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Macro-Molecules as
Interacting Automata



Cells Compute

No survival without computation!
o Finding food
o Avoiding predators

How do they compute?
o Unusual computational paradigms.
o Proteins: do they work like electronic circuits?
o Genes: what kind of software is that?

Signaling networks
o Clearly “information processing”
o They are “just chemistry”: molecule interactions
o But what are their principles and algorithms?

Complex, higher-order interactions

o MAPKKK = MAP Kinase Kinase Kinase:
that which operates on that which operates on that
which operates on protein.

General models of biological computation
o What are the appropriate ones?

MAPK Family Pathways
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Ultrasensitivity in the mitogen-activated protein
cascade, Chi-Ying F. Huang and James E. Ferrell, Jr.,
1996, Proc. Natl. Acad. Sci. USA, 93, 10078-10083.




Biological “Algorithms”

Protein Production LDL-Cholesterol
and Secretion -— Y e Degradation
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Discrete State Transitions
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Process Algebra

[Hoare, Milner, Pnueli, etc.]

Reactive systems (living organisms, computer networks, operating systems, ...)

o Math is based on entities that react/interact with their environment
(“processes”), not on functions from domains to codomains.

Concurrent

o Events (reactions/interactions) happen concurrently and asynchronously,
not sequentially like in function composition.

Stochastic

o Or probabilistic, or nondeterministic,
but is never about deterministic system evolution.

Stateful

o Each concurrent activity (“process”) maintains its own local state,
as opposed to stateless functions from inputs to outputs.

Discrete

o Evolution through discrete transitions between discrete states,
not incremental changes of continuous quantities.

Kinetics of interaction
o An “interaction” is anything that moves a system from one state to another.



Kinetic laws:

Interacting Automata

E@s

A

a

2,1

’a, la

@r, @s

is a state

is a channel i.e. a hamed
interaction interface
(e.g. a surface patch)

indicate any complementarity of
interaction (e.g. charge)

indicate complementary actions,

are rates



Kinetic laws:

Interacting Automata

Two complementary
actions may result in
an interaction.

2,1

’a, la

@r, @s

is a state

is a channel i.e. a hamed
interaction interface
(e.g. a surface patch)

indicate any complementarity of
interaction (e.g. charge, shape)

indicate complementary actions,
joined by an interaction arrow:--»

are rates



Kinetic laws:

Interacting Automata

@@

E@s

Two complementary
actions may result in
an interaction.

A, is a state

a is a channel i.e. a named
interaction interface
(e.g. a surface patch)

[ indicate any complementarity of
interaction (e.g. charge)

7a, la indicate complementary actions,
joined by an interaction arrow:--»

@r, @s  are rates

A decay may happen
spontaneously.



Interacting Automata Transition Rules

‘ Current State
’ Delay O === P> Delay

E E === Transition
- T@r = T@r
® r e

(a@r)
Interaction
@ ... * ? |
............ a a
@r r

Q: What kind of mass behavior can this produce?

(We need to understand that if want to understand biochemical systems.)



Interacting Automata

The equivalent process algebra model

new a@r;, i
Communication
new b@rz channels
new c@rj
A, =7a; A, )
A, =!c; Ay
A; = T@A;; A,
Qg e i L0
== Transition BZ i T@?\1; B1 > 3
=== P Interaction B3 = ?b; B2 1] ®
C,=1b; C, +?c; C;
C, = 1@A;; C, i
allilresh U ol J J

initial state

A1 | B1 | C1 } The system and



Interactions in a Population

Suppose this is the ‘

-
next interaction Q Q

(stochasticall&hosen) ?a . 2a
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One lonely automaton
cannot interact



Interactions in a Population
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Interactions in a Population
A
?b
B
v

All-A stable
population

X



Interactions in a Population (2)

______________

Suppose this is the
next interaction




Interactions in a Population (2)

o g X
'

population

=
Q All-B stable

@ Nondeterministic
' population behavior

b (“multistability”)
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CTMC Semantics

CTMC
r (homogeneous) Continuous Time
e e Markov Chain
A B - directed graph with no self loops

- nodes are system states
- arcs have transition rates

Probability of holding in state A:
Pr(Hy>t) = et

in general, Pr(H,>t) = eRt where R is
the sum of all the exit rates from A

{1A,2B} 2r,




Stochastic Collectives

e “Collective”:

o Alarge set of interacting finite state automata:
e Not quite language automata (“large set”)
e Not quite cellular automata (“interacting” but not on a grid)
e Not quite process algebra (“collective behavior”)
e Cf. multi-agent systems and swarm intelligence

e “Stochastic”:

o Interactions have rates
e Not quite discrete (hundreds or thousands of components)
e Not quite continuous (non-trivial stochastic effects)
e Not quite hybrid (no “switching” between regimes)

e Very much like biochemistry
o Which is a large set of stochastically interacting molecules/proteins

o Are proteins finite state and subject to automata-like transitions?
e Let’s say they are, at least because:

e Much of the knowledge being accumulated in Systems Biology
is described as state transition diagrams [Kitano].



Chemistry vs. Automata

Says what “A” does.

rrA+B —,C+D  Doesa

become

s:C+D—>,A+B com

1 line per
reaction

Says what “A” is.

Can add a new component
without changing the old A B
ones (if their interface
remains fixed).

1 line per
component A

becomes

The same “state space”
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Groupies and Celebrities



Groupies and Celebrities

Celebrity

(does not want to be like somebody else)

directive sample 1.0 1000 a@1.0
directive plot A(); B() b@1.0

new a@1.0:chan()
new b@1.0:chan()

let A() = do !a; A() or ?a; B()
and B() = do !b; B() or ?b; A()

run 100 of (A() | B())

A stochastic collective of celebrities:

—A() —B
200 0 0

180 |
%0 /I equilibrium

140 -

120 - /

100 I 200 — B0
180
80 - 160 -
60 140 4
N 120 4
100 o
40 | | N
60 4
L m
0 T T T T 0 T T T V—
0 50 100 150 200
0 0.02 0.04 0.06 0.08 0.1

Stable because as soon as a A finds itself in the majority, it is more likely to find somebody in

the same state, and hence change, so the majority is weakened.




Groupies and Celebrities

Groupie

(wants to be like somebody different)

directive sample 1.0 1000 a@1.0
directive plot A(); B() b@1.0

new a@1.0:chan()
new b@1.0:chan()

let A() = do !a; A() or ?b; B()
and B() = do !b; B() or ?a; A()

run 100 of (A() | B())

A stochastic collective of groupies:

200 ——AO) —B0 _

180 - always
160 - eventually
140 - deadlock

120 |
100
80 |
60 |
40 |
20 |

0 : :

0 5‘0 1(;0 1;0 2(;0
0 0.5 1 15 2 .

Unstable because within an A majority, an A has difficulty finding a B to emulate, but the
few B’s have plenty of A’s to emulate, so the majority may switch to B. Leads to deadlock
when everybody is in the same state and there is nobody different to emulate.

——B0

200 -
180
160
140
120 |
100 4
80
60
40
2




Both Together

A way to break the deadlocks: Groupies with just a few Celebrities

directive sample 10.0
directive plot Ag(); Bg(); Ac(); Bc()

new a@1.0:chan()
new b@1.0:chan()

Many A feW let Ac() = do !a; Ac() or ?a; Bc()
GroupleS Celebrities and Bc() = do !b; Bc() or ?b; Ac()
let Ag() = do !a; Ag() or ?b; Bg()
and Bg() = do !b; Bg() or ?a; Ag()
run 1 of Ac()
run 100 of (Ag() | Bg())
never
- deadlock
500 Sk
Agl
Bal)
150 i
100 | mpl
50
1] - '

0 10



Hysteric Groupies

We can get more regular behavior from groupies if they “need more
convincing”, or “hysteresis” (history-dependence), to switch states.

—an

200 —— Ga() —— Gb() directive sample 10.0 1000
180 1 a “solid threshold” to observe switching : directive plot Ga(); Gb()

160 |
new a@1.0:chan()
. new b@1.0:chan()

160

o~
O

let Ga() = do !a; Ga() or ?b; ?b; Gb()

120 1 .La'mple and Gb() = do !b; Gb() or ?a; ?a; Ga()
?b 122 SIEINE let Da() = !a; Da()
Avs. B

60

and Db() = !b; Db()

40

20

run 100 of (Ga() | Gb())

0 run 1 of (Da() | Db())
la 'b (With doping to
break deadlocks)
N.B.: It will not oscillate regular
. . . oscillation
without doping (noise)
200 Ga() Gb0) / directive sample 10.0 1000

180 directive plot Ga(); Gb()

o~
O

new a@1.0:chan()
new b@1.0:chan()

~J
O

let Ga() = do !a; Ga() or ?b; ?b; ?b; Gb()
v 1 sample
) and Gb() = do !b; Gb() or ?a; ?a; ?a; Ga()
b orbit
i Avs. B let Da() = !a; Da()

and Db() = !b; Db()

At - : > run 100 of (Ga() | Gb()) .
0 1 2 3 4 5 6 7 8 9 10 ‘ ‘ ‘ run 1 of (Da() | Db())
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Some Devices

Cascade Amplifier

SPiM

1000 1000 &Rl
@1.0
: 750 50 750
! 'a i P 625
@1 0: 500 ED
19 500 Ia
! ‘a ” 375 ||:.
250 B o
125
125
% i i 1000
1000°S, 1'E Y 003
100 "aHi, 1000 bLo, 1000 cLo,
rates=1.0

v 100°F, 0.200E / \
e 20 //\ /A

bl
0.0002595 0003233
Simulaion: Time = 0.003033 (838 paints at 7.0447e-03 sinTime/sysTime ard halted)




More Devices

Oscillator

1200 SPiM

1000

a00 'a'l:l
B0
co

600 !
Ly )

! 5 \
A NAVANENNY ,
i Ll T

200

‘S 900xA, 500xB, 100xC  u03

Sinuln: e = 32210790 070 paits & 400 siTimezTine &4 hllr)

b (signal § :
[ 9 restoring): :

1

?a?b 7a7b
‘

?a?b

Inputs:
10 !a for 4t

) 2t; 10 !b for 4t

S100 4 .

80

60

P owd

20

: 0 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10




Build me a population like this:

1000 SPik

a7s

a0

625

500

375

260

125

1] 1000
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Second-order and Zero-order Regime

Second-Order Regime

1000 SFit + r F+ _
50 | E+S —»"E+P d[S]/dt = -r[E][S]
P
EQ directive sample 1000.0
o directive plot S(); P(); E()
375 new a@1.0:chan()
250 .
. let E() = !a; E()
and S() = 7a; P()

" 7 and P() =
1000xS, 1xE 0=

run (1 of E() | 1000 of S())

.........................................................................................................................................

Zero-Order Regime

........................................................................................................................................ E+S %r ES+P d[S]/dt N -1 (by assuming d[ES]/dt =0)

1000 SFiM ES %S E

@1.0 -
m 750 S0 directive sample 1000.0
| !a B2s Fo directive plot S(); P(); E()
@1.0' Ep

new a@1.0:chan()

: ?a 375 g
- © letE() = la; delay@1.0; E()
125 :

and S() = 7a; P()

0  andP() -
’ 1000xS, 1xE R =y

run (1 of E() | 1000 of S())



Cascades

| Second-Oder Regime cascade:
a signal amplifier (MAPK) e,

625 GH i > O : C H i = max new a@1.0:chan new b@1.0:chan new c@1.0:chan

let Amp_hi(a:chan, bichan) =
w0 p_hi( )

I3 do Ib; Amp_hi(a,0) or delay@1.0; Amp_lo(a,b)
: and Amp_lo(a:chan, b:chan) =
a7s Ik 2a; 20; Amp_hi(a,b)
»50 I run 1000 of (Amp_lo(ab) | Amp_lo(b.c))
let AQ = la; AQ)
125 run 100 of A()

a
a 0.03
100xaHi, 1000xbLo, 1000xcLo, rates=1.0

Zero-Oder Regime cascade:
12 a signal divider/

1500 Il:l

1250 Ic aHi “max —= CHi = 1/3 max directive sample 003

directive plot la; Ib; Ic
1oaa new a@1.0:chan new b@1.0:chan new c@1.0:chan
750 let Amp_hi(aichan, bichan) =

do Ib; delay@1.0; Amp_hi(a,b) or delay@1.0; Amp_lo(a,b)
and Amp_lo(aichan, bichan) =

500
?a; 2a; Amp_hi(a,b)
250 run 1000 of (Amp_lo(a,b) | Amp_lo(b.c))
o let AQ) = la; delay@1.0; A()
i 0.02 run 2000 of A(Q)

2000xaHi, 1000xbLo, 1000xcLo, rates=1.0




Ultrasensitivit

E+S — ES+P
F+P — FP+S
ES— E
FP—> P

10007

E+S — E+P
la F+P — F+S

@1.0r o

1000 SPir

800 F'I:I
600 E|:|

100xF, 0..200xE

directive sample 2150
directive plot S(): P(): EQ): ES(): F(): FP()

new a@1.0:chan() new b@1.0:chan()

let S() = 2a; P()
and P() = ?b; S()

let E() = la; delay@1.0; E()
Ib; delay@1.0; F()

run 1000 of S()

let clock(t:float, tickichan) = (* sends a tick every t time *)
(val ti = 1/100.0 val d = 1.0/ti  (* by 100-step erlang timers *)
let step(n:int) = if n<=0 then Itick: clock(t,tick) else delay@d; step(n-1)
run step(100))
let Sig(p:proc(), tickichan) = (p() | ?tick; Sig(p,tick))
let raising(p:proc(), t:float) =
(new tick:chan run (clock(t,tick) | Sig(p,tick)))

run 100 of F()
run raising(E,1.0)

directive sample 215.0 1000
directive plot S(): P(): E(): F()

new a@1.0:chan() new b@1.0:chan()

let S() = 2a; P()
and P() = 2b; S()

let EQ) = la; EQ)
and F() = Ib: F()

run 1000 of ()

let clock(t:float, tickichan) = (* sends a tick every t time *)
(val ti = 1/100.0 val d = 1O/ti  (* by 100-step erlang timers *)
let step(niint) = if n<=0 then Itick; clock(t tick) else delay@d: step(n-1)
run step(100))
let Sig(p:proc(), tick:chan) = (p() | ?tick: Sig(p.tick))
let raising(p:proc(), t:float) =
(new tickichan run (clock(ttick) | Sig(p.tick)))

run 100 of F()
run raising(E 1.0)

Zero-Order Regime
A small E-F inbalance causes
a much larger S-P switch.

Second-Order Regime



Design Exercise:
Making Waves

Build me a population like this:

B}

3993 20

=]
7936 4
5906 8
30892
19296
i

00002595 0003033 Live

Sirnulation: Time = 0.003033 (838 points at 7.0447e-06 simTime/sysTime and halted)



Nonlinear Transition (NLT)

Ic

'A+B >3B+B |

d[A]/dt = -s[A][B]
d[B]/dt = s[A][B]

999

GBE

333

0
0.0075957
Simulation: Time = 0.013448 (999 points at 0.0085215 simTime/sysTime and halted)

1200
1000
600
600 -
A00 -

200 -

a

interval/step [0:0.001:0.0]
(A)  dx1/dt=-x1*x2
(B)  dx2/dt=x1"x2 1.0

Matlab

directive sample 0.02 1000

directive plot B(); A() .

= N.B.: needs at
new c@s:chan least 1 B tO

let A() = ?c; B

and ) - 1) “get started”.

run (1000 of A() | 1 of B())

Paused



Two NLTs: Bell Shape

d[B]/dt = [B]([A]-[C])

directive sample 0.0025 1000
directive plot B(); A(); C()

new b@1.0:chan new c@1.0:chan

let A() = ?b; B()
and B() = do !b;B() or ?c; C()
and C() = !c;C()

run ((10000 of A()) | B() | C())

(A=17b,;B
C=1¢y);C

(A+B —1B+B |

| B+C " C+C |

d[A]/dt = -[A][B]
d[B]/dt = [A][B]-[B][C]
d[C]/dt = [B][C]

99999

EEEEE

99999

orm
So S

0
DDDDDDDD

DDDDDDD

continuous_sys_generator —

&00 1000 1500 2000 2500 3000

rval/step [0:0.000001:0.0025]
dt = -x1*x2 10000.0

(A) X X1*X
(B) dx2/dt = x1*x2 - x2*x3 1.0
(©)



NLTs in Series: Soliton Propagation

directive sample 0.1 1000
directive plot A1(); A2(): A3(); A4(); A5(): A6(): A7(): AB():
A9(): AL0(): AL1(): A12(): A13()

val r=1.0 val s=1.0

new a2@s:chan new a3@s:chan new a4@s:chan

new a5@s:chan new a6@s:chan new a7@s:chan

new a8@s:chan new a9@s:chan new al0@s:chan

new al1@s:chan new a12@s:chan new a13@s:chan

let A1() = do delay@r; A2() or 2a2; A2()

and A2() = do la2;A2() or delay@r; A3() or 2a3; A3()
and A3() = do !a3;A3() or delay@r; A4() or 2a4; A4()
and A4() = do la4;A4() or delay@r;A5() or 2a5; A5()
and A5() = do la5;A5() or delay@r;A6() or 2a6; A6()
and A6() = do la6;A6() or delay@r; A7() or 2a7; A7()
and A7() = do la7:A7() or delay@r; A8() or 2a8; A8()
and A8() = do !a8;A8() or delay@r; A9() or 2a9; A9()
and A9() = do !a9:A9() or delay@r; A10() or 2a10; A10()
and A10() = do !a10; A10() or delay@r;A11() or 2all; Al1()

SFikA and A11() = do la11;A11() or delay@r; A12() or 2a12; A12()
1000 and A12() = do la12;A12() or delay@r; A13() or ?a13; A13()
and A13() = la13;A13()
A0
a7ha 220 run 1000 of A1()
A3
240
780 o
BEQ
A00
625 b
130
500
375
2580
125
1] </ — .




NLT in a Cycle: Oscillator (unstable)

Ib
(A= a5;A ® b, ;B N B mammoe Matlab |

B =1b);B @ 2c);C |
L=leCDragA ) 7 |
(A+B —>SB+B ) |

B+C —sC+C
(C+A SA+A ode23t

i

H

1

l ' N‘W HHM

G- AT HHM' 1

d[B]/dt - s[BI[C]+ ’ W
d[C]/dt = -s[C][A]+ s[B][C]

‘

” “

HH H' | H W




938 i

798.4

598.8

3992

199.6

0,
0.00037355 0.22421
Simulation: Time = 0.224210 {1345 points at 0.010896 simTime/sysTime and halted)

Al
998 w2g
A3()

7984
598.8

3992

il

q
00032243 072935
Simulation: Time = 0723352 (6432 points at 0010541 simTime/sysTime and hatted)

SPiM

| SPiM

Oscillator (stable)

directive sample 0.1 1000
directive plot A1(); A2(); A3()

val r=1.0 val s=1.0

new al@s:chan new a2@s:chan new a3@s:chan

let A1() = do !a1;A1() or delay@r;A2() or ?a2; ?a2; A2()
and A2() = do !a2;A2() or delay@r;A3() or ?a3; ?a3; A3()
and A3() = do !a3;A3() or delay@r;A1() or ?a1; ?at; A1()

run 1000 of A1()

N.B. this does

6= laA® ;B @ ?b(s);A’\
A =1b;B
B =1!by);B @ 1,;C @ 7cy);B’
B’ =?c;C
C=1c;,C D 1A ?a);,C

Q’ = 7a,);A j

Sustained
Determinisitic
Oscillation

’A%r B \ 1000

L I
400 BO0 800 1000 1200

not deadlock! A+B —SA'+B .l
A'+B —5B+B -
B—r C -
B+C —sB’+C 500 -
B’+C —=sC+C o
C %r A 300+
Robust Stochastic ngAisC A:ﬁ 100
Oscillation \—/ 9 =0
("d[A]/dt = -r[A]-S[AI[Bl+r[CI+S[C’T[A] \ | =
d[B]/dt = -r[B]-s[B][C]+r[A]+S[A’][B]
d[C]/dt = -r[C]-s[C][A]+r[B]+s[B’][C]
d[A’]/dt = -s[AN'][B] + S[A][B]
d[B’]/dt = -s[B’][C] + s[B][C] wl
\ d[C’]/dt = -s[C’'][A] + s[C][A] )
2DD

uuhlululnl

h WL
uu ! Jx. R " b . " b m'lml J[M'MMIIL

15 35
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“Micromodels”: Continuous Time Markov Chains

The underlying semantics of stochastic w-calculus (and stochastic
interacting automata). Well established in many ways.

o Automata with rates on transitions.

“The” correct semantics for chemistry, executable.
o Gillespie stochastic simulation algorithm

Lots of advantages
o Compositional, compact, mechanistic, etc.

But do not give a good sense of “collective” properties.
o Yes one can do simulation.
o Yes one can do program analysis.
o Yes one can perhaps do modelchecking.
o But somewhat lacking in “analytical properties” and “predictive power”.



“Macromodels”: Ordinary Differential Equations

e The classical semantics of collective behavior.
o E.g. kinetic theory of gasses.

o They always ask: “How does you automata model relate to the 75 ODE models in the
literature?”

e Going from processes/automata to ODEs directly:

o In principle: just write down the Rate Equation:
- Let [S] be the “number of processes in state S” as a function of time.
- Define for each state S:

d[S]/dt = (rate of change of the number of processes in state S)
Cumulative rate of transitions from any state S’ to state S, times [S’],
minus cumulative rate of transitions from S to any state S”, times [S].

o Fairly intuitive (rate = inflow minus outflow)

e Going to ODEs indirectly through chemistry
o |If we first convert processes to chemical reactions,
then we can convert to ODEs by standard means!




The Two Semantic Sides of Chemistry

Continuous-state Semantics
(Mass Action Kinetics)

ODE = ODE
Continuous
Chemistry
1 T Process Nondeterministic
. Algebra Semantics
Discrete
Chemistr
‘ y l Stochastic
cTMC | = [ CTmC SEMELACE

Discrete-state Semantics
(Chemical Master Equation)

These diagrams commute via appropriate maps.
L. Cardelli: “On Process Rate Semantics” (TCS)

L. Cardelli: “A Process Algebra Master Equation” (QEST’07)



Quantitative Process Semantics

Continuous-state Semantics Process Rate Equation
(Mass Action Kinetics)
d[X]1/dt = ((YeE) Accrg(Y . X)-[Y]) - Deple(X)-[X]  forall X<E

ODE ODV
1 Accretion Depletjon

Continuous
Chemistry

1 T Process Nondeterministic

- Algebra Semantics Defined over the

Discrete syntax of processes
Chemistry :
‘ Stochastic
cmMc | = [cTme Semantics
Interactions Propensity

Discrete-state Semantics
(Chemical Master Equation) opr(p,t)/ot = Zig ap-vi)-pr(p-vi.t) - a(p)pr(p.t)  forall pe States(E)

Process Master Equation



Stochastic Processes
& Discrete Chemistry

ODE = ODE
Continuous ‘
Chemistry
1 T Process
Algeb
Discrete
Chemistry
CTMC = CTMC




Chemical Reactions (FSRN)

A
A, +A, - B, +..+ B, 0
A+A 5T B, +..+ B, 0

— B +...+ B, (n:0)

No other reactions!

Unary Reaction
Hetero Reaction

Homeo Reaction

d[A]/dt = -r[A]
d[A]/dt = -r[A][A,]
d[A]/dt = -2r[A]?

Exponential Decay
Mass Action Law

Mass Action Law

(assuming A=B;=A, for all i,j)

JOURNAL OF CHEMICAL PHYSICS VOLUME 113, NUMBER 1

The chemical Langevin equation

Daniel T. Gillespie®
Research Department, Code 4T4100D, Naval Air Warfare Center, China Lake, California 93555

Genuinely rimolecular reactions do not physically occur
in dilute fluids with any appreciable frequency. Apparently
trimolecular reactions in a fluid are usually the combined
result of two bimolecular reactions and one monomolecular
reaction, and involve an additional short-lived species.

Chapter IV: Chemical Kinetics
[David A. Reckhow , CEE 572 Course]

. reactions may be either elementary or non-
elementary. Elementary reactions are those
reactions that occur exactly as they are
written, without any intermediate steps. These
reactions almost always involve just one or two
reactants. ... Non-elementary reactions involve
a series of two or more elementary reactions.

Many complex environmental reactions are non-

elementary. In general, reactions with an
overall reaction order greater than two, or
reactions with some non-integer reaction order
are non-elementary.

THE COLLISION THEORY OF REACTION
RATES www.chemguide.co.uk

The chances of all this happening if
your reaction needed a collision
involving more than 2 particles are
remote. All three (or more) particles
would have to arrive at exactly the
same point in space at the same time,
with everything lined up exactly right,
and having enough energy to react.
That's not likely to happen very often!

Trimolecular reactions:
A+B+C—>'D

the measured “r” is an (imperfect)
aggregate of e.g.:

A+ B« AB

Enzymatic reactions:
S By P

E+S < ES

the “r” is given by Michaelis-Menten
(approximated steady-state) laws:




Chemical Ground Form

E::=0: X=M, E Reagents
M::=0: m;P®M Molecules
P::=0: X|P Solutions

Actions (delay, input, output)
Reagents plus Initial Conditions

skl oG e AR e O

CGF ::=E,P

(CGF)

A stochastic
subset of CCS

(no values, no restriction)

(To translate chemistry to processes we
need a bit more than interacting
automata: we may have “+” on the right
of —, that is we may need “|” after m.)

la

A|A|B|B

A=laaA®Mb;B —
B=1b;B®?a;A

@ is stochastic choice (vs. + for chemical reactions)
0 is the null solution (P|0 =0|P = P)
and null molecule (M@0 = 0&M = M)
Each X in E is a distinct species
Each name a is assigned a fixed rate r: a

Ex: Interacting Automata
(= finite-control CGFs: they use “|” only in initial conditions):

Automaton in state A

Automaton in state B

| Initial

conditions:
2A and 2B
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From CGF to Chemistry (by example)

A=la;;A®D ?a,;B
B = ?a(r);A D T()5A



From CGF to Chemistry (by example)

-
@...E(E)... A T A
; k
. B—SA
’CES)
A=1a;A® ?a;B

B =7a,A® 1A



From CGF to Chemistry (by example)

(@@

A+B —" A +B’

\_

?a:r

A=la;A® ?a;B
B =73,A® 1A



From CGF to Chemistry (by example)

A =
B =

la;A @ ?a;B
;A © 1A

( )
o G 0 ATA S A
o
\_ y,
B—>SA
A+B —" A+A
A+A =2 A+B

Double rate for
homeo reactions



From CGF to Chemistry (by example)

Interacting
Automata

initial states initial quantities
A a8 #A,

Discrete
Chemistry

A+A 52T AN +A”

ODE

t

Continuous
Chemistry

'

Discrete
Chemistry

v

CTMC

ODE

|

Process
Algebra

l

CTMC




From CGF to Chemistry: Ch(E)

E::=0: X=M, E Reagents , _
EX. & thei-th
M::=0: m;P®@M Molecules A-summand of the
| | molecule M
X == N R 1R Solutions associated with the

=T, ! fa, ¢ la, Interactions (delay, input, output) X reagent of E

CGF ::=E,P Reagents plus Initial Conditions

Chemical reactions for E,PI (N.B.: <...> are reaction tags to obtain multiplicity of reactions,
and P is P with all the | changed to +)

{(<x.i>: X =7 P) s.t. E.X.i = 7,;P} U

{(<X1YJ>X+Y—>"P+Q)stX¢Y s B

{(«XiXj>: X+ X =2 P+Q)s.t. E.X.i=7a, PEXJ-'a Q3
Initial conditions for P:

Ch(P):= P



Entangled vs Detangled

Entangled
' A+B —" A+B’ A+B —" A+B’
la
Q A+C =T A+C’ A+C =T A+C’
?a
H A=laA A=1b;A® Ic;A
, B =7?a;B’ B =7?b;B’
.'_a,' C = 7a;C’ C=2;C’
(@@r) g - B’ =0
C'=0 C’=0
Entangled: Two reactions Detangled: Two reactions
on one channel on two separate

channels

We need a semantics of automata that identifies
automata that have the “same chemistry”.

No traditional process algebra equivalence is like this!




Entangled vs detangled

E; Detangle(E;)

(closely related to
Pi(Ch(E;)) )



Chemical Parametric Form (CPF)

E::=0 : X(p)=M, E Reagents

M::=0: m;P®M Molecules

P::=0: X(p) | P Solutions

=T, i fayP) i lag(p) Actions

CPF::=E,P with initial conditions

@ is stochastic choice (vs. + for chemical reactions)
0 is the null solution (P|0 =0|P = P)
and null molecule (M@0 = 0&M = M)
Not bounded-state systems. Each X in E is a distinct species

e p are vectors of names
Not finite-control systems. p are vectors of distinct names when in binding position

But still finite-species systems. Each free name a in E is assigned a fixed rate r: a,
E :
A translation from CPF to CGF exists xample - .
(expanding all possible instantiation of Neg(a,b) = ?a; Inh(a,b) ® 7.; (Tr(b) | Neg(a,b))
parameters from the initial conditions) Inh(a,b) = 1,,; Neg(a,b)
Tr(b) = !b; Tr(b) ® 14; O

An incremental translation algorithm exists

Neg(x,X)
(expanding on demand from initial conditions)



CPF to CGF: Handling Parameters

Consider first the CPF subset with no communication (pure ?a, !a).

Grounding (replace parameters with constants)

E::=X =M., ..., X =M
where X/p is a name in bijection with <X,p> 1(P1)=M, n(Pn)=M,

(each X/p is seen as a separate species) M:=7P @ .. D n ;P

/(3P4 @ .. @ T 3P) =4er Ty5/ (Py) © . @ 5/ (Py) Pii=Xi(Pq) | e | Xn(Pn)
= a !

/(X1(p1) ittt Xn(Pn)) =def X1/p1 111t Xn/pn i T fa :a

Let N be the set of free names occurring in E.

E. is the Parametric Explosion of E (still a finite species system)
computed by replacing parameters with all combinations of free names in E

E; := {(X/q = /(M{p<q})) s.t. (X(P) =M) € Eand q € N}

P, :=/P (simply ground the given initial conditions once)

E; is a CGF! To obtain the chemical reactions Chy(E), just compute Ch¢(E)

ChP(E) i ChG(EG)



CPF to CGF: Handling Communication

Grounding (replace parameters with constants) E = X,(p,)=M X_(p.)=M
just one main change: now also convert each input parameter l 1 Hi i I
into a ground choice of all possible inputs M =Py © ... ® 5P,

N is the set of free names in E,P P ::=Xi(py) | .- | X,(Pp)

#p is the length of p n =1 a(p) la(p)

n/p is a name in bijection with <n,p>
X/p is a name in bijection with <X,p>
(each X/p is seen as a separate species)

/n(t;P) = 15 /(P)

/vt (P);P) = 1a/py; /(P)

/v (P);P) = ®(qe N#P) of ?a/qy,; /n(P{P<—q})
/(T3P @ ... ® T ;P.) = /(7,3 Py) @... @ /(m;P.)
INK(P1) | we | Xo(PR)) = X4/Py | oo | X/ Py,

E. is again the Parametric Explosion of E

Ec := {(X/q = /y(M{p<q})) s.t. (X(p) =M) € E and q € N*}

P; := /y(P) (simply ground the given initial conditions once)

Ch(E) = Chg(Eg) E; is a again a CGF!



CPF to CGF Translation. Ex: Neg(x,Xx)

E= e iteration 3 -----
Neg(a,b) = ?a; Inh(a,b) @ t,; (Tr(b) | Neg(a,b)) C :={Neg/x,x =€ Tr/x + Neg/x,x
Inh(a,b) = 1,; Neg(a,b) Tr/x =40
Tr(b) = !b; Tr(b) & 14; O Tr/x + Neg/x,x —PX) Tr/x + Inh/x,X
Neg(x,x) Inh/x,x —" Neg/x,x}
----- initialization ----- E.:= no change
E.:= {Neg/x,x = ?x; Inh/x,x ® t; (Tr/x | Neg/x,x)}  ----- termination -----
----- iteration 1 ----- /Neg/x,x —¢ Tr/x + Neg/x,Xx \
C := {Neg/x,x —¢ Tr/x + Neg/x,x } Tr/x =40
E.:= {Neg/x,x = ?2x; Inh/x,x & 1,; (Tr/x | Neg/x,x) Tr/x + Neg/x,x —PX) Tr/x + Inh/x,X
Tr/x = 1x; Tr/x & 14; 0} Inh/x,x —" Neg/x,x
----- iteration 2 ----- \Neg/x,x )
C :={Neg/x,x =€ Tr/x + Neg/x,x
Tr/x =40

Tr/x + Neg/x,x —PX) Tr/x + Inh/x,x }

E.:= {Neg/x,x = ?x; Inh/x,x @ 1,; (Tr/x | Neg/x,X)
Tr/x=1x; Tr/ix ® t4; O
Inh/x,x = 7,; Neg/x,x}
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From Chemistry to CGF (by example)

Reactions names
e

X: B —sA A
b: A+B —" A+A
c: A+A -2 A+B B

Half-rate for
homeo reactions
Unique reaction
names .
Species



From Chemistry to CGF (by example)

X(s) b r) Cir)

X: B —-osA A
b: A+B —" A+A
c: A+A 2 A+B B TA

1: Fill the matrix by columns:

Degradation reaction v;: X —k; P;
add 1;P; to <X,v;;>.



From FSRN to CGF (by example)

X(s) b r) Cir)

X: B—>%A
A A A
b: A+B T A+A
A+A —2r A+B B T;A 150

1: Fill the matrix by columns:

Degradation reaction v;: X —k; P;
add 1;P; to <X,v;;>.

Hetero reaction v;: X+Y —k; P,
add 7;P, to <X,v;> and !;0 to <Y,v;>



From FSRN to CGF (by example)

X(s) b r) Cir)

Xx: B —oSA 2:A|B

A BAIA U1
b: A+B - A+A b
c: A+A > A+B oo B | BB

1: Fill the matrix by columns:

Degradation reaction v;: X —k; P;
add 1;P; to <X,v;;>.
Hetero reaction v;: X+Y —k; P,
add 7;P, to <X,v;> and !;0 to <Y,v;>
Homeo reaction v;: X+X —k; P;
add 7;P, and !;0 to <X,v;>



From FSRN to CGF (by example)

X: B—osA 2:A|B
A BAIA 7
b: A+B =" A+A H
A+A QZr A+B B T;A !;O

1: Fill the matrix by columns:

Degradation reaction v;: X —k; P;
add 1;P; to <X,v;;>.
Hetero reaction v;: X+Y —k; P,
add 7;P, to <X,v;> and !;0 to <Y,v;>
Homeo reaction v;: X+X —k; P;
add 7;P, and !;0 to <X,v;>

2: Read the result by rows:

B=1,A ® Ibg;0




From FSRN to CGF (by example)

X(s) b Cir)

Xx: B —oSA 2:A|B
A )
b: A+B —T A+A 50
A+A -2 A+B B ©r

1: Fill the matrix by columns:

Degradation reaction v;: X —k; P;
add 1;P; to <X,v;;>.
Hetero reaction v;: X+Y —k; P,
add 7;P, to <X,v;> and !;0 to <Y,v;>
Homeo reaction v;: X+X —k; P;
add 7;P, and !;0 to <X,v;>

by
A,

B= 1A ® lb,s;A

2: Read the result by rows: | b
(r)



From FSRN to CGF (by example)

X: B—=SA
b: A+B —" A+A
A+A —2" A+B

1: Fill the matrix by columns:

Degradation reaction v;: X —k; P;
add 1;P; to <X,v;;>.
Hetero reaction v;: X+Y —k; P,
add 7;P, to <X,v;> and !;0 to <Y,v;>
Homeo reaction v;: X+X —k; P;
add 7;P, and !;0 to <X,v;>

2: Read the result by rows:

A=, ;A ® 2¢,;B @ lc;)A
B= 1A ® lb,);A

X(s) b r) C

nCE

T;A LA

i

?c(r)



From Chemistry to Automata (by example)

Half-rate for

channels and rates :
vy A+B —k, C+C Interaction (1 per reaction) homeo reactions
vi: A+C —k, D Matrix
Viky Vakz)  V3k3)  Vakar2)
v & ok BF A %(CIC) 7D
v,: F+F —k, B 0 ¢ B 1:0
oIS,
. . a8 C 50 T (EIF)
. Fill the matrix by columny =
=5 D
. . U a
Degradation reaction v;: X eki P, O E
add 1;P; to <X,v;;>. - = 2:B
Hetero reaction v;: X+Y —K; P, 50
add 7;P, to <X,v;> and !;0 to <Y,v;>
Homeo reaction v;: X+X —K; P,
add 7;P; and 150 to <X,v;> 2: Read the result by rows: OtDE = OADE
A= Wiy (C1C) @ 2vyq);D Continuous
C= V420 @ T35 (EIF) l T Process
D=0 Algebra
Discrete
E=0 Chemistry
F = Viua2B @ V4041250 ‘ v
CTMC = CTMC




From Chemistry to CGF: Pi(C)

M =" Y, +.+Y +0 Unary Reaction
vi X+ X" Y +.+Y +0 Binary Reaction

From uniquely-labeled (v:) chemical reactions C to a CGF Pi(C):

Pi(C) = {(X= &((v: X =KP)eC) of (t);P)

®((v: X+Y =k P)e C and Y=X) of (?v;P)

®((v: Y+X =k P)e C and Y=X) of (!v,;0)
D((v: X+X =K P)e C) of (?V(/2);P @ 1v(/2);0)
s.t. X is a species in C}

\&
\&
\&
\&

— ® @ @

ODE

t

Continuous
Chemistry

i

Discrete
Chemistry

v

CTMC

ODE

Process
Algebra

CTMC




Some Syntactic Properties

C and Ch(Pi(C)) have the same reactions
o (and their reaction labels are in bijection)

Def: E is detangled if each channel appears once as ?a and once as !a.

If C is a system of chemical reactions then Pi(C) is detangled.
o (hence chemical reactions embed into a subclass of CGFs)

Hence for any E, we have that Pi(Ch(E)) is detangled.
- (E and Pi(Ch(E)) are “equivalent” CGFs, but that has to be shown later)
Def: E,P is automata form if “|” occurs only (other than “|0”) in P.

Def: Detangle(E) is defined from Pi(Ch(E)) by replacing any occurrence pairs
?2a,); (X1Y10) and !a;0 with ?a,);(X]0) and !a;;(Y0).

If E is in automata form then Detangle(E) is (detangled and) in automata form
o (but Pi(Ch(E)) may not be)



ODE

Continuous
Chemistry
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Discrete Semantics of Reactions

Syntax:
A+B > A+A
A+B —" B+B
A+B+B
Semantics:
{1A,2B} 2r,
{3B} .-—.Oo—-o {3A}

2r,  2r, {2A,1B}

CTMC

ODE

t

Continuous
Chemistry

'

Discrete
Chemistry

v

CTMC

ODE

|

Process
Algebra

l

CTMC




Discrete Semantics of Reagents

Semantics:

{3B} «—oOo—-o {3A}

{1A,2B} 2r,

2r,  2r, {2A,1B}

CTMC

ODE

t

Continuous
Chemistry

'

Discrete
Chemistry

v

CTMC

ODE

|

Process
Algebra

l

CTMC




Discrete State Equivalence

Def: 22 is equivalent CTMC’s (isomorphic graphs with same rates).

o ODE = ODE ODE = ODE
Thm: E 22 Ch(E) 1 1
Continuous Continuous T
. e Chemistry Chemistry
Thm: C 22 Pi(C) l T Process
Algebra
Discrete
Chemistry
CTMC = CTMC CTMC = CTMC

For each E there is an E’ 22 E that is detangled (E’ = Pi(Ch(E)))

For each E in automata form there is an an E’ 2% E that is detangled and
in automata form (E’ = Detangle(E)).



Interacting Automata = Discrete Chemistry

This is enough to establish that the process

algebra is really faithful to the chemistry. OtDE = ODE
Conti
But CTMC are not the “ultimate semantics” C%r;m,l;?x,s ‘
because there are still questions of when two 1 T Process
different CTMCs are actually equivalent (e.g. S Algebra
“lumping”). Chemistry l
CTMC | = [ cTmC

The “ultimate semantics” of chemistry is the
Chemical Master Equation (derivable from the
Chapman-Kolmogorov equation of the CTMC).



http://LucaCardelli.name




Exercise 1

Second-Oder Regime cascade:
a signal amplifier (MAPK)

directive plot la; Ib; lc

625 GH i > O : C H i = max new a@1.0:chan new b@1.0:chan new c@1.0:chan

let Amp_hi(a:chan, bichan) =
w0 p_hi( )

I3 do Ib; Amp_hi(a,b) or delay@1.0; Amp_lo(a,b)
H and Amp_lo(a:chan, bichan) =
a7s Ik 2a; 20; Amp_hi(a,b)
»50 I run 1000 of (Amp_lo(ab) | Amp_lo(b.c))
let AQ = la; AQ)
125 run 100 of AQ)

1}

a 0.03
100xaHi, 1000xbLo, 1000xcLo, rates=1.0

Write these automata in
CGF and translate them
to chemical reactions.

Zero-Oder Regime cascade:
5 a signal divider/

1250 le aHi “max —= CHi = 1/3 max directive sample 003

directive plot la; Ib; Ic

1oaa new a@1.0:chan new b@1.0:chan new c@1.0:chan
750 let Amp_hi(achan, bichan) =
do Ib: delay®1.0; Amp_hi(a,b) or delay@1.0; Amp_lo(a,b)
00 and Amp_lo(aichan, bichan) =
?a; 2a; Amp_hi(a,b)
250
run 1000 of (Amp_lo(a,b) | Amp_lo(b.c))
a Sl 0
i i let AQ = la; delay@1.0; AQ)

run 2000 of AQ)

2000xaHi, 1000xbLo, 1000xcLo, rates=1.0




Process
Algebra

CTMC CTMC
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The “Type System” of Chemistry

The International System of Units (SI) defines the following physical units, with related derived units
and constants; note that amount of substance is a base unit in 51, like length and time:

mol  (a base unit) mole, unit of amount of substance

m (a base unit) meter, unit of length

5 (a base unit) second, unit of fime

L=0.001-m> liter (volume)

M=mol L molarity (concentration of substance)

Ny mmol™ = 6.022x107 Avogadro’'s number (number of particles per amount of substance)

For a substance X:mol, we write [X]:M for the concentration of X, and [X]'.'M-S_l for the time derivative

of the concentration.

A continuous chemical system (C,V) is a system of chemical reactions C
plus a vector of initial concentrations Vy: M, one for each species X.

The rates of unary reactions have dimension s'.

The rates of binary reactions have dimension M-'s1,
(because in both cases the rhs of an ODE should have dimension M-s1).

Relating Concentration to Number of Molecules
For a given volume of solution V, the volumetric factor y of dimension M1 is:

v: M1 = NV where N,:mol" and V:L

#X / v : M = concentration of X molecules
v:[X] : 1 = total number of X molecules (rounded to an integer).



Discrete
Chemistry

initial quantities

#A,

A - A

A+B - A'+B’

A+A =7 A+A”

The Gillespie Conversion

Continuous
: =N,V M-
Chemistry '~ 4
initial concentrations
[A]y with [A]y= #AO/’Y
A Sk A withk=r sl

A+B K A’+B”  withk=ry :Mls!

A+A K A’+A”  withk=ry/2 M-l

V = interaction volume
N, = Avogadro’s number

Think y=1
ie.V=1/N,

M = mol-L!
molarity (concentration)

ODE = ODE
1 A
Continuous
Chemistry
1 T Process
Algebra
Discrete
Chemistry
v v
CTMC = CTMC




ContY and DiscY

$|4.2—3 Definition: Cont, and Disc,

For a volumetric factor :M, we define a translation Cont, from a discrete chemical systems (C,P),

with species X and initial molecule count #Xy = #X(P), to a continuous chemical systems (C,V) with

initial concentration [X]y = Vx. The translation Disc, is its inverse, up to a rounding error [ v[X]o | in

converting concentrations to molecule counts. Since v is a global conversion constant, we later

usually omit it as a subscript.

Cont. (X =" P) =X-*P withk=r, ris ks
Cont(X+Y -*P) =X+Y>FP with k = ry ris7 kM st
Cont(X+X -'P) =X+X-FP with k = ry/2 ris7 kM st
Cont.(#Xg) =[X]o with [X]g = #Xo/y Xgmol  [X]o:M
Disc,(X - P) =X P withr=k, ks ris]
Disc(X+Y »¥P) =X+Y P with 1 = kfy kMst sl
Disc(X+X »¥P) =X+X-P with 1 = 2k/y kMs? sl
Disc([X]o) = #Xp with #Xg = y[X]o| [X]oM  Xg:mol

ChY = ContYoCh

ODE

t

Continuous
Chemistry

‘1

Discrete
Chemistry

v

CTMC

ODE

Process
Algebra

CTMC
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Same Semantics

Could chemistry itself be that semantics?
No: different sets of reactions can have the same behavior!

B—sA

A+B " A+A

A+A =" A+B

|
A=laA®1a;B . A=12;A® Ib;A ® 2b;B
B _ ?a;A® T(s);A Q“ - -a, oy «Jy
%, B =7?a;A® 7;A
B—sA ",
/ A+B 5" A+A "
A+A —' B+B < Different reactions,

but they induce the
same ODEs

A=1a;A® !b;B ® ?b;B
B =7?a;A® 1A



From Reactions to ODEs (Law of Mass Action)

vi: A+B —k, C+C Stoichiometric ODE

= ODE
Write th i A
V! A+C —k; D cor;fiicieents by T c 1
columns ontinuous
Vst C —k; E+F D Chemistry
-F+F —k. B : Process
Va 4 . reactions k2 1 T Algebra
N | ViV Vs Vs A _JL_ C Discrete
Quantity Al-1]-1 Chemistry
changes 8 B | -1 1 k1 ‘ A 4
Stoichiometric olCcl2]-1]-1 CTMC — CTMC
matrix 8_ D 1
kRate e E 1 B C
F 11-2 ‘k\ A K;
Set a rate law for each reaction
d[A]/dt - 'l1 B l'2 Read the concentration changes (Degradation/Hetero/Homeo)
d[B]/dt = 'l1 + l4 < from the rows l X: chemical species
d[C]/dt = 2[1 - [2 - [3 |.1 k1 [AT[B] E-]: ct|ualntity of molecules
: rate laws

d[D]/dt = lz E.g. d[A]/dt = L, k,[A][C] k: kinetic parameters
d[E]/dt — l3 'k1 [A][B] - kz[A][C] |.3 k3[C] N: stoichiometric matrix
d[F]/dt = |, - 21, L] KJFP




From Processes to ODEs via Chemistry!

A=la ;A® ;B |

€ =1¢);C @ fa)A )
(A+B —5B+B |

B+C —=sC+C
KC+A —S A+A )

Al
co

0 900xA, 500xB, 100xC 2%

" " intel
Matlab | «
continuous_sys_generator

(d[A]/dt = -s[A][B]+s[C][A]
d[B]/dt = -s[B][C]+S[A][B]
| d[C]/dt = -s[C][A]+s[B][C]

(r=1

directive sample 0.03 1000
directive plot A(); B(); C()

new a@1.0:chan new b@1.0:chan new
c@1.0:chan

let A() = do !a;A() or ?b; B()
and B() = do !b;B() or ?c; C()
and C() = do !c;C() or ?a; A()

run (900 of A() | 500 of B() | 100 of C())

oo
828
3Saa

ODE = ODE
1 A
Continuous
Chemistry
1 T Process
Algebra
Discrete
Chemistry
y v
CTMC = CTMC




From Processes to ODEs via Chemistry!

] | =Bt A
a b a: A4B — A4A lose 1A at rate ry
b: A+A —2r A+B x
(discrete reactions)
d[A]/dt = t[B] + ry[A][B] - ry[A]
‘a b Bt A d[B]/dt = -t[B] -r/[A][B] + ry[A]2
A+B ST A+A
(a@r) AAA o AT —

(b@r)

(continuous reactions)

Different chemistry

ODE

t

Continuous
Chemistry

'

Discrete
Chemistry

v

CTMC

ODE

|

Process
Algebra

------------------------------------------ but same ODES, hence IE NN NN I NS EEEEEE NN NN EEEEEEEEEEEEE
equivalent automata
:: z:];t_i A+A lose 2A at rate ry/2
b: A+A - B+B x
(discrete reactions)
d[A]/dt = t[B] + ry[A][B] - ry[A]*
Bt A l d[B]/dt = -t[B] -ry[A][B] + ry[A]?

A+B -5 A+A

ARA STRB T

(continuous reactions)




Processes Rate Equation

Process Rate Equation for Reagents E in volume vy

d[X]/dt = (Z(YeE) Accre(Y,X)-[Y]) -

for all XeE

“The change in process concentration (!!) for X at time t is:
the sum over all possible (kinds of) processes Y of:

the concentration at time t of Y
times the accretion from Y to X
minus the concentration at time t of X

times the depletion of X to some other Y”

Deple(X) =
E(i: EX.i=t;P) r +
X(i: E.X.i=?a,;P) ry-OutsOnc(a) +
¥(i: E.X.i=la(,;P) ry-InsOng(a)

Accre(Y, X) =
X(i: E.Y.i=t,;P) #X(P)r
X(i: E. Yl-?ar P) #X(P)- ryOutsOnE( ) +
X(i: E.Y.i=la);P) #X(P)-ryInsOng(a)

InsOng(a) = £(YeE) #{Y.i | E.Y.iz2a,,;P}-[Y]
OutsOng(a) = £(YeE) #{Y.i | E.Y.i=la;P}-[Y]

Deplg(X)-[X]

X = T(r);o — d

X =7a;0 d
—
Y =la;0 d

® la;);0

X S X

ODE = ODE
Continuous ‘
Chemistry

1 T Process

Algebra
Discrete
Chemistry
CTMC = CTMC
/dt = -r[X]

/dt = -ry[X][Y]
/dt = -ry[X][Y]

/dt = -2ry[X]?




Continuous State Equivalence

Def: = is equivalence of polynomials over the field of reals.

Thm: E = Cont(Ch(E))

Thm: Cont(C) = Pi(C)

For each E there is an E’ = E that is detangled (E’ = Pi(Ch(E)))

For each E in automata form there is an an E’ = E that is detangled and in

ODE

t

Continuous
Chemistry

'

Discrete
Chemistry

v

CTMC

automata form (E’ = Detangle(E)).

ODE

ODE

t

Continuous
Chemistry

CTMC

CTMC

ODE

Y

Process
Algebra

l

CTMC




200

180 |
160 |
140 |
120 -
100 |
80
60 -}
40 |
20 |

Q: What does this do?

Stochastic Answer:
robust quasi-oscillation

— Ga() —— Gb()

Exercise 2

A=la,;A® ;N A =7b;B
B =1b,;B®%;B B’ =7aA

Ad = !a(r);Ad
Bd = !b(r);BdJ

N

- stochasic system keeps
. oscillating at max level.

SPiM

140

120

100

80

B0

40+

20

180

160

dampened oscillation

| )
Derive the ODEs from these “Hysteric Groupies”
automata. Either by going through the chemical __
reactions and the Law of Mass Action (easier), or R
directly from the Process Rate Equation.
| JAN y,
O e e
. oscillation, while the Deterministic Answer:




Epidemics

Non-Chemical Mass Action

Kermack, W. O. and McKendrick, A. G. "A Contribution to the Mathematical Theory
of Epidemics.” Proc. Roy. Soc. Lond. A 115, 700-721, 1927.

http://mathworld.wolfram.com/Kermack-McKendrickModel.html



Epidemics

linfect ?infect

Susceptible Q?

- @recover

Recovered

?infect

Developing the Use of Process Algebra in the
Derivation and Analysis of Mathematical Models
of Infectious Disease

R. Norman and C. Shankland

Department of Computing Science and Mathematics, University of Stirling, UK.
{ces,ran}@cs.stir.ac.uk

Abstract. We introduce a series of descriptions of disease spread using
the process algebra WSCCS and compare the derived mean field equa-
tions with the traditional ordinary differential equation model. Even the
preliminary work presented here brings to light interesting theoretical
questions about the “best” way to defined the model.

new infect @0.001:chan()
val recover = 0.03

let Recovered() =
?infect; Recovered()

and Susceptible() =
tinfect; Infected()

and Infected() =
do linfect; Infected()
or ?infect; Infected()
or delay@recover; Recovered()

run (200 of Susceptible() | 2 of Infected())

25

Recovered() —— Susceptible() Infected()

200 -

150

100

50

0 50 100 150 200



Differentiating
Processes!

(.. )
S= ?.1(t),l |
| = !l(t);| ® ?1(t);l @ t ;R
6 = 2i5R )
@ +| S|+ )
| + | W] + | - “useless”
| =" R reactions
\R + I %t’y R + I/
d[S]/dt = -ty[S][I]
d[1]/dt = ty[S][I]-r[l]
d[R]/dt = r[l]
Automata %Z —efs
produce the gz alS —br
standard ODEs! % b

{the Kermack-McEendnck, or SIE model)|

ODEs

2507

2001

1501

100

501

250

200

160 -

100+

01

Infected(
Suzceptble
Recovered(

SPiM

S= ?.i(t);l
I'= i1 ®© 7R

t=0.001 r=0.03
SO=200 |0=2

v=1.0

200

Cell D [igner

S+ ]+
| -'R
t=0.001

r=0.03
$,=200/

h L L L |
0 100 120 140 160 180

T
continuous_sys_generator

ds/dt = -tySl
di/dt = tySl-rl
dRr/dt = rl

t=0.001 r=0.03
$,=200/7
1,=2/y

L
a0

100 150 200



Simplified Model

not useless! 4 , I
. S =il
linfect =15 -

r
Susceptible () Q) useless R=0
2infect Infected \_ J
- @recove Not totally obvious e
that one could have S+ U] +]
Recovered é simplified the
automata model. | - R

(d[S]/dt = -ty[S][1]
d[1]/dt = ty[SI[1]-[1]

————— :Chan() 25 Recovered() Susceptible() Infected() \d [R] /dt = r[ I]
val recover = 0.03 200
le(t) Recovered() = . Same ODE, hence
s equivalent
and Susceptible() =
?infect; Infected() 100 1 automata models.

and Infected() = 50 |
do linfect; Infected()
or delay@recover; Recovered()

0
run (200 of Susceptible() | 2 of Infected()) 0 50 100 150 200



Unbounded Systems

Luca Cardelli 2009-03-13 94



Predator-Prey

an®
.“ kl....
* “l- .

Herbivor & ¢ & @breeding
0.’
' 2cull
@predation |
' 1cull
Carnivor
....‘o
@mortality
2g5 Carni_vorO
’m Herbivord

Flotting: Live
Simulation: Halted, Tirme = 0.343410 (217 points at 0.00634 89 simTirmelsysTime)

directive sample 1.0 1000
directive plot Carnivor(); Herbivor()

val mortality = 100.0

val breeding = 300.0

val predation = 1.0

new cull @predation:chan()

let Herbivor() =
do delay@breeding; (Herbivor() | Herbivor())

or ?cull; ()

and Carnivor() =
do delay@mortality; ()
or !cull; (Carnivor() | Carnivor())

run 100 of Herbivor()
run 100 of Carnivor()

An unbounded
state system!



Lotka-Volterra in Matlab

C=1,0® Icp;(CIC)
#H,, #C,

(HoPH+H )
C—-m0
H+C—-o>PrC+C
[Hlo = #Ho/y

\[C]O = #Co/y

J

d[H]/dt = b[H]-py[H][C]
d[C]/dt = -m[C]+py[H][C]

[H]o = #Ho/y
[Clo = #Co/y

ann

700

600

500

400

ann

200

100

m=100.0
b=300.0
p=1.0
v=1.0
#H, = 100
#C, = 100

Carnivord  gpim
Herbivor)

Extinction

700

B00 [

a00

400

300

200

100

directive sample 0.35 1000
directive plot Carnivor(); Herbivor()

val mortality = 100.0

val breeding = 300.0

val predation = 1.0

new cull @predation:chan()

let Herbivor() =
do delay@breeding; (Herbivor() | Herbivor())
or 2cull; ()

and Carnivor() =
do delay@mortality; ()
or !cull; (Carnivor() | Carnivor())

run 100 of Herbivor()
run 100 of Carnivor()

i]

. L .
250 300 350 400

No extinction

Which one is the “right prediction”?
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Chemical Master Equation

Chemical Master Equation for a chemical system C

apr(s,t)/ot = X._, , a;i(s-Vv;)-pr(s-v;,t) - a;(s)-pr(s,t)  for all seStates(C)

Reactions Propensity
“The change of probability at time t of a state is: ODE —_ ODE
the sum over all possible (kinds of) reactions of: 1
the probability at time t of each state leading to this one _
times the propensity of that reaction in that state Contm_uous
minus the probability at time t of the current state Chemistry P
times the propensity of each reaction in the current state” l T A[;;E:;
se 1..N—Nat is a state of the system with N chemical species Discrete
Chemistry
pr(s,t) = Pr{y(t)=s |x(0)=sy} is the conditional probability of the system x ‘
being in state s at time t given that it was in state s, at time 0. CME = CME

There are 1..M chemical reactions.

v; is the state change caused by reaction i (as a difference)

a;(s) = ¢;-hy(r) is the propensity of reaction i in state s, defined by a base
reaction rate and a state-dependent count of the distinct combinations of
reagents. (It depends on the kind of reactions.)



Process Algebra Master Equation

Process Master Equation for a system of reagents E

apr(nt)/dt = Xig ai(r-v;)-pr(r-v;,t) - a(r)-pr(rt)  forall reStates(E)

Interactions Propensity
“The change of probability at time t of a state is: ODE —_ ODE
the sum over all possible (kinds of) interactions of: 1
the probability at time t of each state leading to this one _
times the propensity of that interaction in that state Contm_uous
minus the probability at time t of the current state Chemistry P
times the propensity of each interaction in the current state” l T A[;);E:ESI
re species(E)—Nat is a state of the system Discrete
Chemistry
pr(r,t) = Pr{x(t)=r |x(0)=ry} is the conditional probability of the system y ‘
being in state r at time t given that it was in state r, at time 0. CME = CME

3 is the finite set of possible interactions arising from a set of reagents E.
(All T and all 7a/!a pairs in E)

v; is the state change caused by interaction i (as a difference)

a;(r) = ryhy(r) is the propensity of interaction i in state r, defined by a base
rate of interaction and a state-dependent count of the distinct
combinations of reagents. (It depends on the kind of interaction.)



... details

Process Master Equation for Reagents E

pr(nt)/ot = X, 5 a(r-v;)-pr(r-v;,t) - a;(r)-pr(r,t)  for all reStates(E)

pr(p,t) = Pr{S(t)=p | S(0)=p,} is the conditional probability of the
system being in state p (a multiset of molecules) at time t
given that it was in state p, at time 0.

3 ={{X.i} s.t. EX.i =1,;,Q} U
{{X.i, Y.j} s.t. E.X.i=7?n;Qand E.Y.j = In;R}
is the set of possible interactions in E

v; is the state change caused by an interaction i€ 3.
V]. = -X+Q ]f ] = {X.]} s.t. E.X.i = T(r);Q
vi = -X-Y+Q+R if i={X., Y.j}s.t. EX.i=?n;;Qand E.Y.j = In;;R

a; is the propensity of interaction i in state p. Here p#* is the number of X in p.

a(p) = r-p* if i = {X.i} s.t. E.X.i = 7,;Q

ODE

t

Continuous
Chemistry

'

Discrete
Chemistry

v

CME

a;(p) = r-p*-p#Y if i = {X.i, Y.j} s.t. X=Y and E.X.i =7a,;Q and E.Y.j = la;;R

a;(p) = r-p™-(p™*-1) if i = {X.i, X.j} s.t. E.X.i =?a,;Qand E.X.j = la ;R

ODE

Process
Algebra

l

CME




Equivalence of Master Equations

e Def: = is equivalence of derived Master Equations (they are identical).

ODE = ODE ODE = ODE
e Thm: E= Ch(E) 1 1
Continuous Continuous ‘
. . Chemistry Chemistry
e Thm: C = Pi(C) l T Process
Algebra
Discrete
Chemistry
CME = CME CME = CME




GMA =z CME

ODE

t

Continuous
Chemistry

'

v, Discrete
‘ Chemistry

v

CTMC

ODE

|

Process
Algebra

l

CTMC

)

-

Semantics #1
Continuous state space

Syntax

Semantics #2
Discrete state space



Processes to GMA Directly

Process Rate Equation for Reagents E in volume vy

d[X]/dt = (Z(YeE) Accre(Y,X)-[Y]) -

for all XeE

“The change in process concentration (!!) for X at time t is:
the sum over all possible (kinds of) processes Y of:

the concentration at time t of Y
times the accretion from Y to X
minus the concentration at time t of X

times the depletion of X to some other Y”

Deple(X) =
E(i: EX.i=t;P) r +
X(i: E.X.i=?a,;P) ry-OutsOnc(a) +
¥(i: E.X.i=la(,;P) ry-InsOng(a)

Accre(Y, X) =
X(i: E.Y.i=t,;P) #X(P)r
X(i: E. Yl-?ar P) #X(P)- ryOutsOnE( ) +
X(i: E.Y.i=la);P) #X(P)-ryInsOng(a)

InsOng(a) = £(YeE) #{Y.i | E.Y.iz2a,,;P}-[Y]
OutsOng(a) = £(YeE) #{Y.i | E.Y.i=la;P}-[Y]

Deplg(X)-[X]

X = T(r);o — d

X =7a;0 d
—
Y =la;0 d

® la;);0

X S X

ODE = ODE
Continuous ‘
Chemistry

1 T Process

Algebra
Discrete
Chemistry
CTMC = CTMC
/dt = -r[X]

/dt = -ry[X][Y]
/dt = -ry[X][Y]

/dt = -2ry[X]?




Process Algebra Master Equation

Process Master Equation for a system of reagents E

apr(nt)/dt = Xig ai(r-v;)-pr(r-v;,t) - a(r)-pr(rt)  forall reStates(E)

Interactions Propensity
“The change of probability at time t of a state is: ODE —_ ODE
the sum over all possible (kinds of) interactions of: 1
the probability at time t of each state leading to this one _
times the propensity of that interaction in that state Contm_uous
minus the probability at time t of the current state Chemistry P
times the propensity of each interaction in the current state” l T A[;);E:ESI
re species(E)—Nat is a state of the system Discrete
Chemistry
pr(r,t) = Pr{x(t)=r |x(0)=ry} is the conditional probability of the system y ‘
being in state r at time t given that it was in state r, at time 0. CME = CME

3 is the finite set of possible interactions arising from a set of reagents E.
(All T and all 7a/!a pairs in E)

v; is the state change caused by interaction i (as a difference)

a;(r) = ryhy(r) is the propensity of interaction i in state r, defined by a base
rate of interaction and a state-dependent count of the distinct
combinations of reagents. (It depends on the kind of interaction.)



A+A 52r A =2 A+A->'0

1A is lost in reaction. 2A are lost in reaction.

Law of Mass Action

d[A]/dt £ -1/ry[A]2 d[A]/dt

In vol. YT Gillespie conversion
k=ry/2

1 CTMC

Gillespie conversion 1 In vol. y

k = 2ry/2

CTMC 1

(For conservation of mass, consider instead A+A —2"A+B  vs. A+A —' B+B)



A+A —2T A

°~J

A+A -0

d[A]/dt = -rg[A? = d[A]/dt = -ry[A]? = d[A]/dt = -ry[A]2 = d[A]/dt = -ry[A]?

A+A ST A
A=7a,);0 @ la;A [Alo=2/y
AlA N\ A+A 527 A
l A+A
y
2r — 2r
@ — [ ST )
AlA A A+A A
la
7a

A+A — 2 Q
[A]0=2/Y A = ?a(rlz);OAG') !a(r/z);o
Al
A+A >0 /
A+A l
\ ;
r — o >
A+A 3 — AlA ?)
?a la
(a@r/2)



Continuous vs. Discrete Groupies

2000

1000

2000 7

1000 -

directive sample 5.0 1000
directive plot B(); A()

new a@1.0:chan()
new b@1.0:chan()

let A(
and B()

o 1a; A() or b; B()
0 1b; B() or 7

let Ad()
and Bd() = Ib; BA()

run 2000 of A()
run 1 of (Ad() | BA()

(B8 (I8 (Wii®) U with doping

2000xA, 0xB , 1xA4, 1xB;, r=1.0

directive sample 5.0 1000
directive plot B(); A()

newa@1.0:chan()
new be1.0:chan()

let A() = do 1a; A() or 7b; 2; B()
and B() = do 1b; B() or 7a; 7a; A()

let Ad() =
and Bd()

123 Ad()
1b; Bd()

£un 2000 of A()
run 1 of (Ad() | B())

50

directive sample 5.0 1000
directive plot B(); A()

new a@1.0:chan()
new b@1.0:chan()

et A() = do la; A() or 7b; 7b; 2b; B()
fo 1b; B() or 7a; 7a; 7a; A()

run 2000 of A()
run1 of (Ad() | B4()

B

Al

50

50

Groupe ODEs - Groupies.mat

[0:0.001:5.0] r=1.0 k=1.0
2000.0

Groupe ODE - Groupies Hysteric 1.mat

[0:0.001:5.0] r=1.0 k=1.0.
Adx1/dt=xt"xd-x3'x1-x1+x4, 2000.0
A dQ/dtaxd X1 x2x1x2, 0.0
B A /dt=x3x2-x1"x3x34x2, 0.0
B’ dxd/dtex1x3x1°x+x3-x4, 0.0

Matlab

SPi

Groupe ODEs - Groupies Hysteric 2.mat

[0:0.001:5.0] r=1.0 k=1.0
A A1 /dtax1 x6-x3x1-x1+x6, 2000.0

B dxb/dt=x1"xd-x1"x6+x4-x6, 0.0



Scientific Predictions

;80

After a while, all 4
states are almost
equally occupied.

The 4 states are
almost never
equally occupied.



R.Blossey, L.Cardelli, A.Phillips:

Compositionality, Stochasticity and
An d Yet It Moves Cooperativity in Dynamic Models of

Gene Regulation (HFSP Journal)

The Repressilator A fine stochastic oscillator over a
] wide range of parameters.
X Neg Z
1 [yl Pi
Neg N eg Simulatm:a.'l?ig]rze = B3810.179900 {1070 points at 34439 simTime/sysTime and halted) e Feused
Parametric representation /d[Neg/x,yl/dt = -r[Tr/x][Neg/x,y] + h[Inh/x,y]
— ?2a- . d[Neg/y,z]/dt = -r[Tr/y][Neg/y,z] + h[Inh/y,z]
Neg(a,b) = 7a; Inh(a,b) © 7; (Tr(b) | Neg(a,b)) d[Neg/z,x]/dt = -r[Tr/z][Neg/z,x] + h[Inh/z,x]
Inh(a,b) = t,; Neg(a,b) d[Inh/x,y]/dt = r[Tr/x][Neg/x,y] - h[Inh/x,y]
Tr(b) = !b; Tr(b) ® 1,; 0 d[Inh/y,z]/dt = r[Tr/y][Neg/y,z] - h[Inh/y,7]
N N N d[Inh/z,x]/dt = r[Tr/z][Neg/z,x] - h[Inh/z,x]
eg(X(r),Y) | Neg(y(),z() | Neg(z),x,) d[Tr/x]/dt = e[Neg/z,x] - g[Tr/x]
‘ d[Tr/y]/dt = e[Neg/x,y] - g[Tr/y]
QTr/z]/dt = e[Neg/y,z] - g[Tr/z] /
Neg/x,y —¢ Tr/y + Neg/x,y

Neg/y,z —»¢ Tr/z + Neg/y,z

Neg/z,x —°¢ Tr/x + Neg/z,x Simp“fying (N is the quantity 122 | . ‘ |

Tr/x + Neg/x,y —" Tr/x + Inh/x,y of each of the 3 gates) su Analytlcauy not
Tr/y + Neg/y,z —" Tr/y + Inh/y,z [ \ il an oscillator!

Tr/z + Neg/z,x =" Tr/z + Inh/z,x d[Neg/x,y]/dt = hN - (h+r[Tr/x])[Neg/x,y]

Inh/x,y —" Neg/x,y d[Neg/y,z]/dt = hN - (h+r[Tr/y])[Neg/y,z]

Inh/y,z —" Neg/y,z d[Neg/z,x]/dt = hN - (h+r[Tr/z])[Neg/z,x]

Inh/z,x —h Neg/z,x d[Tr/x]/dt = e[Neg/z,x] - g[Tr/x] Matlab
Tr/x 20 d[Tr/y]/dt = e[Neg/x,y] - [Tr/y]
Tr/y —* O @Tr/z]/dt = e[Neg/y’Z] - g[Tr/Z] j rval/step [0:10:20000] N=1, r=1.0, €=0.1, h=0.001, g=0.001

inter
g (Neg/x,y) dx1/dt = 0.001 - (0.001 + x4)'x1 1.0
Tr/z —20 (Neg/x,y) dx2/dt = 0.001 - (0.001 + x5)'x2 1.0
(Neg/x,y) dx3/dt = 0.001 - (0.001 + x6)'x3 1.0
Neg/X,y + Neg/y,Z + Neg/Z,X (Tr/%) dx4/dt = 0.1%3 - 0.001°x4 100.0
(Trry) d¥5/dt = 0.1%x1 - 0.001%5 0

(Tr/z) dx6/dt = 0.1°x2 - 0.001*x6 0




Model Compactness

ODE = ODE
Continuous ‘
Chemistry

1 T Process

Algebra
Discrete

Chemistry

CTMC = CTMC




- E,, has 2n variables (nodes) and 2n terms (arcs).
- Ch(E,) has 2n species and n? reactions.

E;

Xo = 72X

X1 = ?a(r);XZ

Xy =23, Xg

Yo = la; Y,

Yy =1a,;Y;

Y, =1a;; Yo
ODE(E;)

d[Xo]/dt = -r[Xo][Yo]
d[X;]/dt = -r[X;][Y,]
d[Xz]/dt = -r[X,][Y,]
d[Yo]/dt = -r[Xo][Y,]
d[Y,]/dt = -r[X,][Y]
d[Y,]/dt = -r[Xo][Y-]

nZ Scaling Problems

- The stoichiometric matrix has size 2n-n? = 2n3.
- The ODEs have 2n variables and 2n(n+n) = 4n2 terms

(number of variables times number of accretions plus depletions when sums are distributed)

Ch(E,) StoichiometricMatrix(Ch(E,))

Agg: Xpt+Yo =" X +Y,

o G G G Go G G Qo G Gz

gyt Xo+Yq —F X,+Y, Xy -1 -1 -1 +1  +1 +1

Aq0: Xi+Yy =" Xo+Y, Xy 1+ +1 -1 -1 1

g XYy =N Xp+Y, X, +1 0+ o+ -1 1

A1zt Xi#Y =" Xp#Yo Yo -1 -1 -1 +

Ay Xo+Yy o Xp+Y4

3y, Xp+Y, " Xg+Y, =1 _ _

25" Xp+Y; o X+, £ - - -
E3

- FEXIIY AT - rDXoILY,] + rIX,][Yo] + rXILY4] + rXG]LY]

- FDXGIEYAT - rDXGIEYS] + rDXo Yol + rIXoIDY 4] + r[XoI[Y-] fa la

- IDGILY4] - rDGITY,] + rIXGIDYo] + rIXGIDY4] + rIX1LYo] al (x) (x) |

- FDXI0Y o] - rDXIDY 0] + rIXoILY,] + rDXGILY,] + rDXG]LY] A la

= PIXGIDY] - FIXIEYA] + rIXoIYo] + rIX(I[Yo] + rIX,][Yol ) (0

- XGI0YS] - rDXIEYS] + rIXeI[YA] + rIXGI0Y ] + rIX,10Y4]



Entangled vs detangled

E; Detangle(E;)

(closely related to
Pi(Ch(E;)) )



Model Maintenance

e Biology (unlike much of chemistry) is
combinatorial

o Biochemical systems have many regular repeated
components

o Components interact and combine in complex
combinatorial ways

Components have local state

o A biochemical system is vastly more compact that
its potential state space Or

e One may have to expand the state space during
analysis, but must not do it during description

e There is a good way:
o Describe biochemical systems compositionally

o Each component with its own state and
interactions

o ... as Nature intended... Or ...
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Process Algebra is ‘Bigger’ than Chemistry

Continuous-state Semantics
(Mass Action Kinetics)

ODE

t

Continuous
Chemistry

'

Discrete
Chemistry

v

CTMC

ODE

|

Chemical
Ground Form

a

CTMC

Discrete-state Semantics
(Chemical Master Equation)

Represent
combinatorial

chemical systems
compactly




Process Algebra is ‘Bigger’ than Chemistry

Continuous-state Semantics
(Mass Action Kinetics)

ODE

t

X

Continuous
Chemistry

ODE

E

'

Discrete
Chemistry

X

Biochemical
Ground Form

v

CTMC

X

1

CTMC

Discrete-state Semantics
(Chemical Master Equation)

Represent
infinite

chemical systems
finitely




Process Algebra is ‘Bigger’ than Chemistry

Continuous-state Semantics
(Mass Action Kinetics)

obE] X [oDE
t 12
Continuous
Chemist
elm]f Ty rt-Calculus
k-Calculus
Discrete x
Chemistry 1
CTMC )( CTMC

Discrete-state Semantics
(Chemical Master Equation)

Represent
generative

chemical systems
finitely
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Conclusions

Process Algebra OE] = [OmE
o An extension of automata theory to populations of interacting automata Continuous
o Modeling the behavior of individuals in an arbitrary environment Chimitry T
o Compositionality (combining models by juxtaposition) v Algebra
Chemistry
Connections between modeling approaches _

o Connecting the discrete/concurrent/stochastic/molecular approach
o to the continuous/sequential/deterministic/population approach

Connecting syntax with semantics
o Syntax = model presentation (equations/programs/diagrams/blobs etc.)
o Semantics = state space (generated by the syntax)

Ultimately, connections between analysis techniques

o We need (and sometimes have) good semantic techniques to analyze state
spaces (e.g. calculus, but also increasingly modelchecking)

o But we need equally good syntactic techniques to structure complex models
(e.g. compositionality) and analyze them (e.g. process algebra)

A bright future for Computer Science and Logic in modern Biology

o Biology needs good analysis techniques for discrete systems analysis
(modal logics, modelchecking, causality analysis, abstract interpretation, ...)



