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Motivation: Cells Compute

● No survival without computation!

o Finding food

o Avoiding predators

● How do they compute?

o Unusual computational paradigms.

o Proteins: do they work like electronic circuits? 

o Genes: what kind of software is that?

● Signaling networks
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● Signaling networks

o Clearly “information processing”

o They are “just chemistry”: molecule interactions

o But what are their principles and algorithms?

● Complex, higher-order interactions

o MAPKKK = MAP Kinase Kinase Kinase: 
that which operates on that which operates on that 
which operates on protein.

● General models of biological computation

o What are the appropriate ones?
Ultrasensitivity in the mitogen-activated protein 
cascade, Chi-Ying F. Huang and James E. Ferrell, Jr., 
1996, Proc. Natl. Acad. Sci. USA, 93, 10078-10083.



Theory of Computation

● Alan Turing

o Defined what it means for a problem to be “computable”.

o Showed that deciding weather an arbitrary mathematical conjecture is true 
or false is not computable (shocking mathematicians). (1936)

o Also introduced the notion of “universal computation” (now called Turing 
Completeness): a single machine can be built that can compute any
computable problem. We now call it a computer.

o These were results in Mathematical Logic, but eventually established 
Computer Science as a separate discipline.
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Computer Science as a separate discipline.

● John von Neumann

o Was involved in the design of early electronic computers. The so-called von 
Newman architecture is at the basis of most computers from the 50’s on.

o The von Neumann architecture is now seen as a liability: it is strictly 
sequential and arguably does not make good use of the massive concurrency 
of electronic hardware. (C.f. massive concurrency of biological systems.)

o He also developed the foundations of Automata Theory (including cellular 
automata and robotic self-replication).



Theory of Concurrency

● Early Automata Theory

o Either about single isolated automata, or about “synchronous” homogeneous 
collections of automata, like cellular automata.

o But what about multiple heterogeneous automata talking to each other? This 
question led to two major developments:

● Petri Nets

o Dedicated to the study of causality relationships between events.
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o

o Providing a basic mathematical model with rich analytical techniques.

● Process Algebra

o Dedicated to the study of concurrent, nondeterministic, reactive systems. 

o Endowing concurrent languages with a mathematical semantics.

o Can provide foundations and inspiration for molecular programming, 
because molecular interactions are massively concurrent and heterogeneous.



Reactive Systems

● A complex system does not compute a function

o What function does E-coli compute?

o Organisms, operating systems, computer networks, do not compute functions: 
they indefinitely react to stimuli and hold internal state.

o Hence we need a mathematical treatment of interactions, not of functions. 
This has long been recognized and addressed in Computer Science.

● Reactive Systems
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● Reactive Systems

o A system of components that each react to other components.

o Each component is independently described in terms of its reactions to 
stimuli (which may come from many different other components).

o The behavior of the system emerges from the free interactions of the 
components.

o No a-priori description of all possible states (e.g. all possible molecular 
complexes) is needed.



Process Algebra

● Reactive systems (living organisms, computer networks, operating systems, …)

o Math is based on entities that react/interact with their environment
(“processes”), not on functions from domains to codomains.

● Concurrent
o Events (reactions/interactions) happen concurrently and asynchronously, 

not sequentially like in function composition.

● Stochastic
o Or probabilistic, or nondeterministic, 

but is never about deterministic system evolution.

[Hoare, Milner, Pnueli, etc.]
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but is never about deterministic system evolution.

● Stateful
o Each concurrent activity (“process”) maintains its own local state,

as opposed to stateless functions from inputs to outputs.

● Discrete
o Evolution through discrete transitions between discrete states,

not incremental changes of continuous quantities.

● Kinetics of interaction
o An “interaction” is anything that moves a system from one state to another.



(Macro-) Molecules as
(Interacting) Automata
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A1

Interacting Automata

?a
B1

!a

B2

@s

A1 is a state

a is a channel i.e. a named 
interaction interface

(e.g. a surface patch)

?,! indicate any complementarity of 
interaction (e.g. charge)

?a, !a indicate complementary actions, 

Current State

Interaction

Transition

Decay

Legend
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B3

@s ?a, !a indicate complementary actions, 

@r, @s are rates

Kinetic laws:



Interacting Automata

?a
B1

!a

B2

@s

@r

A1 is a state

a is a channel i.e. a named 
interaction interface

(e.g. a surface patch)

?,! indicate any complementarity of 
interaction (e.g. charge, shape)

?a, !a indicate complementary actions, 

A1Current State

Interaction

Transition

Decay

Legend
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B3

@s ?a, !a indicate complementary actions, 
joined by an interaction arrow

@r, @s are rates

Kinetic laws:
Two complementary 
actions may result in 
an interaction.



Interacting Automata
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?,! indicate any complementarity of 
interaction (e.g. charge)

?a, !a indicate complementary actions, 

Current State

Interaction

Transition

Decay

Legend

102009-01-10Luca Cardelli 102009-01-10

B3

@s

Kinetic laws:

?a, !a indicate complementary actions, 
joined by an interaction arrow

@r, @s are rates

Two complementary 
actions may result in 
an interaction.

A decay may happen
spontaneously.



A

B

!a

?a ?b

!b

Interactions in a Population

A

B

!a

?a ?b

!b

Suppose this is the 

next interaction

(stochastically chosen)

!a
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!b

A
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?a ?b

!b

!b

One lonely automaton

cannot interact

A

B

!a

?a ?b

!b
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Interactions in a Population
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!b !b
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B
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?a ?b

!b
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Interactions in a Population
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!b!b

A

B

!a

?a ?b

!b

All-A stable 
population
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Interactions in a Population (2)
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!b
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!b

Suppose this is the 
next interaction
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Interactions in a Population (2)
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A

B

!a

?a ?b

!b

!b!b

All-B stable 
population

Nondeterministic 
population behavior

(“multistability”)



CTMC Semantics

A

!a

?a ?b

A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b

BA

r
CTMC
(homogeneous) Continuous Time 
Markov Chain
- directed graph with no self loops
- nodes are system states 
- arcs have transition rates

Probability of holding in state A:

Pr(HA>t) = e
-rt

in general, Pr(HA>t) = e
-Rt where R is 

the sum of all the exit rates from A
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B

?a ?b

!b

{2A,1B}
{3A}

{1A,2B}

{3B}

2ra

2rb

2ra

2rb

CTMC



Can add a new component 
without changing the old 
ones (if their interface

remains fixed).

Reactions vs. Components

r: A + B →k1 C + D
s: C + D →k2 A + B

A B

r

Reaction
oriented
1 line per 
reaction

Does A 
become 
C or D?

A B !rk1 ?rk1?sk2 !sk2Reaction
oriented

Says what “A” does. Says what “A” is.
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A  =  !rk1; C
C  =  ?sk2; A

B  =  ?rk1; D
D  =  !sk2; B

C D
rk1

Interaction
oriented

The same “state space”

Interaction
oriented

reaction

1 line per 
component A 

becomes 
C not D!

C D
sk2

CTMC



Groupies and Celebrities
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Groupies and Celebrities

Celebrity
(does not want to be like somebody else)

directive sample 1.0 1000

directive plot A(); B()

new a@1.0:chan()

new b@1.0:chan()

let A() = do !a; A() or ?a; B()

and B() = do !b; B() or ?b; A()

run 100 of (A() | B())

A

B

!a

?b

!b

?a

a@1.0

b@1.0
A

B

!a

?b

!b

?a

A

B

!a

?b

!b

?a
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Stable because as soon as a A finds itself in the majority, it is more likely to find somebody in 
the same state, and hence change, so the majority is weakened.

A stochastic collective of celebrities:
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Groupies and Celebrities

Groupie
(wants to be like somebody different)

directive sample 1.0 1000

directive plot A(); B()

new a@1.0:chan()

new b@1.0:chan()

let A() = do !a; A() or ?b; B()

and B() = do !b; B() or ?a; A()

run 100 of (A() | B())

A

B

!a

?a ?b

!b

a@1.0

b@1.0
A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b

202009-01-10Luca Cardelli 202009-01-10

0

20

40

60

80

100

120

140

160

180

200

0 0.5 1 1.5 2

A() B()

always 
eventually 
deadlock

Unstable because within an A majority, an A has difficulty finding a B to emulate, but the 
few B’s have plenty of A’s to emulate, so the majority may switch to B. Leads to deadlock 
when everybody is in the same state and there is nobody different to emulate.

A stochastic collective of groupies:
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Both Together

directive sample 10.0

directive plot Ag(); Bg(); Ac(); Bc()

new a@1.0:chan()

new b@1.0:chan()

let Ac() = do !a; Ac() or ?a; Bc()

and Bc() = do !b; Bc() or ?b; Ac()

let Ag() = do !a; Ag() or ?b; Bg()

and Bg() = do !b; Bg() or ?a; Ag()

run 1 of Ac() 

A way to break the deadlocks: Groupies with just a few Celebrities 

A few
Celebrities

Many
Groupies ?a

!a

?b

!a

?a ?b

Ac

Bc

Ag

Bg
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run 1 of Ac() 

run 100 of (Ag() | Bg())

A tiny bit of 
“noise” can make 
a huge difference

!b!b

never
deadlock



Hysteric Groupies
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Ga() Gb() directive sample 10.0 1000

directive plot Ga(); Gb()

new a@1.0:chan()

new b@1.0:chan()

let Ga() = do !a; Ga() or ?b; ?b; Gb()

and Gb() = do !b; Gb() or ?a; ?a; Ga()

let Da() = !a; Da()

and Db() = !b; Db()

run 100 of (Ga() | Gb())

run   1 of (Da() | Db())

We can get more regular behavior from groupies if they “need more 
convincing”, or “hysteresis” (history-dependence), to switch states. 

(With doping to 

a “solid threshold” to observe switching
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(With doping to 
break deadlocks)
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directive sample 10.0 1000

directive plot Ga(); Gb()

new a@1.0:chan()

new b@1.0:chan()

let Ga() = do !a; Ga() or ?b; ?b; ?b; Gb()

and Gb() = do !b; Gb() or ?a; ?a; ?a; Ga()

let Da() = !a; Da()

and Db() = !b; Db()

run 100 of (Ga() | Gb())

run   1 of (Da() | Db())
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N.B.: It will not oscillate 
without doping (noise)

“regular” 
oscillation



Some Devices

?a

E

S

!a
E’

P

@1.0

@1.0

1000´S, 1´E

!b

?a

bLo

bHi

!c

cLo

cHi

!a

aHi

?a

?b

?b

100´aHi, 1000´bLo, 1000´cLo, 
rates=1.0

Linear Pump

Ultrasensitive Switch

Cascade Amplifier
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!b

S P
?b

?a

@1.0
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100´F, 0..200´E A

!b

B
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!c

C
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Symmetric Wave Generator
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More Devices

A B
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?c
?a

!b?b

C

!c

@1.0
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@1.0

900xA, 500xB, 100xC

Oscillator

Neg(a,b) !b

?a

Inh(a,b)

t(h)

Tr(b)

t(d)

t(e)

Repressilator (1 of 3 similar gates)

b = not a c = a or b c = a and b c = a imply b c = a xor b
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Semantics of Collective Behavior
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The Two Semantic Sides of Chemistry

=

Continuous
Chemistry

Discrete

Process
Algebra

ODE ODE

Continuous-state Semantics 
(Mass Action Kinetics)

Nondeterministic 

Semantics

262009-01-10Luca Cardelli 262009-01-10

=

Discrete
Chemistry

CTMC CTMC

Discrete-state Semantics

(Chemical Master Equation)

Stochastic

Semantics

These diagrams commute via appropriate maps.

L. Cardelli: “On Process Rate Semantics” (TCS)

L. Cardelli: “A Process Algebra Master Equation” (QEST’07)



Quantitative Process Semantics

=

Continuous
Chemistry

Discrete

Process
Algebra

ODE ODE

Continuous-state Semantics 
(Mass Action Kinetics)

Nondeterministic 

Semantics

d[X]/dt = (Σ(Y∈E) AccrE(Y,X)⋅[Y]) - DeplE(X)⋅[X] for all X∈E

Process Rate Equation

Defined over the 
syntax of processes

Accretion Depletion

272009-01-10Luca Cardelli 272009-01-10

=

Discrete
Chemistry

CTMC CTMC

Discrete-state Semantics

(Chemical Master Equation)

Stochastic

Semantics

∂pr(p,t)/∂t   =   Σi∈ℑ ai(p-vi)⋅pr(p-vi,t) - ai(p)⋅pr(p,t) for all p∈States(E)

Process Master Equation

syntax of processes

Interactions Propensity



Process Algebra
Beyond Chemistry
(with Gianluigi Zavattaro)
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(with Gianluigi Zavattaro)



Turing Completeness

● Turing Completeness

o A Turing Machine is “universal”: it can emulate any other computing device. 

o Your laptop is similarly a universal computing device.

o Is chemistry universal: can chemistry emulate any computing device?

● Basic chemistry is equivalent to Petri Nets.

o It is possible to translate any system of chemical reactions into a 
Place/Transition Petri Net (ignoring rates). Reachability of a dead (“halting”) 
states in P/T nets is decidable (an algorithm can answer yes/no).
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states in P/T nets is decidable (an algorithm can answer yes/no).

o By Turing’s theorem, if termination is decidable, i.e. if it is a simple problem, 
then the computational system is not universal. In particular, it cannot 
emulate a Turing machine (or your laptop).

● Hence “basic” chemistry is not Turing-complete!

o Basic chemistry can’t compute! (Soloveichik et. al., Natural Computing 2008)

o Even though stochastic chemistry is extremely rich, e.g. it includes chaotic 
systems.



“Turifying” Chemistry

● Interacting Automata are not Turing complete

o They are equivalent to chemistry, and to Petri Nets.

● What can we add to achieve Turing completeness?

o It is not easy to add something to basic chemistry.

o But it is easy to add power to simple automata.

o E.g. we can go to full π-calculus, which is Turing complete.

302009-01-10Luca Cardelli 302009-01-10

o E.g. we can go to full π-calculus, which is Turing complete.

● But is there…

o A basic mechanism

o which is also biologically realistic?



Association and Dissociation

● Association patches are named

● & − association

o &?a   associate

o &!a   co-associate

&?a

&!a

the a shape
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● % − dissociation

o %?a   dissociate

o %!a   co-dissociate

● A given patch can hold only one association at a time

● Two molecules can dissociate only if they are associated

%?a
%!a



Turing completeness of “Biochemistry”

● Random Access Machines:           [Min67]
o Registers: r1 … rn hold natural numbers (unbounded)

o Program: finite sequence of numbered instructions
● i: Inc(rj): add 1 to the content of rj and go to the next instruction

● i: DecJump(rj,s): if the content of rj is not 0 then decrease by 1 and go to 
the next instruction; otherwise jump to instruction s 

● There is a RAM encoding in BGF (automata with 
complexation)
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● There is a RAM encoding in BGF (automata with 
complexation)



&?lj
%?lj

RAM encoding in BGF

i: Inc(rj) k: DecJump(rj,s)

Ii

!incj

Ik

!decj
!zeroj

Zj

?zeroj

?incj
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&?lj

%?lj

Ii+1

?ackj

Ik+1

?ackj

Is

!zeroj

register rj:

Zj Rj
!lj?lj ?lj

Rj

!ackj

&!lj

?decj%!lj!ack



Why is This Easier in Process Algebra?

● Example: Linear Polymerization

● In chemistry you have to write an infinite list of reactions

o P0 + M -> P1

o P1 + M -> P2

o etc.

o An infinite list of things is not a computation device!
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● In process algebra you can write a finite set of interactions

o A polymer (of any length) with a free surface, plus a monomer with a 
complementary surface, gives you another polymer with a free surface.

o That’s it.

● Process algebra descriptions are intrinsically more compact

o This is an extreme case (finite vs. infinite)

o But is also true for finite cases (linear vs quadratic or exponential).



DNA Algebras
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Motivation

=

Continuous
Chemistry

Discrete

Process
Algebra

ODE ODE

Continuous-state Semantics 
(Mass Action Kinetics)
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=

Discrete
Chemistry

CTMC CTMC

Discrete-state Semantics

(Chemical Master Equation)

These diagrams commute via appropriate maps.

L. Cardelli: “On Process Rate Semantics” (TCS)

L. Cardelli: “A Process Algebra Master Equation” (QEST’07)



Motivation

=

Continuous
Chemistry

Discrete

Process
Algebra

ODE ODE

Continuous-state Semantics 
(Mass Action Kinetics)

The Real
Wet Stuff

?
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=

Discrete
Chemistry

CTMC CTMC

Discrete-state Semantics

(Chemical Master Equation)

How do we implement an arbitrary process?

Chemistry does not necessarily help 
(how do we then implement the chemical species?)
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D. Soloveichik, G. Seelig, E. Winfree. DNA as a Universal 
Substrate for Chemical Kinetics. Proc. DNA14.
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Hybridization

0

x  |  x.[]  → 0

42 31
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1
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(no output)
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● A positive toehold indicates a signal.

● (A positive strand is a signal.)

● A negative toehold indicates a gate.

● (A negative strand is a gate with no output.)
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4

Sequence

x  |  x.y → y
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x.y

6

5⊥

4 5

4⊥ 6⊥

3

waste

Gate



Fork

x | x.[y,z]  → y | z

42 31

x

y
temp

4

3⊥

2 3

2⊥ 4⊥

1

43
5

6
9

10

1043 5 6 9 109 11 12

z
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Similarly to Sequence, with two output strands in 
second step (Soloveichik Fig 2)

65 7 8

x.[y,z]

2⊥ 3⊥ 4⊥

1043 5 6 9

10

4⊥ 5⊥

65

6⊥

7
8

9
11

12

9⊥ 10⊥

109 11 12

10

4⊥ 5⊥

65

6⊥

9

9⊥ 10⊥

4
3



2-way Join

x | y | [x,y].z  → z

42 31

3⊥

63

6⊥ 7⊥

87

8⊥

9
10

2 3
1

4

3⊥ 6⊥ 7⊥

87

8⊥

9
10

86 75 108 97

2 3
1

6

3⊥ 6⊥ 7⊥

87

8⊥

5
4

x y z’

v

v

v v
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This can be implemented by two sequential inputs where the first one is 
reversible (Soloveichik Fig.3). An output transducer is then needed from z’ to z, 
because z’ overlaps with y.

63

2⊥ 3⊥ 6⊥ 7⊥ 8⊥
2⊥ 3⊥ 6⊥ 7⊥ 8⊥

2⊥ 3⊥ 6⊥ 7⊥ 8⊥

[x,y].z’

v



3-way Join

42 31

2⊥ 3⊥

63

6⊥ 11⊥

1211

12⊥

13
14

86 75

x y

7⊥

107

10⊥

2 3
1

4

2⊥ 3⊥ 6⊥ 11⊥

1211

12⊥

13
14

7⊥

107

10⊥

x | y | z | [x,y,z].w  → w

v

v

v
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63

2

1412 1311

w’
[x,y,z].w’

2

1210 119

z

2 3
1

6

2⊥ 3⊥ 6⊥ 11⊥

1211

12⊥

13
14

7⊥

8
7

10⊥
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5
4 10

11⊥

1211

12⊥

82 3
1

6

2⊥ 3⊥ 6⊥ 7⊥
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4
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v

v

v
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Strand Algebra

P   ::=   x  ⋮ [x1,..,xn].[x1’,..,xm’]  ⋮ 0  ⋮ P|P  ⋮ P*          n≥1, m≥0

No compound expressions except for parallel composition P|P and populations P*.
Hence this is a combinator-based (“assembly”) language.

Here x is a strand, and [..].[..] is a gate.

� x is a strand

≝

≝
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� x1.x2 ≝ [x1].[x2] is a sequence gate
� x.[x1,..,xm] ≝ [x].[x1,..,xn] is a fork gate
� [x1,..,xn].x ≝ [x1,..,xn].[x] is a join gate

� 0 is inert
� P|P is parallel composition of strands and gates
� P* is a population of strands and gates

Note: σ.P* is not in the syntax: populations are only top-level.
C.f.: Petri net tokens (strands) and transitions (gates). 
However, here both strands and gates are consumed by interaction.



Reaction Rule

x1 | .. | xn | [x1,..,xn].[x1’,..,xm’]  → x1’ | .. | xm’  Gate

Unlike a transition in Petri Nets (which has a very similar rule) the gate in the 
strand algebra is consumed by the reaction. Petri Nets are emulated by taking 
large gate populations.
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large gate populations.

Unlike a reaction chemistry, the gate ‘species’ already contains an explicit 
description of what it will do, independently of  the other species in the system.



Compiling to Strand Algebra
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High(er)-Level Languages

● We now have an intermediate language: the combinatorial strand algebra 

o It can be compiled “directly” to DNA following [Soloveichik et al.]

● But we really want to compile “high-level languages”. Such as:

o Boolean Networks (fairly easy)

o Finite Stochastic Reaction Networks (Chemistry) [Soloveichik et al.]

o Petri Nets (easy)

o Finite State Automata and Transducers (easy)

472009-01-10Luca Cardelli 472009-01-10

o Finite State Automata and Transducers (easy)

o Interacting Automata (hard to do directly)

o π-calculus (??? not without DNA synthesis?)

● And also

o Higher-level strand algebras, which may form 
more convenient intermediate languages.

o Such as the Nested Strand Algebra.



Automata to DNA

● There are many schemas to compile automata to molecules

o But most (all?) are about compiling a single automaton (e.g. an FSA).

● Interacting Automata can be compiled to chemical reactions [TCS’08].

o Are concurrent and population based (a subset of CCS).

o The translation has an n2 blowup (mean automata are “more compact”).

o But how does one engineer the necessary molecules?
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● Arbitrary chemistry can be compiled to DNA [Soloveichik et al.].

o The translation is stochastically “almost” faithful.

o Which can be seen as a defect of the translation, if you are a chemist.

● Hence Interacting Automata can be compiled to DNA.

o Again, stochastically this is “almost” faithful as a single transition may need 
to be implemented with two transitions, which have a different distribution.

o But for automata, we are probably not picky: we mostly want them to change 
states.



Problem Solved!

=

Continuous
Chemistry

Discrete

Process
Algebra

ODE ODE

Continuous-state Semantics 
(Mass Action Kinetics)

DNA
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=

Discrete
Chemistry

CTMC CTMC

Discrete-state Semantics

(Chemical Master Equation)



Alternative DNA Mechanisms
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3

Hairpin Operators

2
1⊥

1

2⊥

1⊥ 2⊥

3⊥

4⊥

3⊥

5⊥

1
2⊥

2

1⊥

4

3⊥

1⊥31 2

3⊥ 2⊥

2⊥4⊥ 3⊥

1⊥

5⊥ 4⊥1⊥ 2⊥ 3⊥

1 4
2⊥

3⊥

31 2

3⊥ 2⊥1⊥ 2

1⊥

5⊥

1⊥ 2⊥3⊥

4⊥1⊥ 2⊥

1 4

31 2

3⊥ 2⊥1⊥ 2

Programming biomolecular self-assembly pathways 
P. Yin, H.M.T. Choi, C.R. Calvert, N.A. Pierce 
Nature, 451:318-322, 2008.
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1⊥ 2⊥3⊥

X 3⊥5⊥

Y
2⊥1⊥ 3⊥

1⊥2⊥ 4⊥

But this is the function of that network:



Doing the same in Strand Algebra

If we just think of the function of that network:

1⊥ 2⊥3⊥

X 3⊥5⊥

Y
2⊥1⊥ 3⊥

1⊥2⊥ 4⊥
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Then we can implement that function in strand algebra:

X = (1⊥:3⊥:2⊥).[(5⊥:3⊥),(2⊥:4⊥:1⊥)]
Y = (2⊥:4⊥:1⊥).(1⊥:3⊥:2⊥)

This leads to a different DNA implementation (according to the canonical 
DNA semantics of strand algebra).

But this is what algebra is good for: abstracting implementation models.



A Network from Yin et al.

I = ia
A = ia.ab
B = ab.[ia,bc]
C = bc.cd
D = cd.[bc,ia]

Strand Algebra representation.
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I + A → IA
IA + B → I + AB
AB + C → ABC
ABC + D → AB + CD
CD + A → CDA
CDA + B → CD + AB

Strand Algebra representation.

Chemical representation from Yin et al. (supp.)

Strand Algebra describes the function of each 
molecule independently.

Chemistry describes how pairs of molecules 
react to produce other molecules.



Simulation Results

The simulation curves on the left are the amount of A (quenched, 
closed) hairpin, so they represents the inverse of the fluorescence 
experiment on the right, which detects open hairpins. (Therefore 
I flipped my plot upside down for easy comparison.)
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Gillespie simulation of
the strand algebra system

From Yin et al.



Simulation Details

In this SPiM simulator code we vary the amount of initiator I() at the bottom, 
for values between 50 and 3000:

directive plot !ia; Gate1(ia,ab); Gate2(ab,ia,bc); Gate1(bc,cd); 
Gate2(cd,bc,ia)
directive sample 0.004 1000 

let Initiator(out1:chan) = !out1
let Gate1(in1:chan, out1:chan) = ?in1; !out1
let Gate2(in1:chan, out1:chan, out2:chan) = ?in1; (!out1 | !out2)
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new ia@1.0:chan new ab@1.0:chan
new bc@1.0:chan new cd@1.0:chan

let I() = Initiator(ia)
let A() = Gate1(ia, ab)
let B() = Gate2(ab, ia, bc)
let C() = Gate1(bc, cd)
let D() = Gate2(cd, bc, ia)

run 50 of I()
run 2000 of (A() | B() | C() | D())



Conclusions
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Conclusion

● History of computing

o Is pointing towards increasing amounts of concurrency and 
heterogeneity in man-made systems.

o Modern computer hardware is going (by necessity) multi-core.

o Programming such systems is still a major challenge.

● Natural history

o Massively concurrent and heterogeneous computation.
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o Massively concurrent and heterogeneous computation.

o We do not really yet understand how concurrency works there 
(e.g. gene networks, neural networks).

● Future molecular computing

o Single-function input-output devices? Individual automata?
Reactive systems? Universal computers?

o Something new: molecular computing can process information and build 
physical structures! There is still much to be done to devise suitable theories 
of such things.


