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DNA Nanotechonology
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Nano Tasks

● Sensing

o Binding to specific molecules

● Computing

o Analog: Signal Filtering or Amplification

o Digital: Logical gates

● Actuating

o Releasing molecules

o Producing forces

● Constructing

Sensing

Computing

ActuatingConstructing
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● Constructing

o By self-assembly

o Or under 'program' control

● Nucleic Acids (DNA/RNA) 

o Probably the only materials that can 

perform all these functions. 

o Technology relatively well developed.

o Can interface to biological entities.

ActuatingConstructing

Y. Benenson et al., An autonomous molecular computer for logical control of gene 

expressionNature 429, 423-429 (2004)



Aptamers (Sensors)
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Computation: Curing Cancer with one AND Gate
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Actuators

DNA Walkers
(Yin, Choi, Calvert & Pierce, Nature 2008)

DNA Tweezers
(Yurke & Turberfield, Nature 2000)
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Compositionality

● Sensors and Actuators at the 'edge' of the system

o They can use disparate kinds of inputs (sensors) and outputs (actuators)

● The 'kernel' of the system computes

o Must use uniform inputs and outputs

● Compositionality in the kernel

o Supporting 'arbitrary' computing complexity
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o Supporting 'arbitrary' computing complexity

o The output of each computing components 

must be the same kind of 'signal' as the input

● sdf

o If the inputs are voltages, the outputs must be voltages

o If the inputs are proteins, the outputs must be proteins

o If the outputs are photons the inputs must be photons

o If the inputs are DNA, the outputs must be DNA

● sdf

o What should our nano-signals be?



What does DNA Compute?

● Electronics has electrons

o All electrons are the same

o All you can do is see if you have few (‘False’) or lots (‘True’) of electrons

o Hence Boolean logic is at the basis of digital circuit design

o Symbolic and numeric computation has to be encoded above that

o But mostly we want to compute with symbols and numbers, not with Booleans

● DNA computing has symbols (DNA words)
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● DNA computing has symbols (DNA words)

o DNA words are not all the same

o Symbolic computation can be done directly

o We can also directly use molecular concurrency

● Process Algebra as the ‘Boolean Algebra’ of DNA Computing

o What are the ‘gates’ of symbolic concurrent computation?

o That’s what Process Algebra is about

o (Process Algebra comes from the theory of concurrent systems)



Implementing "Arbitrary" 
Computing Functions
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DNA

Molecules as Automata (DNA14 Invited Talk)

=

Continuous
Chemistry

Discrete

Process
Algebra

ODE ODE

Continuous-state Semantics 
(Mass Action Kinetics)

The Real
Wet Stuff

?
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DNA

D. Soloveichik, G. Seelig, E. Winfree. DNA 
as a Universal Substrate for Chemical 
Kinetics. Proc. DNA14. =

Discrete
Chemistry

CTMC CTMC

Discrete-state Semantics

(Chemical Master Equation)

L. Cardelli: “On Process Rate Semantics” (TCS)

L. Cardelli: “A Process Algebra Master Equation” (QEST’07)



DNA Compilation

Discrete
Chemistry

Interacting
Automata

Higher-level 
languages

High level 
languages 
(TBD)

Low level 
languages

Petri
Nets

Separating Circuit Design from Gate Design

Boolean
Networks

Finite State
Automata

Circuit Design Space
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DNA
Sequence
Design

Circuit Design Space



DNA Compilation

Strand
Algebra

Seesaw
Gates

High level 
languages 
(TBD)

Low level 
languages

…

Separating Circuit Design from Gate Design

(e.g. half-adders from 

Interacting
Automata

Circuit Design

Discrete
Chemistry

Higher-level 
languages

Petri
Nets

Boolean
Networks

Finite State
Automata
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(e.g. half-adders from 
Boolean gates)

Sequence
Design

Gate Design Space

DNA



DNA Compilation

Verification of DNA 

gate implementation

Separating Circuit Design from Gate Design

High level 
languages 
(TBD)

Low level 
languages

Seesaw
Gates

…
Strand

Algebra

Interacting
Automata

Circuit Design

(e.g. half-adders from 

Discrete
Chemistry

Higher-level 
languages

Petri
Nets

Boolean
Networks

Finite State
Automata
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DNA

gate implementation

Strand
Displacement

Cardelli and Phillips,

A Programming Language for 

Composable DNA Circuits. 

Royal Society Interface Journal

Sequence
Design

(e.g. Boolean gates 

from transistors)

Gate Design

(e.g. half-adders from 
Boolean gates)



DNA Compilation

Separating Circuit Design from Gate Design

High level 
languages 
(TBD)

Low level 
languages

Seesaw
Gates

…
Strand

Algebra

Interacting
Automata

Circuit Design

(e.g. half-adders from 

Discrete
Chemistry

Higher-level 
languages

Petri
Nets

Boolean
Networks

Finite State
Automata
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DNA

Other DNA 
Mechanisms

Other DNA 
Mechanisms

Strand
Displacement

Sequence
Design

(e.g. Boolean gates 

from transistors)

Gate Design

(e.g. half-adders from 
Boolean gates)



DNA Compilation

Separating Circuit Design from Gate Design

High level 
languages 
(TBD)

Low level 
languages

Seesaw
Gates

…
Strand

Algebra

Interacting
Automata

Circuit Design

(e.g. half-adders from 

Discrete
Chemistry

Higher-level 
languages

Petri
Nets

Boolean
Networks

Finite State
Automata

152009-07-11Luca Cardelli 152009-07-11 152009-07-11Luca Cardelli

Sequence
Design

Rest of the talk: bottom up

Other DNA 
Mechanisms

Other DNA 
Mechanisms

Strand
Displacement (e.g. Boolean gates 

from transistors)

Gate Design

(e.g. half-adders from 
Boolean gates)

DNA



Toehold Mediated
Strand Displacement
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Watson-Crick Duality

Equal Single Strands

G⊥ = C

T⊥ = A
ComplementarityDouble Strand

G - C

T - A
Affinity

X⊥⊥ = X 

3’ end
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Equal Single Strands

Complementary Single Strands

Hence (G:A:C:T)⊥ = A:G:T:C = T⊥:C⊥:A⊥:G⊥

(X:Y)⊥ = Y⊥:X⊥

Watson-Crick duality
(for any sequences of bases X,Y)

all written 

from 5’ to 3’



Hybridization

a,b,c, etc. denote DNA (sub)sequences

with Watson-Crick complements a⊥,b⊥,c⊥, etc.
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Hybridization is also called annealing; denaturation is also 

called melting.

The direction of the reaction (or in general the equilibrium 

between the two states) is determined by a number of 

factors, e.g. temperature.

We assume we are in conditions that favor hybridization 

beyond a certain length of matching region. 



Gate Elements: Short and Long DNA Segments

Short (red)

segments
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Long (black)

segments



Gate Elements: Basic Mechanisms

toehold

Irreversible
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Reversible



● Signals “x” are single-stranded and ‘positive’

● This 3-segment signal representation is original to this work, it is based 

on the 4-segment signals of D. Soloveichik, G. Seelig, E. Winfree. Proc. 

DNA14, but leads to simpler and more regular gate structures

Gate Elements: Signals and Gates

xh = history xt,xb = signal identity for x

xt = toehold

xb = binding
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● Gate backbones are double-stranded, except for ‘negative’ toeholds.

● Separation of strands and gates helps the DNA realization, as one can use 

3-letter alphabets (ATC/ATG) for each strand, minimizing secondary 

structure and entanglement.



Circuit Elements: x.y Transducer Gate
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Gb,Gt (gate backbone and trigger) form the transducer.

Any history segment that is not determined by the gate 

structure is said to be ‘generic’ (can be anything).

Any gate segment that is not a non-history segment of an 

input or output signal is taken to be ‘fresh’ (globally unique 

for the gate), to avoid possible interferences.



Circuit Elements: x.[y,z] Fork Gate

● A Fork signal-processing gate takes a signal x and produces two signals y,z

according to the reaction  x | x.[y,z] → y | z
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Gb,Gt (gate backbone and trigger) form the gate.

Any history segment that is not determined by the gate 

structure is said to be ‘generic’ (can be anything).

Any gate segment that is not a non-history segment of an 

input or output signal is taken to be ‘fresh’ (globally unique 

for the gate), to avoid possible interferences.



● A Join signal-processing gate takes both signals x,y and produces a signal 

z according to the reaction  x | y | [x,y].z → z

Circuit Elements: [x,y].z Join Gate (function)

garbage!!
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The garbage r1 and r2 must be collected (after the gate has fired) to avoid 

accumulation. This can be achieved by a similar scheme taking r1,r2 as input signals.



[x,y].z Join Gate (collection)

Garbage Collection
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Garbage collection of r1 is needed for join to work well. This is done by another 

reversible-AND between r1 and r2, triggered by the release of r2. This second 

reversible-AND leaves garbage too (r3, r4), but this can be collected immediately, as 

we know by construction that both inputs r1,r2 are available and we need not wait to 

revert their bindings. 

The extra intermediate c,d segments separate the r1 binding from the r2 binding. 

Without them, a segment yt:yb (instead of yt:c and d:yb) would be released: that is y!



[x1,..,xn].[y1,..,ym] General Join/Fork Gate

x1 | .. | xn | [x1,..,xn].[y1,..,ym] → y1 | .. | ym
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Garbage collection



Strand Algebra
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Strand Algebra

P   ::=   x  ⋮ [x1,..,xn].[y1,..,ym]  ⋮ 0  ⋮ P|P  ⋮ P*          n≥1, m≥0

x is a signal

[x1,..,xn].[y1,..,ym] is a gate

0 is an inert solution

P|P is parallel composition of signals and gates

P* is a population (multiset) of signals and gates
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Reaction Rule

Auxiliary rules (axioms of diluted well-mixed solutions)

x1 | .. | xn | [x1,..,xn].[y1,..,ym]  → y1 | .. | ym

P  → P’ ⇒ P | P”  → P’| P” Dilution

P ≡ P1, P1 → P2, P2 ≡ P’ ⇒ P → P’ Well Mixing

Where ≡ is a congruence relation (syntactical ‘chemical mixing’)
with P* ≡ P | P* for unbounded populations.



Compiling Strand Algebra to DNA

● compile(x) = 

● compile([x1,..,xn].[y1,..,ym]) =

P   ::=   x  ⋮ [x1,..,xn].[y1,..,ym]  ⋮ 0  ⋮ P|P  ⋮ P*          n≥1, m≥0

292009-07-11Luca Cardelli 292009-07-11 292009-07-11Luca Cardelli

● compile(0) =   empty solution

● compile(P | P’) =  mix(compile(P), compile(P’))

● compile(P*) =  population(compile(P))



More in the Paper

● Stochastic strand algebra

o Matches the stochastic semantics of interacting automata

o Uses a technique for implementing constant buffered populations, 

to replace P* with finite populations

● Nested strand algebra

o An higher-level language (with nested expressions)

o A compilation algorithm into the basic strand algebra
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o A compilation algorithm into the basic strand algebra



Computational Abstractions
("Low-Level" Languages)
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Boolean Networks

Boolean Networks to Strand Algebra
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This encoding is compositional, and can encode any Boolean network:

- multi-stage networks can be assembled (combinatorial logic)

- network loops are allowed (sequential logic)



Petri Nets

Transitions as Gates
Place markings as Signals 

Petri Nets to Strand Algebra
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Finite State Automata

FSA to Strand Algebra

Assuming ONE automaton and ONE input string.
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Input strings

Automata populations are a more natural model...



Interacting Automata

A B

!a

?c
?a

!b?b

C

!c

!c !c

A B

!a

?c
?a

!b?b

C

!c

900xA, 500xB, 100xC

([A,B].[B,B])* |
([B,C].[C,C])* |
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A B

!a

?c
?a

!b?b

C

A B

!a

?c
?a

!b?b

C

([B,C].[C,C])* |
([C,A].[A,A])* |
A | A | B | C

This is a uniform population of identical automata, 

but heterogeneous populations of interacting automata can be similarly handled. 



Interacting Automata

A B

!a

?c
?a

!b?b

C

!c

!c !c

A B

!a

?c
?a

!b?b

C

!c

900xA, 500xB, 100xC

([A,B].[B,B])* |
([B,C].[C,C])* |
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A B

!a

?c
?a

!b?b

C

A B

!a

?c
?a

!b?b

C

([B,C].[C,C])* |
([C,A].[A,A])* |
A | B | B | C

This is a uniform population of identical automata, 

but heterogeneous populations of interacting automata can be similarly handled. 



Interacting Automata

A B

!a

?c
?a

!b?b

C

!c

!c !c

A B

!a

?c
?a

!b?b

C

!c

900xA, 500xB, 100xC

([A,B].[B,B])* |
([B,C].[C,C])* |
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A B

!a

?c
?a

!b?b

C

A B

!a

?c
?a

!b?b

C

([B,C].[C,C])* |
([C,A].[A,A])* |
A | B | C | C

This is a uniform population of identical automata, 

but heterogeneous populations of interacting automata can be similarly handled. 



Interacting Automata

A B

!a

?c
?a

!b?b

C

!c

!c !c

A B

!a

?c
?a

!b?b

C

!c

900xA, 500xB, 100xC

([A,B].[B,B])* |
([B,C].[C,C])* |
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A B

!a

?c
?a

!b?b

C

A B

!a

?c
?a

!b?b

C

([B,C].[C,C])* |
([C,A].[A,A])* |
A | A | B | C

This is a uniform population of identical automata, 

but heterogeneous populations of interacting automata can be similarly handled. 



Strand Displacement
Intermediate Language
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Syntax
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Dynamics
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Strand Displacement Simulation Tool

directive sample 30.0 1000

new xt@1.0,1.0 

new yt@1.0,1.0 

( 1000 * <xh xt^ xb>    

| 1000 * xt^:[xb yt^]<yb>:[a]

| 1000 * <yt^ a>

)

1 Transducer gate x.y (3 initial species)
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Strand Displacement Simulation Tool

directive sample 30.0 1000 

directive plot "<reporter>"

new xt@ 1.0 , 1.0 

( 1 * <xh xt^ xb>              

| 1000 * xt^:[xb xt^]<xb>:[a xt^]<xb>:[reporter]

| 1000 * <xt^ a xt^ reporter>

)

Fork Chain Reaction   x.[x,x] (3 initial species)

26 Species, 20 Reactions
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Strand Displacement Simulation Tool

directive sample 1000.0 1000 

new xt@ 1.0 , 1.0 

new yt@ 1.0 , 1.0 

new zt@ 1.0 , 1.0 

new a@ 1.0 , 1.0 

new d@ 1.0 , 1.0 

( 1000 * <xh xt^ xb>    

| 1000 * <yh yt^ yb>           

| 1000 * xt^:[xb yt^]:[yb a^]:[b zt^]<zb>

| 1000 * <a^ b zt^>

| 1000 * [xb]:[yt^ c]:[d^ yb]:a^

| 1000 * <c d^>

| 1000 * d^:[yb]

| 1000 * yt^:[c]

)

1 Join gate with garbage collection  [x,y].z (8 initial species)

34 Species, 18 Reactions

442009-07-11Luca Cardelli 442009-07-11 442009-07-11Luca Cardelli



Sequence Design
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Sequence Design

Input
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Output



Conclusions
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Conclusion

● Nucleic Acids

o Programmable matter

● DNA Strand Displacement

o A computational mechanism at the molecular level

● DNA Compilation

o High-level languages (Boolean Networks, Petri Nets, Interacting Automata)
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o High-level languages (Boolean Networks, Petri Nets, Interacting Automata)

o Intermediate languages (Strand Algebra, Strand Displacement Language).

o Sequence generation.

● Tools

o Thermodynamic analysis.

o Simulation.

o Verification (not yet).


