Molecules as Automata

Luca Cardelli

Microsoft Research

Emergence In Chemical Systems 2.0
Anchorage, 2009-06-25
http://LucaCardelli.name

Motivation: Cells Compute

- No survival without computation!
- Finding food
- Avoiding predators
- How do they compute?
- Unusual computational paradigms.
- Proteins: do they work like electronic circuits?
- Genes: what kind of software is that?
- Signaling networks
- Clearly "information processing"
- They are "just chemistry": molecule interactions
- But what are their principles and algorithms?
- Complex, higher-order interactions
- MAPKKK = MAP Kinase Kinase Kinase: that which operates on that which operates on that which operates on protein.
- General models of biological computation
- What are the appropriate ones?

Ultrasensitivity in the mitogen-activated protein cascade, Chi-Ying F. Huang and James E. Ferrell, Jr., 1996, Proc. Natl. Acad. Sci. USA, 93, 10078-10083.

Theory of Computation

- Alan Turing

- Defined what it means for a problem to be "computable".
- Showed that deciding weather an arbitrary mathematical conjecture is true or false is not computable (shocking mathematicians). (1936)
- Also introduced the notion of "universal computation" (now called Turing Completeness): a single machine can be built that can compute any computable problem. We now call it a computer.
- These were results in Mathematical Logic, but eventually established
 Computer Science as a separate discipline.
- John von Neumann
- Was involved in the design of early electronic computers. The socalled von Newman architecture is at the basis of most computers from the 50's on.
- The von Neumann architecture is now seen as a liability: it is strictly sequential and arguably does not make good use of the massive concurrency of electronic hardware. (C.f. massive concurrency of biological systems.)
- He also developed the foundations of Automata Theory (including
 cellular automata and robotic self-replication).

Theory of Concurrency

- Early Automata Theory
- Either about single isolated automata, or about "synchronous" homogeneous collections of automata, like cellular automata.
- But what about multiple heterogeneous automata talking to each other? This question led to two major developments:
- Petri Nets
- Dedicated to the study of causality relationships between events.
- Providing a basic mathematical model with rich analytical techniques.
- Process Algebra
- Dedicated to the study of concurrent, nondeterministic, reactive systems.
- Endowing concurrent languages with a mathematical semantics.
- Can provide foundations and inspiration for molecular programming, because molecular interactions are massively concurrent and heterogeneous.

Reactive Systems

- A complex system does not compute a function
- What function does E-coli compute?
- Organisms, operating systems, computer networks, do not compute functions: they indefinitely react to stimuli and hold internal state.
- Hence we need a mathematical treatment of interactions, not of functions. This has long been recognized and addressed in Computer Science.
- Reactive Systems
- A system of components that each react to other components.
- Each component is independently described in terms of its reactions to stimuli (which may come from many different other components).
- The behavior of the system emerges from the free interactions of the components.
- No a-priori description of all possible states (e.g. all possible molecular complexes) is needed.

Process Algebra

- Reactive systems (living organisms, computer networks, operating systems, ...)
- Math is based on entities that react/interact with their environment ("processes"), not on functions from domains to codomains.
- Concurrent
- Events (reactions/interactions) happen concurrently and asynchronously, not sequentially like in function composition.
- Stochastic
- Or probabilistic, or nondeterministic, but is never about deterministic system evolution.
- Stateful
- Each concurrent activity ("process") maintains its own local state, as opposed to stateless functions from inputs to outputs.
- Discrete
- Evolution through discrete transitions between discrete states, not incremental changes of continuous quantities.
- Kinetics of interaction
- An "interaction" is anything that moves a system from one state to another.

Part I: From Molecules to Automata

(Macro-) Molecules as (Interacting) Automata

Interacting Automata

indicate any complementarity of interaction (e.g. charge)
?a, !a
indicate complementary actions,
@r, @s are rates

Kinetic laws:

Interacting Automata

Two complementary Kinetic laws: actions may result in
$\mathrm{A}_{1} \quad$ is a state
a is a channel i.e. a named interaction interface (e.g. a surface patch)
indicate any complementarity of interaction (e.g. charge, shape)
indicate complementary actions, joined by an interaction arrow-..-
@r, @s are rates an interaction.

Interacting Automata

Two complementary actions may result in an interaction.
$\mathrm{A}_{1} \quad$ is a state
a is a channel i.e. a named interaction interface (e.g. a surface patch)
indicate any complementarity of interaction (e.g. charge)
indicate complementary actions, joined by an interaction arrow...-
@r, @s are rates

A decay may happen spontaneously.

Interactions in a Population

Interactions in a Population

Interactions in a Population

All-A stable
population

Interactions in a Population (2)

Interactions in a Population (2)

1

All-B stable population

Nondeterministic population behavior ("multistability")

CTMC Semantics

CTMC

Reactions vs. Components

Says what "A" does.

$$
\begin{aligned}
& r: A+B \rightarrow{ }_{k 1} C+D \\
& s: C+D \rightarrow_{12} A+B \\
& \text { Does A } \\
& \text { become } \\
& \text { C or D? }
\end{aligned}
$$

Reaction oriented 1 line per reaction

Interaction

 oriented 1 line per componentSays what "A" is.

Groupies and Celebrities

Groupies and Celebrities

Celebrity

(does not want to be like somebody else)

directive sample 1.01000	a@1.0
directive plot $A() ; B()$	b@1.0

new a@1.0:chan()
new b@1.0:chan()
let $A()=$ do !a; $A()$ or ? $a ; B()$ and $B()=d o!b ; B()$ or ?b; $A()$
run 100 of $(A() \mid B())$
!b

A stochastic collective of celebrities:

Stable because as soon as a A finds itself in the majority, it is more likely to find somebody in
the same state, and hence change, so the majority is weakened.

Groupies and Celebrities

!b

Groupie
(wants to be like somebody different)

directive sample 1.01000	a@1.0
directive plot $A() ; B()$	b@1.0

new a@1.0:chan()
new b@1.0:chan()
let $A()=$ do !a; $A()$ or ?b; $B()$ and $B()=$ do ! $b ; B()$ or ?a; $A()$
run 100 of $(A() \mid B())$

A stochastic collective of groupies:

Unstable because within an A majority, an A has difficulty finding a B to emulate, but the few B's have plenty of A's to emulate, so the majority may switch to B. Leads to deadlock when everybody is in the same state and there is nobody different to emulate.

Both Together

A way to break the deadlocks: Groupies with just a few Celebrities

Hysteric Groupies

We can get more regular behavior from groupies if they "need more convincing", or "hysteresis" (history-dependence), to switch states.

!b

(With doping to break deadlocks)
N.B.: It will not oscillate without doping (noise)

directive sample 10.01000 directive plot Ga()$; \mathrm{Gb}()$
new a@1.0:chan() new b@1.0:chan()
let Ga()$=\mathrm{do}$!a; Ga() or ?b; ?b; Gb() and Gb()$=\mathrm{do}!\mathrm{b} ; \mathrm{Gb}()$ or ? a ; ? $\mathrm{a} ; \mathrm{Ga}()$
let Da()$=!\mathrm{a}$; Da()
and Db()$=!\mathrm{b}$; Db()
run 100 of $(\mathrm{Ga}() \mid \mathrm{Gb}())$ run 1 of $(\mathrm{Da}() \mid \mathrm{Db}())$

1 sample orbit
A vs. B
directive sample 10.01000 directive plot Ga()$; \mathrm{Gb}()$
new a@1.0:chan() new b@1.0:chan()
let Ga()$=$ do !a; Ga() or ? $\mathrm{b} ;$? $\mathrm{b} ;$? $\mathrm{b} ; \mathrm{Gb}()$ and Gb()$=\mathrm{do}!\mathrm{b} ; \mathrm{Gb}()$ or ?a; ?a; ?a; Ga()
let Da()$=!\mathrm{a} ; \mathrm{Da}()$
and Db()$=!\mathrm{b} ; \mathrm{Db}()$
run 100 of $(\mathrm{Ga}() \mid \mathrm{Gb}())$
run 1 of $(\mathrm{Da}() \mid \mathrm{Db}())$

Some Devices

Linear Pump

Ultrasensitive Switch

Cascade Amplifier

Symmetric Wave Generator

More Devices

Oscillator

Repressilator (1 of 3 similar gates)

$$
\mathrm{b}=\text { not } \mathrm{a}
$$

$c=a$ or b
$c=a$ and b
$\mathrm{c}=\mathrm{a}$ imply b
$c=a \operatorname{xor} b$

Inputs:
10 !a for 4 t

Semantics of Collective Behavior

The Two Semantic Sides of Chemistry

These diagrams commute via appropriate maps.
L. Cardelli: "On Process Rate Semantics" (TCS)
L. Cardelli: "A Process Algebra Master Equation" (QEST’07)

Quantitative Process Semantics

Process Algebra
 Beyond Finite Reaction Networks
 (with Gianluigi Zavattaro)

Turing Completeness

- Turing Completeness
- A Turing Machine is "universal": it can emulate any other computing device.
- Your laptop is similarly a universal computing device.
- Is chemistry universal: can chemistry emulate any computing device?
- Finite Reaction Networks are equivalent to Petri Nets.
- It is possible to translate any finite system of chemical reactions into a Place/Transition Petri Net (ignoring rates). Reachability of a dead ("halting") state in P/T nets is decidable (an algorithm can answer yes/no).
- By Turing's theorem, if termination is decidable, i.e. if it is a simple problem, then the computational system is not universal. In particular, it cannot emulate a Turing machine (or your laptop).
- Hence finite reaction networks are not Turing-complete (Soloveichik et. al., Natural Computing 2008)
- Finite chemistry can't compute!
- Even though finite stochastic chemistry includes, e.g., chaotic systems.
- However, finite stochastic reaction networks can approximate Turing machines to any precision (slowly).

"Turifying" Chemistry

- Interacting Automata are not Turing complete
- They are equivalent to finite reaction networks, and to Petri Nets.
- What can we add to achieve Turing completeness?
- It is not easy to add power to finite reaction networks, other than making them infinite (hence 'non-programs').
- But it is easy to add power to simple automata, while keeping them finite.
- E.g. we can go to standard process algebras, which are finite programming languages and are Turing complete.
- But is there...
- A basic extension mechanism
- which is also biologically realistic?

Association and Dissociation

- Association patches are named
- \& - association
- \&?a associate
- \&!a co-associate
- \% - dissociation

○ \%?a dissociate

- \%!a co-dissociate

Turing completeness of "Biochemistry"

- Random Access Machines:
[Min67]
- Registers: $r_{1} \ldots r_{n}$ hold natural numbers (unbounded)
- Program: finite sequence of numbered instructions
- i: Inc(r_{j}): add 1 to the content of r_{j} and go to the next instruction
- i: $\operatorname{Dec} \operatorname{Jump}\left(r_{j}, s\right)$: if the content of r_{j} is not 0 then decrease by 1 and go to the next instruction; otherwise jump to instruction s
- There is a RAM encoding in BGF (= automata with complexation)
- Hence BGF is Turing complete.
- Removing the old "collision" interactions keep it Turing complete (they can be expressed by association/dissociation).
- But removing association or dissociation makes it non Turing complete.

RAM encoding in BGF

Why is This Easier in Process Algebra?

Example: Linear Polymerization

- In chemistry we have to write an infinite list of reactions
- $P_{0}+M \rightarrow P_{1}$
- $P_{1}+M \rightarrow P_{2}$
- etc.
- An infinite list of things is not a computation device! And the specificity of an infinite set of reactions unrealistic.
- In process algebra we can write a finite set of interactions
- A polymer (of any length) with a free surface, plus a monomer with a complementary surface, gives you another polymer with a free surface.
- That's it.
- Process algebra descriptions are intrinsically more compact
- This is an extreme case (finite vs. infinite)
- But is also true for finite cases (linear vs. quadratic or exponential).

Part I Summary

Process Algebra is 'Bigger' and 'More Compact' than finite chemistry

Part I Summary

Process Algebra is 'Bigger' and 'More Compact' than finite chemistry

Part I Summary

Process Algebra is 'Bigger' and 'More Compact' than finite chemistry

Part II: From Automata to Molecules

Motivation

How do we implement an arbitrary process?
Chemistry does not necessarily help (how do we then implement the chemical species?)

DNA Compilation

Separating Circuit Design from Gate Design

Gate Elements: Short and Long DNA Segments

Gate Elements: Basic Mechanisms

Irreversible

Reversible

Gate Elements: Signals and Gates

- Signals " x " are single-stranded and 'positive'

- This 3-segment signal representation is original to this work, it is based on the 4 -segment signals of D. Soloveichik, G. Seelig, E. Winfree. Proc. DNA14, but leads to simpler and more regular gate structures
- Gate backbones are double-stranded, except for 'negative’ toeholds.

- Separation of strands and gates helps the DNA realization, as one can use 3-letter alphabets (ATC/ATG) for each strand, minimizing secondary structure and entanglement.

Circuit Elements: $\mathrm{X} .[\mathrm{y}, \mathrm{z}]$ Fork Gate

- A Fork signal-processing gate takes a signal x and produces two signals y, z according to the reaction $\mathrm{x}|\mathrm{x} \cdot[\mathrm{y}, \mathrm{z}] \rightarrow \mathrm{y}| \mathrm{z}$

G_{b}, G_{t} (gate backbone and trigger) form the gate.
Any history segment that is not determined by the gate structure is said to be 'generic' (can be anything).

Any gate segment that is not a non-history segment of an input or output signal is taken to be 'fresh' (globally unique for the gate), to avoid possible interferences.

Circuit Elements: [x,y].z Join Gate (function)

- A Join signal-processing gate takes both signals x, y and produces a signal z according to the reaction $x|y|[x, y] . z \rightarrow z$

The garbage r_{1} and r_{2} must be collected (after the gate has fired) to avoid accumulation. This can be achieved by a similar scheme taking r_{1}, r_{2} as input signals.

$\left[x_{1}, . ., x_{n}\right] \cdot\left[y_{1}, \ldots, y_{m}\right]$ General Join/Fork Gate

$$
x_{1}|\ldots| x_{n}\left|\left[x_{1}, . ., x_{n}\right] \cdot\left[y_{1}, . ., y_{m}\right] \rightarrow y_{1}\right| \ldots \mid y_{m}
$$

$\ldots . . \xrightarrow{\mathrm{C}_{\mathrm{nb}} \quad \mathrm{C}_{\mathrm{nt}}}$

Strand Algebra

```
P ::= x ! [ [x , .., \mp@subsup{x}{n}{}].[\mp@subsup{y}{1}{},..,\mp@subsup{y}{m}{}]:0 ! P|P \vdots P* n\geq1,m\geq0
x is a signal
[\mp@subsup{x}{1}{},.,.,\mp@subsup{x}{n}{}].[\mp@subsup{y}{1}{},..,\mp@subsup{y}{m}{}] is a gate
0
P|P is parallel composition of signals and gates
P* is a population (multiset) of signals and gates
```

Reaction Rule
$x_{1}\left|. .\left|x_{n}\right|\left[x_{1}, \ldots, x_{n}\right] \cdot\left[y_{1}, \ldots, y_{m}\right] \rightarrow y_{1}\right| \ldots \mid y_{m}$
Auxiliary rules (axioms of diluted well-mixed solutions)
$P \rightarrow P^{\prime} \Rightarrow P\left|P^{\prime \prime} \rightarrow P^{\prime}\right| P^{\prime \prime} \quad$ Dilution
$P \equiv P_{1}, P_{1} \rightarrow P_{2}, P_{2} \equiv P^{\prime} \quad \Rightarrow P \rightarrow P^{\prime} \quad$ Well Mixing
Where \equiv is a congruence relation (syntactical 'chemical mixing') with $\mathrm{P}^{*} \equiv \mathrm{P} \mid \mathrm{P}^{*}$ for unbounded populations.

Compiling Strand Algebra to DNA

$P::=x \vdots\left[x_{1}, . ., x_{n}\right] \cdot\left[y_{1}, . ., y_{m}\right] \vdots 0 \vdots P \mid P \vdots P^{*} \quad n \geq 1, m \geq 0$

- compile $(x)=\left(\ln _{n_{n_{t}}} X_{x_{x_{b}}}\right.$
- compile $\left(\left[x_{1}, . ., x_{n}\right] \cdot\left[y_{1}, . ., y_{m}\right]\right)=$

- compile(0) = empty solution
- compile($\left(P \mid P^{\prime}\right)=\operatorname{mix}\left(\operatorname{compile}(P)\right.$, compile($\left.\left.P^{\prime}\right)\right)$
- compile $\left(\mathrm{P}^{*}\right)=$ population(compile(P))

Boolean Networks

Boolean Networks to Strand Algebra

This encoding is compositional, and can encode any Boolean network:

- multi-stage networks can be assembled (combinatorial logic)
- network loops are allowed (sequential logic)

Petri Nets

Petri Nets to Strand Algebra

Transitions as Gates
Place markings as Signals

$\left(\left[p_{1}, p_{2}\right] \cdot\left[p_{3}, p_{4}\right]\right)^{*} \mid$ $p_{1}\left|p_{1}\right| p_{4}$

Finite State Automata

FSA to Strand Algebra

$([A, a] \cdot[C, \tau])^{*}$ । $([\mathrm{A}, \mathrm{b}] \cdot[\mathrm{B}, \tau])^{*}$ | $([B, C] \cdot[\mathrm{C}, \tau])^{*}$ | $([\mathrm{C}, \mathrm{d}] .[\mathrm{C}, \tau])^{*}$ | $([\mathrm{C}, \mathrm{d}] \cdot[\mathrm{A}, \tau])^{*}$ | A| τ

Input strings
a,b,c,d

Interacting Automata

$$
\begin{aligned}
& ([\mathrm{A}, \mathrm{~B}] \cdot[\mathrm{B}, \mathrm{~B}])^{*} \mid \\
& ([\mathrm{B}, \mathrm{C}] \cdot[\mathrm{C}, \mathrm{C}])^{*} \mid \\
& ([\mathrm{C}, \mathrm{~A}] \cdot[\mathrm{A}, \mathrm{~A}])^{*} \mid \\
& \mathrm{A}|\mathrm{~A}| \mathrm{B} \mid \mathrm{C}
\end{aligned}
$$

This is a uniform population of identical automata, but heterogeneous populations of interacting automata can be similarly handled.

Interacting Automata

([A,B].[B,B])* | ([B,C].[C,C])* ([C,A].[A, A])* | A|B|B|C

This is a uniform population of identical automata, but heterogeneous populations of interacting automata can be similarly handled.

Interacting Automata

([A,B].[B,B])* | ([B,C].[C,C])* ([C,A].[A,A])* | $\mathrm{A}|\mathrm{B}| \mathrm{C} \mid \mathrm{C}$

This is a uniform population of identical automata, but heterogeneous populations of interacting automata can be similarly handled.

Interacting Automata

([A,B].[B,B])* | ([B,C].[C,C])* ([C,A].[A,A])* | $A|A| B \mid C$

This is a uniform population of identical automata, but heterogeneous populations of interacting automata can be similarly handled.

Conclusions

Conclusion

- History of computing
- Is pointing towards increasing amounts of concurrency and heterogeneity in man-made systems.
- Modern computer hardware is going (by necessity) multi-core.
- Programming such systems is still a major challenge.
- Natural history
- Massively concurrent and heterogeneous computation.
- We do not really yet understand how concurrency works there (e.g. in gene networks, neural networks).
- Future molecular computing
- Functional input-output devices? Individual automata?
- Or reactive systems?

