
Automata as Molecules
Implementing Interacting Automata

as Biochemical Systems

Luca CardelliLuca Cardelli

Microsoft Research

Open Lectures for PhD Students in Computer Science

Warsaw 2009-05-07..08

http://lucacardelli.name

Motivation

=

Continuous
Chemistry

Discrete

Process
Algebra

ODE ODE

Continuous-state Semantics
(Mass Action Kinetics)

The Real
Wet Stuff

?

22009-05-08Luca Cardelli 22009-05-08 22009-05-08Luca Cardelli

=

Discrete
Chemistry

CTMC CTMC

Discrete-state Semantics

(Chemical Master Equation)

How do we implement an arbitrary process?

How do we implement an arbitrary chemical system?

(how do we then implement the chemical species?)

Automata to Molecules

● There are many schemas to compile automata to molecules

o But most (all?) are about compiling a single automaton (e.g. an FSA).

● Interacting Automata can be compiled to chemical reactions [TCS’08].

o Are concurrent and population based (a subset of CCS).

o The translation has an n2 blowup (means automata are “more compact”).

o But how does one engineer the necessary molecules?

● Arbitrary chemistry can be compiled to DNA [Soloveichik et al.].

32009-05-08Luca Cardelli 32009-05-08 32009-05-08Luca Cardelli

● Arbitrary chemistry can be compiled to DNA [Soloveichik et al.].

o The translation is stochastically “almost” faithful.

o Which can be seen as a defect of the translation, if you are a chemist.

● Hence Interacting Automata can be compiled to DNA.

o Again, stochastically this is “almost” faithful as a single transition may need to be

implemented with two transitions, which have a different distribution.

● Direct Compilation of Interacting Automata to DNA.

o We can more simply go directly from Interacting Automata to DNA.

o In doing so, we want to preserve the stochastic semantics (rates).

DNA Computing

● Early DNA Computing

o Demonstrated computation by DNA hybridization [Adelman].

o Why DNA? Widely available mature technology.

o Massively concurrent (but still not enough for NP-complete problems).

o Slow and awkward (manual cycling).

● New Focus

o Not going to compete with Intel in speed (hours … days).

42009-05-08Luca Cardelli 42009-05-08 42009-05-08Luca Cardelli

o Not going to compete with Intel in speed (hours … days).

o But can interface with biological systems!

o For detection and intervention in live organisms.

● New Paradigm

o Autonomous DNA computation (mix-and-go) [Yurke&Mills].

o Output readout by fluorescence or atomic microscopy, in vitro.

o Or by influencing cellular mechanisms in vivo [Shapiro survey].

Computation by
DNA Strand Displacement

52009-05-08Luca Cardelli 52009-05-08 52009-05-08Luca Cardelli

ACGT

Interactive DNA Tutorial
(http://www.biosciences.bham.ac.uk/labs/minchin/tutorials/dna.html)

Sequence of Base Pairs

62009-05-08Luca Cardelli 62009-05-08 62009-05-08Luca Cardelli

GC Base Pair
Guanine-Cytosine

TA Base Pair
Thymine-Adenine

Hence DNA is a string over a 4-letter ACGT alphabet
Human genome : ~3 billion base pairs

= 750 Megabytes (since 1 byte encodes 4 base pairs)

= 1 movie download!

DNA Double Helix

72009-05-08Luca Cardelli 72009-05-08 72009-05-08Luca Cardelli

Benzopyrene

By Richard Wheeler (Zephyris) 2007. Solution structure of

a trans-opened (10S)-dA adduct of +)-(7S,8R,9S,10R)-7,8-

dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene

in a DNA duplex. Wikimedia Commons.

(What happens when you smoke)

Watson-Crick Duality

Equal Single Strands

G⊥ = C

T⊥ = A
ComplementarityDouble Strand

G - C

T - A
Affinity

X⊥⊥ = X

3’ end

82009-05-08Luca Cardelli 82009-05-08 82009-05-08Luca Cardelli

Equal Single Strands

Complementary Single Strands

Hence (G:A:C:T)⊥ = A:G:T:C = T⊥:C⊥:A⊥:G⊥

(X:Y)⊥ = Y⊥:X⊥

Watson-Crick duality
(for any sequences of bases X,Y)

all written

from 5’ to 3’

Hybridization

92009-05-08Luca Cardelli 92009-05-08 92009-05-08Luca Cardelli

Hybridization is also called annealing; denaturation is also

called melting.

The direction of the reaction (or in general the equilibrium

between the two states) is determined by a number of

factors, e.g. temperature.

We assume we are in conditions that favor hybridization

beyond a certain length of matching region.

Branch Migration

branching

point

102009-05-08Luca Cardelli 102009-05-08 102009-05-08Luca Cardelli

The branching point moves left and right by a

random walk. Until it reaches an end point.

Short and Long Segments

112009-05-08Luca Cardelli 112009-05-08 112009-05-08Luca Cardelli

Strand Displacement Reaction

toehold Irreversible

122009-05-08Luca Cardelli 122009-05-08 122009-05-08Luca Cardelli

blocked

Reversible!
because the random walk is ‘reflected’ by the blockage

Partial

Match

Irreversible match is determined by the toehold plus the branch migration region.

That is, the toehold is a cache for the full address. The toehold must be short enough to

guarantee reversible binding, but the branch migration region is practically unlimited.

This means that the address space is unlimited.

Toehold Exchange Reaction

Reversible

132009-05-08Luca Cardelli 132009-05-08 132009-05-08Luca Cardelli

Signal Strand

xh = history
xt = toehold
xb = binding

D. Soloveichik, G. Seelig, E. Winfree. DNA as a Universal
Substrate for Chemical Kinetics. Proc. DNA14.

x

(We work with a simpler version of their signal stands.)

142009-05-08Luca Cardelli 142009-05-08 142009-05-08Luca Cardelli

xb = binding

The history xh is not part of signal recognition: strands with
different histories should behave the same. Hence, x denotes
an equivalence class of strands with different histories.

The combination xt,xb identifies the signal x.

If x≠y then x and y⊥ are not supposed to hybridize.

Signals and Gates

● Signals “x” are always positive strands

● Gates “x.y” always have a negative strand toehold and backbone.

o that is, the input “x” is implicitly perp’ed

o and the output “y” is another positive signal

● This separation helps the DNA realization, as one can use 3-letter

alphabets (ATC/ATG) for each strand, minimizing secondary structure and

152009-05-08Luca Cardelli 152009-05-08 152009-05-08Luca Cardelli

alphabets (ATC/ATG) for each strand, minimizing secondary structure and

entanglement.

● This way, by the way, we appear to give up Turing completeness, which is

possible by freely using positive and negative strands. (Turing

completeness has been demonstrated in DNA tiling systems.)

● (It is not clear how to achieve Turing completeness based on this

signal/gate structure.)

Inert Systems

A system is considered inert (terminated) if it has no free toeholds.

162009-05-08Luca Cardelli 162009-05-08 162009-05-08Luca Cardelli

x.[] Annihilator Gate

172009-05-08Luca Cardelli 172009-05-08 172009-05-08Luca Cardelli

This is just the strand displacement reaction, but seen as a

gate absorbing a signal x and producing nothing (0 = inert).

Any history segment that is not determined by the gate

structure is said to be ‘generic’ (can be anything).

x.y Transducer Gate

182009-05-08Luca Cardelli 182009-05-08 182009-05-08Luca Cardelli

Gb,Gt (gate backbone and trigger) form the transducer.

Any history segment that is not determined by the gate

structure is said to be ‘generic’ (can be anything).

Any gate segment that is not a non-history segment of an

input or output signal is taken to be ‘fresh’ (globally unique

for the gate), to avoid possible interferences.

x.[y,z] Fork Gate

192009-05-08Luca Cardelli 192009-05-08 192009-05-08Luca Cardelli

Gb,Gt (gate backbone and trigger) form the transducer.

Any history segment that is not determined by the gate

structure is said to be ‘generic’ (can be anything).

Any gate segment that is not a non-history segment of an

input or output signal is taken to be ‘fresh’ (globally unique

for the gate), to avoid possible interferences.

x.[x,x] Fork Gate

202009-05-08Luca Cardelli 202009-05-08 202009-05-08Luca Cardelli

Autocatalyst

Adapter (a non-Gate)

Consider the reversible ‘first half’ of the transducer,

which works by toehold exchange:

212009-05-08Luca Cardelli 212009-05-08 212009-05-08Luca Cardelli

This has an interesting function: it adapts an x signal to a y signal:

if x is present then both x and y are available by reversibility

if y is consumed, then x is consumed.

If a gate produces an x and another gate expects a y, then we can (perhaps) use an

adapter to connect them. Note that a full x to y transducer would not work as well as

an adapter, because it would always remove x even if nobody wants y.

Non-gates

● However, the adapter is not a gate:

o The inverse reaction works only for y’s with xb history. Gates must work on

equivalence classes of signals, for any history. There is in fact no way to write

the adapter as a gate reaction: x | adapt(x,y) → y | ?.

o When y is consumed it leaves behind a non-inert components which

eventually reduces the availability of x by speeding up the reverse reaction.

These non-inert components should be removed.

222009-05-08Luca Cardelli 222009-05-08 222009-05-08Luca Cardelli

These non-inert components should be removed.

o Since both x and y are public signals, there is a possibility that some other

part of the system may produce a y signal with xb history, interfering with this

adapter (slowing it down, and removing y’s from somewhere else).

o A proper adapter gate is instead (x.y | y.x), assuming a population of them.

● Although not a gate, an adapter can be used as part of a larger proper

gate, like the Transducer, which:

o works on equivalence classes of signals

o does not leave active garbage around

o but still admits interference on y (a alternative transducer is coming up).

Another Architecture

● We now start working with a slightly different gate structure.

o The order of Trigger and Output is swapped.

● This is slightly more complex.

o It requires a ‘garbage collection’ step.

● But it generalizes better to more complex gates.

o Removes the worry about interference on x :y .

232009-05-08Luca Cardelli 232009-05-08 232009-05-08Luca Cardelli

o Removes the worry about interference on xb:yt.

o Join gates require garbage collection anyway.

● This results in a uniform structure for all gates.

x.y Transducer Gate

G ,G ,C (gate backbone, trigger, collector) form the transducer.

242009-05-08Luca Cardelli 242009-05-08 242009-05-08Luca Cardelli

Gb,Gt,C1 (gate backbone, trigger, collector) form the transducer.

We need to collect the xb:a strand to end up with an inert system.

If we do not collect it, it accumulates and slows down further

transductions by pushing the reversible reaction to the left.

No problem with x.x:

x.[y,z] Fork Gate

The triggering is now more uniform: all the outputs are released

together.

252009-05-08Luca Cardelli 252009-05-08 252009-05-08Luca Cardelli

together.

This fork structure (although slightly more complex than the

earlier fork) generalizes smoothly to multiple inputs as well,

because in that case we cannot avoid a garbage collection phase.

No problem with x.[x,x]:

Exercise 3: x.[y,z] | x.[y,w] Interference

262009-05-08Luca Cardelli 262009-05-08 262009-05-08Luca Cardelli

● Suppose we ‘forgot’ to take a,b fresh, so they are shared by the two

gates. Something goes horribly wrong from these initial conditions:

x | x.[y,z] | x | x.[y,w]

where x.[y,z] = G1b,G1t and x.[y,w] = G2b,G2t

● What goes wrong?

[x,y].z Join Gate (function)

Basic function garbage!!

272009-05-08Luca Cardelli 272009-05-08 272009-05-08Luca Cardelli

Join can be implemented by a ‘reversible-AND gate’ taking two sequential inputs

where the first one is reversible (Soloveichik Fig.3), so that x is not actually

absorbed until y is found. The ‘garbage’ r1 must not be collected until y is found:

this is signaled by the release of r2.

[x,y].z Join Gate (collection)

Garbage Collection

282009-05-08Luca Cardelli 282009-05-08 282009-05-08Luca Cardelli

Garbage collection of r1 is needed for join to work well. This is done by another

reversible-AND between r1 and r2, triggered by the release of r2. This second

reversible-AND leaves garbage too (r3, r4), but this can be collected immediately, as

we know by construction that both inputs r1,r2 are available and we need not wait to

revert their bindings.

The extra intermediate c,d segments separate the r1 binding from the r2 binding.

Without them, a segment yt:yb (instead of yt:c and d:yb) would be released: that is y!

[x1,..,xn].[y1,..,ym] General Join/Fork Gate

x1 | .. | xn | [x1,..,xn].[y1,..,ym] → y1 | .. | ym

292009-05-08Luca Cardelli 292009-05-08 292009-05-08Luca Cardelli

x.H(y) Curried Gates

Gates that return gates:

302009-05-08Luca Cardelli 302009-05-08 302009-05-08Luca Cardelli

For example, x.y.z: This means we can have gates of the form:

G ::= [x1,..,xn].[x’1,..,x’m] ⋮

[x1,..,xn].G

n≥1, m≥0

Exercise 4: x.y.z | [x,y].w Interference

Consider curried gates without the a,b segments (example below): instead of

releasing xb,a and b,yt segments, they would release xb,yt.

But that is exactly the strand r1 of an [x,y].w gate: the strand that reverts the x

input. This definitely causes an interference between x.y.z and [x,y].w.

Find a situation where the presence (x.y.z as below) or absence (x.y.z as in

previous slide) of this interference causes different outcomes.

Hint: it changes outcome probability.

[David Soloveichik]

312009-05-08Luca Cardelli 312009-05-08 312009-05-08Luca Cardelli

Hint: it changes outcome probability.

Note: the a,b segments prevent the

interference.

Summary

● DNA strand displacement technology provides a way of implementing

abstract signal transducer networks.

● Fork gates and Join gates are the main components.

● How powerful it this style of computation?

322009-05-08Luca Cardelli 322009-05-08 322009-05-08Luca Cardelli

Combinatorial Strand Algebra

332009-05-08Luca Cardelli 332009-05-08 332009-05-08Luca Cardelli

Formalizing a Process Algebra

● A term syntax (almost always including parallel composition):

o P ::= … ⋮ P|P ⋮ …

● A structural congruence relation (chemical mixing):

o P ≡ Q (e.g. commutative monoid rules of ‘|’)

● A reduction relation (chemical reactions):

o P → Q

342009-05-08Luca Cardelli 342009-05-08 342009-05-08Luca Cardelli

o P → Q

● Standard rules to connect the two, which have a ‘chemical’ meaning:

o ‘Dilution’: P → Q ⇒ P | R → Q | R

o ‘Well-mixing’: P ≡ P’, P’ → Q’, Q’ ≡ Q ⇒ P → Q

● Various equivalences (e.g. bisimulation) derived from the above.

● Algebraic laws proved (not taken as axioms) from the equivalences.

Strand Algebra ����

P ::= x ⋮ [x1,..,xn].[x’1,..,x’m] ⋮ 0 ⋮ P|P ⋮ P* n≥1, m≥0

No compound expressions except for parallel composition P|P and populations P*.

Hence this is a combinator-based (“assembly”) language.

Here x is a signal, and [..].[..] is a gate:

x is a strand

≝
≝

352009-05-08Luca Cardelli 352009-05-08 352009-05-08Luca Cardelli

x1.x2 ≝ [x1].[x2] is a sequence gate
x.[x1,..,xm] ≝ [x].[x1,..,xn] is a fork gate
[x1,..,xn].x ≝ [x1,..,xn].[x] is a join gate

0 is inert
P|P is parallel composition of signals and gates
P* is a population (multiset) of signals and gates

Note: x.P* is not in the syntax: populations are only top-level.
C.f.: Petri net tokens (strands) and transitions (gates).
However, here both signals and gates are consumed by interaction.

Structural Congruence for ����

P ≡ P equivalence

P ≡ P’ ⇒ P’ ≡ P

P ≡ P’, P’ ≡ P” ⇒ P ≡ P”

P ≡ P’ ⇒ P|P” ≡ P’|P” congruence

P ≡ P’ ⇒ P* ≡ P’*

P | 0 ≡ P diffusion

P | P’ ≡ P’ | P

362009-05-08Luca Cardelli 362009-05-08 362009-05-08Luca Cardelli

P | P’ ≡ P’ | P

P | (P’ | P”) ≡ (P | P’) | P”

P* ≡ P* | P population

0* ≡ 0

(P | P’)* ≡ P* | P’*

P** ≡ P*

Reduction for ����

x1 | .. | xn | [x1,..,xn].[x1’,..,x’m] → x’1 | .. | x’m Gate

P → P’ ⇒ P | P” → P’| P” Dilution

P ≡ P1, P1 → P2, P2 ≡ P’ ⇒ P → P’ Well Mixing

372009-05-08Luca Cardelli 372009-05-08 372009-05-08Luca Cardelli

Technically, the fully parenthesized Gate rule is:

x1 | (.. | (xn | [x1,..,xn].[x’1,..,x’m])..) → x’1|(..|(x’m)..)

but we have structural congruence to reassociate.

Examples

x1 | x1.x2 → x2

x1 | x1.x2 | x2.x3 →→ x3

x1 | x2 | [x1,x2].x3 → x3

x1 | x1.x2 | x1.x3 → x2 | x1.x3

382009-05-08Luca Cardelli 382009-05-08 382009-05-08Luca Cardelli

1 1 2 1 3 2 1 3

and also → x3 | x1.x2

x1 | x2 | x3 | [x1,x2].x4 | [x1,x3].x5 → x3 | x4 | [x1,x3].x5

and also → x2 | [x1,x2].x4 | x5

X | ([X,x1].[x2,X])*

a catalytic system ready to transform multiple x1 to x2, with catalyst X

High(er)-Level Languages

● We now have an intermediate language: the combinatorial strand algebra

o It can be compiled “directly” to DNA following [Soloveichik et al.]

● But we really want to compile “high-level languages”. Such as:

o Boolean Networks

o Petri Nets

o Finite State Automata

o Finite Stochastic Reaction Networks (Chemistry) [Soloveichik et al.]

392009-05-08Luca Cardelli 392009-05-08 392009-05-08Luca Cardelli

o Finite Stochastic Reaction Networks (Chemistry) [Soloveichik et al.]

o Interacting Automata

o π-calculus (no, not in the current strand algebra)

● And also

o Higher-level strand algebras, which may form

more convenient intermediate languages.

o Such as the Nested Strand Algebra (with nested expressions).

Exercise 5: Boolean Networks

Boolean Networks to Strand Algebra

402009-05-08Luca Cardelli 402009-05-08 402009-05-08Luca Cardelli

Find an encoding of Boolean networks in Strand Algebra.

It’s enough to show how to encode and AND gate that takes Boolean signals on

a,b wires and produces a Boolean signal on the c wire, and a NOT gate. (Their

combination, a NAND gate, is a universal gate.)

Petri Nets

Transitions as Gates
Markings as Signals

Gates as Transitions

Petri Nets to Strand Algebra Strand Algebra to Petri Nets

412009-05-08Luca Cardelli 412009-05-08 412009-05-08Luca Cardelli

or

Finite State Automata

FSA to Strand Algebra

422009-05-08Luca Cardelli 422009-05-08 422009-05-08Luca Cardelli

Input strings

Interacting Automata (first try)

A

B

!a

?a ?b

!b

Groupies

A = !a;A ⊕ ?b;B

B = !b;B ⊕ ?a;A

Strand(Groupies)

on a: ([B,A].[A,A])* |

on b: ([A,B].[B,B])*

Strand(E) = Parallel(⟪…⟫ means multisets

⟪ ⟫

⟪ ⟫

Interacting Automata to Strand Algebra

Map each possible interaction to a Join

432009-05-08Luca Cardelli 432009-05-08 432009-05-08Luca Cardelli

A

B

!a

?b

!b

?a
Celebrities

A = !a;A ⊕ ?a;B

B = !b;B ⊕ ?b;A

Strand(Celebrities)

on a: ([A,A].[B,A])* |

on b: ([B,B].[A,B])*

Strand(E) = Parallel(⟪…⟫ means multisets

⟪ (X.[P])* s.t. ∃i. E.X.i = τ;P ⟫ ∪

⟪ ([X,Y].[P,Q])* s.t. ∃i,j,c. E.X.i = ?c;P and E.Y.j = !c;Q ⟫)

However, Interacting Automata are stochastic!

Summary

● DNA strand displacement gates can be formalizes as Strand Algebra.

● Strand Algebra is equivalent to place/transition Petri nets, but:

o Has a compositional syntax.

o Keeps track of the (DNA) resources that are consumed during computation.

● While not Turing complete, Strand algebra can embed many common and

useful formalisms:

442009-05-08Luca Cardelli 442009-05-08 442009-05-08Luca Cardelli

useful formalisms:

o Boolean Networks

o Petri Nets

o Finite State Automata over multisets and over strings

o Finite State Transducers over multisets, and from string to multisets (not

shown) (not clear how to transduce to strings)

o Interacting Automata, at least qualitatively.

Stochastic Strand Algebra

452009-05-08Luca Cardelli 452009-05-08 452009-05-08Luca Cardelli

Stochastic Strand Algebra

● Unbounded populations P* are meaningless because one cannot compute

their stochastic impact. Hence stochastic strand algebra �r drops P*:

● Instead of unbounded populations P* should think of populations of size k,

Pk, which of course we already have from iterated parallel composition.

P ::= x ⋮ [x1,..,xn].[x’1,..,x’m] ⋮ 0 ⋮ P|P n≥1, m≥0

462009-05-08Luca Cardelli 462009-05-08 462009-05-08Luca Cardelli

● Moreover, each gate with n inputs has a fixed rate gn (collapsing all gate

parameters into one).

Propensity

● Given a global state P what is the propensity (‘speed’) of each possible

next reaction? It is:

(P choose (x1 | … | xn | [x1,…,xn].[y1,…,ym])) × gn

● That is, it is the number of ways of choosing from P an n-ary gate and its

n inputs, multiplied by the gate rate gn.

o If P = xn|ym|([x,y].z)p with x≠y, the propensity of the next x|y|[x,y].z → z

reaction is n×m×p×g .

472009-05-08Luca Cardelli 472009-05-08 472009-05-08Luca Cardelli

reaction is n×m×p×g2.

o If P = xn|([x,x].z)p, the propensity of the next x|x|[x,x].z → z reaction

is (n choose 2)×p×g2 = n×(n-1)/2×p×g2.

o N.B. we have the factor r = n×(n-1)/2 here. For large n we have n×(n-1)~ n2 in terms of reaction

order. In terms of reaction rate, note that in chemistry the (measured, macroscopic) mass action

rate k = 2r is always twice the underlying (actual, microscopic) stochastic rate k for reactions of the

form x+x → …. Hence we have an overall macroscopic reaction speed of ~(k×g2)×n
2×p which, further

converting the molecule counts to concentrations in a volume, gives us back the law of mass action.

● For (unary) curried gates, the propensity is:

(P choose (x0 | x0.[x1,…,xn].[y1,…,ym])) × g1

Global Transition

● A global transition P →r P’ of a global state P to a next global state P’

with propensity r is then defined as:

P →(P choose (x1 | … | xn | [x1,…,xn].[y1,…,ym])) × gn

(P \ (x1 | … | xn | [x1,…,xn].[y1,…,ym])) | y1 | … | ym

where \ is multiset difference. (Similarly for curried gates.)

482009-05-08Luca Cardelli 482009-05-08 482009-05-08Luca Cardelli

Continuous Time Markov Chain

● From the global transitions of a global state P, and of all its successive

states, we can build a CTMC for any P.

P = x3 | x.y2 | x.z

z | x2 | x.y2

y | x2 | x.y | x.z

6g1

3g1

2g

2g1

y | z | x | x.y4g1
g1

y2 | z

g1

(x.z)

(x.y)

(x.y)

(x.z)

(x.y)

(x.y)

(x.z)

492009-05-08Luca Cardelli 492009-05-08 492009-05-08Luca Cardelli

● From this we can extract the standard matrix representation of CTMCs.

● We can also extract a DTMC (state transition probabilities), but the CMTC

has more information: the expected holding time in each state (1/Σexit-

propensities), i.e. the kinetics of the system.

● This is the semantics of Stochastic Strand Algebra.

y | x2 | x.y | x.z

y2 | x | x.z

2g1
g1

Buffered Populations

● We have given up P*, so how do we do recursion?

● Consider instead populations of constant size k, P=k.

● Take for example P = x.y; we have that

x | Pk →k×g1 y | Pk-1 (a global transition)

502009-05-08Luca Cardelli 502009-05-08 502009-05-08Luca Cardelli

● We want to find a system P=k such that:

x | P=k →k×g1 y | P=k

o it should evolve at rate k (×g1) like P
k

o but it should not get depleted in the process

The Buffer Population

● These are definable (to arbitrary approximation) by using a bigger buffer

population to replenish the (pseudo-)constant population.

● For P = x.y (for example) define:

P=k ≝ (x.[y.Z])k | (Z.x.[y.Z])BIG for a fresh Z

e.g. BIG = 10000×k

512009-05-08Luca Cardelli 512009-05-08 512009-05-08Luca Cardelli

≝

Here BIG is an example of a large-enough buffer: it ensures that reactions on

Z are much faster than reactions on x by mass action. We can make Z

reactions arbitrarily fast, without affecting x reactions.

Z.x.[y,Z] is a curried gates. The construction can be done also without curried

gates, but then it requires balancing the rates of gates with different

numbers of inputs.

Buffered Populations in Action

● Now we provide an input:

x | P=k = x | (x.[y.Z])k | (Z.x.[y.Z])BIG

→k×g1 y | Z | (x.[y.Z])k-1 | (Z.x.[y.Z])BIG

→BIG×g1 y | x.[y.Z] | (x.[y.Z])k-1 | (Z.x.[y.Z])BIG-1

= y | (x.[y.Z])k | (Z.x.[y.Z])BIG-1

with →k×g1→BIG×g1 ~ →k×g1

522009-05-08Luca Cardelli 522009-05-08 522009-05-08Luca Cardelli

with →k×g1→BIG×g1 ~ →k×g1

and (x.[y.Z])k|(Z.x.[y.Z])BIG-1 ~ P=k

● Hence, the propensities in P=k are (approximately) the same as in Pk:

x | P=k →~k×g1 y | ~P=k

but P=k does not get depleted (approximately).

Properties of Buffered Populations

● Hence, P=k is the stochastic equivalent of P*:

P=k ~ P | P=k

o We can make the approximation as good as we want by increasing the buffer.

o We can ‘top up’ the buffers periodically, without affecting the rest of the

system (only the arbitrarily fast reaction on Z).

532009-05-08Luca Cardelli 532009-05-08 532009-05-08Luca Cardelli

system (only the arbitrarily fast reaction on Z).

o By topping-up the buffers, we can support arbitrarily long computations and

recursion.

o Afterthought: it seems it may be true that (P=k)=k ~ P=k; I have not checked the

details. This would be nice, but on the other hand it would mean that there is

nothing to gain in building buffers of buffers. Maybe there are also different

encodings of P=k with different properties.

Chemistry (FSRN) to Strand Algebra

● With the help of P=k, we can now encode stochastic formalisms, like

Finite Stochastic Reaction Networks (finite sets of chemical reactions

with stochastic rates) in Strand Algebra (and DNA).

o [Soloveichik et al.] DNA as a Universal Substrate for Chemical Kinetics: how
to implement an arbitrary set of chemical reactions by engineering chemical

species (as DNA strands) that obey the reactions.

● For a stochastic reaction rate r of an n-ary reaction we use a constant-

size population of size r/g (assume r>>g ; otherwise scale up the rates to

542009-05-08Luca Cardelli 542009-05-08 542009-05-08Luca Cardelli

size population of size r/gn (assume r>>gn; otherwise scale up the rates to

obtain large-enough populations):

1) A →r B1 + … + Bm ⇒ (A.[B1,…,Bm])
=r/g1

2) A1+A2 →r B1 + … + Bm ⇒ ([A1,A2].[B1,…,Bm])
=r/g2

3) A+A →r B1 + … + Bm ⇒ ([A,A].[B1,…,Bm])
=r/g2

● The propensities match:

1) P = An: (P choose A)×r = n×r = (P choose A)×r/g1×g1

2) P = A1
n+A2

m: (P choose A1,A2)×r = n×m×r = (P choose A1,A2)×r/g2×g2

3) P = An: (P choose A,A)×r = n×(n-1)/2×r = (P choose A,A)×r/g2×g2

Interacting Automata to Strand Algebra

A

B

!ar

?ar ?bs

!brs

Groupies

A = !ar.A ⊕ ?bs.B

B = !bs.B ⊕ ?ar.A

Strand(Groupies)

on ar: ([B,A].[A,A])=r/g2 |

on bs: ([A,B].[B,B])
=s/g2

Strand(E) = Parallel(⟪…⟫ means multisets

⟪ (X.[P])=r/g1 s.t. ∃i. E.X.i = τ;P ⟫ ∪

⟪ ⟫

⟪ ⟫

Map each possible interaction to a Join

552009-05-08Luca Cardelli 552009-05-08 552009-05-08Luca Cardelli

A

B

!ar

?bs

!bs

?ar

Celebrities

A = !ar.A ⊕ ?ar.B

B = !bs.B ⊕ ?bs.A

Strand(Celebrities)

on ar: ([A,A].[B,A])=2r/g2 |

on bs: ([B,B].[A,B])
=2s/g2

⟪ ⟫

⟪ (X.[P])=r/g1 s.t. ∃i. E.X.i = τ;P ⟫ ∪

⟪ ([X,Y].[P,Q])=r/g2 s.t. X≠Y and ∃i,j,c. E.X.i = ?cr;P and E.Y.j = !c;Q ⟫ ∪

⟪ ([X,X].[P,Q])=2r/g2 s.t. ∃i,j,c. E.X.i = ?cr;P and E.X.j = !c;Q ⟫)

Global Transitions and Propensities Match

Groupies

A = !ar.A ⊕ ?bs.B

B = !bs.B ⊕ ?ar.A

(on ar) An|Bm →n×m×r An+1|Bm-1

(on bs) An|Bm →n×m×s An-1|Bm+1

Strand(Groupies)

P = ([B,A].[A,A])=r/g2 |

([A,B].[B,B])=s/g2
An|Bm|P →~n×m×r/g2×g2 An+1|Bm-1|~P

An|Bm|P →~n×m×s/g2×g2 An-1|Bm+1|~P

562009-05-08Luca Cardelli 562009-05-08 562009-05-08Luca Cardelli

Celebrities

A = !ar.A ⊕ ?ar.B

B = !bs.B ⊕ ?bs.A

(on ar) An|Bm →n×(n-1)×r An-1|Bm+1

(on bs) An|Bm →m×(m-1)×s An+1|Bm-1

where there are two
symmetric ?/! ways for A
to interact with A, hence
the propensity is 2×(n
choose 2)×r = n×(n-1)×r.

Strand(Celebrities)

P = ([A,A].[B,A])=2r/g2 |

([B,B].[A,B])=2s/g2
An|Bm|P →~n×(n-1)/2×2r/g2×g2 An-1|Bm+1|~P

An|Bm|P →~m×(m-1)/2×2s/g2×g2 An+1|Bm-1|~P

Oscillator

directive sample 0.03 1000

directive plot A(); B(); C()

new a@1.0:chan new b@1.0:chan new

c@1.0:chan

let A() = do !a;A() or ?b; B()

and B() = do !b;B() or ?c; C()

and C() = do !c;C() or ?a; A()

run (900 of A() | 500 of B() | 100 of C())

A B

!a

?c
?a

!b?b

C

!c

@1.0

@1.0

@1.0

900xA, 500xB, 100xC

A = !a(s);A ⊕ ?b(s);B

All translations preserve

stochastic semantics (to some

572009-05-08Luca Cardelli 572009-05-08 572009-05-08Luca Cardelli

A = !a(s);A ⊕ ?b(s);B

B = !b(s);B ⊕ ?c(s);C

C = !c(s);C ⊕ ?a(s);A

A+B →s B+B

B+C →s C+C

C+A →s A+A

([A,B].[B,B])=s/g2 |

([B,C].[C,C])=s/g2 |

([C,A].[A,A])=s/g2

stochastic semantics (to some

arbitrary approximation).

DNA

Summary

● Stochastic Strand Algebra can be obtained by restricting to finite

populations and adding gate rates.

o CTMC semantics.

o Based on propensities of global transitions.

● A notion of buffered (constant) populations can be defined (to arbitrary

approximation).

582009-05-08Luca Cardelli 582009-05-08 582009-05-08Luca Cardelli

● That can be used to embed stochastic formalisms into Strand Algebra

(and DNA), while preserving the stochastic semantics:

o Stochastic Chemistry

o (Stochastic) Interacting Automata

Nested Strand Algebra

592009-05-08Luca Cardelli 592009-05-08 592009-05-08Luca Cardelli

Motivation

● Strand Algebra is pretty low-level: it is combinatorial (like assembly

language).

● We want to demonstrate compilation of high(er) level languages to DNA.

● We consider an expression-based language, and we compile it to Strand

Algebra, seen now as an intermediate (assembly) language.

602009-05-08Luca Cardelli 602009-05-08 602009-05-08Luca Cardelli

Nested Expressions

● A sequence x1.x2.x3 is not in the syntax of the combinatorial algebra.

● Still, it can be defined as:

o x1.x2.x3 = x1.x0 | [x0,x2].x3

o where x0 can be chosen, e.g., as a fixed function of x1,x2

● The nested strand algebra generalizes this idea

o Operations can be nested.

612009-05-08Luca Cardelli 612009-05-08 612009-05-08Luca Cardelli

o Operations can be nested.

o The main change is allowing arbitrary terms after a gate input.

Nested Strand Algebra nnnn����

P ::= x ⋮ [x1,..,xn].P ⋮ 0 ⋮ P|P ⋮ P* n≥1

We now allow free cascading of operations: x1.[x2,x3].(x4|x5)

And we also allow triggering whole populations: x.P*

This syntax is a bit odd though: x1.x2.x3 has x2 is an input,

while in x1.x2 has x2 as an output. This gets confusing.

622009-05-08Luca Cardelli 622009-05-08 622009-05-08Luca Cardelli

Embedding of � in n�:

[x1|..|xn].[y1|..|ym] becomes ?[x1|..|xn].![y1|..|ym].0

while in x1.x2 has x2 as an output. This gets confusing.

We are going to better distinguish inputs form output,

further generalizing the nested algebra:

P ::= x ⋮ ?[x1,..,xn].P ⋮ ![x1,..,xn].P ⋮ 0 ⋮ P|P ⋮ P* n≥1

Reduction Relation for nnnn����

?[x1,..,xn].P | x1 | .. | xn → P Input Gate

![x1,..,xn].P → x1 | .. | xn | P Output Gate

The structural congruence relation is exactly the same

(we shall not bother with congruence under prefix).

The reduction relation changes only in the Gate rule:

632009-05-08Luca Cardelli 632009-05-08 632009-05-08Luca Cardelli

P → P’ ⇒ P | P” → P’| P” Diffusion

P ≡ P1, P1 → P2, P2 ≡ P’ ⇒ P → P’ Well Mixing

nnnn���� to ���� Unnest Algorithm

U(P) = X | U(X,P) for fresh X

U(X, x) = X.x

U(X, ?[x1,..,xn].P) = [X,x1,..,xn].Y | U(Y,P) for fresh Y

U(X, ![x1,..,xn].P) = X.[x1,..,xn,Y]| U(Y,P) for fresh Y

U(X, 0) = X.[]

U(X, P|P’) = X.[Y,Z] | U(Y,P) | U(Z,P’) for fresh Y,Z

U(X, P*) = (X.[Y,X] | U(Y,P))* for fresh Y

642009-05-08Luca Cardelli 642009-05-08 642009-05-08Luca Cardelli

In the inner loop U(X,P), the signal X triggers the activation of the

translation of P.

The ‘freshness’ side conditions are formalized by letting U(P) have an

additional parameter that is an infinite sequence of fresh signals

(distinct signals not occurring in P), which are consumed during the

translation.

nnnn���� to ���� Unnest Algorithm (more formal)

Let � be an infinite lists of distinct strands,

and 	 be the set of such �’s.

�i isthe i-th strand in the list,

�≥I is the list starting at the i-th position of �,

evn(�) is the even elements of �,

odd(�) is the odd elements.

Let 	P be the set of those �∈	 that

do not contain any strand that occurs in P.

Let P∈n� and �∈	P,

�

U(�0,P)� produces a gate that is triggered by �0.

652009-05-08Luca Cardelli 652009-05-08 652009-05-08Luca Cardelli

Let P∈n� and �∈	P,

let X indicate strands in �

U(�0,P)�≥1
produces a gate that is triggered by �0.

U(P)� = �0 | U(�0,P)�≥1

U(X, x)� = X.x

U(X, ?[x1,..,xn].P)� = [X,x1,..,xn].�0 | U(�0,P)�≥1

U(X, ![x1,..,xn].P)� = X.[x1,..,xn,�0] | U(�0,P)�≥1

U(X, 0) = X.[]

U(X, P’|P”) = X.[�0,�1] | U(�0,P’)evn(�≥2)
| U(�1,P”)odd(�≥2)

U(X, P*) = (X.[�0,X] | U(�0,P)�≥1
)*

Solving Recursive Equations

In the nested algebra we can more easily solve recursive equations,

because we can always “add one more prefix”.

To solve the following equations:

X = ?x1.X | !x2.Y

Y = ?x3.(X | Y)

662009-05-08Luca Cardelli 662009-05-08 662009-05-08Luca Cardelli

write:

(?X. (?x1.X | !x2.Y))* |

(?Y. ?x3.(X | Y))*

Triggering Populations

We can nest populations, and hence cause a single signal to release a
whole population:

U(?x.P*) = X | [X,x].Z | (Z.[Y,Z] | U(Y,P))*

x | U(?x.P*) → Z | (Z.[Y,Z] | U(Y,P))*
≡ Z | Z.[Y,Z] | U(Y,P) | (Z.[Y,Z] | U(Y,P))*
→ Y | U(Y,P) | Z | (Z.[Y,Z] | U(Y,P))*
…

672009-05-08Luca Cardelli 672009-05-08 672009-05-08Luca Cardelli

This causes a linear production of U(P); for an exponential production
just change U(X, P*) = (X.[Y,X,X] | U(Y,P))*

U(P) = X | U(X,P) for fresh X

U(X, x) = X.x

U(X, ?[x1,..,xn].P) = [X,x1,..,xn].Y | U(Y,P) for fresh Y

U(X, ![x1,..,xn].P) = X.[x1,..,xn,Y]| U(Y,P) for fresh Y

U(X, 0) = X.[]

U(X, P|P’) = X.[Y,Z] | U(Y,P) | U(Z,P’) for fresh Y,Z

U(X, P*) = (X.[Y,X] | U(Y,P))* for fresh Y

Exercise 6: Wet Vending Machine Controller

A coffee vending machine controller, Vend, accepts two coins for coffee;
an ok is given after the first coin and then either a second coin (for
coffee) or an abort (for refund) is accepted:

Vend = ?coin. ![ok,mutex]. (Coffee | Refund)
Coffee = ?[mutex,coin]. !coffee. (Coffee | Vend)
Refund = ?[mutex,abort]. !refund. (Refund | Vend)

Exercise: compile that to the Combinatorial Strand Algebra; if you do it
by the U(P) algorithm you can then heavily hand-optimize it.

682009-05-08Luca Cardelli 682009-05-08 682009-05-08Luca Cardelli

by the U(P) algorithm you can then heavily hand-optimize it.

Each Vend iteration spawns two branches, Coffee and Refund, waiting
for either coin or abort. The branch not taken in the mutual exclusion is
left behind; this could skew the system towards one population of
branches. Therefore, when the Coffee branch is chosen and the system
is reset to Vend, we also spawn another Coffee branch to dynamically
balance the Refund branch that was not chosen; conversely for Refund.

Standard questions can be asked: what happens if somebody inserts
three coins very quickly? Or somebody presses refund twice? Etc.

Summary

● The Nested Strand Algebra is a ‘high level’ (expression based) language.

● It can be compiled to the basic Strand Algebra by a simple algorithm.

● It is expressive enough to program classical controllers fairly

conveniently.

● And again, we can get DNA out of it.

692009-05-08Luca Cardelli 692009-05-08 692009-05-08Luca Cardelli

● And again, we can get DNA out of it.

Global Recap

702009-05-08Luca Cardelli 702009-05-08 702009-05-08Luca Cardelli

Molecules as Automata

=

Continuous
Chemistry

Discrete

Process
Algebra

ODE ODE

Continuous-state Semantics
(Mass Action Kinetics)

712009-05-08Luca Cardelli 712009-05-08 712009-05-08Luca Cardelli

=

Discrete
Chemistry

CTMC CTMC

Discrete-state Semantics

(Chemical Master Equation)

These diagrams commute via appropriate maps.

L. Cardelli: “On Process Rate Semantics” (TCS)

L. Cardelli: “A Process Algebra Master Equation” (QEST’07)

Automata as Molecules

Discrete
Chemistry

Interacting
Automata

Strand
Algebra

Discussed this week

Not discussed, but exists

Unclear

Join encodings cause

non-termination

Just follow the strand

displacement diagrams

Verification of DNA gates

Higher-level
languages Nested Strand Algebra

722009-05-08Luca Cardelli 722009-05-08 722009-05-08Luca Cardelli

DNA

Soloveichik et al.

Verification of DNA gates

(in some process algebra)

Verification of DNA gates:

prove that the DNA signal and a gate structures correctly

implement the Strand Algebra reduction semantics in all

possible contexts

Automata vs. Molecules

=
Continuous
Chemistry

Discrete
Chemistry

Interacting
Automata

ODE ODE

Continuous-state Semantics
(Mass Action Kinetics)

732009-05-08Luca Cardelli 732009-05-08 732009-05-08Luca Cardelli

=CTMC CTMC

Discrete-state Semantics

(Chemical Master Equation)

CTMC =

Chemistry Automata

Strand
Algebra

DNA

Open Problems/Questions

742009-05-08Luca Cardelli 742009-05-08 742009-05-08Luca Cardelli

Implementing Choice in DNA

● This would allow compiling interacting automata to strand algebra

without going through the n2-expansion of the chemical translation.

● This is hard.

● Particularly because we don’t have a restriction operator (in strand

algebra); otherwise there are some classical techniques to compile some

π-calculus choice operators to parallel compositions.

● Note that there is no restriction operator in DNA, unless maybe one

throws in the whole DNA transcription apparatus. Therefore, many

752009-05-08Luca Cardelli 752009-05-08 752009-05-08Luca Cardelli

throws in the whole DNA transcription apparatus. Therefore, many

encodings, particularly when replicated, tend to self-interfere.

Compiling Join to Choice

● I.e., compiling strand algebra to interacting automata.

● This should be just an exercise.

● Trivial if one admits divergence (by using the same “reversible binding”

trick as in the DNA implementation of join).

● But how can one compile join to choice in a termination-preserving way?

762009-05-08Luca Cardelli 762009-05-08 762009-05-08Luca Cardelli

Bib

For possible DNA implementations of the strand algebra see:

DNA as a Universal Substrate for Chemical Kinetics (Extended Abstract)

David Soloveichik, Georg Seelig, and Erik Winfree

http://www.dna.caltech.edu/Papers/DNA_for_CRNs_preprint_DNA14.pdf

(The primitives used here are x.y, x.[y,z], and [x,y].z).

and

772009-05-08Luca Cardelli 772009-05-08 772009-05-08Luca Cardelli

Programming biomolecular self-assembly pathways. P. Yin, H.M.T. Choi, C.R.

Calvert, N.A. Pierce Nature, 451:318-322, 2008.

(The primitives used here are x.y and x.[y,z], although “dissociation” is also

used to great effect, and this is not easily expressible.)

and

Strand Algebras for DNA Computing. L. Cardelli. Proc. DNA Computing 15.

