Two-Domain DNA Strand Displacement

Luca Cardelli Microsoft Research

Tokyo, 2010-06-19 http://lucacardelli.name

Nanoscale Engineering

Sensing

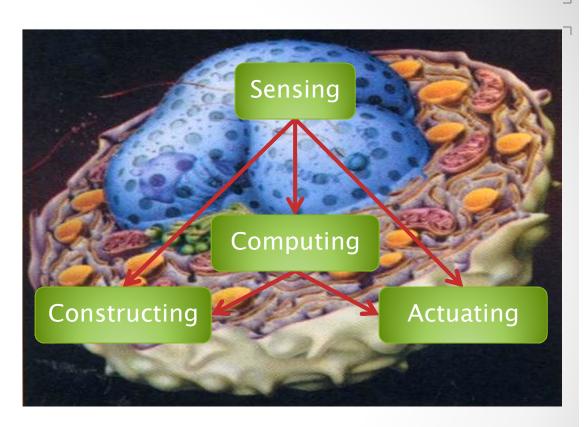
Reacting to forcesBinding to molecules

Actuating

- Releasing moleculesProducing forces
- Constructing
 - o Chassis
 - o Growth

Computing

- Signal Processing
- Decision Making

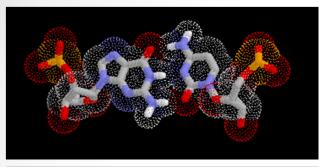


Nucleic Acids can do all this. And interface to biology. And are programmable.

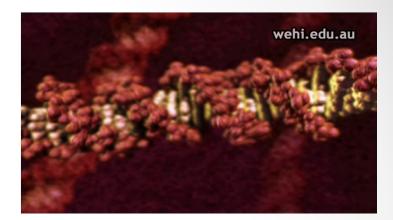
Strand Displacement Basics

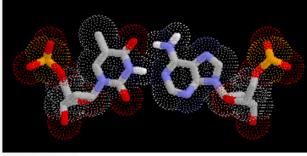
 \bullet \bullet \bullet

DNA



GC Base Pair Guanine-Cytosine

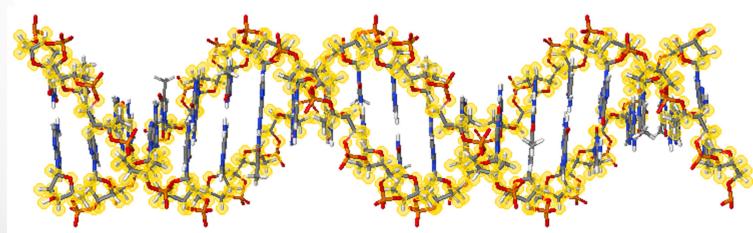




TA Base Pair Thymine-Adenine

Interactive DNA Tutorial

(http://www.biosciences.bham.ac.uk/labs/minchin/tutorials/dna.html)



Sequence of Base Pairs (GACT alphabet)

Hybridization

- Strands with opposite orientation and complementary base pairs stick to each other (Watson-Crick duality).
- This is all we are going to use
 - We are not going to exploit DNA replication, transcription, translation, restriction and ligation enzymes, etc., which enable other classes of tricks.

Domains

- Subsequences on a DNA strand are called domains.
- **PROVIDED** they are "independent" of each other.

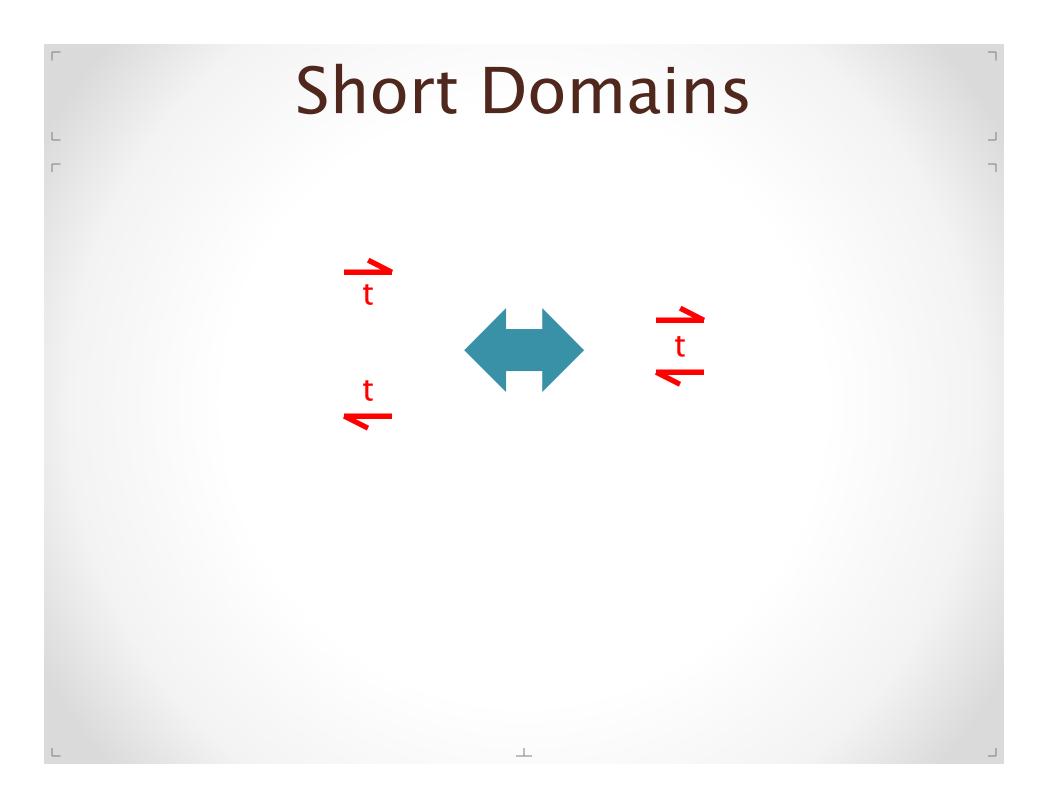
Χ

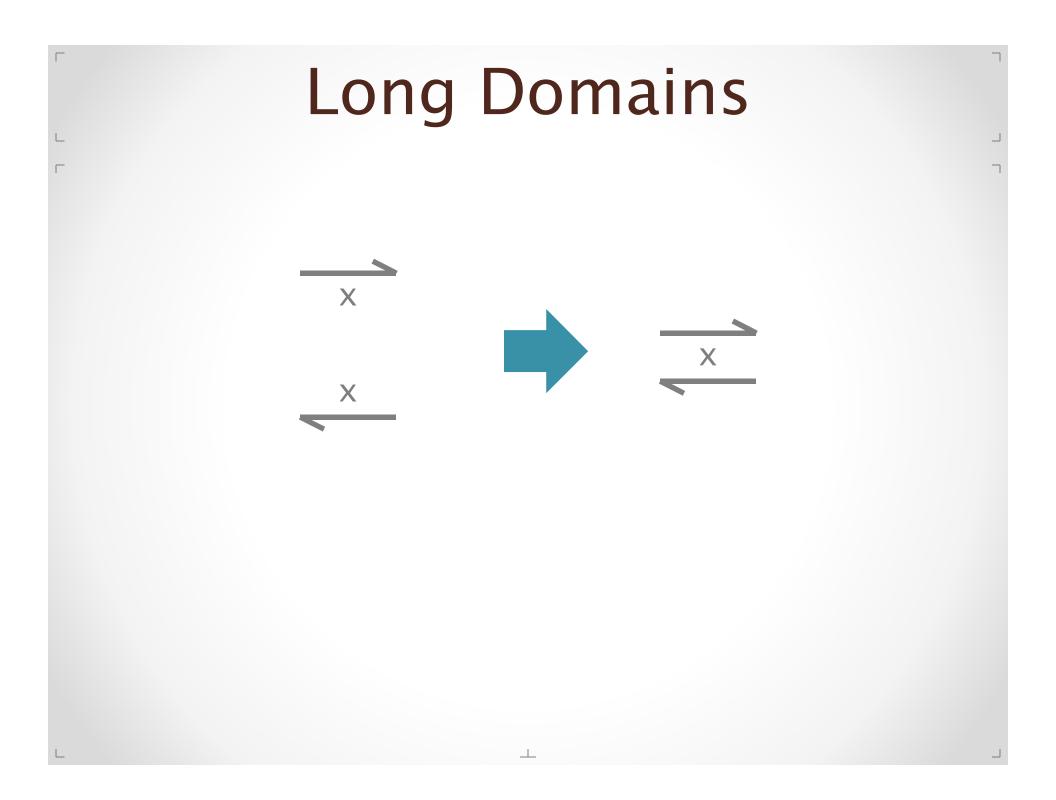
CTTGAGAATCGGATATTTCGGATCGCGATTAAATCAAATC

V

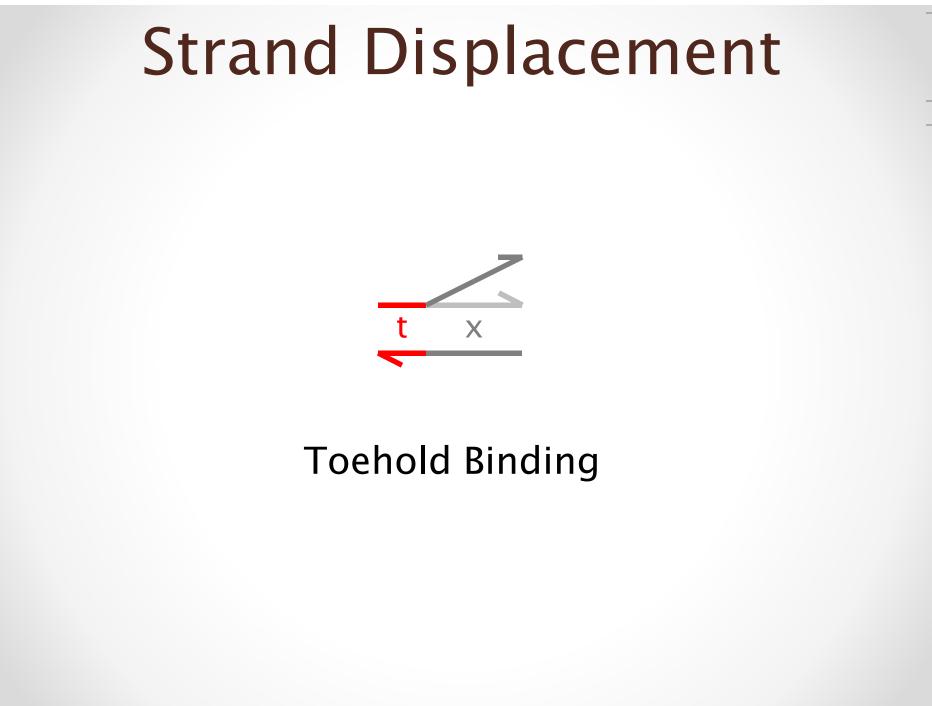
7

- I.e., differently named domains must not hybridize:
 - With each other
 - With each other's complement
 - With subsequences of each other
 - With concatenations of other domains (or their complements)
 - Etc.
- How to choose domains (subsequences) that are suitably independent is a tricky issue that is still somewhat of an open problem (with a vast literature). But it can work in practice.



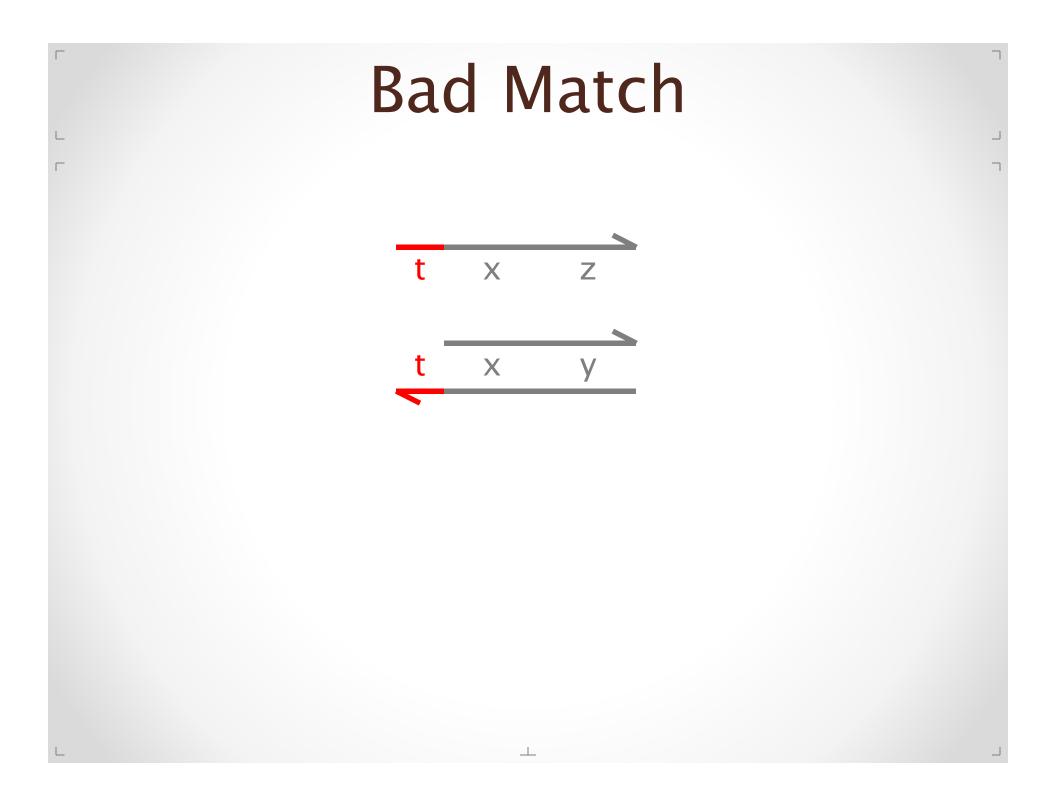


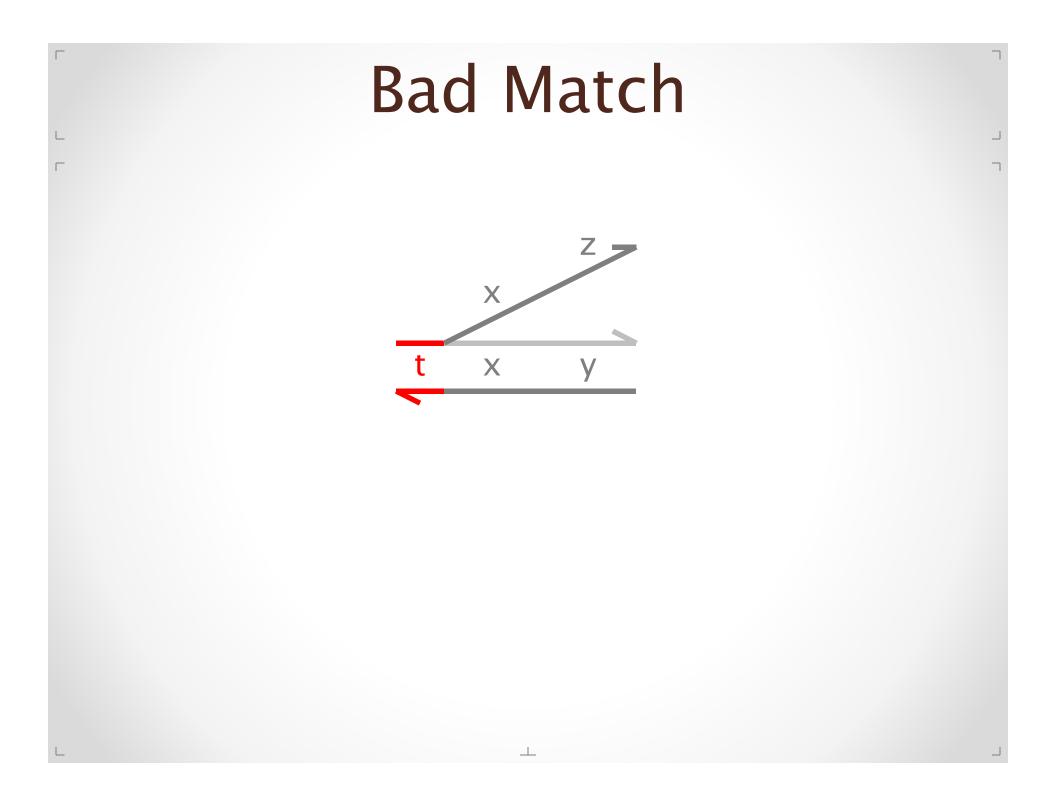
Strand Displacement t Χ Х "Toehold Mediated"

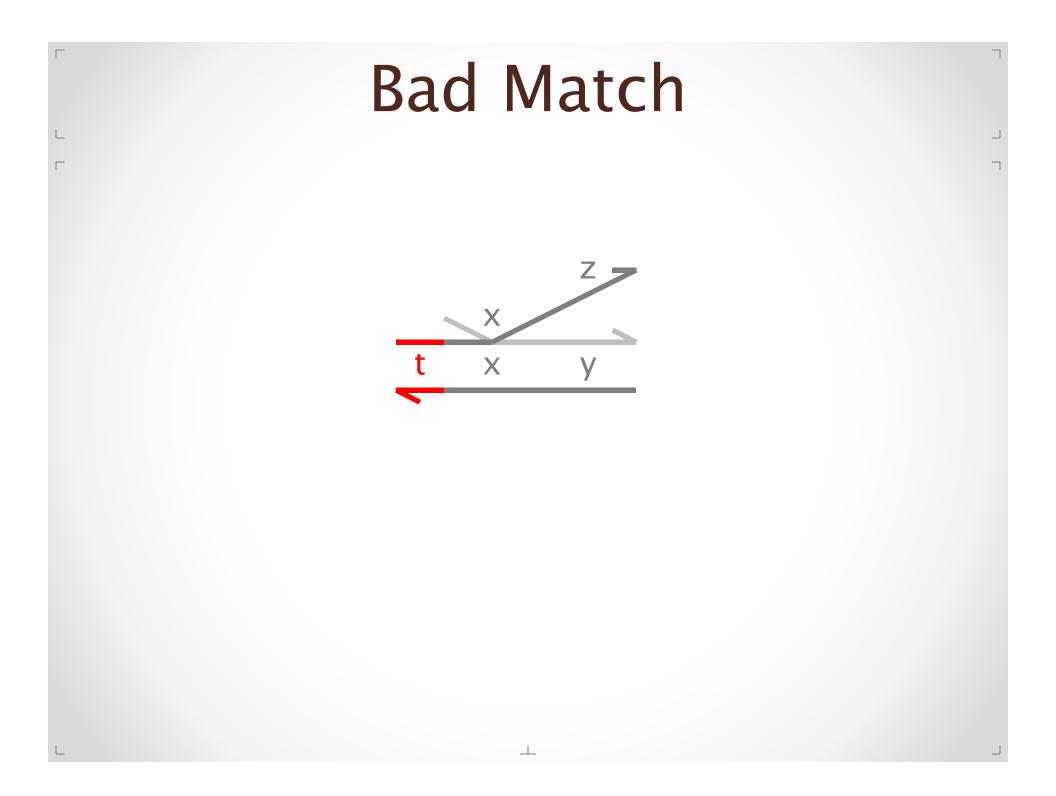


Strand Displacement Χ Displacement

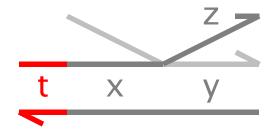
Strand Displacement Х Χ Irreversible





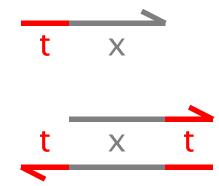


Bad Match

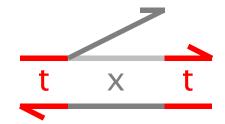


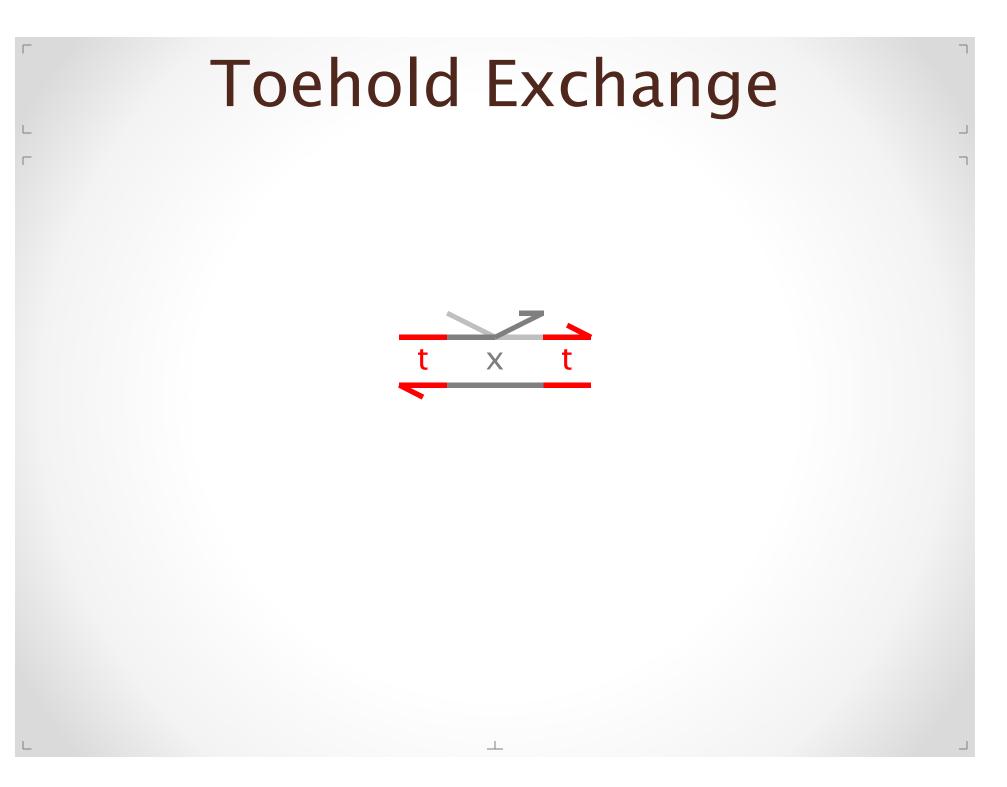
Cannot proceed Hence will undo

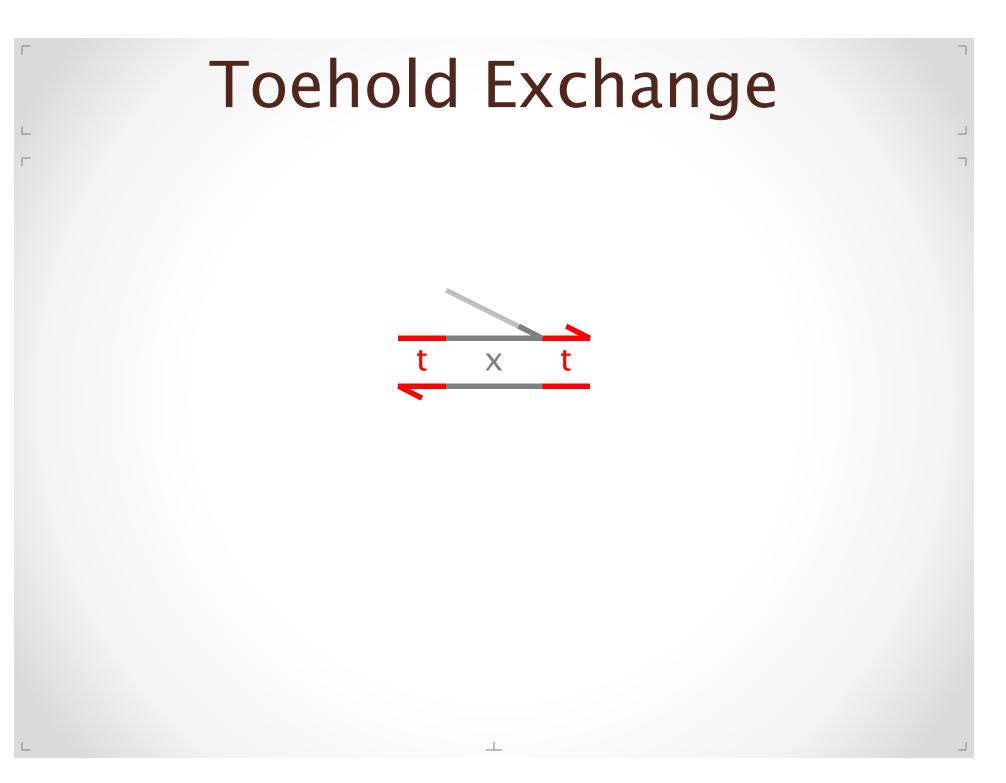
Toehold Exchange



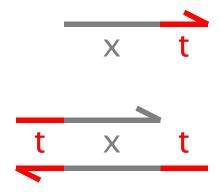
Toehold Exchange



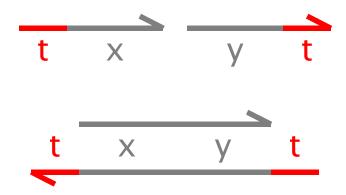


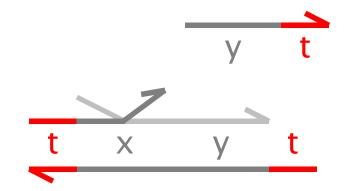


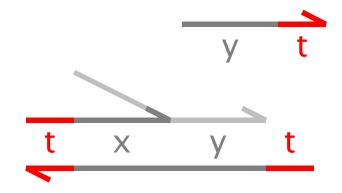
Toehold Exchange



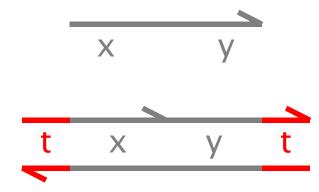
Reversible



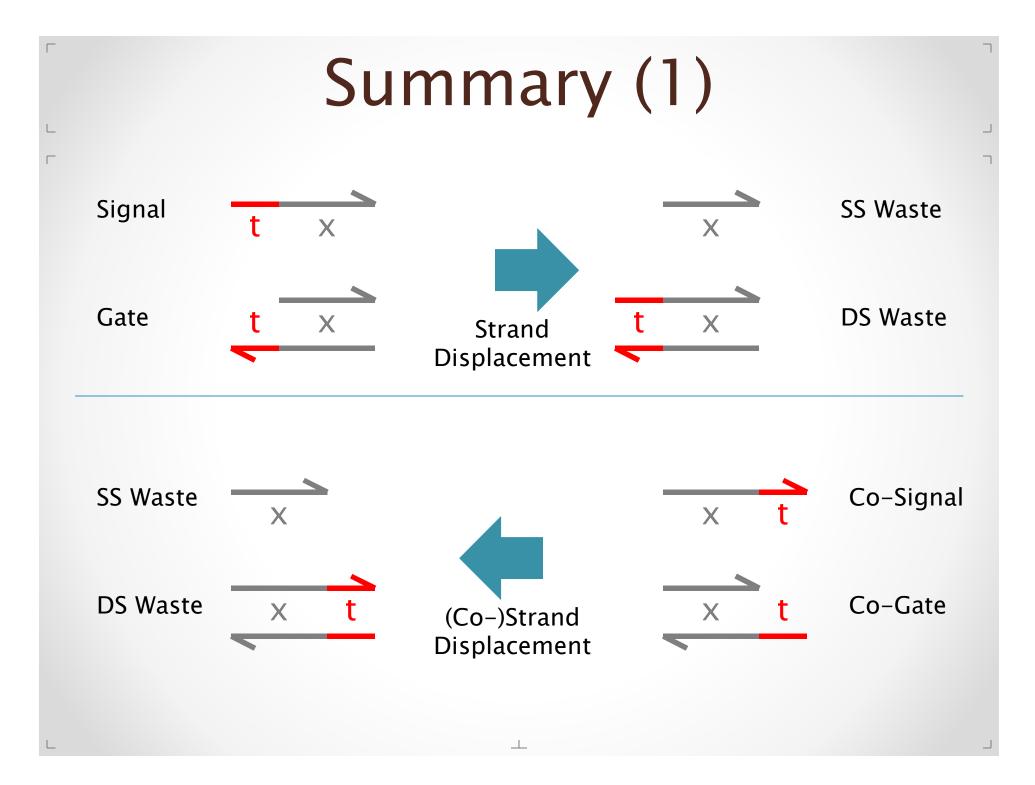




Single input will reverse



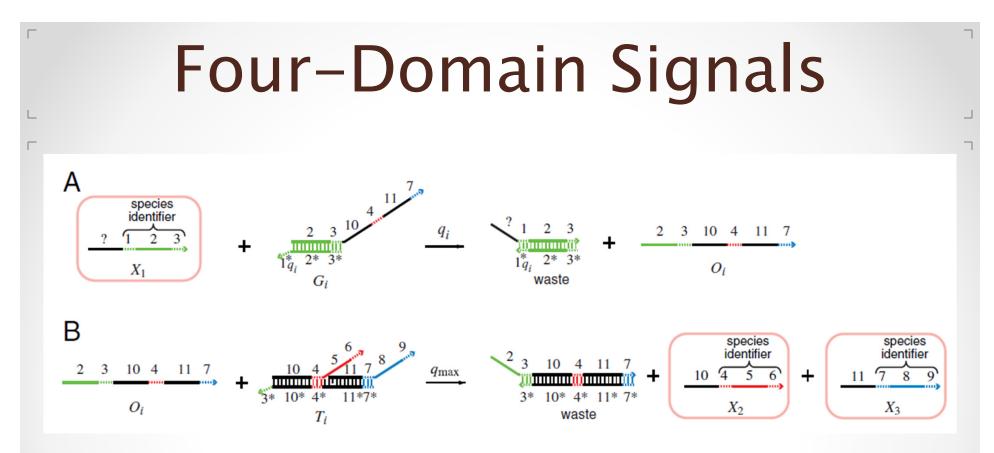
Double input is irreversible





Signals & Gates

 \bullet \bullet \bullet



DNA as a universal substrate for chemical kinetics

David Soloveichik^{a,1}, Georg Seelig^{a,b,1}, and Erik Winfree^{c,1}

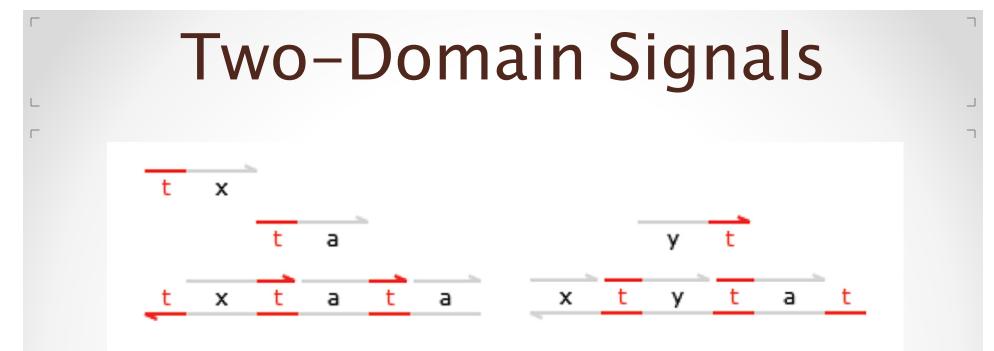
PNAS | March 23, 2010 | vol. 107 | no. 12 | 5393-5398

Three-Domain Signals Xb 0 а (X_h X_t $(\mathbf{x}_{h} \mathbf{x}_{t})$ Xh Xb Yt⊥ a⊥ Xt⊥ X_b⊥ Хь⊥ Yt⊥ a⊥ Xb Yt⊥ a⊥ a fresh; X_h generic $x \mid x.y \rightarrow y$

Strand Algebras for DNA Computing

Luca Cardelli

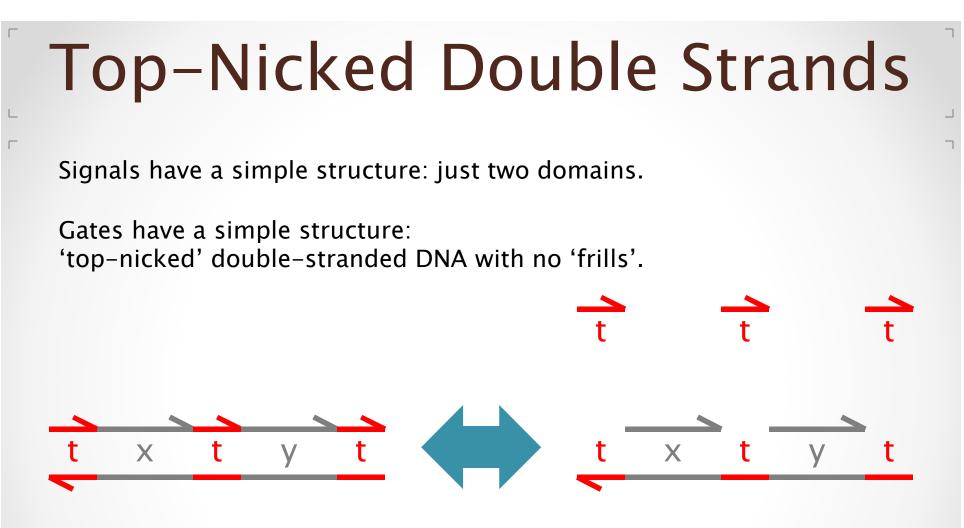
DNA Computing and Molecular Programming. 15th International Conference, DNA 15, LNCS 5877, Springer 2009, pp 12-24.



Two-Domain DNA Strand Displacement

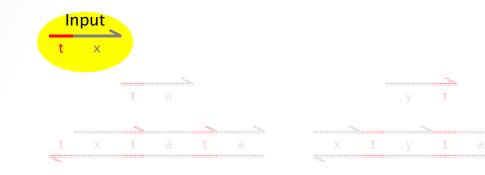
Luca Cardelli

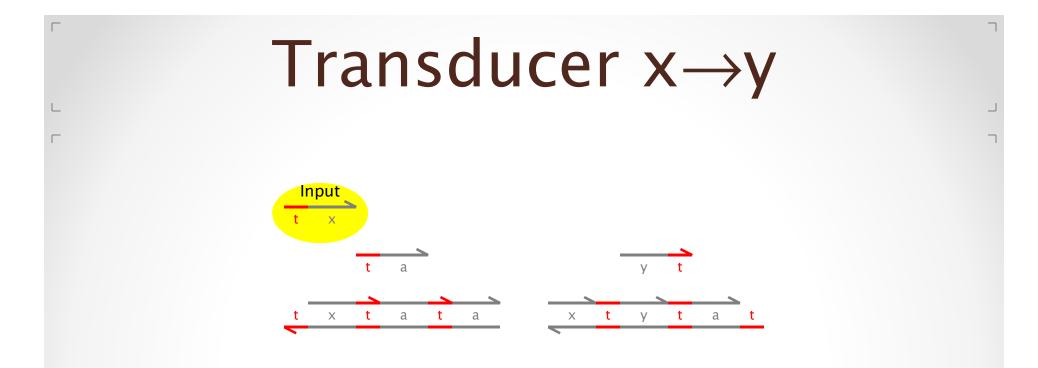
In S. B. Cooper, E. Kashefi, P. Panangaden (Eds.): Developments in Computational Models (DCM 2010). EPTCS 25, 2010, pp. 33–47. May 2010.



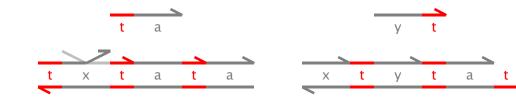
A top-nicked double-strand is 'equivalent' to a double strand with open toeholds. These situations shall not be distinguished.

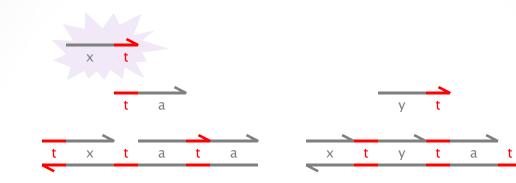
Transducer $x \rightarrow y$

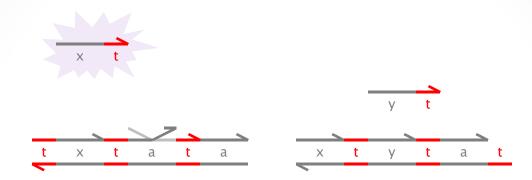


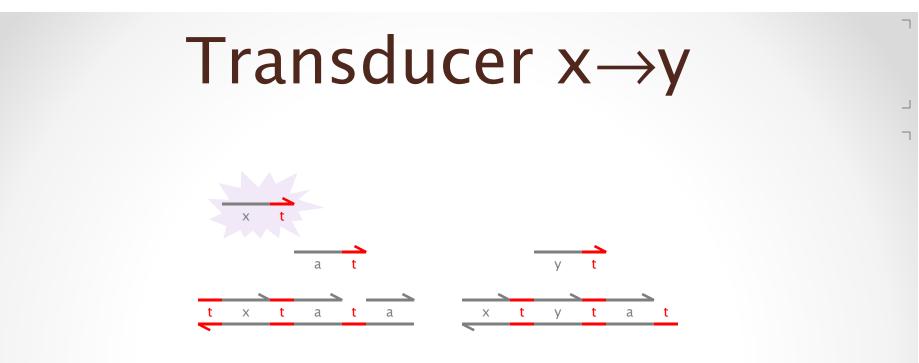


ta is a *private* signal (a different 'a' for each xy pair)

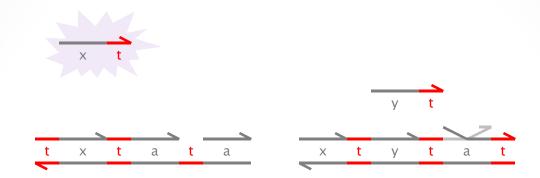


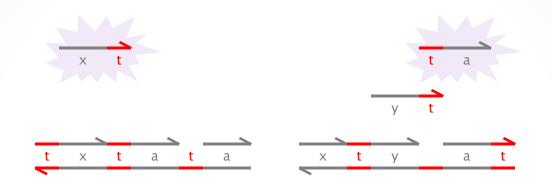




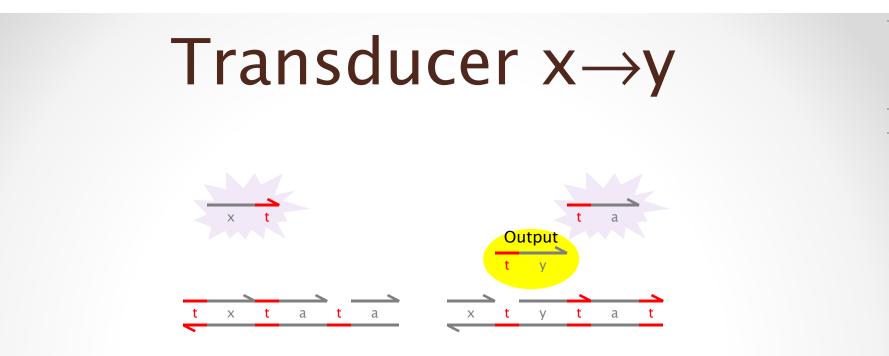


So far, a **tx** *signal* has produced an **at** *cosignal*. But we want signals as output, not cosignals.



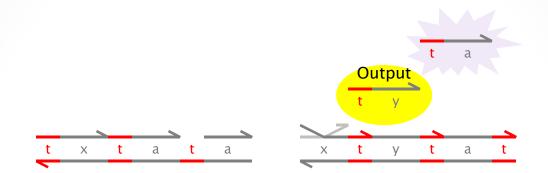


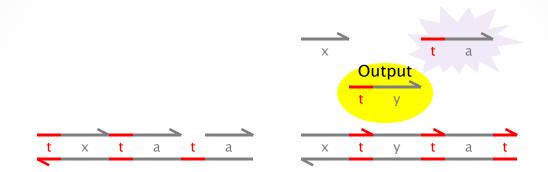
Transducer $x \rightarrow y$ Х а t t Х t a t а У а t Х t

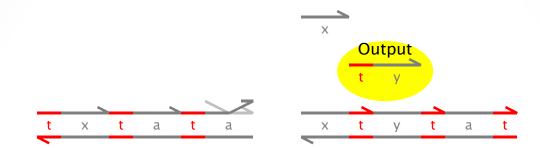


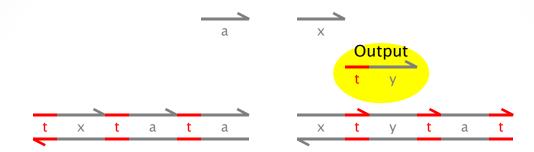
Here is our output ty signal.

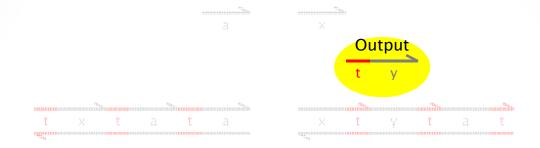
But we are not done yet:1) We need to make the output irreversible.2) We need to remove the garbage.We can use (2) to achieve (1).







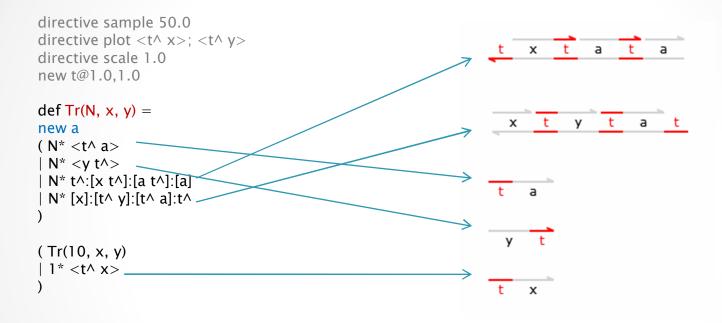




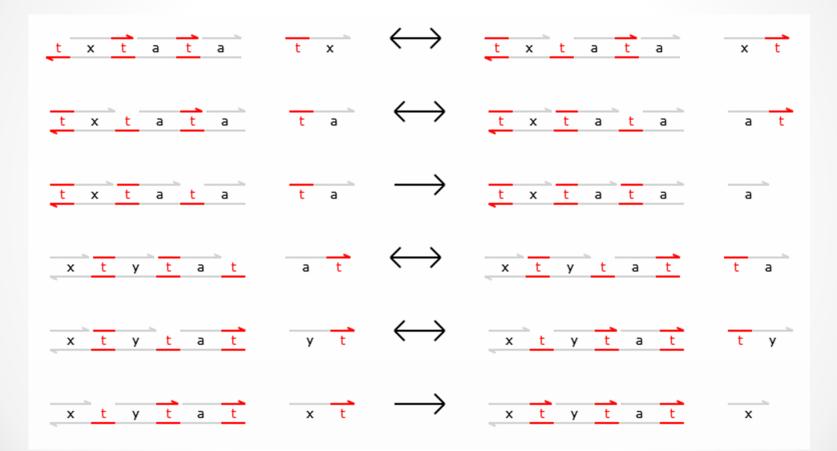
Done.

Note the tata motif and how it helps in collection.

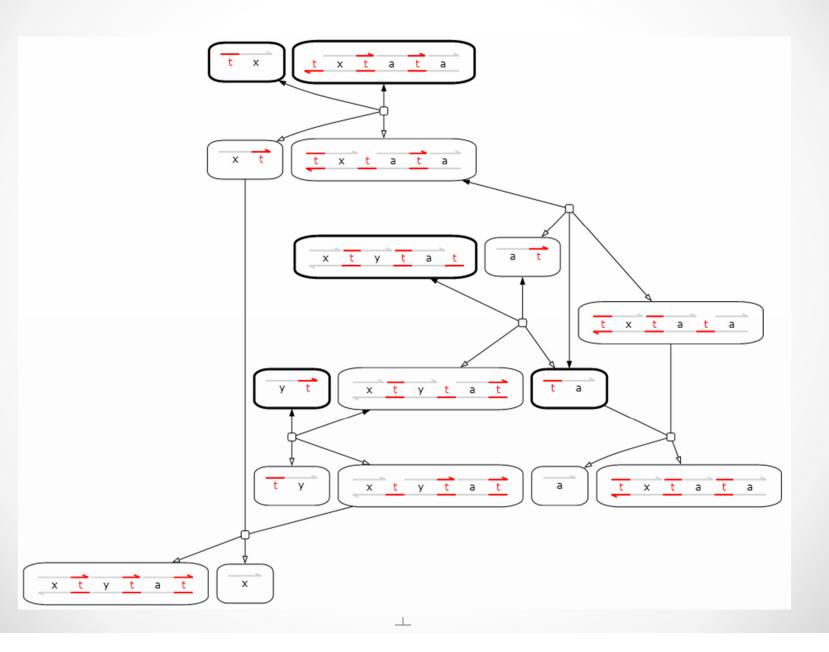
The Transducer in DSD



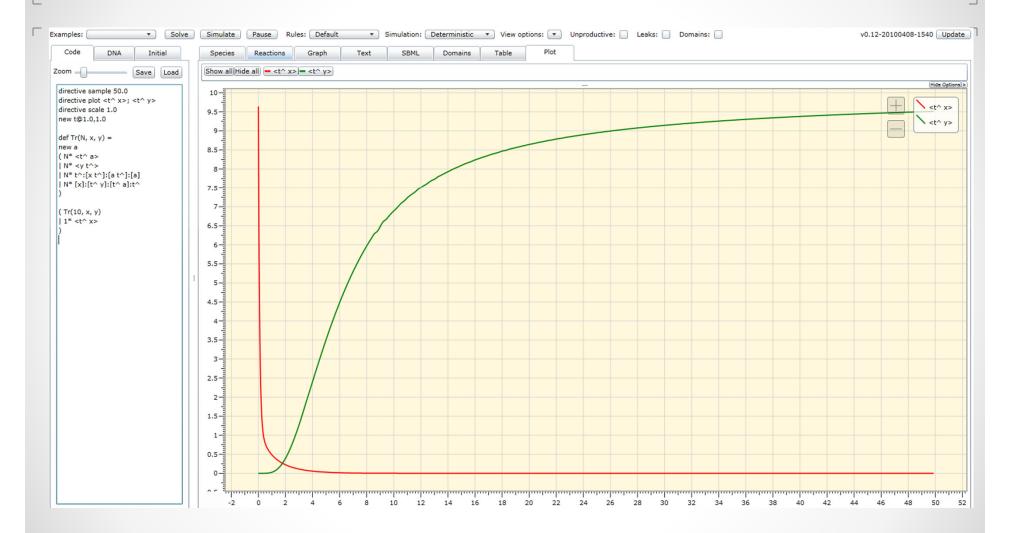
Transducer Reactions



Transducer Reaction Graph

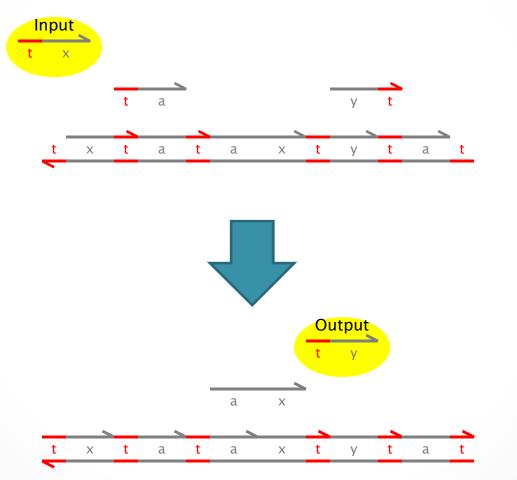


Transducer Simulation



Transducer Variation

Single backbone, using cooperative displacement to remove garbage.

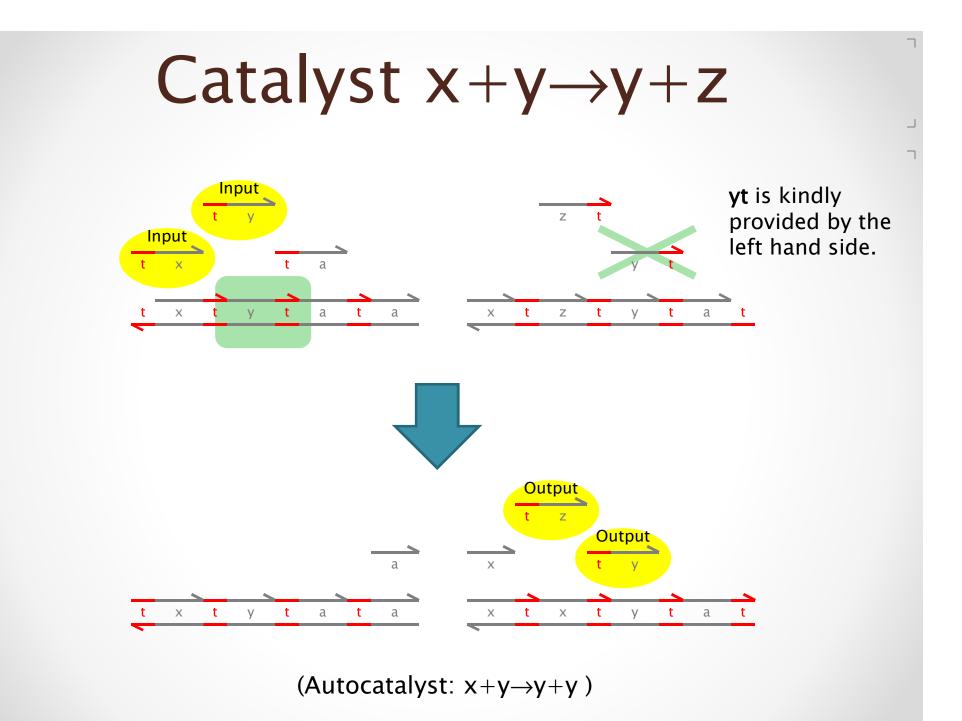


Note: garbage collection by cooperative displacement is optional for the transducer, but becomes essential later.

Fork $x \rightarrow y + z$



(Amplifier: $x \rightarrow x + x$)

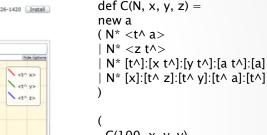


Autocatalytic Oscillator

 $x+y \rightarrow y+y$ $y+z \rightarrow z+z$ $z+x \rightarrow x+x$

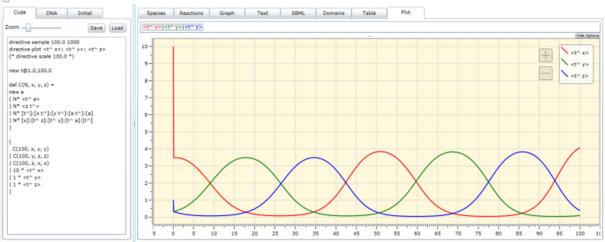
directive sample 100.0 1000 directive plot <t^ x>; <t^ y>; <t^ z> (* directive scale 100.0 *)

new t@1.0,100.0



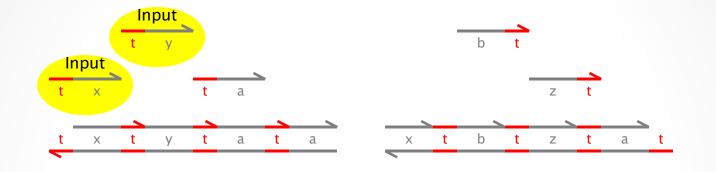
)

Examples: • Solve Simulate Pause Rules: Default • Simulation: Deterministic • View options: • Unproductive: Leaks: Domains: v0.13-20100326-1420 Install

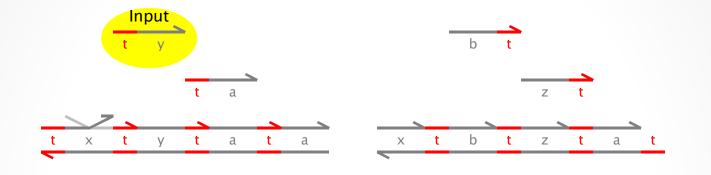


C(100, x, y, y) | C(100, y, z, z) | C(100, z, x, x) | 10 * <t^ x> | 1 * <t^ y> | 1 * <t^ z>

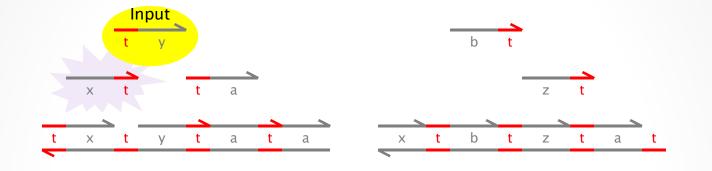
Г

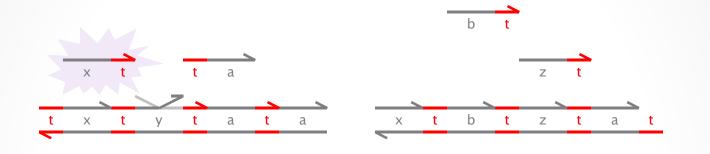


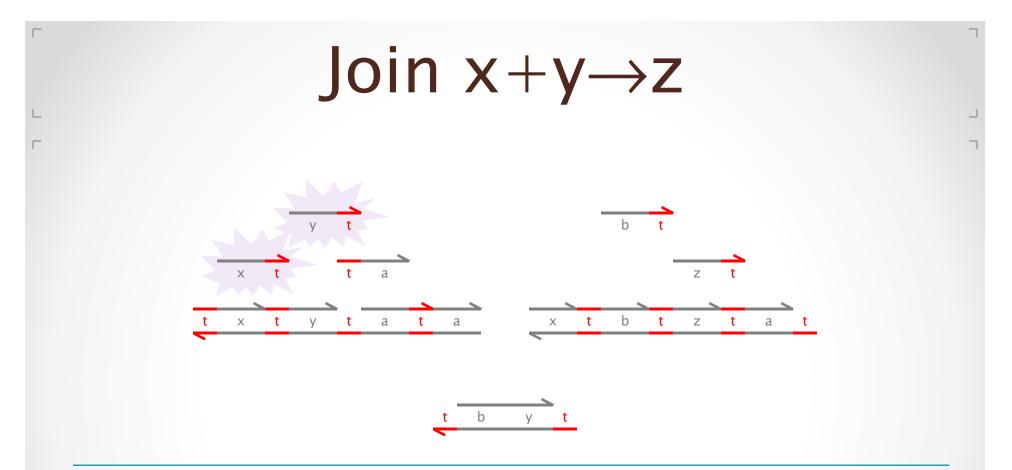
	l.			
t	b	У	t	



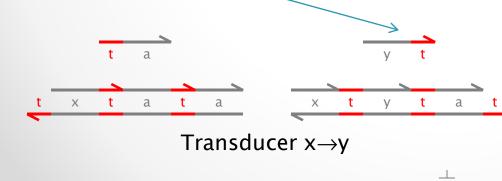
t	b	У	t	





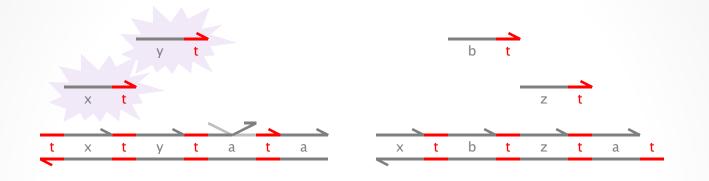


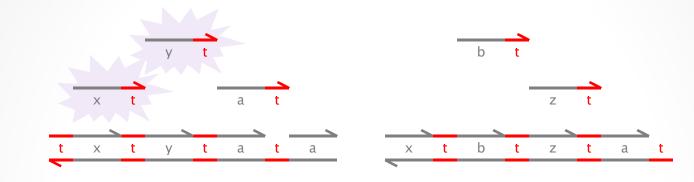
We cannot have a collector just waiting for **yt**, because there may be innocent **yt** elsewhere in the system, like here!



Instead, the collection of **yt** must be triggered only by a signal signifying that an $x+y\rightarrow z$ gate has fired. That signal is **tb**, which will trigger the collection of **yt** after output **tz** is produced.

bt is a *private* signal (a different 'b' for each xyz triple)





Х

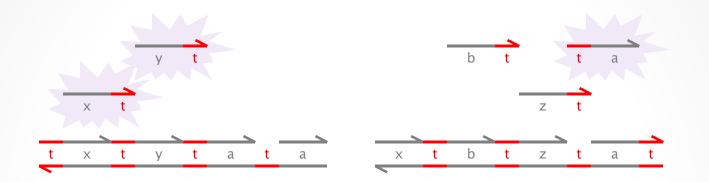
t

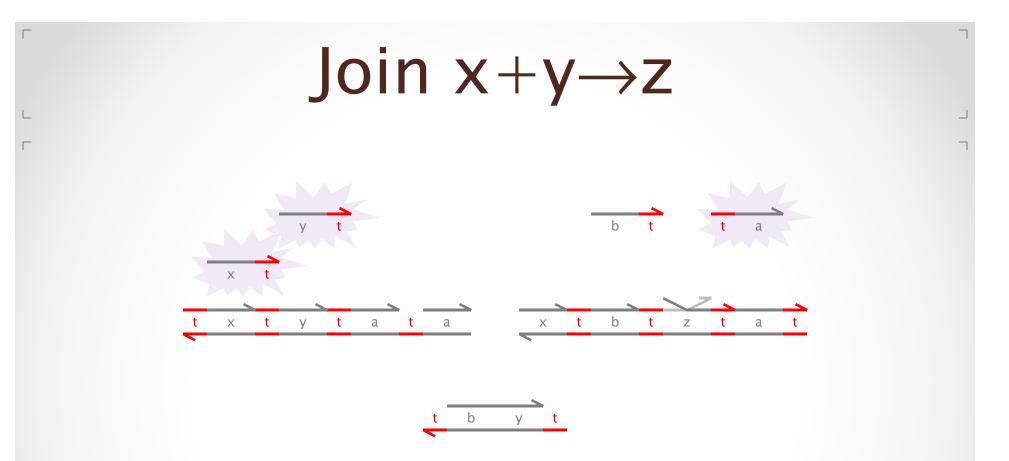
t

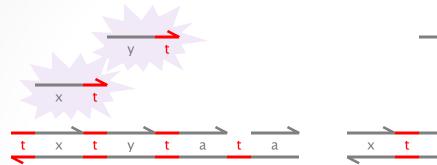
y t a t a x t b t z t

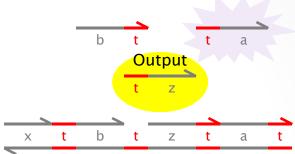
а

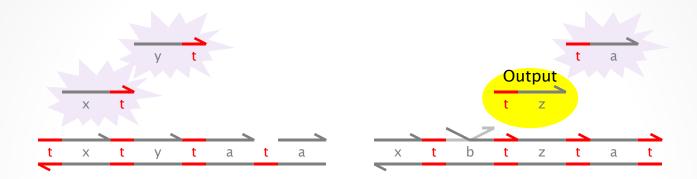
t

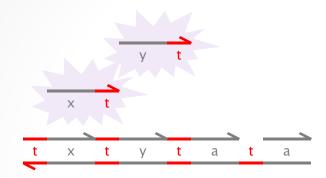




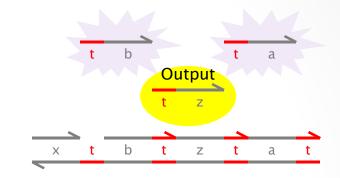




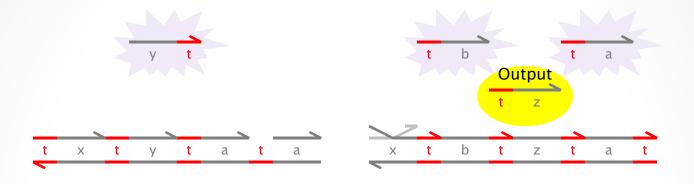


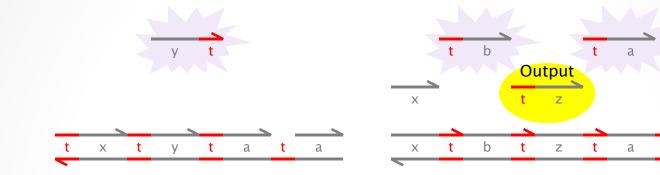


Γ



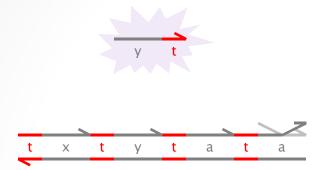
Γ

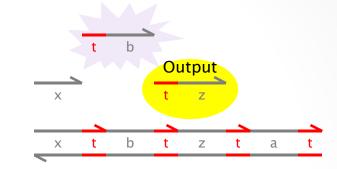


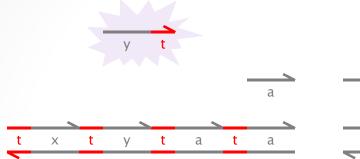


Γ

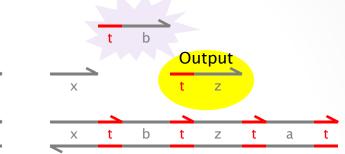
t

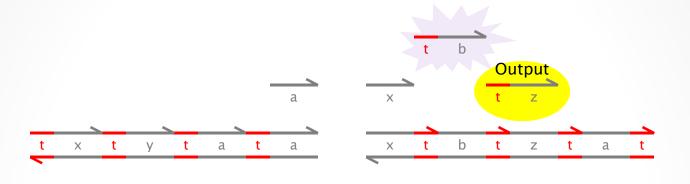


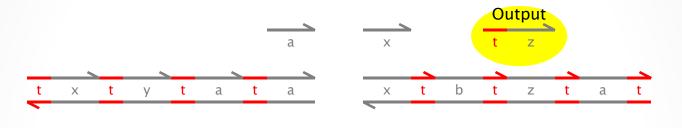


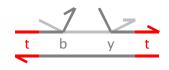


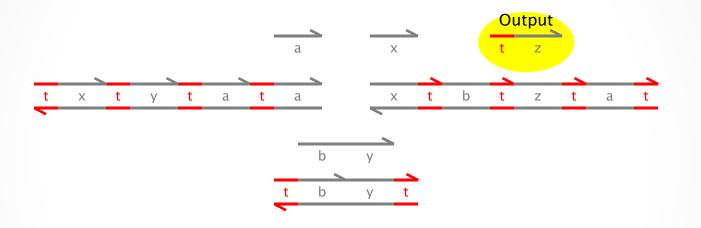
Γ











General n×m Join-Fork

- Easily generalized to 3+ inputs (with 2+ collectors) etc.
- Easily generalized to 2+ outputs (like Fork) etc.

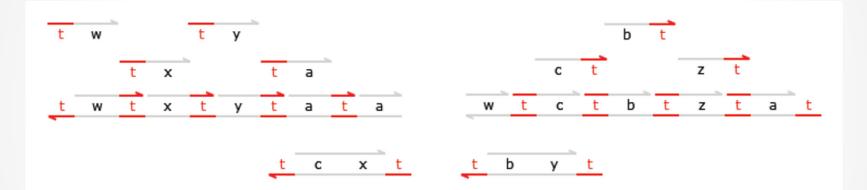
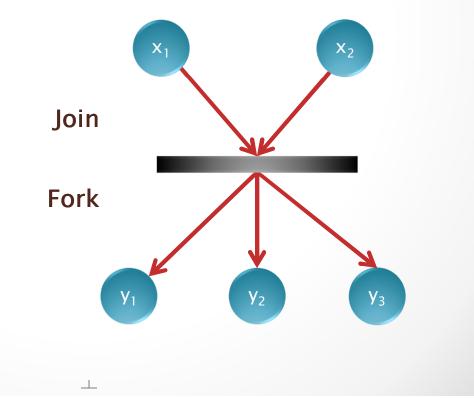


Figure 9: 3-Join $J_{wxyz} | tw | tx | ty \rightarrow tz$: initial state plus inputs tw, tx, ty.

Petri Net Transitions

- Computing power equivalent to Petri Nets (not Turing complete).
- Not completely trivial: gates are consumed by activation, hence a persistent Petri net transition requires a stable population of gates.



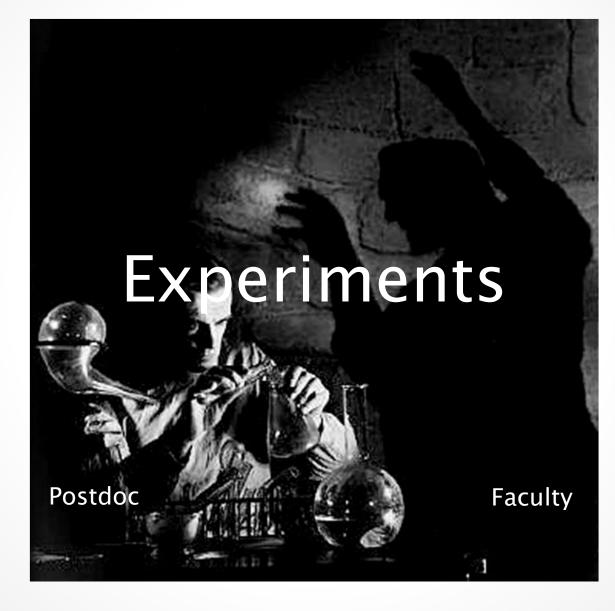
Strand Algebra

• An abstract description of signal-gate interactions:

 $x_1 | ... | x_n | [x_1,...,x_n].[y_1,...,y_m] \rightarrow y_1 | ... | y_m$

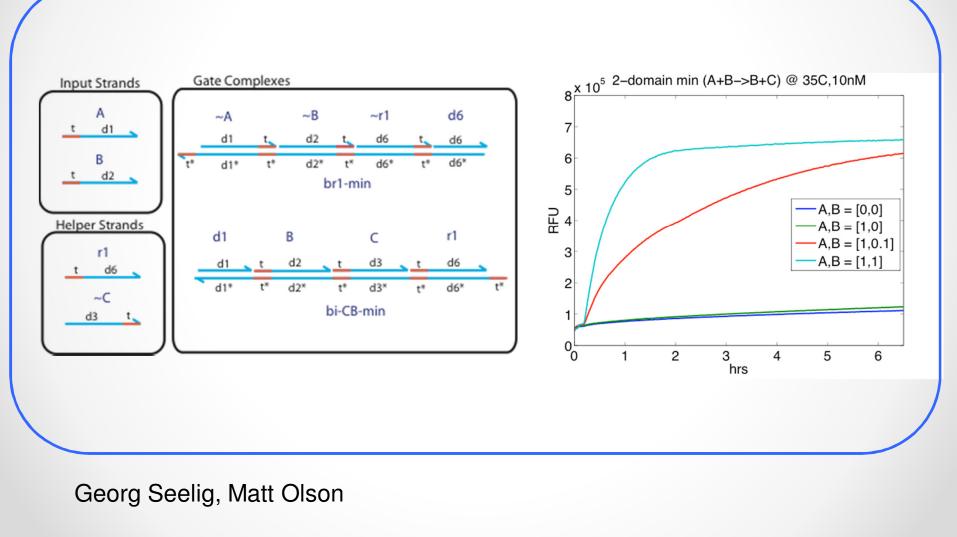
Strand Algebra is an 'intermediate language'

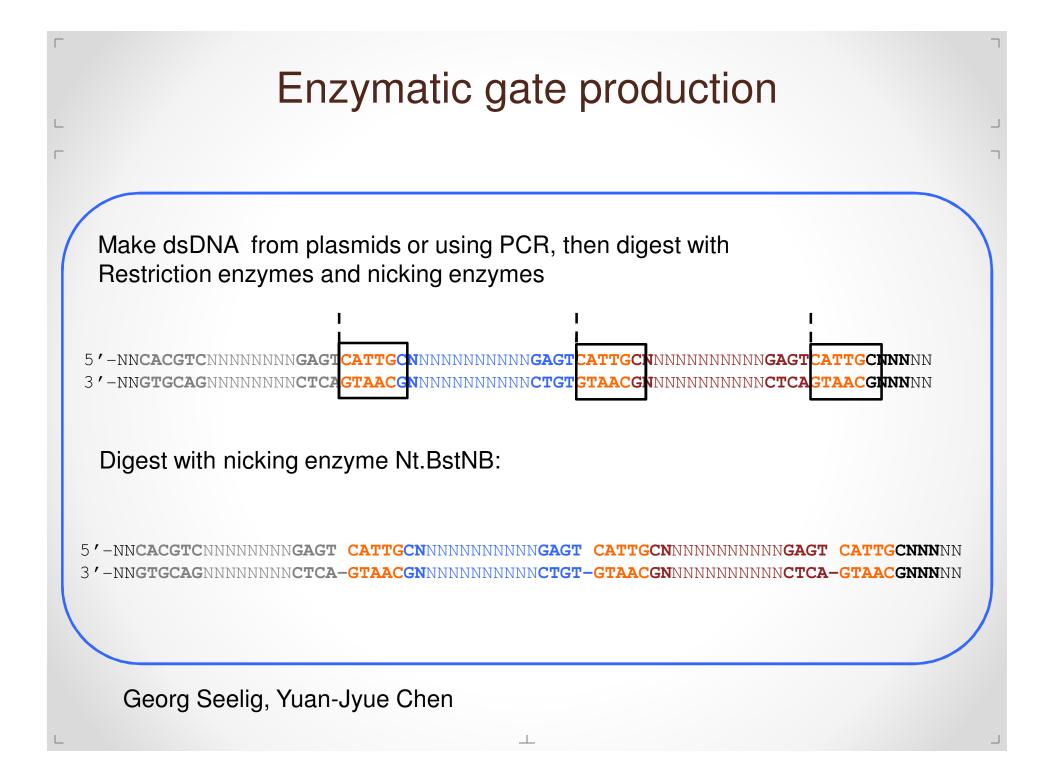
- Four-three-two domain gates implement Strand Algebra.
- Strand Algebra implements Boolean circuits, Petri Nets, FSA, Linear I/O Systems, Interacting Automata, etc.
- Two-domain gates implement Strand Algebra
 N.B. this is a *conjecture*.



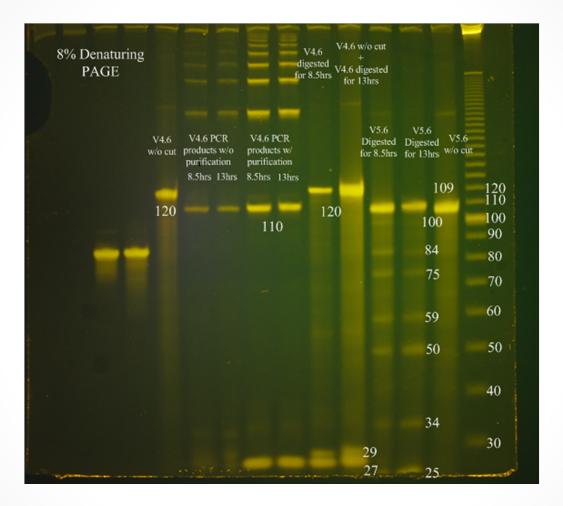
A+B->B+C

 \square





Nicking Enzyme Digest



Georg Seelig, Yuan-Jyue Chen

Structural Invariants

 \bullet \bullet \bullet

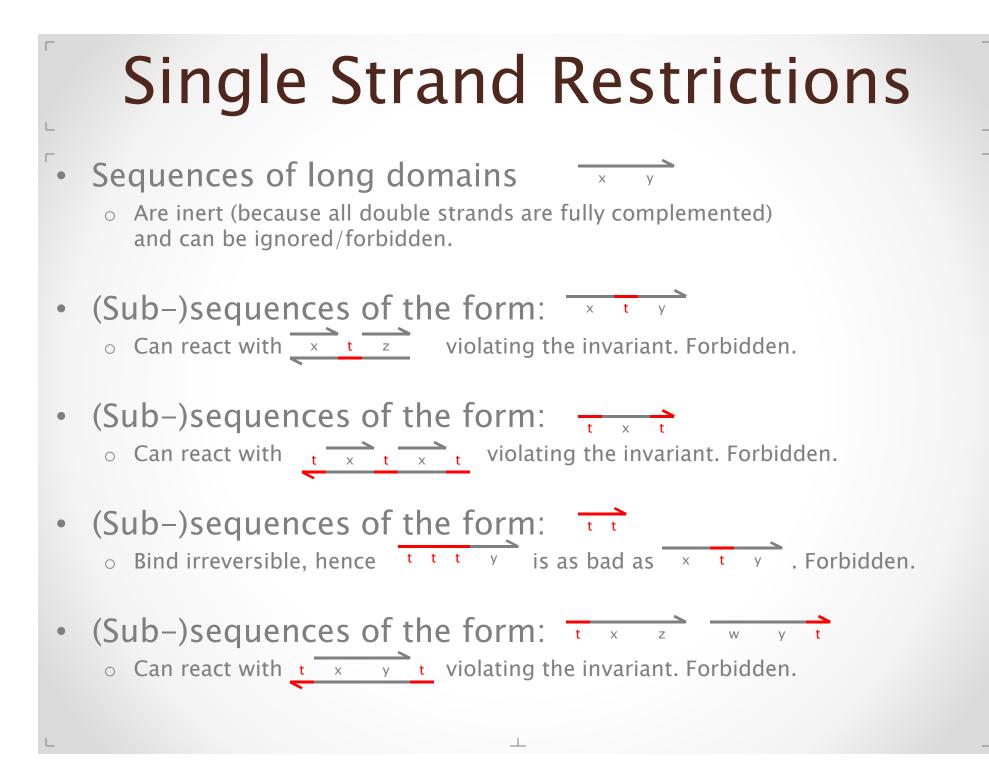
Double Strand Invariant

• Using top-nicked double strands *only*

- The absence of any branching is inherently more trouble-free than branching structures that can tangle and interact in unexpected ways through their protruding single-stranded parts.
- All double-stranded structures are quiescent (except for receptive toeholds on the bottom strand), eliminating the possibility that the gate themselves may polymerize, or may self-interact.
- Gates can be produced by any available means of generating double-stranded DNA (e.g. biologically). Top-nicks can be added by restriction enzymes.
- These structures have a simple syntactical representation and simple reduction rules, which simplify formal verification.

A structural invariant

- No double-stranded structure other than top-nicked double strands should exist through computation. (Except fleetingly during branch migration.)
- This imposes restrictions on the allowable single strands.

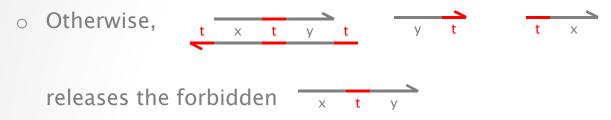


Single Strand Invariant

- Hence we are left with: x t
 The two-domain signals!
- That is, the top-nicked DNA restriction forces the two-domain signal structure.
- Now, another structural invariant:
 - No single-stranded structures other than xt, tx should exist *through computation*. (Except for sequences of long strands, and single short strands.)
 - This imposes *new* restrictions on the allowable double strands.

Double Strand Restrictions

• Nicks must break the top strand into segments of two domains or less.



- Hence, we are left with:
 - Double strands that are the bottom-strand concatenations of the doublestranded elements made of at most two domains:

$$t$$
 x t x x t x y

Nick Algebra

 \bullet \bullet \bullet

Correctness

Correctness issues

- Some domains are supposed to be 'private' to some gates
- Active residuals must be converted to proper waste
- Interferences between copies of the same gate are possible
- Interferences between copies of different gates are possible
- How to check correctness?
 - Other than by simulation?

• The spec of a transducer: T_{xy} +tx \rightarrow ty

- Is that true at all?
- Is that true *possibly* or *necessarily*?
- Is that true *in all possible contexts*?
- How do we check these properties?

Nick Algebra

S ::= t.x : x.t $\underline{D} ::= \emptyset : \underline{t} : \underline{x} : \underline{t.x} : \underline{x.t} : \underline{x.x} : \underline{D^{\dagger}D}$ $U ::= S : \underline{D} : U|U : (vx)U$

L

 \square

single strand double strand soup

Algebraic Equality

is an equivalence relation,and a congruence over the term syntax

 $\underline{D}_1^{\pm}(\underline{D}_2^{\pm}\underline{D}_3) = (\underline{D}_1^{\pm}\underline{D}_2)^{\pm}\underline{D}_3$ $\underline{\emptyset}^{\pm}\underline{D} = \underline{D}^{\pm}\underline{\emptyset} = \underline{D}$

 $U_{1}|(U_{2}|U_{3}) = (U_{1}|U_{2})|U_{3}$ $U_{1}|U_{2} = U_{2}|U_{1}$ $\emptyset|U = U|\emptyset = U$

 $(vx)U = (vy)(U\{y/x\})$ $(vx)\emptyset = \emptyset$ $(vx)(U_1|U_2) = U_1|(vx)U_2$ (vx)(vy)U = (vy)(vx)U

if $y \notin pd(U)$ if $x \notin pd(U_1)$

Reduction

 $\frac{D_{1}^{\dagger}t^{\dagger}xt^{\dagger}D_{2}}{D_{1}^{\dagger}t^{\dagger}x^{\dagger}D_{2}} | tx \leftrightarrow \underline{D}_{1}^{\dagger}tx^{\dagger}t^{\dagger}D_{2} | xt$ $\frac{D_{1}^{\dagger}t^{\dagger}x^{\dagger}D_{2}}{D_{1}^{\dagger}x^{\dagger}t^{\dagger}D_{2}} | tx \rightarrow \underline{D}_{1}^{\dagger}tx^{\dagger}D_{2}$ $\underline{D}_{1}^{\dagger}x^{\dagger}t^{\dagger}D_{2} | xt \rightarrow \underline{D}_{1}^{\dagger}xt^{\dagger}D_{2}$ $\underline{D}_{1}^{\dagger}t^{\dagger}xy^{\dagger}t^{\dagger}D_{2} | tx | yt \rightarrow \underline{D}_{1}^{\dagger}tx^{\dagger}yt^{\dagger}D_{2}$

exchange left coverage right coverage cooperation

Reachability

- $U_1 \rightarrow^* U_2$ iff $U_1 \rightarrow \dots \rightarrow U_2$ • That is, U_1 may reduce to U_2 .
 - $U_1 \rightarrow^{\forall} U_2$ iff $\forall U, U_1 \rightarrow^* U \Rightarrow U \rightarrow^* U_2$.
 - That is, U_1 will reduce to U_2 . (It cannot avoid the possibility of reducing to U_2).

Correctness

Proposition: Gate may–Correctness

$$\begin{array}{l} T^{n}_{xy}|tx^{n} \rightarrow^{*} ty^{n} \\ F^{n}_{xyz}|tx^{n} \rightarrow^{*} ty^{n}|tz^{n} \\ J^{n}_{xyz}|tx^{n}|ty^{n} \rightarrow^{*} tz^{n} \end{array}$$

- Easy induction.
- Proposition: T¹_{xy} Will–Correctness

 $T^{1}_{xy} \mid tx \rightarrow^{\forall} ty$

- Exhaustive case analysis enumerating all states of the system.
- Can be done by hand for T_{xy}^1 , and maybe T_{xy}^2 , but not really for T_{xy}^3 etc.
- Will-correctness for fork/join is harder.
- Will-correctness for combinations of gates is harder.
- We are using modelchecking to verify some of these properties.

Conclusions

- A new architecture for general DNA gates
 - Simple signals, simple gate structures.
 - Self-cleaning: no garbage left by operation (except inert).
 - Enabling new ways of assembling gates.
 - Some experimental evidence that it works.

A correspondingly simple algebra

- For verifying gate designs mechanically.
- For studying expressiveness (does it *really* implement Petri nets?).