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L. Cardelli: “On Process Rate Semantics” (TCS)

L. Cardelli: “A Process Algebra Master Equation” (QEST’07)
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How do we implement an arbitrary process?

Chemistry does not necessarily help 
(how do we then implement the chemical species?)



DNA Semantics
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Naïve Thermodynamics

● Exergy (available energy) of the system:

o Sum of the lengths of the unpaired strands.

● Exergy must ultimately decrease (second law)

o Eventually exergy reaches zero, or the minimum possible.

● Local changes in exergy:

o Downhill changes: “fast”
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o Downhill changes: “fast”

● but locally not necessarily irreversible

o Neutral changes

● possibly down and then back up

● reversible

o Uphill changes

● possible but temporary.

o Bump changes: “slow”

● they go up and lower down through exergy hills

● possible, but less likely the higher the hill
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Branch Migration

42 31

2⊥ 3⊥
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toehold binding

exergy = 1,3,4,5,6

reversible

to next toehold

initial solution
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still reversible!

exergy = 1,2,2⊥,3,4,5,6

exergy = 1,3,4,5,6 exergy = 1,3,4,5,6

reversible

toehold



Signal Strand

42 31

1 = history
2 = toehold
3 = body

x

D. Soloveichik, G. Seelig, E. Winfree. DNA as a Universal 
Substrate for Chemical Kinetics. Proc. DNA14.
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3 = body
4 = next toehold

The history is not part of signal recognition: strands with 
different histories should behave the same. Hence, x denotes 
an equivalence class of strand with different histories. 

Strands x and x⊥ are supposed to hybridize (except for the 
history region). If x≠y then x and y⊥ are not supposed to 
hybridize (except for the history region).



Hybridization

42 31

2⊥ 4⊥3⊥ 5⊥

42 31

2⊥ 4⊥3⊥ 5⊥

x⊥

0
x
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Watson-Crick complementarity:

(2,3,4)⊥ = (4⊥,3⊥,2⊥)



Transducer

42 31
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The output is not independent of the input. But two 

transducers can be composed to fix that (see Sequence). 
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transducers can be composed to fix that (see Sequence). 

Every reaction is reversible, but (at the right temperature) the 

equilibrium favors configurations with stronger (longer) 

hybridizations. Because of this, some reactions can be considered 

irreversible: this is the meaning of           . 

Instead, if two configurations have the same hybridization strength, 

they are fully reversible (possibly at a low rate).



DNA Spaghetti

2⊥ 3⊥

43

4⊥

5
6

43
5

6

2⊥ 3⊥

7⊥62⊥

7⊥

8⊥

These are two “complementary” transducers, one supposed to react to a (2,3,4) 

signal, the other to a (2,3,4)⊥ = (4⊥,3⊥,2⊥) signal. 

But something is wrong: the transducers interact in absence of any signal!

102008-10-31Luca Cardelli

4 3

2⊥3⊥

2

7⊥
8⊥

2

This reaction is neutral, but the 4 and 2⊥ toeholds have been exposed, and those 

are supposed to be exposed only in response to input signals. 

Hence, downstream, all hell breaks loose.
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Imposing some discipline

● A precautionary (and possibly temporary) decision to avoid spaghetti: 

avoid complementary signals and complementary gates.

● Signals “x” are always positive

● Gates “x.y” are always negative

o that is, the input “x” is implicitly perp’ed

o and the output “y” is another positive signal
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o and the output “y” is another positive signal

● This way, by the way, we give up Turing completeness, which is probably 

possible by using both positive and negative signals and gates.



Hybridization

0

x  |  x.[]  → 0

42 31

2⊥ 3⊥ 4⊥

4

3⊥

2 3

2⊥ 4⊥

1

x

x.[]

Signal

Gate 

(no output)
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● A positive toehold indicates a signal.

● (A positive strand is a signal.)

● A negative toehold indicates a gate.

● (A negative strand is a gate with no output.)



43 5 6

4

Sequence

x  |  x.y → y

2 31

2⊥ 3⊥

43

4⊥

5
6

65 7 8

x

y

temp

4

3⊥

2 3

2⊥ 4⊥

1

Composition of two transducers.

waste
Signal

Signal

Signal
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4⊥ 5⊥

65

6⊥

7
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x.y
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waste

Gate



Venn DnagramsTM

0⊥ 2⊥3⊥

3⊥ 2⊥0⊥

23
4

3⊥3⊥30 2

3⊥ 2⊥

2⊥

0⊥ 3 2 3 4

4⊥

depoly0

seed

By the way, this is a useful notation for complicated situations:
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3⊥30 2

3⊥ 2⊥

2⊥ 3⊥

0⊥

2 33

3⊥2⊥

1⊥
3 20

2⊥3⊥

3⊥

4⊥

4⊥
3⊥30 2

3⊥ 2⊥

2⊥ 3⊥

0⊥ 3 2 3 1⊥ 2⊥3⊥

4⊥

poly0

poly1poly2

3 21

2⊥3⊥

3⊥

4⊥



Fork

x | x.[y,z]  → y | z

42 31

x

y
temp

4

3⊥

2 3

2⊥ 4⊥

1

43
5

6
9

10

1043 5 6 9 109 11 12

z
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Similarly to Sequence, with two output strands in 

second step (Soloveichik Fig 2)

65 7 8

x.[y,z]

2⊥ 3⊥ 4⊥

1043 5 6 9
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4⊥ 5⊥

65

6⊥

7
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109 11 12
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9
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4
3



Fork-Catalyst

x | x.[y,x]  → y | x

42 31

43
5

6
9

2

243 5 6 9
29 3 4

4

3⊥

2 3

2⊥ 4⊥

1

temp

x

x

y
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65 7 8

2⊥ 3⊥ 4⊥

243 5 6 9
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29 3 4
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4⊥ 5⊥

65

6⊥

9

9⊥ 2⊥

4
3

x.[y,x]



2-way Join

x | y | [x,y].z  → z

42 31

3⊥

63

6⊥ 7⊥

87

8⊥

9
10

2 3
1

4

3⊥ 6⊥ 7⊥

87

8⊥

9
10

86 75 108 97

2 3
1

6

3⊥ 6⊥ 7⊥

87

8⊥

5
4

x y z’

v

v

v v
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X = x.((x|X) + y.z)

This can be implemented by two sequential inputs where the first one is 

reversible (Soloveichik Fig.3). An output transducer is then needed from z’ to z, 

because z’ overlaps with y.

Informally, this is implemented this way:

63

2⊥ 3⊥ 6⊥ 7⊥ 8⊥
2⊥ 3⊥ 6⊥ 7⊥ 8⊥

2⊥ 3⊥ 6⊥ 7⊥ 8⊥

[x,y].z’

v



3-way Join

42 31

2⊥ 3⊥

63

6⊥ 11⊥

1211

12⊥

13
14

86 75

x y

7⊥

107

10⊥

2 3
1

4

2⊥ 3⊥ 6⊥ 11⊥

1211

12⊥

13
14

7⊥

107

10⊥

x | y | z | [x,y,z].w  → w

v

v

v
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1412 1311

w’
[x,y,z].w’
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Ex.: Optimization of Cascades

3 4

5

6

42 31

2⊥

5⊥

6⊥7⊥8⊥

6⊥3⊥ 5⊥9⊥

3

4

5 6

5⊥ 6⊥

7⊥

8⊥ 8⊥6⊥ 7⊥5⊥

x’

z’

y

x  |  y  |  x.y.z → y  |  y.z → z
instead of

x  |  x.w → w

y | w | [y,w].z  → z

v

v

v
6⊥3⊥ 5⊥9⊥

3
4

5 6

v

192008-10-31Luca Cardelli

2⊥ 3⊥ 4⊥

3⊥ 4⊥

42 31

We need to prefix this with a transducer for x to x’, because x’ is not in 
standard form and is not independent of y (3). 

The signal y is non-standard as well, hence this optimization is context-
dependent.

We need to postfix this with an output transducer for z’ to z, because z’ is not 
independent of y (5:6).

Note: This can be continued in a spoke pattern for any number of sequential 
inputs!!

x’.y.z’ y.z’

4



2

Transducers for Optimized Cascades

211 1

11⊥ 1⊥

21

1⊥

11 1

11⊥

10

2⊥

3
4

2⊥

x

10

42 31

x’

Input transducer:

v v
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11 11

Output transducer:

(standard)



Combinatorial Strand Algebra

212008-10-31Luca Cardelli



Strand Algebra ����

P   ::=   x  ⋮ [x1,..,xn].[x1’,..,xm’]  ⋮ 0  ⋮ P|P  ⋮ P*          n≥1, m≥0

No compound expressions except for parallel composition P|P and populations P*.

Hence this is a combinator-based (“assembly”) language.

Here x is a strand, and [..].[..] is a gate.

� x is a strand

≝
≝
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� x1.x2 ≝ [x1].[x2] is a sequence gate
� x.[x1,..,xm] ≝ [x].[x1,..,xn] is a fork gate
� [x1,..,xn].x ≝ [x1,..,xn].[x] is a join gate

� 0 is inert
� P|P is parallel composition of strands and gates
� P* is a population of strands and gates

Note: σ.P* is not in the syntax: populations are only top-level.
C.f.: Petri net tokens (strands) and transitions (gates). 
However, here both strands and gates are consumed by interaction.



Structural Congruence for ����

P ≡ P equivalence

P ≡ P’  ⇒ P’ ≡ P

P ≡ P’, P’ ≡ P”  ⇒ P ≡ P”

P ≡ P’  ⇒ P|P” ≡ P’|P” congruence

P ≡ P’  ⇒ P* ≡ P’*

P | 0  ≡ P diffusion

P | P’  ≡ P’ | P
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P | P’  ≡ P’ | P

P | (P’ | P”)  ≡ (P | P’) | P”

P*  ≡ P* | P population

(0)*  ≡ 0

(P | P’)*  ≡ P* | P’*

P**  ≡ P*



Reduction for ����

x1 | .. | xn | [x1,..,xn].[x1’,..,xm’]  → x1’ | .. | xm’  Gate

P  → P’ ⇒ P | P”  → P’| P” Parallel

P ≡ P1, P1 → P2, P2 ≡ P’ ⇒ P → P’ Mixing
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Technically, the Gate rule is:

x1 | ( .. | (xn | [x1,..,xn].[x1’,..,xm’])..)  → x1’|(..|(xm’)..)

but we have structural congruence to rearrange. 



Examples

x1 | x1.x2 → x2

x1 | x1.x2 | x2.x3 →→ x3

x1 | x2 | [x1,x2].x3 → x3

x1 | x1.x2 | x1.x3 → x2 | x1.x3
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1 1 2 1 3 2 1 3

and also    → x3 | x1.x2

x1 | x2 | x3 | [x1,x2].x4 | [x1,x3].x5 → x3 | x4 | [x1,x3].x5

and also  → x2 | [x1,x2].x4 | x5

X | ([X,x1].[x2,X])*   

a catalytic system ready to transform multiple x1 to x2, with catalyst X



Emulation of ���� in π

P   ::=   x  ⋮ [x,..,x].[x,..,x]  ⋮ 0  ⋮ P|P  ⋮ P*

⟦0⟧ =  0

⟦P1|P2⟧ =  ⟦P1⟧|⟦P2⟧

⟦P*⟧ =  ⟦P⟧*

⟦ ⟧

⟦ ⟧
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⟦ ⟧ ⟦ ⟧

⟦x⟧ =  !x

⟦[x].[x1,..,xn]⟧ =   ?x.(!x1|..|!xn)

⟦[x1,x2].[x1,..,xn]⟧ =   rec X. ?x1.(!x1.X + ?x2.(!x1|..|!xn))

⟦[x1,x2,x3].[x1,..,xn]⟧ =   etc.

But this does not preserve termination, e.g. for x1|[x1,x2].[]. 



DNA Machine Calculus
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Syntax
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Branch migration as Structural Congruence:



Reduction Rules
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Plus some context rules:



Examples

302008-10-31Luca Cardelli



Uses

● A formal translation from chemical reactions to DNA sequences.

● A formal translation from Strand Algebra to DNA sequences 

(instead of pictures).

312008-10-31Luca Cardelli



Stochastic Strand Algebra
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Stochastic Populations

● Populations P* are meaningless because one cannot compute their 

stochastic impact. Hence stochastic strand algebra �r drops P*:

● Instead of unbounded populations P* should think of populations of size k, 

Pk, which of course we already have from iterated parallel composition.

● Further, we can think of populations of constant size k, P=k.

These too are in a sense definable, using a bigger buffer population:

P   ::=   x  ⋮ [x1,..,xn].r[x1’,..,xm’]  ⋮ 0  ⋮ P|P          n≥1, m≥0
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These too are in a sense definable, using a bigger buffer population:

o Take for example P = x.Y

o P=k   ≝ Xk | Pbufk
3

for some fresh X

o Pbufn ≝ ([X,x].[Y,X])n

o Here k3 is an example of a large enough buffer: it ensures that reactions on X 

are much faster than reactions on x by mass action, and that the join [X,x] is 

always saturated in the X input. 



Constant Populations

● We have, for e.g. P=x.Y:

o P=k =  Xk |  Pbufk
3

=  (X | [X,x].[Y,X])k | Pbufk
3-k

→ Y | X  | (X | [X,x].[Y,X])k-1 | Pbufk
3-k

=  Y | (X | [X,x].[Y,X])k | Pbufk
3-k-1

● Hence there is always constant population:

o (X | [X,x].[Y,X])k

P = x.Y

P=k   ≝ Xk | Pbufk
3

Pbufn ≝ ([X,x].[Y,X])n
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o

o with a constant k weight on the x input (or temporarily ~k-1)

o constant up to a re-equilibration speed determined by ~k3

● Moreover, the buffer can be “topped up” from time to time,

without disturbing the rates of the system! 

And we can have “buffers of buffers” (P=k)=k.

● This gives us a practical way to implement “unbounded recursion”, 

akin to P*, in a stochastic system (up to topping up the buffers). 

Otherwise all computations terminate.



Stochastic Gate Rates

● A simple idea: associate a reaction rate r to each gate.

o This is what one would do in stochastic Petri nets (gate = transition).

o But this does not reflect the DNA implementation. Instead:

● Each xi has a binding rate r
b(xi) and an unbinding rate r

u(xi). 

Then the rate of a gate reaction is a function of those rates 

(it is not an exponential distribution):
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x1 | .. | xn | [x1,..,xn].[x1’,..,xm’]  →
f(x1,..,xn) x1’ | .. | xm’  Gate



Semantics of ����r in Chemistry(FSRN)

The (common) assumption here is that branch migration is fast w.r.t. binding rates.

First we extract the system of reactions from a whole term P:

for each g = x.[y1,..,ym] add the reaction:

x+g →rb(x1) y1+..+ym
for each g = [x1,x2].[y1,..,ym] add the reactions:   

x1+g  
ru(x1)↔rb(x1) x1’,    

x1’+x2 →rb(x2) y1+..+ym
etc. for higher joins.
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etc. for higher joins.

These are reactions, i.e. they are independent of the number of strands x and gates g 
in the system. Then, we add all those as “initial conditions”, as a translation ⟦P⟧:

⟦x⟧ =   x

⟦[x1,..,xn].[x1’,..,xm’]⟧ =   g     (that g associated to this gate above)

⟦0⟧ =   0

⟦P|P’⟧ =   ⟦P⟧ + ⟦P’⟧

So if there are n x and m gates x.[..], the propensity of binding is n*m*rb(x). 



Semantics of Chemistry(FSRN) in ����r

● This is what [Soloveichik et al.] do: how to implement an arbitrary set of 

chemical reactions (before this, one would not have known in general 

how to engineer a set of chemical species that would obey those 

reactions).

● Given a reaction A+B→C make up some DNA with the same (approximate) 

kinetics.

● But we cannot just translate A+B→C to [A,B].[C] or ([A,B].[C])k: 

372008-10-31Luca Cardelli

● But we cannot just translate A+B→C to [A,B].[C] or ([A,B].[C]) : 

gates are consumed, hence reactions would get “weaker and weaker”.

● We can solve that problem by constant populations ([A,B].[C])=k

(which is what [Soloveichik et al.] do). For further details see that paper.



Compiling to Strand Algebra
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High(er)-Level Languages

● We now have an intermediate language: the combinatorial strand algebra 

o It can be compiled “directly” to DNA following [Soloveichik et al.]

● But we really want to compile “high-level languages”. Such as:

o Boolean Networks (fairly easy)

o Finite Stochastic Reaction Networks (Chemistry) [Soloveichik et al.]

o Petri Nets (easy)

o Finite State Automata and Transducers (easy)
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o Finite State Automata and Transducers (easy)

o Interacting Automata (hard)

o π-calculus (???)

● And also

o Higher-level strand algebras, which may form 

more convenient intermediate languages.

o Such as the Nested Strand Algebra.



Nested Strand Algebra
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Motivation

● A sequence  x1.x2.x3 is not in the syntax of the combinatorial algebra.

● Still, it can be defined as:

o x1.x2.x3 =   x1.x0 |  [x0,x2].x3

o where x0 can be chosen, e.g., as a fixed function of x1,x2

● The nested strand algebra generalizes this idea

o Operations can be nested.
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o Operations can be nested.

o The only change is allowing arbitrary terms after a gate input.



Nested Strand Algebra nnnn����

P   ::=   x  ⋮ [x1,..,xn].P  ⋮ 0  ⋮ P|P  ⋮ P*          n≥1

We now allow free cascading of operations: x1.[x2,x3].(x4|x5)

And we also allow triggering whole populations: x.P*
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Embedding of � in n�:

[x1|..|xn].[x1’|..|xm’]    becomes    [x1|..|xn].(x1’|(..|(xm’|0)..))



Structural Congruence for nnnn����

P ≡ P equivalence

P ≡ P’  ⇒ P’ ≡ P

P ≡ P’, P’ ≡ P”  ⇒ P ≡ P”

P ≡ P’  ⇒ [x1,..,xn].P ≡ [x1,..,xn].P’ congruence

P ≡ P’  ⇒ P|P” ≡ P’|P”

P ≡ P’  ⇒ P* ≡ P’*

P | 0  ≡ P diffusion

432008-10-31Luca Cardelli

P | 0  ≡ P diffusion

P | P’  ≡ P’ | P

P | (P’ | P”)  ≡ (P | P’) | P”

P*  ≡ P* | P population

(0)*  ≡ 0

(P | P’)*  ≡ P* | P’*

P**  ≡ P*



Reduction for nnnn����

x1 | .. | xn | [x1,..,xn].P  → P   Gate

P  → P’ ⇒ P | P”  → P’| P” Parallel

P ≡ P1, P1 → P2, P2 ≡ P’ ⇒ P → P’ Mixing
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nnnn���� to ���� Unnest Algorithm

U(P) = X | U(X,P) for fresh X

U(X, x) = X.x

U(X, [x1,..,xn].P) = [X,x1,..,xn].Y | U(Y,P) for fresh Y

U(X, 0) =  X.[]
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U(X, P|P’) = X.[Y,Z] | U(Y,P) | U(Z,P’) for fresh Y,Z

U(X, P*) = (X.[Y,X] | U(Y,P))* for fresh Y



nnnn���� to ���� Unnest Algorithm (formal)
Let � be an infinite lists of distinct strands, 

and � be the set of such �’s.

�i isthe i-th strand in the list, 

�≥I is the list starting at the i-th position of �, 

evn(�) is the even elements of �, 

odd(�) is the odd elements.

Let �P be the set of those �∈� that 

do not contain any strand that occurs in P. 

Let P∈n� and �∈�P, 

let X indicate strands in �

U(P)� = �0 | U(�0,P)�≥1
U(�0,P)�≥1

produces a gate that is triggered by �0.
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U(P)� = �0 | U(�0,P)�≥1

U(X,P)� =
• If P = x return X.x

• If P = [x1,..,xn].P’ return [X,x1,..,xn].�0 | U(�0,P’)�≥1

• If P = 0 return X.[]

• If P = P’|P” return X.[�0,�1] | U(�0,P’)evn(�≥2)
| U(�1,P”)odd(�≥2)

• If P = P’* return (X.[�0,X] | U(�0,P’)�≥1
)* 

U(�0,P)�≥1
produces a gate that is triggered by �0.



Solving Recursive Equations

In the nested algebra we can more easily solve recursive equations, 

because we can always “add one more prefix”.

To solve the following equations:

X = f(X,Y)         

Y = g(X,Y)

in P(X,Y)

472008-10-31Luca Cardelli

in P(X,Y)

write:

P(X,Y) | (X.f(X,Y))* | (Y.g(X,Y))*



Triggering Populations

We can nest populations after all:

U(x.P*) = X | [X,x].Z | (Z.[Y,Z] | U(Y,P))*

U(P**) = X | (X.[Y,X] | U(Y,P*))* =

X | (X.[Y,X] | (Y.[Z,Y] | U(Z,P))*)* =

X | X.[Y,X]* | (Y.[Z,Y] | U(Z,P))** =

X | (X.[Y,X] | Y.[Z,Y] | U(Z,P))*
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U(P) = X | U(X,P) for fresh X

U(X, x) = X.x

U(X, [x1,..,xn].P) = [X,x1,..,xn].Y | U(Y,P) for fresh Y

U(X, 0) =  X.[]

U(X, P|P’) = X.[Y,Z] | U(Y,P) | U(Z,P’) for fresh Y,Z

U(X, P*) = (X.[Y,X] | U(Y,P))* for fresh Y



Interacting Automata
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Automata to DNA

● There are many schemas to compile automata to molecules

o But most (all?) are about compiling a single automaton (e.g. an FSA).

● Interacting Automata can be compiled to chemical reactions [TCS’08].

o Are concurrent and population based (a subset of CCS).

o The translation has an n2 blowup (mean automata are “more compact”).

o But how does one engineer the necessary molecules?
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● Arbitrary chemistry can be compiled to DNA [Soloveichik et al.].

o The translation is stochastically “almost” faithful.

o Which can be seen as a defect of the translation, if you are a chemist.

● Hence Interacting Automata can be compiled to DNA.

o Again, stochastically this is “almost” faithful as a single transition may need 

to be implemented with two transitions, which have a different distribution.

o But for automata, we are probably not picky: we mostly want them to change 

states.



Alternative DNA Mechanisms
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3

Hairpin Operators

2
1⊥

1

2⊥

1⊥ 2⊥

3⊥

4⊥

3⊥

This is a quite different set of DNA primitives.

5⊥

1
2⊥

2

1⊥

4

4⊥

3⊥6⊥

1⊥31 2

3⊥ 2⊥

2⊥4⊥ 3⊥

1⊥

5⊥ 4⊥1⊥ 2⊥ 3⊥

1 4
2⊥

3⊥

31 2

3⊥ 2⊥1⊥ 2

1⊥

4⊥

6⊥

5⊥

1⊥ 2⊥3⊥

4⊥1⊥

1 4

31 2

3⊥ 2⊥1⊥4⊥6⊥

Programming biomolecular self-assembly pathways 

P. Yin, H.M.T. Choi, C.R. Calvert, N.A. Pierce 

Nature, 451:318-322, 2008.
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This is a quite different set of DNA primitives.

But it has this function:

1⊥ 2⊥3⊥

1⊥2⊥ 4⊥3⊥5⊥

2⊥1⊥4⊥ 3⊥6⊥

X

0

Y

0



Doing the same in Strand Algebra

If we just think of the function of that network:

1⊥ 2⊥3⊥

1⊥2⊥ 4⊥3⊥5⊥

2⊥1⊥4⊥ 3⊥6⊥

X

0

Y

0
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Then we can implement that function in strand algebra:

X = (1⊥:3⊥:2⊥).[(5⊥:3⊥),(2⊥:4⊥:1⊥)]

Y = (2⊥:4⊥:1⊥).[(6⊥:4⊥),(1⊥:3⊥:2⊥)]

This leads to a different DNA implementation (according to the canonical 

DNA semantics of strand algebra).

But this is what algebra is good for: abstracting implementation models.



Open Problems/Questions
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Implementing Choice in DNA

● I.e. compiling Choice to Join.

● This is hard.

● Particularly because we don’t have a restriction operator (in strand 

algebra); otherwise there are some classical techniques to compile some 

π-calculus choice operators to parallel compositions.

● Note that there is no restriction operator in DNA, unless maybe one 

throws in the whole DNA transcription apparatus. Therefore, many 

encodings, particularly when replicated, tend to self-interfere.
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encodings, particularly when replicated, tend to self-interfere.



Compiling Join to Choice

● I.e., compiling strand algebra to interacting automata (or CCS).

● This should be just an exercise.

● Trivial if one admits divergence (by using the same “reversible binding” 

trick as in the DNA implementation of join).

● But how can one compile join to choice in a termination-preserving way?
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Compiling Choice to Join

● I.e., compiling interacting automata to strand algebra without going 

through the n2-expansion of the chemical translation.

● There is no known direct/compositional/linear translation of Interacting 

Automata (CGF) to strand algebra, because of the difficulties in 

translating choice.
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Programming biomolecular self-assembly pathways P. Yin, H.M.T. Choi, C.R. 
Calvert, N.A. Pierce Nature, 451:318-322, 2008.
(The primitives used here are x.y and  x.[y,z], although “dissociation” is also 
used to great effect, and this is not easily expressible.)


