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Scientific Method vs. Engineering Method
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Scientific Method vs. Engineering Method

When the models and Combined

the systems are both

too complex to either The models that we Method
be the full Truth discover should be

suitable for construction

Y

T Model JF \

Discovery )

S . o
5 Recursive o
-] =
= Development S
S S
o S5

(uoneau.ue/\

The systems that we build
should be suitable for
discovery



Scientific Method vs. Engineering Method
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Modeling Approach

e We believe that {petri nets, process algebra, term rewriting, multiagent
systems} are {better, complementary} for modeling biological systems
than {SBML, Kohn charts, chemical reactions, ODEs}.

e We take a paper from the literature (usually ODEs or chemical reactions)
and “code it up” in e.g. Petri nets.

e How do we know that’s the “same system” ? How do we convince
mathematical biologists that we are doing the “right thing”?
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Process Algebra

[Hoare, Milner, Pnueli, etc.]

Reactive systems (living organisms, computer networks, operating systems, ...)

o Math is based on entities that react/interact with their environment
(“processes”), not on functions from domains to codomains.

Concurrent

o Events (reactions/interactions) happen concurrently and asynchronously,
not sequentially like in function composition.

Stochastic

o Or probabilistic, or nondeterministic,
but is never about deterministic system evolution.

Stateful

o Each concurrent activity (“process”) maintains its own local state,
as opposed to stateless functions from inputs to outputs.

Discrete

o Evolution through discrete transitions between discrete states,
not incremental changes of continuous quantities.

Kinetics of interaction
o An “interaction” is anything that moves a system from one state to another.



Kinetic laws:

Interacting Automata
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Kinetic laws:

Interacting Automata

@@

E@s

Two complementary
actions may result in
an interaction.

?,!

73, la

@r, @s

is a state

is a channel i.e. a named
interaction interface
(e.g. a surface patch)

indicate any complementarity of
interaction (e.g. charge, shape)

indicate complementary actions,
joined by an interaction arrow:--»

are rates



Kinetic laws:

Interacting Automata

;@r

E@s

Two complementary
actions may result in
an interaction.

A, is a state

a is a channel i.e. a named
interaction interface
(e.g. a surface patch)

7,1 indicate any complementarity of
interaction (e.g. charge)

7a, la indicate complementary actions,
joined by an interaction arrow:--»

@r, @s  are rates

A decay may happen
spontaneously.



Interactions in a Population
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Interactions in a Population (2)
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Interactions in a Population (2)
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CTMC Semantics

CTMC
r (homogeneous) Continuous Time
e e Markov Chain
A B - directed graph with no self loops

- nodes are system states
- arcs have transition rates

Probability of holding in state A:
Pr(Hy>t) = et

in general, Pr(H,>t) = eRt where R is
the sum of all the exit rates from A

{1A,2B} 2r,

2r,
{3B} @e——0g___20—»® {3A}

2ry
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Reactions vs. Components

Says what “A” does.

rrA+B—,C+D  Doesa

become

scsC+D—>,A+B com

1 line per
reaction

Says what “A” is.

Can add a new component
without changing the old A
ones (if their interface
remains fixed).

1 line per

The same “state space”

CTMC

From Petri & Reisig, Scholarpedia, 2009 %

component A —_ ! rk1 ; C becémes
C _ ?Skz; A C not D!
B = (T, D
D = S, B



Some Devices

Cascade Amplifier
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More Devices

Oscillator
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The Two Semantic Sides of Chemistry

Continuous-state Semantics
(Mass Action Kinetics)

ODE = ODE

Continuous
Chemistry

1 T Process Nondeterministic

. Algebra Semantics

Discrete
Chemist
‘ ry l Stochastic
cTMC | = [ CTmC SR

Discrete-state Semantics
(Chemical Master Equation)

These diagrams commute via appropriate maps.
L. Cardelli: “On Process Rate Semantics” (TCS)
L. Cardelli: “A Process Algebra Master Equation” (QEST’07)



Quantitative Process Semantics

Continuous-state Semantics Process Rate Equation
(Mass Action Kinetics)
d[X]1/dt = (E(YeE) Accrg(Y . X)-[Y]) - Deple(X)[X]  forall XeE

ODE ooy
1 Accretion Depletjon

Continuous
Chemistry

1 T Process Nondeterministic

_ Algebra Semantics Defined over the

Discrete syntax of processes
Chemistry :
‘ Stochastic
CIMC | = [ CTMC SenEies

Intepdctions Propensity

Discrete-state Semantics
(Chemical Master Equation) opr(p.t)/ot = Ziga(p-v;)-pr(p-vit) - a(p)pr(p,t)  forall peStates(E)

Process Master Equation
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Chemical Reactions

A
A1 + Az %r B1 +...t+ Bn (nzO)

— By +...+ B, (0

A+A 5T B, +..+ B, 0

No other reactions!

Unary Reaction
Hetero Reaction

Homeo Reaction

d[A]/dt = -r[A]
d[A]/dt = -r[A][A,]
d[A]/dt = -2r[A]?

Exponential Decay
Mass Action Law

Mass Action Law

(assuming A=B;=A, for all i,j)

JOURNAL OF CHEMICAL PHYSICS VOLUME 113, NUMBER 1

The chemical Langevin equation

Daniel T. Gillespie®
Research Department, Code 4T4100D, Naval Air Warfare Center, China Lake, California 93555

Genuinely frimolecular reactions do not physically occur
in dilute fluids with any appreciable frequency. Apparenily
trimolecular reactions in a fluid are usually the combined
result of two bimolecular reactions and one monomeolecular
reaction, and involve an additional short-lived species.

Chapter IV: Chemical Kinetics
[David A. Reckhow , CEE 572 Course]

. reactions may be either elementary or non-
elementary. Elementary reactions are those
reactions that occur exactly as they are
written, without any intermediate steps. These
reactions almost always involve just one or two
reactants. ... Non-elementary reactions involve
a series of two or more elementary reactions.

Many complex environmental reactions are non-

elementary. In general, reactions with an
overall reaction order greater than two, or
reactions with some non-integer reaction order
are non-elementary.

THE COLLISION THEORY OF REACTION
RATES www.chemguide.co.uk

The chances of all this happening if
your reaction needed a collision
involving more than 2 particles are
remote. All three (or more) particles
would have to arrive at exactly the
same point in space at the same time,
with everything lined up exactly right,
and having enough energy to react.
That's not likely to happen very often!

Trimolecular reactions:
A+B+C—>'D

the measured “r” is an (imperfect)
aggregate of e.g.:

A+ B« AB

Enzymatic reactions:
S B P

E+S < ES

the “r” is given by Michaelis-Menten
(approximated steady-state) laws:




Chemical Ground Form (CGF)

E::=0 : X=M, E Reagents
M::=0: m;P®M Molecules
Sl {bd AR O E Solutions
M=t P g

(To translate chemistry to processes we
need a bit more than interacting
automata: we may have “+” on the right
of —, that is we may need “|” after m.)

@ A|A|B|B

b A=1a;A®?b;B  —
B=1b;B®?a;A

A stochastic
subset of CCS

(no values, no restriction)

Actions (delay, input, output)
Reagents plus Initial Conditions

@ is stochastic choice (vs. + for chemical reactions)
0 is the null solution (P|0 =0|P = P)
and null molecule (M@0 = 0&M = M)
Each X in E is a distinct species
Each name a is assigned a fixed rate r: a,

Ex: Interacting Automata
(= finite-control CGFs: they use “|” only in initial conditions):

Automaton in state A

Automaton in state B

' Initial

conditions:
2A and 2B



From CGF to Chemistry (by example)

A=la;,;A®D ?a,;B
B =7a,;A® 1A



From CGF to Chemistry (by example)

-

@..‘.@... A st A

B—>SA

A=la;A® ?a;B
B =7a,A® 1A



From CGF to Chemistry (by example)

@®--@

A+B - A’'+B’

2,
la, EO—=6)

A=1a;A® ?a;B
B =73,A® 1A



From CGF to Chemistry (by example)

\

A+A 527 AN +A”

Double rate for
homeo reactions

A=1a;A® ?a;B
B =7a;A® 1A



From CGF to Chemistry (by example)

Interacting
Automata

initial states
AlA] ... | A

Discrete
-

Chemistry

initial quantities
#hAg

A+A 52T AN +A”

ODE

t

Continuous
Chemistry

i

Discrete
Chemistry

v

CTMC

ODE

|

Process
Algebra

l

CTMC




From CGF to Chemistry: Ch(E)

E::=0: X=M, E Reagents , ,
E.X.i & thei-th
M::=0: m;P@®M Molecules A-summand of the
| | molecule M
FEt e MR DR Solutions associated with the

T:=Ty i {3, i lag Interactions (delay, input, output) X reagent of E

CGF ::=E,P Reagents plus Initial Conditions

Chemical reactions for E,PI (N.B.: <...> are reaction tags to obtain multiplicity of reactions,
and P is P with all the | changed to +)

{(«X.i>: X =" P) s.t. E.X.i =1(,;P} U

{(x.i,Yj>: X+ Y =T P + Q) s.t. X=Y, E.X.i =7?a,;P, E.Y.j = la,);Q} L

{(Xixj>: X+ X 2P + Q) s.t. E.X.i =7a;P, E.X.j =la,;Q}
Initial conditions for P:

Ch(P):= P
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From Chemistry to CGF (by example)
Xs br C /I Reactions names
X: B—oSA ©) " (0
b: A+B =" A+A
c: A+A -2 A+B B

Half-rate for
homeo reactions
Unique reaction
names .
Species

A



From Chemistry to CGF (by example)

X(s) br) Cr)

X: B—>A A
b: A+B - A+A
c: A+A 57T A+B S vt

1: Fill the matrix by columns:

Degradation reaction v;: X —k; P,
add t;P; to <X,v;;>.



From FSRN to CGF (by example)

X(s) br) Cr)

X: B-—>A

A ZA|A
b: A+B > A+A
c: A+A 52T A+B B R 0

1: Fill the matrix by columns:

Degradation reaction v;: X —k; P;
add t;P; to <X,v;;>.

Hetero reaction v;: X+Y —k; P,
add 7;P; to <X,v;> and !;0 to <Y,v;>



From FSRN to CGF (by example)

X(s) br) Cr)

X: B—sA 2:A|B

A BAIA
b: A+B ' A+A s
c: A+A 52" A+B B O

1: Fill the matrix by columns:

Degradation reaction v;: X —k; P;
add t;P; to <X,v;;>.
Hetero reaction v;: X+Y —k; P,
add 7;P; to <X,v;> and !;0 to <Y,v;>
Homeo reaction v;: X+X —k; P;
add 7;P; and !;0 to <X,v;>



From FSRN to CGF (by example)

X: B —oSA 2:A|B

A BAIA Tl
b: A+B - A+A *
c: A+A -2 A+B B O

: Fill the matrix by columns:

Degradation reaction v;: X —k; P;
add t;P; to <X,v;;>.
Hetero reaction v;: X+Y —k; P,
add 7;P; to <X,v;> and !;0 to <Y,v;>
Homeo reaction v;: X+X —k; P;
add 7;P; and !;0 to <X,v;>

: Read the result by rows:

A=17b);(AlA) @ ?c);(AIB) @ Ic);0



From FSRN to CGF (by example)

X(s) b Cr)

X: B—oSA %;A|B
A )

b: A+B - A+A ;0

c: A+A -2 A+B i A ‘

1: Fill the matrix by columns:

Degradation reaction v;: X —k; P;
add t;P; to <X,v;;>.
Hetero reaction v;: X+Y —k; P,
add 7;P; to <X,v;> and !;0 to <Y,v;>
Homeo reaction v;: X+X —k; P;
add 7;P; and !;0 to <X,v;>

2: Read the result by rows:

A=A @ ?c);(AIB) @ Ic();0



From FSRN to CGF (by example)

B —>SA
b: A+B —f A+A
c: A+A 52" A+B

2

1: Fill the matrix by columns:

Degradation reaction v;: X —k; P;
add t;P; to <X,v;;>.
Hetero reaction v;: X+Y —k; P,
add 7;P; to <X,v;> and !;0 to <Y,v;>
Homeo reaction v;: X+X —k; P;
add 7;P; and !;0 to <X,v;>

2: Read the result by rows:

A=A @ ¢ ;B @ lIc);A

X(s) br) C

T;A A



From Chemistry to CGF: Pi(C)

X - Y +.+Y, +0 Unary Reaction
vi X+ Xy Yi+.+Y, +0 Binary Reaction

From uniquely-labeled (v:) chemical reactions C to a CGF Pi(C):

Pi(C) = {(X= @((v: X =KP)eC) of (ty);P)
®((v: X+Y =k P)e C and Y=X) of (?v;P)
®((v: Y+X =k P)e C and Y=X) of (!v;0)
D((v: X+X =K P)eC) of (?V(2);P @ V(2),0)
s.t. X is a species in C}

— e e —

— ® ® O

ODE

t

Continuous
Chemistry

i

Discrete
Chemistry

v

CTMC

ODE

Process
Algebra

CTMC




Continuous
Chemist
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Discrete State Equivalence

Def: 222 is equivalent CTMC’s (isomorphic graphs with same rates).

o ODE = ODE ODE = ODE
Thm: E 22 Ch(E) 1 1
Continuous Continuous I
. n e Chemistry Chemistry
Thm: C 22 PI(C) l T Process
Algebra
Discrete
Chemistry l
CTMC = CTMC CTMC = CTMC

For each E there is an E’ 222 E that is detangled (E’ = Pi(Ch(E)))

For each E in automata form there is an an E’ 2% E that is detangled and
in automata form (E’ = Detangle(E)).



Interacting Automata = Discrete Chemistry

This is enough to establish that the process

algebra is really faithful to the chemistry. OfDE = ODE
. . Conti
But CTMC are not the “ultimate semantics” C%ne,::fx,s I
because there are still questions of when two 1 T Process
different CTMCs are actually equivalent (e.g. S Algebra
“lumping”). Chemistry l
CTMC | = [ CTMC

The “ultimate semantics” of chemistry is the
Chemical Master Equation (derivable from the
Chapman-Kolmogorov equation of the CTMC).
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The Gillespie Conversion

V = interaction volume
N, = Avogadro’s number

Think y = 1
ie. V=1/N,
initial quantities initial concentrations M = mol-[1
#AO [A]O with [A]O = #AO/'Y molarity (concentration)
A - A A Sk A with k=1 ;57!
A+B -t A’+B’ A+B K A+B”  withk=ry :Mls'
ODE = ODE
Continuous ‘
_ Chemistry
A+A -t A'+A” A+A SK A+A” with k= ry/2 :M-sl l T Process
Algebra
Discrete
Chemistry
CTMC = CTMC




Conty and DiscY

+|4.2—3 Definition: Cﬂﬂt-f and DiscT

For a volumetric factor p:M !, we define a translation Cont., from a discrete chemical systems (C,P),
with species X and initial molecule count #Xy = #X(P), to a continuous chemical systems (C,V) with
initial concentration [X]p = Vy. The translation Disc, is its inverse, up to a rounding error [ y[X]o | in
converting concentrations to molecule counts. Since 7y is a global conversion constant, we later
usually omit it as a subscript.

Cont. (X =" P) =X-kP withk=r, ris! ks

Cont(X+Y »*P) =X+Y kP with k = ry ris! kM sl

Cont(X+X »*P) =X+X-FP with k = ry/2 ris! kM sl

Cont.(#Xg) =[X]o with [X]g = #Xo/y Xgmol  [X]p:M

Disc(X =5 P) =X—'P withr=k, ks r:s!

Disc(X+Y -5P) =X+Y >'P with r = kfy kMt st

Disc(X+X =%P) =X+X-'P with r = 2k/y kMt st

Disc,([X]o) = #Xg with #Xp = [X]o | [X]oM  Xgmol ODE —
Continuous
Chemistry

Ch, := Cont, o Ch 1 T
Discrete

Chemistry

v

CTMC

ODE

Process
Algebra

CTMC
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Continuous State Equivalence

Def: = is equivalence of polynomials over the field of reals.

Thm: E = Cont(Ch(E)) ;

Thm: Cont(C) = Pi(

L aw of Mass Action Chemistry
Gillespie Conversion CTMC

For each E there is an E’ = E that is detangled (E’ = Pi(Ch(E)))

For each E in automata form there is an an E’ = E that is detangled and in

automata form (E’ = Detangle(E)).

ODE

ODE

t

Continuous
Chemistry

CTMC

CTMC

ODE

|

Process
Algebra

|

CTMC




GMA = CME

ODE

t

Continuous
Chemistry

'

v Discrete
‘ Chemistry

v

CTMC

ODE

|

Process
Algebra

l

CTMC

}

A

Semantics #1
Continuous state space

Syntax

Semantics #2
Discrete state space



A+A -2 A

1A is lost in reaction.

d[A]/dt =
Law of Mass Action T
d[A]/dt ry[A]? A+ A S
[Alo=21y
Gillespie conversion T Invol. vy
k=2ry/2 A+A @
A+A
CTMC 1
O—p0
A+A

I
-~

A+A >0

2A are lost in reaction.

[A]?
T Law of Mass. Action
d[A]/dt [A]2

) YI Gillespie conversion
K=ry/2

l CTMC

(For conservation of mass, consider instead A+A -2 A+B  vs. A+A —' B+B)



Continuous vs. Discrete Groupies

(RSO 980 CR;;80

2000

1000

2000 1

1000 -

directive sample 5.0 1000
directive plot B(; AQ)

new a@1.0:chan()
new b@1.0:chan()

et A( = do 1a; A( or 7b; B()
and B() = do tb; B() or 2; A

let Ad() = 1a; Ad()
and Bd() = Ib; Bd()

Fun 2000 0f A()
run 1 of (Ad() | BA()

directive sample 5.0 1000
directive plot B(); A()

newa@1.0:chan()
newbe1.0:chan()

AdQ)
1b; Bd()

£un 2000 of A()
run 1 of (Ad() | B()

5 0

2000xA , 0xB , 1xA4, 1xB4, r=1.0

directive sample 5.0 1000

directive plot B(); A()

new a@1.0:chan()
new b@1.0:chan()

let A() = do la; A() or 2
andB() = do Ib; B() or 7a;

et Ad() = ta; Ad()
and Bd() = b; Bd()

run 2000 of A()
run 1 of (Ad() | Bd())

b3 2b;
%

B()

AQ

50

Groupe ODEs - Groupies.mat

[0:0.001:5.0] r=1.0 k=1.0
2000.0
, 00

Groupe ODES

Adxt/dt=xt’
A d/dt=xdx1x3x2ex1x2, 0.0

B dx3/dt=x3"

B’ ded/

Groupies Hysteric 1.mat

L0k=1.0
x4x3'x1-x1+x4, 2000.0

X2x1x3x3x2, 0.0
x3x1*xd+x3x4, 0.0

all with doping

Matlab

SPi

Groupe ODEs - Groupies Hysteric 2.mat

[0:0.001:5.0] 1.0
A del/dt=xt*x6-x3x1-x1+x6, 2000.0
A dx2/dt=x3"X1-x3"x2ex1x2, 0.0

B dx6/dt=x1"x4-x1"x6+x4x6, 0.0



Scientific Predictions

;90

After a while, all 4
states are almost
equally occupied.

The 4 states are
almost never
equally occupied.
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Process Algebra is ‘Bigger’ than Chemistry

Continuous-state Semantics
(Mass Action Kinetics)

ODE

t

Continuous
Chemistry

'

Discrete
Chemistry

v

CTMC

ODE

|

Chemical

Ground Form ‘

a

CTMC

Discrete-state Semantics
(Chemical Master Equation)

Represent
combinatorial

chemical systems
compactly




Process Algebra is ‘Bigger’ than Chemistry

Continuous-state Semantics
(Mass Action Kinetics)

ODE

t

X

Continuous
Chemistry

ODE

E

'

Discrete
Chemistry

X

Biochemical
Ground Form

v

CTMC

X

1

CTMC

Discrete-state Semantics
(Chemical Master Equation)

Represent
infinite

chemical systems
finitely




Process Algebra is ‘Bigger’ than Chemistry

Continuous-state Semantics
(Mass Action Kinetics)

obE|] £ [oDE
t 12
Continuous
Chemist
im'f Ty nt-Calculus
k-Calculus
Discrete x
Chemistry 1
CTMC )( CTMC

Discrete-state Semantics
(Chemical Master Equation)

Represent
generative

chemical systems
finitely




On the Computational
Power of Biochemistry

joint work with

Gianluigi Zavattaro

University of Bologna

in: Algebraic Biology ‘08



Biochemistry = Collision + Complexation

Af< < B, | «—> Ab<< B,

e Complexation is what proteins “do”, in contrast to simpler chemicals.

dissociation
pla -7 "7 ~._ %la

{ @.\ {(la,k)}  {(?a,k)} g {

&la ... 8@ ___-7 g2g
association

e Leading to a process algebra that we call
the Biochemical Ground Form (BGF).



What’s the Difference?
Consider linear polymerization: (IS

The “chemical program”
for polymerization:

Po+ M — P,
P,+M—>P,
P, + M — P;
P, +M— P,

« an infinite (non-)program
« an infinite set of species
« an infinite set of ODEs

Pio7s7 + M — Pyg7ss
Such specificity is unreal.

But “nature’s program” for polymerization
has to fit e.g. in the genome, so it cannot

be infinite! Clearly, nature must be using a
different “language” than basic chemistry:

» - >

molecule with convex patch +
molecule with concave patch —
molecule with convex patch

« a finite program
« a local rule



Expressiveness of Biochemistry

Basic chemistry (FSRN, or CGF) is not Turing-complete
o By reduction to Petri Net reachability [Soleveichik&al.].

Biochemistry (FSRN + complexation, or BGF) is Turing-complete.
o By an encoding of Random Access Machines, using polymers for registers.

A relatively simple extension of our CGF automata
o But it is not as easy to find a corresponding extension of chemistry!

More powerful process algebras of course are Turing complete

o They (e.g. m-calculus) include BGF, but they also have mechanisms that are
not directly biologically justifiable.

o In BGF we have in a sense the minimal biologically-inspired extension of
FSRN, and it is already Turing-complete.

Intrinsic to biochemistry (but not to simple chemistry) is a Turing-
complete mechanism.
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Conclusions

Process Algebra
o An extension of automata theory to populations of interacting automata
o Modeling the behavior of individuals in an arbitrary environment
o Compositionality (combining models by juxtaposition)

Connections between modeling approaches
o Connecting the discrete/concurrent/stochastic/molecular approach
o to the continuous/sequential/deterministic/population approach

Connecting syntax with semantics
o Syntax = model presentation (equations/programs/diagrams/blobs etc.)
o Semantics = state space (generated by the syntax)

Ultimately, connections between analysis techniques

o We need (and sometimes have) good semantic techniques to analyze state

spaces (e.g. calculus, but also increasingly modelchecking)

o But we need equally good syntactic techniques to structure complex models

(e.g. compositionality) and analyze them (e.g. process algebra)

A bright future for Computer Science and Logic in modern Biology
o Biology needs good analysis techniques for discrete systems analysis

(modal logics, modelchecking, causality analysis, abstract interpretation, ...)

=
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