
Molecular
Programming

Luca Cardelli

Microsoft Research

Bologna, 2009-09-07

http://lucacardelli.name

32009-10-11Luca Cardelli 32009-10-11 32009-10-11Luca Cardelli

DNA Basics

42009-10-11Luca Cardelli 42009-10-11 42009-10-11Luca Cardelli

ACGT

Interactive DNA Tutorial
(http://www.biosciences.bham.ac.uk/labs/minchin/tutorials/dna.html)

GC Base Pair
Guanine-Cytosine

TA Base Pair
Thymine-Adenine

Sequence of Base Pairs

Hence DNA is a string over a 4-letter ACGT alphabet
Human genome : ~3 billion base pairs

= 750 Megabytes (since 1 byte encodes 4 base pairs)

= 1 movie download!

52009-10-11Luca Cardelli 52009-10-11 52009-10-11Luca Cardelli

DNA Double Helix

Benzopyrene

By Richard Wheeler (Zephyris) 2007. Solution structure of

a trans-opened (10S)-dA adduct of +)-(7S,8R,9S,10R)-7,8-

dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene

in a DNA duplex. Wikimedia Commons.

(cigarette smoke)

62009-10-11Luca Cardelli 62009-10-11 62009-10-11Luca Cardelli

DNA Nanotechonology

72009-10-11Luca Cardelli 72009-10-11 72009-10-11Luca Cardelli

Nano Tasks

● Sensing

o Reacting to forces

o Binding to molecules

● Actuating

o Releasing molecules

o Producing forces

● Constructing

o By spontaneous self-assembly

o Catalyzed by stimuli

● Computing

o All that under 'program control'

o Analog: Signal Filtering, Amplification

o Digital: Logical gates

● Nucleic Acids (DNA/RNA)

o Probably the only materials that can

perform all these functions.

o Technology relatively well developed.

o Can interface to biological entities.

Sensing

Computing

ActuatingConstructing

Y. Benenson et al., An autonomous molecular computer for logical control of gene

expressionNature 429, 423-429 (2004)

82009-10-11Luca Cardelli 82009-10-11 82009-10-11Luca Cardelli

DNA as a Building Material

Slides by John Reif

2D DNA Lattices

Chengde Mao

Purdue University, USA N-point Stars

DNA Origami
Nature, 2006

PWK Rothemund, Nature 440, 297 (2006)

Paul W K Rothemund

California Institute of Technology

William Shi

Harvard
S.M. Douglas, H. Dietz, T. Liedl, B. Högberg, F. Graf and W. M. Shih

Self-assembly of DNA into nanoscale three-dimensional shapes, Nature (2009)

132009-10-11Luca Cardelli 132009-10-11 132009-10-11Luca Cardelli

3D Wireframe Icosahedron

S.M. Douglas, H. Dietz, T. Liedl, B. Högberg, F. Graf and W. M. Shih

Self-assembly of DNA into nanoscale three-dimensional shapes, Nature (2009)

William Shi

Harvard

Self-assembly of a DNA origami box
Andersen et al Nature 2009, 459, 73

Aurhus Univ, Denmark

DNA circuit boards (IBM)

"What we are really making

are tiny DNA circuit boards

that will be used to assemble

other components."

--Greg Wallraff, IBM

European Nanoelectronics Initiative Advisory Council

PWK Rothemund, Nature 440, 297 (2006)

+

6 nm grid of

individually

addressable

pixels

DNA-wrapped

nanotubes
-self-assembly

-6 nm feature spacing

-versatile template / etch mask

162009-10-11Luca Cardelli 162009-10-11 162009-10-11Luca Cardelli

DNA as a Computational Material

172009-10-11Luca Cardelli 172009-10-11 172009-10-11Luca Cardelli

Aptamers (Sensors)

182009-10-11Luca Cardelli 182009-10-11 182009-10-11Luca Cardelli

Computation: Curing Cancer with one AND Gate

192009-10-11Luca Cardelli 192009-10-11 192009-10-11Luca Cardelli

Actuators

DNA Walkers
(Yin, Choi, Calvert & Pierce, Nature 2008)

DNA Tweezers
(Yurke & Turberfield, Nature 2000)

202009-10-11Luca Cardelli 202009-10-11 202009-10-11Luca Cardelli

Compositionality

● Sensors and Actuators at the 'edge' of the system

o They can use disparate kinds of inputs (sensors) and outputs (actuators)

● The 'kernel' of the system computes

o Must use uniform inputs and outputs

● Compositionality in the kernel

o Supporting 'arbitrary' computing complexity

o The output of each computing components

must be the same kind of 'signal' as the input

● sdf

o If the inputs are voltages, the outputs must be voltages

o If the inputs are proteins, the outputs must be proteins

o If the outputs are photons the inputs must be photons

o If the inputs are DNA, the outputs must be DNA

● sdf

o What should our nano-signals be?

212009-10-11Luca Cardelli 212009-10-11 212009-10-11Luca Cardelli

What does DNA Compute?

● Electronics has electrons

o All electrons are the same

o All you can do is see if you have few (‘False’) or lots (‘True’) of electrons

o Hence Boolean logic is at the basis of digital circuit design

o Symbolic and numeric computation has to be encoded above that

o But mostly we want to compute with symbols and numbers, not with Booleans

● DNA computing has symbols (DNA words)

o DNA words are not all the same

o Symbolic computation can be done directly

o We can also directly use molecular concurrency

● Process Algebra as the ‘Boolean Algebra’ of DNA Computing

o What are the ‘gates’ of symbolic concurrent computation?

o That’s what Process Algebra is about

o (Process Algebra comes from the theory of concurrent systems)

222009-10-11Luca Cardelli 222009-10-11 222009-10-11Luca Cardelli

Summary

● DNA technology is making great progress

o Developing sensor, actuators, and building materials.

o All thanks to the programmable nature of DNA.

● DNA computation has also been investigate deeply.

o DNA tiling systems are Turing complete. They can be used to build 'carpets'

with predetermined size and organization.

o Automata and Turing machines have been demonstrated or designed.

● But there is still space for creativity

o What is the 'best' way to write algorithms with DNA?

● What is DNA nanotech for? Ultimately:

o To construct 'arbitrary' nanomaterials.

o To compute 'in vivo'.

232009-10-11Luca Cardelli 232009-10-11 232009-10-11Luca Cardelli

Implementing "Arbitrary"
Computing Functions

242009-10-11Luca Cardelli 242009-10-11 242009-10-11Luca Cardelli

DNA

DNA Compilation

Discrete
Chemistry

Interacting
Automata

Higher-level
languages

High level
languages
(TBD)

Low level
languages

Petri
Nets

Separating Circuit Design from Gate Design

Boolean
Networks

Finite State
Automata

Sequence
Design

Circuit Design Space

252009-10-11Luca Cardelli 252009-10-11 252009-10-11Luca Cardelli

DNA Compilation

Strand
Algebra

Seesaw
Gates

High level
languages
(TBD)

Low level
languages

…

Separating Circuit Design from Gate Design

(e.g. half-adders from
Boolean gates)

Interacting
Automata

Sequence
Design

Gate Design Space

Circuit Design

Discrete
Chemistry

Higher-level
languages

Petri
Nets

Boolean
Networks

Finite State
Automata

DNA

262009-10-11Luca Cardelli 262009-10-11 262009-10-11Luca Cardelli

DNA

DNA Compilation

Verification of DNA

gate implementation

Strand
Displacement

Cardelli and Phillips,

A Programming Language for

Composable DNA Circuits.

Royal Society Interface Journal

Separating Circuit Design from Gate Design

High level
languages
(TBD)

Low level
languages

Sequence
Design

Seesaw
Gates

…

(e.g. Boolean gates

from transistors)

Strand
Algebra

Interacting
Automata

Circuit Design

Gate Design

(e.g. half-adders from
Boolean gates)

Discrete
Chemistry

Higher-level
languages

Petri
Nets

Boolean
Networks

Finite State
Automata

272009-10-11Luca Cardelli 272009-10-11 272009-10-11Luca Cardelli

DNA

DNA Compilation

Separating Circuit Design from Gate Design

High level
languages
(TBD)

Low level
languages

Seesaw
Gates

…

Other DNA
Mechanisms

Other DNA
Mechanisms

Strand
Displacement

Strand
Algebra

Interacting
Automata

Sequence
Design

(e.g. Boolean gates

from transistors)

Circuit Design

Gate Design

(e.g. half-adders from
Boolean gates)

Discrete
Chemistry

Higher-level
languages

Petri
Nets

Boolean
Networks

Finite State
Automata

282009-10-11Luca Cardelli 282009-10-11 282009-10-11Luca Cardelli

Sequence
Design

DNA Compilation

Separating Circuit Design from Gate Design

High level
languages
(TBD)

Low level
languages

Seesaw
Gates

…

Rest of the talk: bottom up

Other DNA
Mechanisms

Other DNA
Mechanisms

Strand
Displacement

Strand
Algebra

Interacting
Automata

(e.g. Boolean gates

from transistors)

Circuit Design

Gate Design

(e.g. half-adders from
Boolean gates)

Discrete
Chemistry

Higher-level
languages

Petri
Nets

Boolean
Networks

Finite State
Automata

DNA

292009-10-11Luca Cardelli 292009-10-11 292009-10-11Luca Cardelli

Toehold Mediated
Strand Displacement

302009-10-11Luca Cardelli 302009-10-11 302009-10-11Luca Cardelli

Watson-Crick Duality

Equal Single Strands

Complementary Single Strands

Hence (G:A:C:T)⊥ = A:G:T:C = T⊥:C⊥:A⊥:G⊥

G⊥ = C

T⊥ = A
ComplementarityDouble Strand

(X:Y)⊥ = Y⊥:X⊥

Watson-Crick duality
(for any sequences of bases X,Y)

G - C

T - A
Affinity

X⊥⊥ = X

3’ end

all written

from 5’ to 3’

312009-10-11Luca Cardelli 312009-10-11 312009-10-11Luca Cardelli

Hybridization

Hybridization is also called annealing; denaturation is also

called melting.

The direction of the reaction (or in general the equilibrium

between the two states) is determined by a number of

factors, e.g. temperature.

We assume we are in conditions that favor hybridization

beyond a certain length of matching region.

a,b,c, etc. denote DNA (sub)sequences

with Watson-Crick complements a⊥,b⊥,c⊥, etc.

322009-10-11Luca Cardelli 322009-10-11 322009-10-11Luca Cardelli

Gate Elements: Short and Long DNA Segments

Short (red)

segments

Long (black)

segments

332009-10-11Luca Cardelli 332009-10-11 332009-10-11Luca Cardelli

Strand Displacement Reaction

toehold Irreversible

blocked

Reversible!
because the random walk is ‘reflected’ by the blockage

Partial

Match

Irreversible match is determined by the toehold plus the branch migration region.

That is, the toehold is a cache for the full address. The toehold must be short enough to

guarantee reversible binding, but the branch migration region is practically unlimited.

This means that the address space is unlimited.

342009-10-11Luca Cardelli 342009-10-11 342009-10-11Luca Cardelli

Toehold Exchange Reaction

Reversible

352009-10-11Luca Cardelli 352009-10-11 352009-10-11Luca Cardelli

● Signals “x” are single-stranded and ‘positive’

● This 3-segment signal representation is original to this work, it is based

on the 4-segment signals of D. Soloveichik, G. Seelig, E. Winfree. Proc.

DNA14, but leads to simpler and more regular gate structures

● Gate backbones are double-stranded, except for ‘negative’ toeholds.

● Separation of strands and gates helps the DNA realization, as one can use

3-letter alphabets (ATC/ATG) for each strand, minimizing secondary

structure and entanglement.

Signals and Gates

xh = history xt,xb = signal identity for x

xt = toehold

xb = binding

362009-10-11Luca Cardelli 362009-10-11 362009-10-11Luca Cardelli

Waste

A system is considered inert (terminated) if it has no free toeholds.

372009-10-11Luca Cardelli 372009-10-11 372009-10-11Luca Cardelli

x.y Transducer Gate

Gb,Gt (gate backbone and trigger) form the transducer.

Any history segment that is not determined by the gate

structure is said to be ‘generic’ (can be anything).

Any gate segment that is not a non-history segment of an

input or output signal is taken to be ‘fresh’ (globally unique

for the gate), to avoid possible interferences.

382009-10-11Luca Cardelli 382009-10-11 382009-10-11Luca Cardelli

x.[y,z] Fork Gate

● A Fork signal-processing gate takes a signal x and produces two signals y,z

according to the reaction x | x.[y,z] → y | z

Gb,Gt (gate backbone and trigger) form the gate.

Any history segment that is not determined by the gate

structure is said to be ‘generic’ (can be anything).

Any gate segment that is not a non-history segment of an

input or output signal is taken to be ‘fresh’ (globally unique

for the gate), to avoid possible interferences.

392009-10-11Luca Cardelli 392009-10-11 392009-10-11Luca Cardelli

● A Join signal-processing gate takes both signals x,y and produces a signal

z according to the reaction x | y | [x,y].z → z

[x,y].z Join Gate (function)

The garbage r1 and r2 must be collected (after the gate has fired) to avoid

accumulation. This can be achieved by a similar scheme taking r1,r2 as input signals.

garbage!!

402009-10-11Luca Cardelli 402009-10-11 402009-10-11Luca Cardelli

[x,y].z Join Gate (collection)

Garbage collection of r1 is needed for join to work well. This is done by another

reversible-AND between r1 and r2, triggered by the release of r2. This second

reversible-AND leaves garbage too (r3, r4), but this can be collected immediately, as

we know by construction that both inputs r1,r2 are available and we need not wait to

revert their bindings.

The extra intermediate c,d segments separate the r1 binding from the r2 binding.

Without them, a segment yt:yb (instead of yt:c and d:yb) would be released: that is y!

Garbage Collection

412009-10-11Luca Cardelli 412009-10-11 412009-10-11Luca Cardelli

[x1,..,xn].[y1,..,ym] General Join/Fork Gate

x1 | .. | xn | [x1,..,xn].[y1,..,ym] → y1 | .. | ym

Garbage collection

422009-10-11Luca Cardelli 422009-10-11 422009-10-11Luca Cardelli

x.H(y) Curried Gates

Gates that return gates:

For example, x.y.z: This means we can have gates of the form:

G ::= [x1,..,xn].[x’1,..,x’m] ⋮

[x1,..,xn].G

n≥1, m≥0

432009-10-11Luca Cardelli 432009-10-11 432009-10-11Luca Cardelli

Strand Algebra

442009-10-11Luca Cardelli 442009-10-11 442009-10-11Luca Cardelli

Strand Algebra

P ::= x ⋮ [x1,..,xn].[y1,..,ym] ⋮ 0 ⋮ P|P ⋮ P* n≥1, m≥0

x is a signal

[x1,..,xn].[y1,..,ym] is a gate

0 is an inert solution

P|P is parallel composition of signals and gates

P* is a population (multiset) of signals and gates

Reaction Rule

Auxiliary rules (axioms of diluted well-mixed solutions)

x1 | .. | xn | [x1,..,xn].[y1,..,ym] → y1 | .. | ym

P → P’ ⇒ P | P” → P’| P” Dilution

P ≡ P1, P1 → P2, P2 ≡ P’ ⇒ P → P’ Well Mixing

Where ≡ is a congruence relation (syntactical ‘chemical mixing’)
with P* ≡ P | P* for unbounded populations.

452009-10-11Luca Cardelli 452009-10-11 452009-10-11Luca Cardelli

Compiling Strand Algebra to DNA

● compile(x) =

● compile([x1,..,xn].[y1,..,ym]) =

● compile(0) = empty solution

● compile(P | P’) = mix(compile(P), compile(P’))

● compile(P*) = population(compile(P))

P ::= x ⋮ [x1,..,xn].[y1,..,ym] ⋮ 0 ⋮ P|P ⋮ P* n≥1, m≥0

462009-10-11Luca Cardelli 462009-10-11 462009-10-11Luca Cardelli

More in the Paper

● Stochastic strand algebra

o Matches the stochastic semantics of interacting automata

o Uses a technique for implementing constant buffered populations,

to replace P* with finite populations

● Nested strand algebra

o An higher-level language (with nested expressions)

o A compilation algorithm into the basic strand algebra

472009-10-11Luca Cardelli 472009-10-11 472009-10-11Luca Cardelli

Computational Abstractions
("Low-Level" Languages)

482009-10-11Luca Cardelli 482009-10-11 482009-10-11Luca Cardelli

Boolean Networks

This encoding is compositional, and can encode any Boolean network:

- multi-stage networks can be assembled (combinatorial logic)

- network loops are allowed (sequential logic)

Boolean Networks to Strand Algebra

492009-10-11Luca Cardelli 492009-10-11 492009-10-11Luca Cardelli

Petri Nets

Transitions as Gates
Place markings as Signals

Petri Nets to Strand Algebra

502009-10-11Luca Cardelli 502009-10-11 502009-10-11Luca Cardelli

Finite State Automata

FSA to Strand Algebra

Input strings

Assuming ONE automaton and ONE input string.

Automata populations are a more natural model...

512009-10-11Luca Cardelli 512009-10-11 512009-10-11Luca Cardelli

Interacting Automata

A B

!a

?c
?a

!b?b

C

!c

A B

!a

?c
?a

!b?b

C

!c

A B

!a

?c
?a

!b?b

C

!c

A B

!a

?c
?a

!b?b

C

!c

900xA, 500xB, 100xC

([A,B].[B,B])* |
([B,C].[C,C])* |
([C,A].[A,A])* |
A | A | B | C

This is a uniform population of identical automata,

but heterogeneous populations of interacting automata can be similarly handled.

522009-10-11Luca Cardelli 522009-10-11 522009-10-11Luca Cardelli

Interacting Automata

A B

!a

?c
?a

!b?b

C

!c

A B

!a

?c
?a

!b?b

C

!c

A B

!a

?c
?a

!b?b

C

!c

A B

!a

?c
?a

!b?b

C

!c

900xA, 500xB, 100xC

([A,B].[B,B])* |
([B,C].[C,C])* |
([C,A].[A,A])* |
A | B | B | C

This is a uniform population of identical automata,

but heterogeneous populations of interacting automata can be similarly handled.

532009-10-11Luca Cardelli 532009-10-11 532009-10-11Luca Cardelli

Interacting Automata

A B

!a

?c
?a

!b?b

C

!c

A B

!a

?c
?a

!b?b

C

!c

A B

!a

?c
?a

!b?b

C

!c

A B

!a

?c
?a

!b?b

C

!c

900xA, 500xB, 100xC

([A,B].[B,B])* |
([B,C].[C,C])* |
([C,A].[A,A])* |
A | B | C | C

This is a uniform population of identical automata,

but heterogeneous populations of interacting automata can be similarly handled.

542009-10-11Luca Cardelli 542009-10-11 542009-10-11Luca Cardelli

Interacting Automata

A B

!a

?c
?a

!b?b

C

!c

A B

!a

?c
?a

!b?b

C

!c

A B

!a

?c
?a

!b?b

C

!c

A B

!a

?c
?a

!b?b

C

!c

900xA, 500xB, 100xC

([A,B].[B,B])* |
([B,C].[C,C])* |
([C,A].[A,A])* |
A | A | B | C

This is a uniform population of identical automata,

but heterogeneous populations of interacting automata can be similarly handled.

552009-10-11Luca Cardelli 552009-10-11 552009-10-11Luca Cardelli

Strand Displacement
Intermediate Language

562009-10-11Luca Cardelli 562009-10-11 562009-10-11Luca Cardelli

Syntax

572009-10-11Luca Cardelli 572009-10-11 572009-10-11Luca Cardelli

Dynamics

582009-10-11Luca Cardelli 582009-10-11 582009-10-11Luca Cardelli

Strand Displacement Simulation Tool

directive sample 30.0 1000

new xt@1.0,1.0

new yt@1.0,1.0

(1000 * <xh xt^ xb>

| 1000 * xt^:[xb yt^]<yb>:[a]

| 1000 * <yt^ a>

)

1 Transducer gate x.y (3 initial species)

592009-10-11Luca Cardelli 592009-10-11 592009-10-11Luca Cardelli

Strand Displacement Simulation Tool

directive sample 30.0 1000

directive plot "<reporter>"

new xt@ 1.0 , 1.0

(1 * <xh xt^ xb>

| 1000 * xt^:[xb xt^]<xb>:[a xt^]<xb>:[reporter]

| 1000 * <xt^ a xt^ reporter>

)

Fork Chain Reaction x.[x,x] (3 initial species)

26 Species, 20 Reactions

602009-10-11Luca Cardelli 602009-10-11 602009-10-11Luca Cardelli

Strand Displacement Simulation Tool

directive sample 1000.0 1000

new xt@ 1.0 , 1.0

new yt@ 1.0 , 1.0

new zt@ 1.0 , 1.0

new a@ 1.0 , 1.0

new d@ 1.0 , 1.0

(1000 * <xh xt^ xb>

| 1000 * <yh yt^ yb>

| 1000 * xt^:[xb yt^]:[yb a^]:[b zt^]<zb>

| 1000 * <a^ b zt^>

| 1000 * [xb]:[yt^ c]:[d^ yb]:a^

| 1000 * <c d^>

| 1000 * d^:[yb]

| 1000 * yt^:[c]

)

1 Join gate with garbage collection [x,y].z (8 initial species)

34 Species, 18 Reactions

612009-10-11Luca Cardelli 612009-10-11 612009-10-11Luca Cardelli

Sequence Design

622009-10-11Luca Cardelli 622009-10-11 622009-10-11Luca Cardelli

Sequence Design

Input

Output

632009-10-11Luca Cardelli 632009-10-11 632009-10-11Luca Cardelli

Conclusions

642009-10-11Luca Cardelli 642009-10-11 642009-10-11Luca Cardelli

Conclusion

● Nucleic Acids

o Programmable matter

● DNA Strand Displacement

o A computational mechanism at the molecular level

● DNA Compilation

o High-level languages (Boolean Networks, Petri Nets, Interacting Automata)

o Intermediate languages (Strand Algebra, Strand Displacement Language).

o Sequence generation.

● Tools

o Thermodynamic analysis.

o Simulation.

o Verification (not yet).

