
Molecular
Programming

Luca CardelliLuca Cardelli

Microsoft Research

Southampton, 2009-07-10

http://lucacardelli.name

DNA Nanotechonology

22009-07-11Luca Cardelli 22009-07-11 22009-07-11Luca Cardelli

Nano Tasks

● Sensing

o Binding to specific molecules

● Computing

o Analog: Signal Filtering or Amplification

o Digital: Logical gates

● Actuating

o Releasing molecules

o Producing forces

● Constructing

Sensing

Computing

ActuatingConstructing

32009-07-11Luca Cardelli 32009-07-11 32009-07-11Luca Cardelli

● Constructing

o By self-assembly

o Or under 'program' control

● Nucleic Acids (DNA/RNA)

o Probably the only materials that can

perform all these functions.

o Technology relatively well developed.

o Can interface to biological entities.

ActuatingConstructing

Y. Benenson et al., An autonomous molecular computer for logical control of gene

expressionNature 429, 423-429 (2004)

Aptamers (Sensors)

42009-07-11Luca Cardelli 42009-07-11 42009-07-11Luca Cardelli

Computation: Curing Cancer with one AND Gate

52009-07-11Luca Cardelli 52009-07-11 52009-07-11Luca Cardelli

Actuators

DNA Walkers
(Yin, Choi, Calvert & Pierce, Nature 2008)

DNA Tweezers
(Yurke & Turberfield, Nature 2000)

62009-07-11Luca Cardelli 62009-07-11 62009-07-11Luca Cardelli

Compositionality

● Sensors and Actuators at the 'edge' of the system

o They can use disparate kinds of inputs (sensors) and outputs (actuators)

● The 'kernel' of the system computes

o Must use uniform inputs and outputs

● Compositionality in the kernel

o Supporting 'arbitrary' computing complexity

72009-07-11Luca Cardelli 72009-07-11 72009-07-11Luca Cardelli

o Supporting 'arbitrary' computing complexity

o The output of each computing components

must be the same kind of 'signal' as the input

● sdf

o If the inputs are voltages, the outputs must be voltages

o If the inputs are proteins, the outputs must be proteins

o If the outputs are photons the inputs must be photons

o If the inputs are DNA, the outputs must be DNA

● sdf

o What should our nano-signals be?

What does DNA Compute?

● Electronics has electrons

o All electrons are the same

o All you can do is see if you have few (‘False’) or lots (‘True’) of electrons

o Hence Boolean logic is at the basis of digital circuit design

o Symbolic and numeric computation has to be encoded above that

o But mostly we want to compute with symbols and numbers, not with Booleans

● DNA computing has symbols (DNA words)

82009-07-11Luca Cardelli 82009-07-11 82009-07-11Luca Cardelli

● DNA computing has symbols (DNA words)

o DNA words are not all the same

o Symbolic computation can be done directly

o We can also directly use molecular concurrency

● Process Algebra as the ‘Boolean Algebra’ of DNA Computing

o What are the ‘gates’ of symbolic concurrent computation?

o That’s what Process Algebra is about

o (Process Algebra comes from the theory of concurrent systems)

Implementing "Arbitrary"
Computing Functions

92009-07-11Luca Cardelli 92009-07-11 92009-07-11Luca Cardelli

DNA

Molecules as Automata (DNA14 Invited Talk)

=

Continuous
Chemistry

Discrete

Process
Algebra

ODE ODE

Continuous-state Semantics
(Mass Action Kinetics)

The Real
Wet Stuff

?

102009-07-11Luca Cardelli 102009-07-11 102009-07-11Luca Cardelli

DNA

D. Soloveichik, G. Seelig, E. Winfree. DNA
as a Universal Substrate for Chemical
Kinetics. Proc. DNA14. =

Discrete
Chemistry

CTMC CTMC

Discrete-state Semantics

(Chemical Master Equation)

L. Cardelli: “On Process Rate Semantics” (TCS)

L. Cardelli: “A Process Algebra Master Equation” (QEST’07)

DNA Compilation

Discrete
Chemistry

Interacting
Automata

Higher-level
languages

High level
languages
(TBD)

Low level
languages

Petri
Nets

Separating Circuit Design from Gate Design

Boolean
Networks

Finite State
Automata

Circuit Design Space

112009-07-11Luca Cardelli 112009-07-11 112009-07-11Luca Cardelli

DNA
Sequence
Design

Circuit Design Space

DNA Compilation

Strand
Algebra

Seesaw
Gates

High level
languages
(TBD)

Low level
languages

…

Separating Circuit Design from Gate Design

(e.g. half-adders from

Interacting
Automata

Circuit Design

Discrete
Chemistry

Higher-level
languages

Petri
Nets

Boolean
Networks

Finite State
Automata

122009-07-11Luca Cardelli 122009-07-11 122009-07-11Luca Cardelli

(e.g. half-adders from
Boolean gates)

Sequence
Design

Gate Design Space

DNA

DNA Compilation

Verification of DNA

gate implementation

Separating Circuit Design from Gate Design

High level
languages
(TBD)

Low level
languages

Seesaw
Gates

…
Strand

Algebra

Interacting
Automata

Circuit Design

(e.g. half-adders from

Discrete
Chemistry

Higher-level
languages

Petri
Nets

Boolean
Networks

Finite State
Automata

132009-07-11Luca Cardelli 132009-07-11 132009-07-11Luca Cardelli

DNA

gate implementation

Strand
Displacement

Cardelli and Phillips,

A Programming Language for

Composable DNA Circuits.

Royal Society Interface Journal

Sequence
Design

(e.g. Boolean gates

from transistors)

Gate Design

(e.g. half-adders from
Boolean gates)

DNA Compilation

Separating Circuit Design from Gate Design

High level
languages
(TBD)

Low level
languages

Seesaw
Gates

…
Strand

Algebra

Interacting
Automata

Circuit Design

(e.g. half-adders from

Discrete
Chemistry

Higher-level
languages

Petri
Nets

Boolean
Networks

Finite State
Automata

142009-07-11Luca Cardelli 142009-07-11 142009-07-11Luca Cardelli

DNA

Other DNA
Mechanisms

Other DNA
Mechanisms

Strand
Displacement

Sequence
Design

(e.g. Boolean gates

from transistors)

Gate Design

(e.g. half-adders from
Boolean gates)

DNA Compilation

Separating Circuit Design from Gate Design

High level
languages
(TBD)

Low level
languages

Seesaw
Gates

…
Strand

Algebra

Interacting
Automata

Circuit Design

(e.g. half-adders from

Discrete
Chemistry

Higher-level
languages

Petri
Nets

Boolean
Networks

Finite State
Automata

152009-07-11Luca Cardelli 152009-07-11 152009-07-11Luca Cardelli

Sequence
Design

Rest of the talk: bottom up

Other DNA
Mechanisms

Other DNA
Mechanisms

Strand
Displacement (e.g. Boolean gates

from transistors)

Gate Design

(e.g. half-adders from
Boolean gates)

DNA

Toehold Mediated
Strand Displacement

162009-07-11Luca Cardelli 162009-07-11 162009-07-11Luca Cardelli

Watson-Crick Duality

Equal Single Strands

G⊥ = C

T⊥ = A
ComplementarityDouble Strand

G - C

T - A
Affinity

X⊥⊥ = X

3’ end

172009-07-11Luca Cardelli 172009-07-11 172009-07-11Luca Cardelli

Equal Single Strands

Complementary Single Strands

Hence (G:A:C:T)⊥ = A:G:T:C = T⊥:C⊥:A⊥:G⊥

(X:Y)⊥ = Y⊥:X⊥

Watson-Crick duality
(for any sequences of bases X,Y)

all written

from 5’ to 3’

Hybridization

a,b,c, etc. denote DNA (sub)sequences

with Watson-Crick complements a⊥,b⊥,c⊥, etc.

182009-07-11Luca Cardelli 182009-07-11 182009-07-11Luca Cardelli

Hybridization is also called annealing; denaturation is also

called melting.

The direction of the reaction (or in general the equilibrium

between the two states) is determined by a number of

factors, e.g. temperature.

We assume we are in conditions that favor hybridization

beyond a certain length of matching region.

Gate Elements: Short and Long DNA Segments

Short (red)

segments

192009-07-11Luca Cardelli 192009-07-11 192009-07-11Luca Cardelli

Long (black)

segments

Gate Elements: Basic Mechanisms

toehold

Irreversible

202009-07-11Luca Cardelli 202009-07-11 202009-07-11Luca Cardelli

Reversible

● Signals “x” are single-stranded and ‘positive’

● This 3-segment signal representation is original to this work, it is based

on the 4-segment signals of D. Soloveichik, G. Seelig, E. Winfree. Proc.

DNA14, but leads to simpler and more regular gate structures

Gate Elements: Signals and Gates

xh = history xt,xb = signal identity for x

xt = toehold

xb = binding

212009-07-11Luca Cardelli 212009-07-11 212009-07-11Luca Cardelli

● Gate backbones are double-stranded, except for ‘negative’ toeholds.

● Separation of strands and gates helps the DNA realization, as one can use

3-letter alphabets (ATC/ATG) for each strand, minimizing secondary

structure and entanglement.

Circuit Elements: x.y Transducer Gate

222009-07-11Luca Cardelli 222009-07-11 222009-07-11Luca Cardelli

Gb,Gt (gate backbone and trigger) form the transducer.

Any history segment that is not determined by the gate

structure is said to be ‘generic’ (can be anything).

Any gate segment that is not a non-history segment of an

input or output signal is taken to be ‘fresh’ (globally unique

for the gate), to avoid possible interferences.

Circuit Elements: x.[y,z] Fork Gate

● A Fork signal-processing gate takes a signal x and produces two signals y,z

according to the reaction x | x.[y,z] → y | z

232009-07-11Luca Cardelli 232009-07-11 232009-07-11Luca Cardelli

Gb,Gt (gate backbone and trigger) form the gate.

Any history segment that is not determined by the gate

structure is said to be ‘generic’ (can be anything).

Any gate segment that is not a non-history segment of an

input or output signal is taken to be ‘fresh’ (globally unique

for the gate), to avoid possible interferences.

● A Join signal-processing gate takes both signals x,y and produces a signal

z according to the reaction x | y | [x,y].z → z

Circuit Elements: [x,y].z Join Gate (function)

garbage!!

242009-07-11Luca Cardelli 242009-07-11 242009-07-11Luca Cardelli

The garbage r1 and r2 must be collected (after the gate has fired) to avoid

accumulation. This can be achieved by a similar scheme taking r1,r2 as input signals.

[x,y].z Join Gate (collection)

Garbage Collection

252009-07-11Luca Cardelli 252009-07-11 252009-07-11Luca Cardelli

Garbage collection of r1 is needed for join to work well. This is done by another

reversible-AND between r1 and r2, triggered by the release of r2. This second

reversible-AND leaves garbage too (r3, r4), but this can be collected immediately, as

we know by construction that both inputs r1,r2 are available and we need not wait to

revert their bindings.

The extra intermediate c,d segments separate the r1 binding from the r2 binding.

Without them, a segment yt:yb (instead of yt:c and d:yb) would be released: that is y!

[x1,..,xn].[y1,..,ym] General Join/Fork Gate

x1 | .. | xn | [x1,..,xn].[y1,..,ym] → y1 | .. | ym

262009-07-11Luca Cardelli 262009-07-11 262009-07-11Luca Cardelli

Garbage collection

Strand Algebra

272009-07-11Luca Cardelli 272009-07-11 272009-07-11Luca Cardelli

Strand Algebra

P ::= x ⋮ [x1,..,xn].[y1,..,ym] ⋮ 0 ⋮ P|P ⋮ P* n≥1, m≥0

x is a signal

[x1,..,xn].[y1,..,ym] is a gate

0 is an inert solution

P|P is parallel composition of signals and gates

P* is a population (multiset) of signals and gates

282009-07-11Luca Cardelli 282009-07-11 282009-07-11Luca Cardelli

Reaction Rule

Auxiliary rules (axioms of diluted well-mixed solutions)

x1 | .. | xn | [x1,..,xn].[y1,..,ym] → y1 | .. | ym

P → P’ ⇒ P | P” → P’| P” Dilution

P ≡ P1, P1 → P2, P2 ≡ P’ ⇒ P → P’ Well Mixing

Where ≡ is a congruence relation (syntactical ‘chemical mixing’)
with P* ≡ P | P* for unbounded populations.

Compiling Strand Algebra to DNA

● compile(x) =

● compile([x1,..,xn].[y1,..,ym]) =

P ::= x ⋮ [x1,..,xn].[y1,..,ym] ⋮ 0 ⋮ P|P ⋮ P* n≥1, m≥0

292009-07-11Luca Cardelli 292009-07-11 292009-07-11Luca Cardelli

● compile(0) = empty solution

● compile(P | P’) = mix(compile(P), compile(P’))

● compile(P*) = population(compile(P))

More in the Paper

● Stochastic strand algebra

o Matches the stochastic semantics of interacting automata

o Uses a technique for implementing constant buffered populations,

to replace P* with finite populations

● Nested strand algebra

o An higher-level language (with nested expressions)

o A compilation algorithm into the basic strand algebra

302009-07-11Luca Cardelli 302009-07-11 302009-07-11Luca Cardelli

o A compilation algorithm into the basic strand algebra

Computational Abstractions
("Low-Level" Languages)

312009-07-11Luca Cardelli 312009-07-11 312009-07-11Luca Cardelli

Boolean Networks

Boolean Networks to Strand Algebra

322009-07-11Luca Cardelli 322009-07-11 322009-07-11Luca Cardelli

This encoding is compositional, and can encode any Boolean network:

- multi-stage networks can be assembled (combinatorial logic)

- network loops are allowed (sequential logic)

Petri Nets

Transitions as Gates
Place markings as Signals

Petri Nets to Strand Algebra

332009-07-11Luca Cardelli 332009-07-11 332009-07-11Luca Cardelli

Finite State Automata

FSA to Strand Algebra

Assuming ONE automaton and ONE input string.

342009-07-11Luca Cardelli 342009-07-11 342009-07-11Luca Cardelli

Input strings

Automata populations are a more natural model...

Interacting Automata

A B

!a

?c
?a

!b?b

C

!c

!c !c

A B

!a

?c
?a

!b?b

C

!c

900xA, 500xB, 100xC

([A,B].[B,B])* |
([B,C].[C,C])* |

352009-07-11Luca Cardelli 352009-07-11 352009-07-11Luca Cardelli

A B

!a

?c
?a

!b?b

C

A B

!a

?c
?a

!b?b

C

([B,C].[C,C])* |
([C,A].[A,A])* |
A | A | B | C

This is a uniform population of identical automata,

but heterogeneous populations of interacting automata can be similarly handled.

Interacting Automata

A B

!a

?c
?a

!b?b

C

!c

!c !c

A B

!a

?c
?a

!b?b

C

!c

900xA, 500xB, 100xC

([A,B].[B,B])* |
([B,C].[C,C])* |

362009-07-11Luca Cardelli 362009-07-11 362009-07-11Luca Cardelli

A B

!a

?c
?a

!b?b

C

A B

!a

?c
?a

!b?b

C

([B,C].[C,C])* |
([C,A].[A,A])* |
A | B | B | C

This is a uniform population of identical automata,

but heterogeneous populations of interacting automata can be similarly handled.

Interacting Automata

A B

!a

?c
?a

!b?b

C

!c

!c !c

A B

!a

?c
?a

!b?b

C

!c

900xA, 500xB, 100xC

([A,B].[B,B])* |
([B,C].[C,C])* |

372009-07-11Luca Cardelli 372009-07-11 372009-07-11Luca Cardelli

A B

!a

?c
?a

!b?b

C

A B

!a

?c
?a

!b?b

C

([B,C].[C,C])* |
([C,A].[A,A])* |
A | B | C | C

This is a uniform population of identical automata,

but heterogeneous populations of interacting automata can be similarly handled.

Interacting Automata

A B

!a

?c
?a

!b?b

C

!c

!c !c

A B

!a

?c
?a

!b?b

C

!c

900xA, 500xB, 100xC

([A,B].[B,B])* |
([B,C].[C,C])* |

382009-07-11Luca Cardelli 382009-07-11 382009-07-11Luca Cardelli

A B

!a

?c
?a

!b?b

C

A B

!a

?c
?a

!b?b

C

([B,C].[C,C])* |
([C,A].[A,A])* |
A | A | B | C

This is a uniform population of identical automata,

but heterogeneous populations of interacting automata can be similarly handled.

Strand Displacement
Intermediate Language

392009-07-11Luca Cardelli 392009-07-11 392009-07-11Luca Cardelli

Syntax

402009-07-11Luca Cardelli 402009-07-11 402009-07-11Luca Cardelli

Dynamics

412009-07-11Luca Cardelli 412009-07-11 412009-07-11Luca Cardelli

Strand Displacement Simulation Tool

directive sample 30.0 1000

new xt@1.0,1.0

new yt@1.0,1.0

(1000 * <xh xt^ xb>

| 1000 * xt^:[xb yt^]<yb>:[a]

| 1000 * <yt^ a>

)

1 Transducer gate x.y (3 initial species)

422009-07-11Luca Cardelli 422009-07-11 422009-07-11Luca Cardelli

Strand Displacement Simulation Tool

directive sample 30.0 1000

directive plot "<reporter>"

new xt@ 1.0 , 1.0

(1 * <xh xt^ xb>

| 1000 * xt^:[xb xt^]<xb>:[a xt^]<xb>:[reporter]

| 1000 * <xt^ a xt^ reporter>

)

Fork Chain Reaction x.[x,x] (3 initial species)

26 Species, 20 Reactions

432009-07-11Luca Cardelli 432009-07-11 432009-07-11Luca Cardelli

Strand Displacement Simulation Tool

directive sample 1000.0 1000

new xt@ 1.0 , 1.0

new yt@ 1.0 , 1.0

new zt@ 1.0 , 1.0

new a@ 1.0 , 1.0

new d@ 1.0 , 1.0

(1000 * <xh xt^ xb>

| 1000 * <yh yt^ yb>

| 1000 * xt^:[xb yt^]:[yb a^]:[b zt^]<zb>

| 1000 * <a^ b zt^>

| 1000 * [xb]:[yt^ c]:[d^ yb]:a^

| 1000 * <c d^>

| 1000 * d^:[yb]

| 1000 * yt^:[c]

)

1 Join gate with garbage collection [x,y].z (8 initial species)

34 Species, 18 Reactions

442009-07-11Luca Cardelli 442009-07-11 442009-07-11Luca Cardelli

Sequence Design

452009-07-11Luca Cardelli 452009-07-11 452009-07-11Luca Cardelli

Sequence Design

Input

462009-07-11Luca Cardelli 462009-07-11 462009-07-11Luca Cardelli

Output

Conclusions

472009-07-11Luca Cardelli 472009-07-11 472009-07-11Luca Cardelli

Conclusion

● Nucleic Acids

o Programmable matter

● DNA Strand Displacement

o A computational mechanism at the molecular level

● DNA Compilation

o High-level languages (Boolean Networks, Petri Nets, Interacting Automata)

482009-07-11Luca Cardelli 482009-07-11 482009-07-11Luca Cardelli

o High-level languages (Boolean Networks, Petri Nets, Interacting Automata)

o Intermediate languages (Strand Algebra, Strand Displacement Language).

o Sequence generation.

● Tools

o Thermodynamic analysis.

o Simulation.

o Verification (not yet).

