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DNA Basics
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ACGT

Interactive DNA Tutorial
(http://www.biosciences.bham.ac.uk/labs/minchin/tutorials/dna.html)

GC Base Pair
Guanine-Cytosine

TA Base Pair
Thymine-Adenine

Sequence of Base Pairs

Hence DNA is a string over a 4-letter ACGT alphabet
Human genome : ~3 billion base pairs 

= 750 Megabytes (since 1 byte encodes 4 base pairs)

= 1 movie download!
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DNA Double Helix

Benzopyrene

By Richard Wheeler (Zephyris) 2007. Solution structure of 

a trans-opened (10S)-dA adduct of +)-(7S,8R,9S,10R)-7,8-

dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene

in a DNA duplex. Wikimedia Commons.

(cigarette smoke)
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DNA Nanotechonology
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Nano Tasks

● Sensing

o Reacting to forces

o Binding to molecules

● Actuating

o Releasing molecules

o Producing forces

● Constructing

o By spontaneous self-assembly

o Catalyzed by stimuli

● Computing

o All that under 'program control'

o Analog: Signal Filtering, Amplification

o Digital: Logical gates

● Nucleic Acids (DNA/RNA) 

o Probably the only materials that can 

perform all these functions. 

o Technology relatively well developed.

o Can interface to biological entities.

Sensing

Computing

ActuatingConstructing

Y. Benenson et al., An autonomous molecular computer for logical control of gene 

expressionNature 429, 423-429 (2004)
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DNA as a Building Material

Slides by John Reif



2D DNA Lattices

Chengde Mao

Purdue University, USA N-point Stars



DNA Origami
Nature, 2006

PWK Rothemund, Nature 440, 297 (2006) 

Paul W K Rothemund 

California Institute of Technology





William Shi

Harvard
S.M. Douglas, H. Dietz, T. Liedl, B. Högberg, F. Graf and W. M. Shih 

Self-assembly of DNA into nanoscale three-dimensional shapes, Nature (2009)
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3D Wireframe Icosahedron

S.M. Douglas, H. Dietz, T. Liedl, B. Högberg, F. Graf and W. M. Shih 

Self-assembly of DNA into nanoscale three-dimensional shapes, Nature (2009)

William Shi

Harvard



Self-assembly of a DNA origami box
Andersen et al Nature 2009, 459, 73

Aurhus Univ, Denmark



DNA circuit boards (IBM )

"What we are really making 

are tiny DNA circuit boards 

that will be used to assemble 

other components." 

--Greg Wallraff, IBM

European Nanoelectronics Initiative Advisory Council

PWK Rothemund, Nature 440, 297 (2006) 

+

6 nm grid of 

individually 

addressable 

pixels

DNA-wrapped 

nanotubes
-self-assembly

-6 nm feature spacing

-versatile template / etch mask
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DNA as a Computational Material
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Aptamers (Sensors)
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Computation: Curing Cancer with one AND Gate
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Actuators

DNA Walkers
(Yin, Choi, Calvert & Pierce, Nature 2008)

DNA Tweezers
(Yurke & Turberfield, Nature 2000)
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Compositionality

● Sensors and Actuators at the 'edge' of the system

o They can use disparate kinds of inputs (sensors) and outputs (actuators)

● The 'kernel' of the system computes

o Must use uniform inputs and outputs

● Compositionality in the kernel

o Supporting 'arbitrary' computing complexity

o The output of each computing components 

must be the same kind of 'signal' as the input

● sdf

o If the inputs are voltages, the outputs must be voltages

o If the inputs are proteins, the outputs must be proteins

o If the outputs are photons the inputs must be photons

o If the inputs are DNA, the outputs must be DNA

● sdf

o What should our nano-signals be?
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What does DNA Compute?

● Electronics has electrons

o All electrons are the same

o All you can do is see if you have few (‘False’) or lots (‘True’) of electrons

o Hence Boolean logic is at the basis of digital circuit design

o Symbolic and numeric computation has to be encoded above that

o But mostly we want to compute with symbols and numbers, not with Booleans

● DNA computing has symbols (DNA words)

o DNA words are not all the same

o Symbolic computation can be done directly

o We can also directly use molecular concurrency

● Process Algebra as the ‘Boolean Algebra’ of DNA Computing

o What are the ‘gates’ of symbolic concurrent computation?

o That’s what Process Algebra is about

o (Process Algebra comes from the theory of concurrent systems)
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Summary

● DNA technology is making great progress

o Developing sensor, actuators, and building materials.

o All thanks to the programmable nature of DNA.

● DNA computation has also been investigate deeply.

o DNA tiling systems are Turing complete. They can be used to build 'carpets' 

with predetermined size and organization.

o Automata and Turing machines have been demonstrated or designed.

● But there is still space for creativity

o What is the 'best' way to write algorithms with DNA?

● What is DNA nanotech for? Ultimately:

o To construct 'arbitrary' nanomaterials.

o To compute 'in vivo'.
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Implementing "Arbitrary" 
Computing Functions
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DNA

DNA Compilation

Discrete
Chemistry

Interacting
Automata

Higher-level 
languages

High level 
languages 
(TBD)

Low level 
languages

Petri
Nets

Separating Circuit Design from Gate Design

Boolean
Networks

Finite State
Automata

Sequence
Design

Circuit Design Space
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DNA Compilation

Strand
Algebra

Seesaw
Gates

High level 
languages 
(TBD)

Low level 
languages

…

Separating Circuit Design from Gate Design

(e.g. half-adders from 
Boolean gates)

Interacting
Automata

Sequence
Design

Gate Design Space

Circuit Design

Discrete
Chemistry

Higher-level 
languages

Petri
Nets

Boolean
Networks

Finite State
Automata

DNA
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DNA

DNA Compilation

Verification of DNA 

gate implementation

Strand
Displacement

Cardelli and Phillips,

A Programming Language for 

Composable DNA Circuits. 

Royal Society Interface Journal

Separating Circuit Design from Gate Design

High level 
languages 
(TBD)

Low level 
languages

Sequence
Design

Seesaw
Gates

…

(e.g. Boolean gates 

from transistors)

Strand
Algebra

Interacting
Automata

Circuit Design

Gate Design

(e.g. half-adders from 
Boolean gates)

Discrete
Chemistry

Higher-level 
languages

Petri
Nets

Boolean
Networks

Finite State
Automata
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DNA
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Sequence
Design

DNA Compilation

Separating Circuit Design from Gate Design

High level 
languages 
(TBD)

Low level 
languages

Seesaw
Gates

…

Rest of the talk: bottom up

Other DNA 
Mechanisms

Other DNA 
Mechanisms

Strand
Displacement

Strand
Algebra

Interacting
Automata

(e.g. Boolean gates 

from transistors)

Circuit Design

Gate Design

(e.g. half-adders from 
Boolean gates)

Discrete
Chemistry

Higher-level 
languages

Petri
Nets

Boolean
Networks

Finite State
Automata

DNA



292009-10-11Luca Cardelli 292009-10-11 292009-10-11Luca Cardelli

Toehold Mediated
Strand Displacement
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Watson-Crick Duality

Equal Single Strands

Complementary Single Strands

Hence (G:A:C:T)⊥ = A:G:T:C = T⊥:C⊥:A⊥:G⊥

G⊥ = C

T⊥ = A
ComplementarityDouble Strand

(X:Y)⊥ = Y⊥:X⊥

Watson-Crick duality
(for any sequences of bases X,Y)

G - C

T - A
Affinity

X⊥⊥ = X 

3’ end

all written 

from 5’ to 3’
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Hybridization

Hybridization is also called annealing; denaturation is also 

called melting.

The direction of the reaction (or in general the equilibrium 

between the two states) is determined by a number of 

factors, e.g. temperature.

We assume we are in conditions that favor hybridization 

beyond a certain length of matching region. 

a,b,c, etc. denote DNA (sub)sequences

with Watson-Crick complements a⊥,b⊥,c⊥, etc.
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Gate Elements: Short and Long DNA Segments

Short (red)

segments

Long (black)

segments
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Strand Displacement Reaction

toehold Irreversible

blocked

Reversible! 
because the random walk is ‘reflected’ by the blockage

Partial

Match

Irreversible match is determined by the toehold plus the branch migration region. 

That is, the toehold is a cache for the full address. The toehold must be short enough to 

guarantee reversible binding, but the branch migration region is practically unlimited.

This means that the address space is unlimited.
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Toehold Exchange Reaction

Reversible
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● Signals “x” are single-stranded and ‘positive’

● This 3-segment signal representation is original to this work, it is based 

on the 4-segment signals of D. Soloveichik, G. Seelig, E. Winfree. Proc. 

DNA14, but leads to simpler and more regular gate structures

● Gate backbones are double-stranded, except for ‘negative’ toeholds.

● Separation of strands and gates helps the DNA realization, as one can use 

3-letter alphabets (ATC/ATG) for each strand, minimizing secondary 

structure and entanglement.

Signals and Gates

xh = history xt,xb = signal identity for x

xt = toehold

xb = binding
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Waste

A system is considered inert (terminated) if it has no free toeholds.



372009-10-11Luca Cardelli 372009-10-11 372009-10-11Luca Cardelli

x.y Transducer Gate

Gb,Gt (gate backbone and trigger) form the transducer.

Any history segment that is not determined by the gate 

structure is said to be ‘generic’ (can be anything).

Any gate segment that is not a non-history segment of an 

input or output signal is taken to be ‘fresh’ (globally unique 

for the gate), to avoid possible interferences.
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x.[y,z] Fork Gate

● A Fork signal-processing gate takes a signal x and produces two signals y,z

according to the reaction  x | x.[y,z] → y | z

Gb,Gt (gate backbone and trigger) form the gate.

Any history segment that is not determined by the gate 

structure is said to be ‘generic’ (can be anything).

Any gate segment that is not a non-history segment of an 

input or output signal is taken to be ‘fresh’ (globally unique 

for the gate), to avoid possible interferences.
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● A Join signal-processing gate takes both signals x,y and produces a signal 

z according to the reaction  x | y | [x,y].z → z

[x,y].z Join Gate (function)

The garbage r1 and r2 must be collected (after the gate has fired) to avoid 

accumulation. This can be achieved by a similar scheme taking r1,r2 as input signals.

garbage!!
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[x,y].z Join Gate (collection)

Garbage collection of r1 is needed for join to work well. This is done by another 

reversible-AND between r1 and r2, triggered by the release of r2. This second 

reversible-AND leaves garbage too (r3, r4), but this can be collected immediately, as 

we know by construction that both inputs r1,r2 are available and we need not wait to 

revert their bindings. 

The extra intermediate c,d segments separate the r1 binding from the r2 binding. 

Without them, a segment yt:yb (instead of yt:c and d:yb) would be released: that is y!

Garbage Collection
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[x1,..,xn].[y1,..,ym] General Join/Fork Gate

x1 | .. | xn | [x1,..,xn].[y1,..,ym] → y1 | .. | ym

Garbage collection
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x.H(y) Curried Gates

Gates that return gates:

For example, x.y.z: This means we can have gates of the form:

G   ::= [x1,..,xn].[x’1,..,x’m]  ⋮

[x1,..,xn].G         

n≥1, m≥0
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Strand Algebra
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Strand Algebra

P   ::=   x  ⋮ [x1,..,xn].[y1,..,ym]  ⋮ 0  ⋮ P|P  ⋮ P*          n≥1, m≥0

x is a signal

[x1,..,xn].[y1,..,ym] is a gate

0 is an inert solution

P|P is parallel composition of signals and gates

P* is a population (multiset) of signals and gates

Reaction Rule

Auxiliary rules (axioms of diluted well-mixed solutions)

x1 | .. | xn | [x1,..,xn].[y1,..,ym]  → y1 | .. | ym

P  → P’ ⇒ P | P”  → P’| P” Dilution

P ≡ P1, P1 → P2, P2 ≡ P’ ⇒ P → P’ Well Mixing

Where ≡ is a congruence relation (syntactical ‘chemical mixing’)
with P* ≡ P | P* for unbounded populations.
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Compiling Strand Algebra to DNA

● compile(x) = 

● compile([x1,..,xn].[y1,..,ym]) =

● compile(0) =   empty solution

● compile(P | P’) =  mix(compile(P), compile(P’))

● compile(P*) =  population(compile(P))

P   ::=   x  ⋮ [x1,..,xn].[y1,..,ym]  ⋮ 0  ⋮ P|P  ⋮ P*          n≥1, m≥0
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More in the Paper

● Stochastic strand algebra

o Matches the stochastic semantics of interacting automata

o Uses a technique for implementing constant buffered populations, 

to replace P* with finite populations

● Nested strand algebra

o An higher-level language (with nested expressions)

o A compilation algorithm into the basic strand algebra
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Computational Abstractions
("Low-Level" Languages)
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Boolean Networks

This encoding is compositional, and can encode any Boolean network:

- multi-stage networks can be assembled (combinatorial logic)

- network loops are allowed (sequential logic)

Boolean Networks to Strand Algebra
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Petri Nets

Transitions as Gates
Place markings as Signals 

Petri Nets to Strand Algebra
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Finite State Automata

FSA to Strand Algebra

Input strings

Assuming ONE automaton and ONE input string.

Automata populations are a more natural model...
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Interacting Automata

A B

!a

?c
?a

!b?b

C

!c

A B

!a

?c
?a

!b?b

C

!c

A B

!a

?c
?a

!b?b

C

!c

A B

!a

?c
?a

!b?b

C

!c

900xA, 500xB, 100xC

([A,B].[B,B])* |
([B,C].[C,C])* |
([C,A].[A,A])* |
A | A | B | C

This is a uniform population of identical automata, 

but heterogeneous populations of interacting automata can be similarly handled. 
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Interacting Automata
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but heterogeneous populations of interacting automata can be similarly handled. 
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Interacting Automata
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Interacting Automata
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but heterogeneous populations of interacting automata can be similarly handled. 
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Strand Displacement
Intermediate Language
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Syntax
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Dynamics
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Strand Displacement Simulation Tool

directive sample 30.0 1000

new xt@1.0,1.0 

new yt@1.0,1.0 

( 1000 * <xh xt^ xb>    

| 1000 * xt^:[xb yt^]<yb>:[a]

| 1000 * <yt^ a>

)

1 Transducer gate x.y (3 initial species)
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Strand Displacement Simulation Tool

directive sample 30.0 1000 

directive plot "<reporter>"

new xt@ 1.0 , 1.0 

( 1 * <xh xt^ xb>              

| 1000 * xt^:[xb xt^]<xb>:[a xt^]<xb>:[reporter]

| 1000 * <xt^ a xt^ reporter>

)

Fork Chain Reaction   x.[x,x] (3 initial species)

26 Species, 20 Reactions
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Strand Displacement Simulation Tool

directive sample 1000.0 1000 

new xt@ 1.0 , 1.0 

new yt@ 1.0 , 1.0 

new zt@ 1.0 , 1.0 

new a@ 1.0 , 1.0 

new d@ 1.0 , 1.0 

( 1000 * <xh xt^ xb>    

| 1000 * <yh yt^ yb>           

| 1000 * xt^:[xb yt^]:[yb a^]:[b zt^]<zb>

| 1000 * <a^ b zt^>

| 1000 * [xb]:[yt^ c]:[d^ yb]:a^

| 1000 * <c d^>

| 1000 * d^:[yb]

| 1000 * yt^:[c]

)

1 Join gate with garbage collection  [x,y].z (8 initial species)

34 Species, 18 Reactions
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Sequence Design



622009-10-11Luca Cardelli 622009-10-11 622009-10-11Luca Cardelli

Sequence Design

Input

Output
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Conclusions
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Conclusion

● Nucleic Acids

o Programmable matter

● DNA Strand Displacement

o A computational mechanism at the molecular level

● DNA Compilation

o High-level languages (Boolean Networks, Petri Nets, Interacting Automata)

o Intermediate languages (Strand Algebra, Strand Displacement Language).

o Sequence generation.

● Tools

o Thermodynamic analysis.

o Simulation.

o Verification (not yet).


