P. Panangaden (Eds.):
Developments in Computational Models (DCM 2010).
EPTCS 25, 2010, pp. 33-47. May 2010.

Top-Nicked Double Strands

txt y t txt y t

t t t

A top-nicked double-strand is ‘equivalent’
to a double strand with open toeholds.
These situations shall not be distinguished.

Gates have a simple structure:
‘top-nicked’ double-stranded DNA with no ‘frills’.

Signals have a simple structure: just two domains.

Transducer x→y

t a

xt t a t a x t y t a t

y t

t x

Input

Transducer x→y

t x

t a

xt t a t a x t y t a t

y t

Input

tatatata is a private signal (a different ‘a’ for each xy pair)

x

Transducer x→y

t a

t t a t a x t y t a t

y t

Transducer x→y

t a

xt t a t a x t y t a t

y t

x t

Transducer x→y

xt t a t a x t y t a t

y t

x t

a t

Transducer x→y

t axt a x t y t a t

y t

x t

t

So far, a txtxtxtx signal has produced an atatatat cosignal.
But we want signals as output, not cosignals.

Transducer x→y

t axt a x t y t a t

y t

x t

t

t a

a t

Transducer x→y

t axt a x t y

y t

x t

t

t a

a t

Transducer x→y

t axt a x t y t

x t

t

t y

t a

a t

Transducer x→y

t axt a x y t

x t

Output

t t

Here is our output tytytyty signal.

But we are not done yet:
1) We need to make the output irreversible.
2) We need to remove the garbage.
We can use (2) to achieve (1).

t y

t a

a t

Transducer x→y

t axt a x y tt

Output

t

x

t y

t a

a t

Transducer x→y

t axt a y tx t

Output

t

x

t y

t a t

Transducer x→y

t axt a y tx t

Output

a x

t y

t a a t

Transducer x→y

t axt y tx t

Output

a x

t a a t

Transducer x→y

t axt y tx t

t y

Output

Done.

Note the tatatatatatatata motif and how it helps in collection.

The Transducer in DSD

directive sample 50.0
directive plot <t^ x>; <t^ y>
directive scale 1.0
new t@1.0,1.0

def Tr(N, x, y) =
new a
(N* <t^ a>
| N* <y t^>
| N* t^:[x t^]:[a t^]:[a]
| N* [x]:[t^ y]:[t^ a]:t^
)

(Tr(10, x, y)
| 1* <t^ x>
)

Transducer Reactions

Transducer Reaction Graph

Transducer Simulation

Output

Transducer Variation

t x

t a

xt t a t a x t y t a t

y t

Input

a x

t y

t a a tt axt y tx t

Single backbone, using cooperative displacement to remove garbage.

Note: garbage collection by cooperative displacement is optional
for the transducer, but becomes essential later.

Fork x→y+z

t x

t a

xt t a t a x t y t a t

y t

Input

t z

z t

a x t y

t a a tt axt y tx t

Output

xt

t z

Output

(Amplifier: x→x+x)

Catalyst x+y→y+z

t y

t a

xt t a t a x t y t a t

y t

Input

t z

z t

a x t y

t a a tt ayt y tx t

Output

xt

t z

Output

y t

t x

Input

xt

ytytytyt is kindly
provided by the
left hand side.

(Autocatalyst: x+y→y+y)

Autocatalytic Oscillator

directive sample 100.0 1000
directive plot <t^ x>; <t^ y>;
<t^ z>
(* directive scale 100.0 *)

new t@1.0,100.0

def C(N, x, y, z) =
new a
(N* <t^ a>
| N* <z t^>
| N* [t^]:[x t^]:[y t^]:[a t^]:[a]
| N* [x]:[t^ z]:[t^ y]:[t^ a]:[t^]
)

(
C(100, x, y, y)

| C(100, y, z, z)
| C(100, z, x, x)
| 10 * <t^ x>
| 1 * <t^ y>
| 1 * <t^ z>
)

x+y→y+y
y+z→z+z
z+x→x+x

t

Join x+y→z

t y

t a

xt t a t a x t z t a t

z t

Input

t b

b t

y t

t x

Input

t b y

t

Join x+y→z

t y

t a

a t a x t z t a t

z t

Input

t b

b t

y t

t b y

xt t

t

Join x+y→z

t y

t a

a t a x t z t a t

z t

Input

t b

b t

y t

t b y

xt t

x t

t

Join x+y→z

t a

a t a x t z t a t

z t

t b

b t

t

t b y

xt t y

x t

t

Join x+y→z

t a

a t a x t z t a t

z t

t b

b t

t

t b y

xt t y

x t

y t

We cannot have a collector just waiting for ytytytyt,
because there may be innocent ytytytyt elsewhere in
the system, like here!

t a

xt t a t a x t y t a t

y t

Transducer x→y

Instead, the collection of ytytytyt
must be triggered only by a
signal signifying that an x+y→z
gate has fired. That signal is tbtbtbtb,
which will trigger the collection
of ytytytyt after output tztztztz is produced.

btbtbtbt is a private signal
(a different ‘b’ for each xyz triple)

t

Join x+y→z

t a x t z t a t

z t

t b

b t

t

t b y

xt t y

x t

y t

a

t

Join x+y→z

t a x t z t a t

z t

t b

b t

t

t b y

xt t y

x t

y t

a

a t

t

Join x+y→z

t a x t z t a t

z t

t b

b t

t

t b y

xt t y

x t

y t

a

t

Join x+y→z

t a x t z t a t

z t

t b

b t

t

t b y

xt t y

x t

y t

a

at

t

Join x+y→z

t a x t z t a tt b

b t

t

t b y

xt t y

x t

y t

a

at

t

Join x+y→z

t a x t z t a tt b

b t

t

t b y

xt t y

x t

y t

a

at

t z

Output

t

Join x+y→z

t a x t z t a tt bt

t b y

xt t y

x t

y t

a

at

t z

Output

t

Join x+y→z

t a x t z t a tt bt

t b y

xt t y

x t

y t

a

at

t z

Output

bt

t

Join x+y→z

t a t z t a tt bt

t b y

xt t y

y t

a

at

t z

Output

bt

x

x

t

Join x+y→z

t a t z t a tt bt

t b y

xt t y

y t

a

at

t z

Output

bt

x

x

t

Join x+y→z

t t z t a tt bt

t b y

xt t y

y t

a

t z

Output

bt

xa

a x

t

Join x+y→z

t t z t a tt bt

t b y

xt t y

y t

a

t z

Output

bt

xa

a x

Join x+y→z

t t z t a tt bt

t b

xt t y a

t z

Output

bt

xa

ty

a x

t

Join x+y→z

t t z t a tt bt

t b y

xt t y a

t z

Output

xa

a x

t

Join x+y→z

t t z t a tt bt

t b y

xt t y a

t z

Output

xa

b y

General n×m Join-Fork

• Easily generalized to 3+ inputs (with 2+ collectors) etc.

• Easily generalized to 2+ outputs (like Fork) etc.

Petri Net Transitions

• Computing power equivalent to Petri Nets (not Turing
complete).

• Not completely trivial: gates are consumed by activation,
hence a persistent Petri net transition requires a stable
population of gates.

x1 x2

y2 y3y1

JoinJoinJoinJoin

ForkForkForkFork

Strand Algebra

• An abstract description of signal-gate interactions:

• Strand Algebra is an ‘intermediate language’
o Four-three-two domain gates implement Strand Algebra.

o Strand Algebra implements Boolean circuits, Petri Nets, FSA, Linear I/O Systems,
Interacting Automata, etc.

• Two-domain gates implement Strand Algebra
o N.B. this is a conjecture.

x1 | .. | xn | [x1,..,xn].[y1,..,ym] → y1 | .. | ym

Postdoc Faculty

Experiments

A+B->B+C

Georg Seelig, Matt Olson

Enzymatic gate production

Make dsDNA from plasmids or using PCR, then digest with

Restriction enzymes and nicking enzymes

5’-NNCACGTCNNNNNNNNGAGTCATTGCNNNNNNNNNNNGAGTCATTGCNNNNNNNNNNNGAGTCATTGCNNNNN

3’-NNGTGCAGNNNNNNNNCTCAGTAACGNNNNNNNNNNNCTGTGTAACGNNNNNNNNNNNCTCAGTAACGNNNNN

Digest with nicking enzyme Nt.BstNB:

5’-NNCACGTCNNNNNNNNGAGT CATTGCNNNNNNNNNNNGAGT CATTGCNNNNNNNNNNNGAGT CATTGCNNNNN

3’-NNGTGCAGNNNNNNNNCTCA-GTAACGNNNNNNNNNNNCTGT-GTAACGNNNNNNNNNNNCTCA-GTAACGNNNNN

Georg Seelig, Yuan-Jyue Chen

Nicking Enzyme Digest

Georg Seelig, Yuan-Jyue Chen

Structural Invariants

Double Strand Invariant

• Using top-nicked double strands only
o The absence of any branching is inherently more trouble-free than branching

structures that can tangle and interact in unexpected ways through their
protruding single-stranded parts.

o All double-stranded structures are quiescent (except for receptive toeholds on
the bottom strand), eliminating the possibility that the gate themselves may
polymerize, or may self-interact.

o Gates can be produced by any available means of generating double-stranded
DNA (e.g. biologically). Top-nicks can be added by restriction enzymes.

o These structures have a simple syntactical representation and simple reduction
rules, which simplify formal verification.

• A structural invariant
o No double-stranded structure other than top-nicked double strands should exist

through computation. (Except fleetingly during branch migration.)

o This imposes restrictions on the allowable single strands.

Single Strand Restrictions

• Sequences of long domains
o Are inert (because all double strands are fully complemented)

and can be ignored/forbidden.

• (Sub-)sequences of the form:
o Can react with violating the invariant. Forbidden.

• (Sub-)sequences of the form:
o Can react with violating the invariant. Forbidden.

• (Sub-)sequences of the form:
o Bind irreversible, hence is as bad as . Forbidden.

• (Sub-)sequences of the form:
o Can react with violating the invariant. Forbidden.

x y

ytx

x t z

xt t

x t xt t

t t

yttt ytx

xt w yz t

xt y t

Single Strand Invariant

• Hence we are left with:
o The two-domain signals!

• That is, the top-nicked DNA restriction
forces the two-domain signal structure.

• Now, another structural invariant:
o No single-stranded structures other than xtxtxtxt, txtxtxtx should exist through

computation. (Except for sequences of long strands, and single short strands.)

o This imposes new restrictions on the allowable double strands.

x t xt

Double Strand Restrictions

• Nicks must break the top strand into segments of two
domains or less.
o Otherwise,

releases the forbidden

• Hence, we are left with:
o Double strands that are the bottom-strand concatenations of the double-

stranded elements made of at most two domains:

x t yt t y t xt

ytx

xtt xtt x t x y

Nick Algebra

Correctness

• Correctness issues
o Some domains are supposed to be ‘private’ to some gates

o Active residuals must be converted to proper waste

o Interferences between copies of the same gate are possible

o Interferences between copies of different gates are possible

• How to check correctness?
o Other than by simulation?

• The spec of a transducer: Txy+tx → ty
o Is that true at all?

o Is that true possibly or necessarily?

o Is that true in all possible contexts?

o How do we check these properties?

Nick Algebra
S ::= t.x ⋮ x.t single strand

D ::= ø ⋮ t ⋮ x ⋮ t.x ⋮ x.t ⋮ x.x ⋮ D†D double strand

U ::= S ⋮ D ⋮ U|U ⋮ (νx)U soup

Algebraic Equality
= is an equivalence relation,

and a congruence over the term syntax

D1
†(D2

†D3) = (D1
†D2)

†D3

ø†D = D†ø = D

U1|(U2|U3) = (U1|U2)|U3

U1|U2 = U2|U1

ø|U = U|ø = U

(νx)U = (νy)(U{y/x}) if y∉pd(U)

(νx)ø = ø

(νx)(U1|U2) = U1|(νx)U2 if x∉pd(U1)

(νx)(νy)U = (νy)(νx)U

Reduction

D1
†t†xt†D2 | tx ↔ D1

†tx†t†D2 | xt exchange

D1
†t†x†D2 | tx → D1

†tx†D2 left coverage

D1
†x†t†D2 | xt → D1

†xt†D2 right coverage

D1
†t†xy†t†D2 | tx | yt → D1

†tx†yt†D2 cooperation

D → ø if D not reactive waste

U1 → U2 ⇒ U1 | U → U2 | U dilution

U1 → U2 ⇒ (νx)U1 → (νx)U2 isolation

U1 = U2, U2 → U3, U3 = U4 ⇒ U1 → U4 mixing

Reachability

• U1 →* U2 iff U1 → … → U2
o That is, U1 may reduce to U2.

• U1 →∀ U2 iff ∀U, U1 →* U ⇒ U →* U2.
o That is, U1 will reduce to U2. (It cannot avoid the possibility of reducing to U2).

Correctness

• Proposition: Gate mayProposition: Gate mayProposition: Gate mayProposition: Gate may----CorrectnessCorrectnessCorrectnessCorrectness

Tn
xy|tx

n →* tyn

Fn
xyz|tx

n →* tyn|tzn

Jnxyz|tx
n|tyn →* tzn

o Easy induction.

• Proposition: TProposition: TProposition: TProposition: T1111
xyxyxyxy WillWillWillWill----CorrectnessCorrectnessCorrectnessCorrectness

T1
xy | tx →∀ ty

o Exhaustive case analysis enumerating all states of the system.

o Can be done by hand for TTTT1111
xyxyxyxy, and maybe TTTT2222

xyxyxyxy, but not really for TTTT3333
xyxyxyxy etc.

o Will-correctness for fork/join is harder.

o Will-correctness for combinations of gates is harder.

o We are using modelchecking to verify some of these properties.

Conclusions

• A new architecture for general DNA gates
o Simple signals, simple gate structures.

o Self-cleaning: no garbage left by operation (except inert).

o Enabling new ways of assembling gates.

o Some experimental evidence that it works.

• A correspondingly simple algebra
o For verifying gate designs mechanically.

o For studying expressiveness (does it really implement Petri nets?).

