Luca Cardelli

Microsoft Research
SynBioNT Sheffield, 2009-10-12

http://lucacardelli.name

Nano Tasks

Sensing

o Reacting to forces

o Binding to molecules
Actuating

o Releasing molecules

o Producing forces
Constructing

o By spontaneous self-assembly

o Catalyzed by stimuli
Computing

o All that under ‘program control’

o Analog: Signal Filtering, Amplification

o Digital: Logical gates

Nucleic Acids (DNA/RNA)

o Probably the only materials that can
perform all these functions.

o Technology relatively well developed.
o Can interface to biological entities.

Constructing

Sensing

Actuating
> fumd’

Compositionality

e Sensors and Actuators at the ‘edge’ of the system
o They can use disparate kinds of inputs (sensors) and outputs (actuators)

e The 'kernel’ of the system computes
o Must use uniform inputs and outputs

e Compositionality in the kernel

O

©)

O O O O

Supporting ‘arbitrary’ computing complexity
The output of each computing components
must be the same kind of 'signal’ as the input

If the inputs are voltages, the outputs must be voltages
If the inputs are proteins, the outputs must be proteins
If the outputs are photons the inputs must be photons
If the inputs are DNA, the outputs must be DNA

What should our nano-signals be?

What does DNA Compute?

e Electronics has electrons
o All electrons are the same
All you can do is see if you have few (‘False’) or lots (‘True’) of electrons
Hence Boolean logic is at the basis of digital circuit design
Symbolic and numeric computation has to be encoded above that
But mostly we want to compute with symbols and numbers, not with Booleans

O O O O

e DNA computing has symbols (DNA words)
o DNA words are not all the same
o Symbolic computation can be done directly
o We can also directly use molecular concurrency

e Process Algebra as the ‘Boolean Algebra’ of DNA Computing
o What are the ‘gates’ of symbolic concurrent computation?
o That’s what Process Algebra is about
o (Process Algebra comes from the theory of concurrent systems)

Luca Cardelli 2009-10-12 5

DNA Compilation

Separating Circuit Design from Gate Design

Higher-level

languages
Cremstay [Antomt | | Nowrotts | | utomets | | Nes
5 .
Circuit Design Space
_

High level
languages
(TBD)

Low level
languages

Sequence
Design

DNA Compilation

Separating Circuit Design from Gate Design

Higher-level t‘lair%h laeveesl
u
langl.lages (TB%) S
Discrete Interacting Boolean Finite State Petri Low level
Chemistry |~ = *| Automata Networks Automata Nets languages
Nl

Seesaw Strand
Gates Algebra

[Circuit Design]

(e.g. half-adders from
Boolean gates)

[Gate Design Space

Sequence
Design

DNA Compilation

Separating Circuit Design from Gate Design

Higher-level {-Iigh level
anguages
langl.lages (TBD)
Discrete - | Interacting Boolean Finite State Petri Low level
Chemistry |~ =~ | Automata Networks Automata Nets languages
N r—
Seesaw Strand Circuit Design
Verification of DNA
Gates | Algebri gate implementation (e.g. half-adders from
%, 1 ’ Boolean gates)
4 - Cardelli and Phillips G Desi
Strand A Programming Languag’e for ate Design
Displacement Composable DNA Circuits. (e.g. Boolean gates
Royal Society Interface Journal

from transistors)

T Sequence

Design

DNA Compilation

Separating Circuit Design from Gate Design

Higher-level {';irg:,h fvg:
u
langl.lages (TB%) S
Discrete - | Interacting Boolean Finite State Petri Low level
Chemistry |~ = ~| Automata Networks Automata Nets languages
NS e
Seesaw Strand [Circuit Design]

Gates Algebra

0 v, (e.g. half-adders from

. R 1 ‘e, Boolean gates)

2 e ,
Other DNA Strand Other DNA Gate Design
Mechanisms| | Displacement Mechanisms (e.g. Boolean gates

. from transistors)

\ 4

it Sequence

Design

DNA Compilation

Separating Circuit Design from Gate Design

Higher-level {'Iigh level
an
langl.lages (TB%u)ages
Discrete - | Interacting Boolean Finite State Petri Low level
Chemistry |~ = ~| Auteinata Networks Automata Nets languages
* . . .
Seesaw Strand Circuit Design

Gates Algebr

*
*
] *e 24
" % .
e L4

v a4 A
Other DNA Strand Other DNA
Mechanisms| | Displacement Mechanisms
A 4

(e.g. half-adders from
Boolean gates)

[Gate Design]

(e.g. Boolean gates
from transistors)

Sequence
Design

Rest of the talk: bottom up

Toehold Mediated
Strand Displacement

Discrete - [Interacting
Chemistry [~ : * | Autefhata

v » L
r DNA Strand Other
anisms| | Disp ent | [Mecha

Strand Displacement Reaction

Strand Displacement Irreversible

x.y Transducer Gate

@ Xt®xh > ’ : ye b > " @ .

.‘ it b1 111 | -
X Xy Yy @t | Xeb Xl Yk oal | | X Xt Yo A
a fresh; Xx;, generic
e a
X | X.y—>y @ >

G,,G, (gate backbone and trigger) form the transducer.

Any history segment that is not determined by the gate
structure is said to be ‘generic’ (can be anything).

Any gate segment that is not a non-history segment of an
input or output signal is taken to be ‘fresh’ (globally unique
for the gate), to avoid possible interferences.

Strand Displacement
Intermediate Language

Discrete - [Interacting
Chemistry [~ : * | Autefhata

Syntax

A. Syntax of DNA molecules D

B. Syntax of DNA segments G

Upper strand with sequence Lower strand with toehold N°
complementary to S
S N
<8> N"c
Molecule with segments Gy, Gx Double strand with sequence S
and overhangs L, R
< G . Gy
L
Gl:G2:...: GR \—r/h
Parallel molecules Dy,.._,Dy <L>[8]<R>

D D2 .. Dk

pl | D2 | ... | DK

C. Syntax of DNA sequences S.L.R

Molecules D with private domains N;,... Ny

{Nh“'-NK] D

new (Nl,...,NE) D

Sequence of domains O,,.._.Oy
O 0 = O

cl 02 ... OK

Strand Displacement Simulation Tool

1 Transducer gate x.y (3 initial species)

oW

directive sample 30.0 1000
new xt@1. 0 1.0

0

"m""'m'ﬁ)
Xh
a Xt t
Yt m 0 4|J| - |1r - Jlr ’ <+ y
_ XtJ' Xpt oyt at Xt Xpt Yt at Xeh Xpto Yt at
a fresh; X, generic 2)
Yt
X | xy—>y @ R —
tion{ Text) Plot Graph
[\ @
T\ <[t Byt a]
\ <yt* ax

<xh>[xt" xb]yt*:[a]

<xb yt* yb>
N\, axhs[xt* xb]:<xb> [yt~] eyb>:[a]
N\ xtifeb yttJ<ybs:fa)
N\, <xhat® xb>

Strand Algebra

Discrete

Interacting

anisms Mecha

i

Strand Algebra

ittt AR QL] I8 [EAA] RO BRI A v n>1, m>0
X is a signal

[X1’°°’Xn]°[y1)°°)ym] is a gate

0 is an inert solution

P|IP is parallel composition of signals and gates
pP* is a population (multiset) of signals and gates

Reaction Rule

X1 | il | Xn | [X1"°’Xn]'[y1’--;ym] Tl y1 | il | ym

Equivalent to (stochastic) place-transition Petri Nets.

Compiling Strand Algebra to DNA

it st e e AU et st st R AR n>1, m>0

compile(x) = &, ®,

S oam X1b @ Xt Xop T y@y ’@ ym®ymt’@
€ TTTTTT 111 1 L £ Cr T T T 71111 e
Xitt Xqpt Xntt Xnpt Yt Yt Ymht Ymt*

compile(0) = empty solution

compile(P | P’) = mix(compile(P), compile(P’))

compile(P*) = population(compile(P))

Computational Abstractions

Discrete . Interacting
Chemistry | :
Seesaw
Gates

RN A
r DNA S d Other
anisms| | Disp ent | [Mecha

i

Boolean Networks

Boolean Networks to Strand Algebra

(ol
ad ar,DT1].Ct *
_I; ~ [NAND © ([ar,bd.cr)’
b ([aT,br].CF)”

ar | br

This encoding is compositional, and can encode any Boolean network:
- multi-stage networks can be assembled (combinatorial logic)
- network loops are allowed (sequential logic)

Petri Nets

Petri Nets to Strand Algebra

Transitions as Gates
Place markings as Signals

P1 P2

([p1:p2]'[p3:p4])*|
P1lp1]p4

Experiments

Discrete : Interacting
Chemistrv . Automata

Seesaw Strand /

Gates Algebra 4—--"""'—.-

v » ‘11

cDNA Strand Other
anisms Displacement Mecha

Sequence Design

nucleic acid package nucleic acid package

Design Design

Input Results

MNucleic acid type: @ RMNA © DNA

Number of designs: 1 Z| I n p u t

_
Target struct@® | ({0 +C MMM ij‘f/[\\
< /|

Designability summary

Preview: Sequence designs

Average Average GC content ~ Sequence
percentage number of
of correct incorrect

nuclectides nucleotides

99.1% 0.475 74.5%

Copyright © 2007-2009 Caltech. All rights reserved. | Contact | Funding | Terms of use

Luca Cardelli 2009-10-12 25

Conclusion

Nucleic Acids
o Programmable matter

DNA Strand Displacement
o A computational mechanism at the molecular level

DNA Compilation
o High-level languages (Boolean Networks, Petri Nets, Interacting Automata)
o Intermediate languages (Strand Algebra, Strand Displacement Language).
o Sequence generation.

Tools

o Thermodynamic analysis.

o Simulation.

o Verification/Optimization (not yet).

http://lucacardelli.name

