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Smaller and Smaller 

Dec. 23, 1947. John Bardeen 

and Walter Brattain show the 

first working transistor. 

September 1958. Jack Kilby 

builds the first integrated 

circuit. 

Observation of 
molecular orbital 

gating. Nature, 2009; 

462 (7276): 1039 

Dec. 24, 2009. Working transistor 

made of  

a single molecule. 

Placement and orientation of individual DNA 
shapes on lithographically patterned surfaces. 
Nature Nanotechnology 4, 557 - 561 (2009). 

The race is on for molecular 

scale integrated circuits. 

Jan 30, 2010. Intel and Micron 

announce 25nm NAND flash. 
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Building The Smallest Things 

● How do we build structures that are by definition 
smaller than your tools?  

 

● Basic answer: you can’t. Structures (and tools) 
should build themselves!  

 

● By programmed self-assembly. 
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Molecular IKEA 

● Nature can self-assemble.  

Can we? 
 

● “Dear IKEA, please send me a chest of 

drawers that assembles itself.” 
 

● We need a magical material where the 

pieces are pre-programmed to fit into to 

each other. 
 

● At the molecular scale many such materials 

exist; let’s pick one… 

 

Add water 
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Sequence of Base Pairs (GACT alphabet) 

DNA 

Interactive DNA Tutorial 
(http://www.biosciences.bham.ac.uk/labs/minchin/tutorials/dna.html) 

GC Base Pair 
Guanine-Cytosine 

TA Base Pair 
Thymine-Adenine 
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ssDNA 

Double-stranded DNA 

Single-stranded DNA has an orientation  

Each strand spells a GACT sequence 

The two strands have opposite orientations 
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Robust, and Long 

● DNA in each human cell: 

o 3 billion base pairs 

o 2 meters long, 2nm thick 

o folded into a 6µm ball 

o 750 MegaBytes 

 

● A huge amount for a cell 

o Every time a cell replicates it has to 
copy 2 meters of DNA reliably. 

o To get a feeling for the  
scale disparity, compute: 
 

● DNA in human body 

o 10 trillion cells 

o 133 Astronomical Units long 

o 7.5 OctaBytes 
 

● DNA in human population 

o 20 million light years long 

 

 

Andromeda Galaxy 

2.5 million light years 

DNA wrapping into chromosomes 
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Zipping Along 

DNA replication in real time 
 

In Humans: 50 nucleotides/second 
Whole genome in a few hours (with parallel processing) 

 

In Bacteria: 1000 nucleotides/second  
(higher error rate) 

DNA transcription in real time 
 

RNA polymerase II: 15-30 base/second 

Drew Berry 
http://www.wehi.edu.au/wehi-tv 

• DNA can support structural and computational complexity. 
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Hybridization 



10 2010-02-12 Luca Cardelli 10 2010-02-12 10 2010-02-12 Luca Cardelli 

Nanoscale Engineering 

● Sensing 
o Reacting to forces 

o Binding to molecules 

● Actuating 
o Releasing molecules 

o Producing forces 

● Constructing 
o Chassis 

o Growth 

● Computing 
o Signal Processing 

o Decision Making 

Sensing 

Constructing Actuating 

Computing 

Nucleic Acids (DNA/RNA) can 

do all this, and interface to 

biological structures. 
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Compositionality 

● Sensors and Actuators at the 'edge' of the system 

o They can use disparate kinds of inputs (sensors) and outputs (actuators) 

 

● The 'kernel' of the system computes 

o Must use uniform inputs and outputs 

 

● Compositionality in the kernel 

o Supporting 'arbitrary' computing complexity 

o The output of each computing components  
must be the same kind of 'signal' as the input 

●  sdf 

o If the inputs are voltages, the outputs must be voltages 

o If the inputs are proteins, the outputs must be proteins 

o If the outputs are photons the inputs must be photons 

o If the inputs are DNA, the outputs must be DNA 

 

● Central design question 

o What should our signals (not components!) be? 

o Design components that manipulate those signals. 
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What does DNA Compute? 

● Electronics has electrons 

o All electrons are the same 

o All you can do is see if you have few (‘False’) or lots (‘True’) of electrons 

o Hence Boolean logic is at the basis of digital circuit design 

o Symbolic and numeric computation has to be encoded above that 

o But mostly we want to compute with symbols and numbers, not with Booleans 

 

● DNA computing has symbols (DNA words) 

o DNA words are not all the same 

o Symbolic computation can be done directly 

o We can also directly use molecular concurrency 

 

● Process Algebra as the ‘Boolean Algebra’ of DNA Computing 

o What are the ‘gates’ of symbolic concurrent computation? 

o That’s what Process Algebra is about 

o (Process Algebra comes from the theory of concurrent systems) 
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Implementing "Arbitrary"  
Computing Functions 
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Compilers 

Language 

Implementation #1 

Language 

Implementation #2 

Language 

Implementation #3 

Language Design 

#1 

Language Design 

#2 

Language Design 

#3 

Petri 
Nets 

Boolean 
Networks 

… 

Monolithic 

Compilers 
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Intermediate Languages 

Strand 
Algebra 

The algebra of fork 

and join gates 

Petri 
Nets 

Boolean 
Networks 

Intermediate 

Language 

Front End 

Back End 
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Front Ends 

Petri 
Nets 

Strand 
Algebra 

Intermediate 

Language #2 

Front End 

Intermediate 

Language 

Circuit Design 

… 

Boolean 
Networks 
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Back Ends 

3-domain 
Signals 

2-domain 
Signals 

4-domain 
Signals 

Strand 
Algebra 

Gate Design 

Back End 

Device Design 

Intermediate 

Language 
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Toehold Mediated 
Strand Displacement 
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Rules of the Game 

● Short complementary segments hybridize reversibly 

 

 

 

 

● Long complementary segments hybridize irreversibly 
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Input 

Gate 

DNA Strand Displacement 

● Short strand (toehold): reversible binding 

● Long strand (body): irreversible binding 

Random 

collision/ 

breakup 

Random 

walk 

Entropy 

gain 

Output 
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Failed Strand Displacement 

● What if the input does not match the gate? 
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Failed Strand Displacement 

 



23 2010-02-12 Luca Cardelli 23 2010-02-12 23 2010-02-12 Luca Cardelli 

Failed Strand Displacement 
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? 

Failed Strand Displacement 
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Failed Strand Displacement 
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Failed Strand Displacement 
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Failed Strand Displacement 

● Hence an incorrect binding will undo 

o That’s why toeholds must bind reversibly 

 

 

 

 

 

 

 

 

● Matching depends on the long segment only 

o Strand displacement succeeds iff the whole long segment matches 

o The address space is determined by the size of the long segment,  

which is unbounded (not by the size of the toehold) 

o The toehold is just a ‘cache’ of the address 
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Strand Displacement 
Signals and Gates 
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Signals 

● A signal is the representation of an abstract event 

o E.g. generated by a sensor 

o E.g. accepted by an effector 

o We are not limited to true/false 

 

● 3-domain signals 

o xh: hystory (ignore)  

o xt: toehold (binding) 

o xb: body (recognition) 

 

 

● Signals (single stranded DNA) are prepared  

by (artificial) DNA synthesis 
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Gates 

● Double-stranded structures with free toeholds 

 

 

 

 

 

 

 

 

 

● Gates are prepared by self-assembly from single-stranded DNA that is 

synthesized 
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Waste 

A system is considered inert (terminated) if it has no free toeholds. 
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Fork Gate 

●  x → y + z 

 

 

 

 

 

●  x → y + 0  transform x to y (transducer) 

●  x → x + y  linear production of y (catalyst) 

●  x → x + x  exponential production of x (amplifier) 
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This is the 

Fork Gate 

structure 

Fork Gate 
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Fork Gate 
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Fork Gate 
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Fork Gate 
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Fork Gate 

 



38 2010-02-12 Luca Cardelli 38 2010-02-12 38 2010-02-12 Luca Cardelli 

Fork Gate 
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Fork Gate 
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Fork Gate 
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Fork Gate 
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Fork Gate 
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Fork Gate 
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This is 

Waste 

Fork Gate 
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Join Gate 

●  x + y → z 
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This is the 

Join Gate 

structure 

Join Gate 
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Join Gate 
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Join Gate 
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Join Gate 
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Join Gate 
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Join Gate 
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Join Gate 
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Join Gate 
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Join Gate 
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Join Gate 



56 2010-02-12 Luca Cardelli 56 2010-02-12 56 2010-02-12 Luca Cardelli 

Join Gate 
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Join Gate 
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Join Gate 
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Join Gate 
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Join Gate 
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Join Gate 

This is 

Waste 
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Gate Design Verification 

● Active garbage 

o The active join residuals slow down the performance of following joins.  

o � Add a garbage collector to remove the active residuals. 

 

● Interference between gates 

o The join garbage collector interferes with the fork gate. 

o � Modify the fork gate to remove the interference. 

 

● What else could go wrong? 

o Endless possibilities. 

o � Prove that the fork/join gate structures correctly implement  

fork/join in all larger circuits. 
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[x1,..,xn].[y1,..,ym] General Join/Fork Gate 

x1 | .. | xn | [x1,..,xn].[y1,..,ym] → y1 | .. | ym 

Garbage collection 
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Strand Displacement 
Intermediate Language 

Matthew Lakin 

Simon Youssef 

Andrew Phillips 
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Syntax 
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Dynamics 
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Strand Displacement Analysis Tool 

directive sample 30.0 1000 

new xt@1.0,1.0  

new yt@1.0,1.0  

( 1000 * <xh xt^ xb>     

| 1000 * xt^:[xb yt^]<yb>:[a] 

| 1000 * <yt^ a> 

) 

1 Transducer gate x.y (3 initial species) 
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Strand Displacement Analysis Tool 

directive sample 30.0 1000  

directive plot "<reporter>" 

 new xt@ 1.0 , 1.0  

( 1 * <xh xt^ xb>               

| 1000 * xt^:[xb xt^]<xb>:[a xt^]<xb>:[reporter] 

| 1000 * <xt^ a xt^ reporter> 

) 

Fork Chain Reaction   x.[x,x] (3 initial species) 

26 Species, 20 Reactions 
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Strand Displacement Analysis Tool 

directive sample 1000.0 1000  

 new xt@ 1.0 , 1.0  

 new yt@ 1.0 , 1.0  

 new zt@ 1.0 , 1.0  

 new a@ 1.0 , 1.0  

 new d@ 1.0 , 1.0  

( 1000 * <xh xt^ xb>     

| 1000 * <yh yt^ yb>            

| 1000 * xt^:[xb yt^]:[yb a^]:[b zt^]<zb> 

| 1000 * <a^ b zt^> 

 

| 1000 * [xb]:[yt^ c]:[d^ yb]:a^ 

| 1000 * <c d^> 

| 1000 * d^:[yb] 

| 1000 * yt^:[c] 

) 

1 Join gate with garbage collection  [x,y].z (8 initial species) 

34 Species, 18 Reactions 



70 2010-02-12 Luca Cardelli 70 2010-02-12 70 2010-02-12 Luca Cardelli 

Strand Algebra 
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Strand Algebra 

P   ::=   x  ⋮  [x1,..,xn].[y1,..,ym]  ⋮  0  ⋮  P|P  ⋮  P*          n≥1, m≥0 

 x   is a signal 

 [x1,..,xn].[y1,..,ym] is a gate 

 0   is an inert solution 

 P|P   is parallel composition of signals and gates 

 P*   is a population (multiset) of signals and gates 

 

Reaction Rule 

 

 

 

Auxiliary rules (axioms of diluted well-mixed solutions) 

x1 | .. | xn | [x1,..,xn].[y1,..,ym]  →  y1 | .. | ym 

P  →  P’  ⇒  P | P”  →  P’| P”     Dilution 

P ≡ P1, P1 → P2, P2 ≡ P’  ⇒  P → P’  Well Mixing  

 
Where ≡ is a congruence relation (syntactical ‘chemical mixing’) 
with P* ≡ P | P* for unbounded populations. 

 n x m gates 
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Compiling Strand Algebra to DNA 

● compile(x) =  

 

● compile([x1,..,xn].[y1,..,ym]) = 

 

 

● compile(0) =   empty solution 

 

● compile(P | P’) =  mix(compile(P), compile(P’)) 

 

● compile(P*) =  population(compile(P)) 

P   ::=   x  ⋮  [x1,..,xn].[y1,..,ym]  ⋮  0  ⋮  P|P  ⋮  P*          n≥1, m≥0 
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More in the DNA15 Paper 

● Stochastic strand algebra 

o Matches the stochastic semantics of interacting automata 

o Uses a technique for implementing constant buffered populations,  

to replace P* with finite populations 

 

● Nested strand algebra 

o An higher-level language (with nested expressions) 

o A compilation algorithm into the basic strand algebra 
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Other Gates 
Other Algebras 
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Ouput Choice Gate 

!x ⊕ !y 

Either provide signal x,  

or provide signal y,  

but not both. 
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Input Choice Gate 

?x ⊕ ?y 

Either accept signal x,  

or accept signal y,  

but not both. 
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Mixed Choice Gate 

!x ⊕ ?y 

Either provide signal x,  

or accept signal y,  

but not both. 



78 2010-02-12 Luca Cardelli 78 2010-02-12 78 2010-02-12 Luca Cardelli 

General Choice Gate 

!x1 ⊕ ... ⊕ !xn ⊕ ?y1 ⊕ ... ⊕ ?ym 

Either provide one of x1, …, xn,  

or accept one of y1, …, ym. 
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Moreover… 

● Any input choice can trigger the release of number of other signals: 

?x. (a1 | ... | an) 



80 2010-02-12 Luca Cardelli 80 2010-02-12 80 2010-02-12 Luca Cardelli 

Abstract Machines 
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Chemical Reaction Networks 

Implementing an arbitrary finite chemical system in DNA 
with asymptotically correct kinetics 

Soloveichick & al. DNA 15 
 

Species become signals 
Reactions become gates 

 
A + B → C + D  ⇒  [A,B].[C,D] 
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Boolean Networks 

This encoding is compositional, and can encode any Boolean network: 

- multi-stage networks can be assembled (combinatorial logic) 

- network loops are allowed (sequential logic) 

Boolean Networks to Strand Algebra 
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Petri Nets 

Transitions as Gates 
Place markings as Signals  

Petri Nets to Strand Algebra 
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Interacting Automata 

A B 

!a 

?c 
?a 

!b ?b 

C 

!c 

A B 

!a 

?c 
?a 

!b ?b 

C 

!c 

A B 

!a 

?c 
?a 

!b ?b 

C 

!c 

A B 

!a 

?c 
?a 

!b ?b 

C 

!c 

900xA, 500xB, 100xC 

([A,B].[B,B])* | 
([B,C].[C,C])* | 
([C,A].[A,A])* | 
A | A | B | C 
 
 
 

This is a uniform population of identical automata,  

but heterogeneous populations of interacting automata can be similarly handled.  
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Interacting Automata 
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Interacting Automata 

A B 

!a 

?c 
?a 

!b ?b 

C 

!c 

A B 

!a 

?c 
?a 

!b ?b 

C 

!c 

A B 

!a 

?c 
?a 

!b ?b 

C 

!c 

A B 

!a 

?c 
?a 

!b ?b 

C 

!c 

900xA, 500xB, 100xC 

([A,B].[B,B])* | 
([B,C].[C,C])* | 
([C,A].[A,A])* | 
A | B | C | C 
 
 
 

This is a uniform population of identical automata,  

but heterogeneous populations of interacting automata can be similarly handled.  



87 2010-02-12 Luca Cardelli 87 2010-02-12 87 2010-02-12 Luca Cardelli 

Interacting Automata 
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DNA 

D. Soloveichik, G. Seelig, E. Winfree. DNA 
as a Universal Substrate for Chemical 
Kinetics. Proc. DNA14. 

Molecules as Automata 

= 

= 

Continuous 
Chemistry 

Discrete 
Chemistry 

Process 
Algebra 

CTMC 

ODE ODE 

CTMC 

Continuous-state Semantics 
(Mass Action Kinetics) 

Discrete-state Semantics 

(Chemical Master Equation) 

The Real 
Wet Stuff 

? 

L. Cardelli: “On Process Rate Semantics” (TCS) 

L. Cardelli: “A Process Algebra Master Equation” (QEST’07) 
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Conclusions 
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Conclusion 

● Nucleic Acids 

o Programmable matter 

 

● DNA Strand Displacement 

o A computational mechanism at the molecular level 

 

● DNA as a Compilation Target for Abstract Machines 

o Abstract Machines (Boolean Networks, Petri Nets, Interacting Automata) 

o Intermediate languages (Strand Algebra, Strand Displacement Language). 

o DNA sequence generation. 

 

● Tools 

o Thermodynamic analysis. 

o Reaction graph generation. 

o Simulation. 

o Verification (not yet). 
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