
Strand Algebras for
DNA Computing

Luca Cardelli
with Andrew Phillips

Edinburgh 2008-10-31

http://LucaCardelli.name

Microsoft Research
Cambridge UK

with Andrew Phillips

=

Continuous
Chemistry

Discrete

Process
Algebra

ODE ODE

Continuous-state Semantics
(Mass Action Kinetics)

22008-10-31Luca Cardelli

=

Discrete
Chemistry

CTMC CTMC

Discrete-state Semantics

(Chemical Master Equation)

These diagrams commute via appropriate maps.

L. Cardelli: “On Process Rate Semantics” (TCS)

L. Cardelli: “A Process Algebra Master Equation” (QEST’07)

Motivation

=

Continuous
Chemistry

Discrete

Process
Algebra

ODE ODE

Continuous-state Semantics
(Mass Action Kinetics)

The Real
Wet Stuff

?

32008-10-31Luca Cardelli

=

Discrete
Chemistry

CTMC CTMC

Discrete-state Semantics

(Chemical Master Equation)

How do we implement an arbitrary process?

Chemistry does not necessarily help
(how do we then implement the chemical species?)

DNA Semantics

42008-10-31Luca Cardelli

Naïve Thermodynamics

● Exergy (available energy) of the system:

o Sum of the lengths of the unpaired strands.

● Exergy must ultimately decrease (second law)

o Eventually exergy reaches zero, or the minimum possible.

● Local changes in exergy:

o Downhill changes: “fast”

52008-10-31Luca Cardelli

o Downhill changes: “fast”

● but locally not necessarily irreversible

o Neutral changes

● possibly down and then back up

● reversible

o Uphill changes

● possible but temporary.

o Bump changes: “slow”

● they go up and lower down through exergy hills

● possible, but less likely the higher the hill

4

Branch Migration

42 31

2⊥ 3⊥

43

4⊥

5
6

3⊥

4
3

4⊥

5
6

2⊥

1
32

toehold binding

exergy = 1,3,4,5,6

reversible

to next toehold

initial solution

62008-10-31Luca Cardelli

3⊥

4
3

4⊥

5
6

2⊥

1 3
4

2

exergy arrow

branch migration

4

3⊥

2 3

2⊥ 4⊥

1

ejection

4
5

6
3

still reversible!

exergy = 1,2,2⊥,3,4,5,6

exergy = 1,3,4,5,6 exergy = 1,3,4,5,6

reversible

toehold

Signal Strand

42 31

1 = history
2 = toehold
3 = body

x

D. Soloveichik, G. Seelig, E. Winfree. DNA as a Universal
Substrate for Chemical Kinetics. Proc. DNA14.

72008-10-31Luca Cardelli

3 = body
4 = next toehold

The history is not part of signal recognition: strands with
different histories should behave the same. Hence, x denotes
an equivalence class of strand with different histories.

Strands x and x⊥ are supposed to hybridize (except for the
history region). If x≠y then x and y⊥ are not supposed to
hybridize (except for the history region).

Hybridization

42 31

2⊥ 4⊥3⊥ 5⊥

42 31

2⊥ 4⊥3⊥ 5⊥

x⊥

0
x

82008-10-31Luca Cardelli

Watson-Crick complementarity:

(2,3,4)⊥ = (4⊥,3⊥,2⊥)

Transducer

42 31

2⊥ 3⊥

43

4⊥

5
6

43 5 6

4

3⊥

2 3

2⊥ 4⊥

1

The output is not independent of the input. But two

transducers can be composed to fix that (see Sequence).

4

3⊥

4
3

4⊥

5
6

1 3
2

2⊥

92008-10-31Luca Cardelli

transducers can be composed to fix that (see Sequence).

Every reaction is reversible, but (at the right temperature) the

equilibrium favors configurations with stronger (longer)

hybridizations. Because of this, some reactions can be considered

irreversible: this is the meaning of .

Instead, if two configurations have the same hybridization strength,

they are fully reversible (possibly at a low rate).

DNA Spaghetti

2⊥ 3⊥

43

4⊥

5
6

43
5

6

2⊥ 3⊥

7⊥62⊥

7⊥

8⊥

These are two “complementary” transducers, one supposed to react to a (2,3,4)

signal, the other to a (2,3,4)⊥ = (4⊥,3⊥,2⊥) signal.

But something is wrong: the transducers interact in absence of any signal!

102008-10-31Luca Cardelli

4 3

2⊥3⊥

2

7⊥
8⊥

2

This reaction is neutral, but the 4 and 2⊥ toeholds have been exposed, and those

are supposed to be exposed only in response to input signals.

Hence, downstream, all hell breaks loose.

4

3⊥

2 3

2⊥ 4⊥

2 3
7⊥

8⊥

4⊥

2⊥

3⊥

43
5

62⊥

3⊥

3
4
2

Imposing some discipline

● A precautionary (and possibly temporary) decision to avoid spaghetti:

avoid complementary signals and complementary gates.

● Signals “x” are always positive

● Gates “x.y” are always negative

o that is, the input “x” is implicitly perp’ed

o and the output “y” is another positive signal

112008-10-31Luca Cardelli

o and the output “y” is another positive signal

● This way, by the way, we give up Turing completeness, which is probably

possible by using both positive and negative signals and gates.

Hybridization

0

x | x.[] → 0

42 31

2⊥ 3⊥ 4⊥

4

3⊥

2 3

2⊥ 4⊥

1

x

x.[]

Signal

Gate

(no output)

122008-10-31Luca Cardelli

● A positive toehold indicates a signal.

● (A positive strand is a signal.)

● A negative toehold indicates a gate.

● (A negative strand is a gate with no output.)

43 5 6

4

Sequence

x | x.y → y

2 31

2⊥ 3⊥

43

4⊥

5
6

65 7 8

x

y

temp

4

3⊥

2 3

2⊥ 4⊥

1

Composition of two transducers.

waste
Signal

Signal

Signal

132008-10-31Luca Cardelli

4⊥ 5⊥

65

6⊥

7
8

x.y

6

5⊥

4 5

4⊥ 6⊥

3

waste

Gate

Venn DnagramsTM

0⊥ 2⊥3⊥

3⊥ 2⊥0⊥

23
4

3⊥3⊥30 2

3⊥ 2⊥

2⊥

0⊥ 3 2 3 4

4⊥

depoly0

seed

By the way, this is a useful notation for complicated situations:

142008-10-31Luca Cardelli

3⊥30 2

3⊥ 2⊥

2⊥ 3⊥

0⊥

2 33

3⊥2⊥

1⊥
3 20

2⊥3⊥

3⊥

4⊥

4⊥
3⊥30 2

3⊥ 2⊥

2⊥ 3⊥

0⊥ 3 2 3 1⊥ 2⊥3⊥

4⊥

poly0

poly1poly2

3 21

2⊥3⊥

3⊥

4⊥

Fork

x | x.[y,z] → y | z

42 31

x

y
temp

4

3⊥

2 3

2⊥ 4⊥

1

43
5

6
9

10

1043 5 6 9 109 11 12

z

152008-10-31Luca Cardelli

Similarly to Sequence, with two output strands in

second step (Soloveichik Fig 2)

65 7 8

x.[y,z]

2⊥ 3⊥ 4⊥

1043 5 6 9

10

4⊥ 5⊥

65

6⊥

7
8

9
11

12

9⊥ 10⊥

109 11 12

10

4⊥ 5⊥

65

6⊥

9

9⊥ 10⊥

4
3

Fork-Catalyst

x | x.[y,x] → y | x

42 31

43
5

6
9

2

243 5 6 9
29 3 4

4

3⊥

2 3

2⊥ 4⊥

1

temp

x

x

y

162008-10-31Luca Cardelli

65 7 8

2⊥ 3⊥ 4⊥

243 5 6 9

2

4⊥ 5⊥

65

6⊥

7
8

9
3

4

9⊥ 2⊥

29 3 4

2

4⊥ 5⊥

65

6⊥

9

9⊥ 2⊥

4
3

x.[y,x]

2-way Join

x | y | [x,y].z → z

42 31

3⊥

63

6⊥ 7⊥

87

8⊥

9
10

2 3
1

4

3⊥ 6⊥ 7⊥

87

8⊥

9
10

86 75 108 97

2 3
1

6

3⊥ 6⊥ 7⊥

87

8⊥

5
4

x y z’

v

v

v v

172008-10-31Luca Cardelli

X = x.((x|X) + y.z)

This can be implemented by two sequential inputs where the first one is

reversible (Soloveichik Fig.3). An output transducer is then needed from z’ to z,

because z’ overlaps with y.

Informally, this is implemented this way:

63

2⊥ 3⊥ 6⊥ 7⊥ 8⊥
2⊥ 3⊥ 6⊥ 7⊥ 8⊥

2⊥ 3⊥ 6⊥ 7⊥ 8⊥

[x,y].z’

v

3-way Join

42 31

2⊥ 3⊥

63

6⊥ 11⊥

1211

12⊥

13
14

86 75

x y

7⊥

107

10⊥

2 3
1

4

2⊥ 3⊥ 6⊥ 11⊥

1211

12⊥

13
14

7⊥

107

10⊥

x | y | z | [x,y,z].w → w

v

v

v

182008-10-31Luca Cardelli

63

2

1412 1311

w’
[x,y,z].w’

2

1210 119

z

2 3
1

6

2⊥ 3⊥ 6⊥ 11⊥

1211

12⊥

13
14

7⊥

8
7

10⊥

107

5
4 10

11⊥

1211

12⊥

8
2 3

1
6

2⊥ 3⊥ 6⊥ 7⊥

7

10⊥

5
4

9

v

v

v

v

Ex.: Optimization of Cascades

3 4

5

6

42 31

2⊥

5⊥

6⊥7⊥8⊥

6⊥3⊥ 5⊥9⊥

3

4

5 6

5⊥ 6⊥

7⊥

8⊥ 8⊥6⊥ 7⊥5⊥

x’

z’

y

x | y | x.y.z → y | y.z → z
instead of

x | x.w → w

y | w | [y,w].z → z

v

v

v
6⊥3⊥ 5⊥9⊥

3
4

5 6

v

192008-10-31Luca Cardelli

2⊥ 3⊥ 4⊥

3⊥ 4⊥

42 31

We need to prefix this with a transducer for x to x’, because x’ is not in
standard form and is not independent of y (3).

The signal y is non-standard as well, hence this optimization is context-
dependent.

We need to postfix this with an output transducer for z’ to z, because z’ is not
independent of y (5:6).

Note: This can be continued in a spoke pattern for any number of sequential
inputs!!

x’.y.z’ y.z’

4

2

Transducers for Optimized Cascades

211 1

11⊥ 1⊥

21

1⊥

11 1

11⊥

10

2⊥

3
4

2⊥

x

10

42 31

x’

Input transducer:

v v

202008-10-31Luca Cardelli

11 11

Output transducer:

(standard)

Combinatorial Strand Algebra

212008-10-31Luca Cardelli

Strand Algebra ����

P ::= x ⋮ [x1,..,xn].[x1’,..,xm’] ⋮ 0 ⋮ P|P ⋮ P* n≥1, m≥0

No compound expressions except for parallel composition P|P and populations P*.

Hence this is a combinator-based (“assembly”) language.

Here x is a strand, and [..].[..] is a gate.

� x is a strand

≝
≝

222008-10-31Luca Cardelli

� x1.x2 ≝ [x1].[x2] is a sequence gate
� x.[x1,..,xm] ≝ [x].[x1,..,xn] is a fork gate
� [x1,..,xn].x ≝ [x1,..,xn].[x] is a join gate

� 0 is inert
� P|P is parallel composition of strands and gates
� P* is a population of strands and gates

Note: σ.P* is not in the syntax: populations are only top-level.
C.f.: Petri net tokens (strands) and transitions (gates).
However, here both strands and gates are consumed by interaction.

Structural Congruence for ����

P ≡ P equivalence

P ≡ P’ ⇒ P’ ≡ P

P ≡ P’, P’ ≡ P” ⇒ P ≡ P”

P ≡ P’ ⇒ P|P” ≡ P’|P” congruence

P ≡ P’ ⇒ P* ≡ P’*

P | 0 ≡ P diffusion

P | P’ ≡ P’ | P

232008-10-31Luca Cardelli

P | P’ ≡ P’ | P

P | (P’ | P”) ≡ (P | P’) | P”

P* ≡ P* | P population

(0)* ≡ 0

(P | P’)* ≡ P* | P’*

P** ≡ P*

Reduction for ����

x1 | .. | xn | [x1,..,xn].[x1’,..,xm’] → x1’ | .. | xm’ Gate

P → P’ ⇒ P | P” → P’| P” Parallel

P ≡ P1, P1 → P2, P2 ≡ P’ ⇒ P → P’ Mixing

242008-10-31Luca Cardelli

Technically, the Gate rule is:

x1 | (.. | (xn | [x1,..,xn].[x1’,..,xm’])..) → x1’|(..|(xm’)..)

but we have structural congruence to rearrange.

Examples

x1 | x1.x2 → x2

x1 | x1.x2 | x2.x3 →→ x3

x1 | x2 | [x1,x2].x3 → x3

x1 | x1.x2 | x1.x3 → x2 | x1.x3

252008-10-31Luca Cardelli

1 1 2 1 3 2 1 3

and also → x3 | x1.x2

x1 | x2 | x3 | [x1,x2].x4 | [x1,x3].x5 → x3 | x4 | [x1,x3].x5

and also → x2 | [x1,x2].x4 | x5

X | ([X,x1].[x2,X])*

a catalytic system ready to transform multiple x1 to x2, with catalyst X

Emulation of ���� in π

P ::= x ⋮ [x,..,x].[x,..,x] ⋮ 0 ⋮ P|P ⋮ P*

⟦0⟧ = 0

⟦P1|P2⟧ = ⟦P1⟧|⟦P2⟧

⟦P*⟧ = ⟦P⟧*

⟦ ⟧

⟦ ⟧

262008-10-31Luca Cardelli

⟦ ⟧ ⟦ ⟧

⟦x⟧ = !x

⟦[x].[x1,..,xn]⟧ = ?x.(!x1|..|!xn)

⟦[x1,x2].[x1,..,xn]⟧ = rec X. ?x1.(!x1.X + ?x2.(!x1|..|!xn))

⟦[x1,x2,x3].[x1,..,xn]⟧ = etc.

But this does not preserve termination, e.g. for x1|[x1,x2].[].

DNA Machine Calculus

272008-10-31Luca Cardelli

Syntax

282008-10-31Luca Cardelli

Branch migration as Structural Congruence:

Reduction Rules

292008-10-31Luca Cardelli

Plus some context rules:

Examples

302008-10-31Luca Cardelli

Uses

● A formal translation from chemical reactions to DNA sequences.

● A formal translation from Strand Algebra to DNA sequences

(instead of pictures).

312008-10-31Luca Cardelli

Stochastic Strand Algebra

322008-10-31Luca Cardelli

Stochastic Populations

● Populations P* are meaningless because one cannot compute their

stochastic impact. Hence stochastic strand algebra �r drops P*:

● Instead of unbounded populations P* should think of populations of size k,

Pk, which of course we already have from iterated parallel composition.

● Further, we can think of populations of constant size k, P=k.

These too are in a sense definable, using a bigger buffer population:

P ::= x ⋮ [x1,..,xn].r[x1’,..,xm’] ⋮ 0 ⋮ P|P n≥1, m≥0

332008-10-31Luca Cardelli

These too are in a sense definable, using a bigger buffer population:

o Take for example P = x.Y

o P=k ≝ Xk | Pbufk
3

for some fresh X

o Pbufn ≝ ([X,x].[Y,X])n

o Here k3 is an example of a large enough buffer: it ensures that reactions on X

are much faster than reactions on x by mass action, and that the join [X,x] is

always saturated in the X input.

Constant Populations

● We have, for e.g. P=x.Y:

o P=k = Xk | Pbufk
3

= (X | [X,x].[Y,X])k | Pbufk
3-k

→ Y | X | (X | [X,x].[Y,X])k-1 | Pbufk
3-k

= Y | (X | [X,x].[Y,X])k | Pbufk
3-k-1

● Hence there is always constant population:

o (X | [X,x].[Y,X])k

P = x.Y

P=k ≝ Xk | Pbufk
3

Pbufn ≝ ([X,x].[Y,X])n

342008-10-31Luca Cardelli

o

o with a constant k weight on the x input (or temporarily ~k-1)

o constant up to a re-equilibration speed determined by ~k3

● Moreover, the buffer can be “topped up” from time to time,

without disturbing the rates of the system!

And we can have “buffers of buffers” (P=k)=k.

● This gives us a practical way to implement “unbounded recursion”,

akin to P*, in a stochastic system (up to topping up the buffers).

Otherwise all computations terminate.

Stochastic Gate Rates

● A simple idea: associate a reaction rate r to each gate.

o This is what one would do in stochastic Petri nets (gate = transition).

o But this does not reflect the DNA implementation. Instead:

● Each xi has a binding rate r
b(xi) and an unbinding rate r

u(xi).

Then the rate of a gate reaction is a function of those rates

(it is not an exponential distribution):

352008-10-31Luca Cardelli

x1 | .. | xn | [x1,..,xn].[x1’,..,xm’] →
f(x1,..,xn) x1’ | .. | xm’ Gate

Semantics of ����r in Chemistry(FSRN)

The (common) assumption here is that branch migration is fast w.r.t. binding rates.

First we extract the system of reactions from a whole term P:

for each g = x.[y1,..,ym] add the reaction:

x+g →rb(x1) y1+..+ym
for each g = [x1,x2].[y1,..,ym] add the reactions:

x1+g
ru(x1)↔rb(x1) x1’,

x1’+x2 →rb(x2) y1+..+ym
etc. for higher joins.

362008-10-31Luca Cardelli

etc. for higher joins.

These are reactions, i.e. they are independent of the number of strands x and gates g
in the system. Then, we add all those as “initial conditions”, as a translation ⟦P⟧:

⟦x⟧ = x

⟦[x1,..,xn].[x1’,..,xm’]⟧ = g (that g associated to this gate above)

⟦0⟧ = 0

⟦P|P’⟧ = ⟦P⟧ + ⟦P’⟧

So if there are n x and m gates x.[..], the propensity of binding is n*m*rb(x).

Semantics of Chemistry(FSRN) in ����r

● This is what [Soloveichik et al.] do: how to implement an arbitrary set of

chemical reactions (before this, one would not have known in general

how to engineer a set of chemical species that would obey those

reactions).

● Given a reaction A+B→C make up some DNA with the same (approximate)

kinetics.

● But we cannot just translate A+B→C to [A,B].[C] or ([A,B].[C])k:

372008-10-31Luca Cardelli

● But we cannot just translate A+B→C to [A,B].[C] or ([A,B].[C]) :

gates are consumed, hence reactions would get “weaker and weaker”.

● We can solve that problem by constant populations ([A,B].[C])=k

(which is what [Soloveichik et al.] do). For further details see that paper.

Compiling to Strand Algebra

382008-10-31Luca Cardelli

High(er)-Level Languages

● We now have an intermediate language: the combinatorial strand algebra

o It can be compiled “directly” to DNA following [Soloveichik et al.]

● But we really want to compile “high-level languages”. Such as:

o Boolean Networks (fairly easy)

o Finite Stochastic Reaction Networks (Chemistry) [Soloveichik et al.]

o Petri Nets (easy)

o Finite State Automata and Transducers (easy)

392008-10-31Luca Cardelli

o Finite State Automata and Transducers (easy)

o Interacting Automata (hard)

o π-calculus (???)

● And also

o Higher-level strand algebras, which may form

more convenient intermediate languages.

o Such as the Nested Strand Algebra.

Nested Strand Algebra

402008-10-31Luca Cardelli

Motivation

● A sequence x1.x2.x3 is not in the syntax of the combinatorial algebra.

● Still, it can be defined as:

o x1.x2.x3 = x1.x0 | [x0,x2].x3

o where x0 can be chosen, e.g., as a fixed function of x1,x2

● The nested strand algebra generalizes this idea

o Operations can be nested.

412008-10-31Luca Cardelli

o Operations can be nested.

o The only change is allowing arbitrary terms after a gate input.

Nested Strand Algebra nnnn����

P ::= x ⋮ [x1,..,xn].P ⋮ 0 ⋮ P|P ⋮ P* n≥1

We now allow free cascading of operations: x1.[x2,x3].(x4|x5)

And we also allow triggering whole populations: x.P*

422008-10-31Luca Cardelli

Embedding of � in n�:

[x1|..|xn].[x1’|..|xm’] becomes [x1|..|xn].(x1’|(..|(xm’|0)..))

Structural Congruence for nnnn����

P ≡ P equivalence

P ≡ P’ ⇒ P’ ≡ P

P ≡ P’, P’ ≡ P” ⇒ P ≡ P”

P ≡ P’ ⇒ [x1,..,xn].P ≡ [x1,..,xn].P’ congruence

P ≡ P’ ⇒ P|P” ≡ P’|P”

P ≡ P’ ⇒ P* ≡ P’*

P | 0 ≡ P diffusion

432008-10-31Luca Cardelli

P | 0 ≡ P diffusion

P | P’ ≡ P’ | P

P | (P’ | P”) ≡ (P | P’) | P”

P* ≡ P* | P population

(0)* ≡ 0

(P | P’)* ≡ P* | P’*

P** ≡ P*

Reduction for nnnn����

x1 | .. | xn | [x1,..,xn].P → P Gate

P → P’ ⇒ P | P” → P’| P” Parallel

P ≡ P1, P1 → P2, P2 ≡ P’ ⇒ P → P’ Mixing

442008-10-31Luca Cardelli

nnnn���� to ���� Unnest Algorithm

U(P) = X | U(X,P) for fresh X

U(X, x) = X.x

U(X, [x1,..,xn].P) = [X,x1,..,xn].Y | U(Y,P) for fresh Y

U(X, 0) = X.[]

452008-10-31Luca Cardelli

U(X, P|P’) = X.[Y,Z] | U(Y,P) | U(Z,P’) for fresh Y,Z

U(X, P*) = (X.[Y,X] | U(Y,P))* for fresh Y

nnnn���� to ���� Unnest Algorithm (formal)
Let � be an infinite lists of distinct strands,

and � be the set of such �’s.

�i isthe i-th strand in the list,

�≥I is the list starting at the i-th position of �,

evn(�) is the even elements of �,

odd(�) is the odd elements.

Let �P be the set of those �∈� that

do not contain any strand that occurs in P.

Let P∈n� and �∈�P,

let X indicate strands in �

U(P)� = �0 | U(�0,P)�≥1
U(�0,P)�≥1

produces a gate that is triggered by �0.

462008-10-31Luca Cardelli

U(P)� = �0 | U(�0,P)�≥1

U(X,P)� =
• If P = x return X.x

• If P = [x1,..,xn].P’ return [X,x1,..,xn].�0 | U(�0,P’)�≥1

• If P = 0 return X.[]

• If P = P’|P” return X.[�0,�1] | U(�0,P’)evn(�≥2)
| U(�1,P”)odd(�≥2)

• If P = P’* return (X.[�0,X] | U(�0,P’)�≥1
)*

U(�0,P)�≥1
produces a gate that is triggered by �0.

Solving Recursive Equations

In the nested algebra we can more easily solve recursive equations,

because we can always “add one more prefix”.

To solve the following equations:

X = f(X,Y)

Y = g(X,Y)

in P(X,Y)

472008-10-31Luca Cardelli

in P(X,Y)

write:

P(X,Y) | (X.f(X,Y))* | (Y.g(X,Y))*

Triggering Populations

We can nest populations after all:

U(x.P*) = X | [X,x].Z | (Z.[Y,Z] | U(Y,P))*

U(P**) = X | (X.[Y,X] | U(Y,P*))* =

X | (X.[Y,X] | (Y.[Z,Y] | U(Z,P))*)* =

X | X.[Y,X]* | (Y.[Z,Y] | U(Z,P))** =

X | (X.[Y,X] | Y.[Z,Y] | U(Z,P))*

482008-10-31Luca Cardelli

U(P) = X | U(X,P) for fresh X

U(X, x) = X.x

U(X, [x1,..,xn].P) = [X,x1,..,xn].Y | U(Y,P) for fresh Y

U(X, 0) = X.[]

U(X, P|P’) = X.[Y,Z] | U(Y,P) | U(Z,P’) for fresh Y,Z

U(X, P*) = (X.[Y,X] | U(Y,P))* for fresh Y

Interacting Automata

492008-10-31Luca Cardelli

Automata to DNA

● There are many schemas to compile automata to molecules

o But most (all?) are about compiling a single automaton (e.g. an FSA).

● Interacting Automata can be compiled to chemical reactions [TCS’08].

o Are concurrent and population based (a subset of CCS).

o The translation has an n2 blowup (mean automata are “more compact”).

o But how does one engineer the necessary molecules?

502008-10-31Luca Cardelli

● Arbitrary chemistry can be compiled to DNA [Soloveichik et al.].

o The translation is stochastically “almost” faithful.

o Which can be seen as a defect of the translation, if you are a chemist.

● Hence Interacting Automata can be compiled to DNA.

o Again, stochastically this is “almost” faithful as a single transition may need

to be implemented with two transitions, which have a different distribution.

o But for automata, we are probably not picky: we mostly want them to change

states.

Alternative DNA Mechanisms

512008-10-31Luca Cardelli

3

Hairpin Operators

2
1⊥

1

2⊥

1⊥ 2⊥

3⊥

4⊥

3⊥

This is a quite different set of DNA primitives.

5⊥

1
2⊥

2

1⊥

4

4⊥

3⊥6⊥

1⊥31 2

3⊥ 2⊥

2⊥4⊥ 3⊥

1⊥

5⊥ 4⊥1⊥ 2⊥ 3⊥

1 4
2⊥

3⊥

31 2

3⊥ 2⊥1⊥ 2

1⊥

4⊥

6⊥

5⊥

1⊥ 2⊥3⊥

4⊥1⊥

1 4

31 2

3⊥ 2⊥1⊥4⊥6⊥

Programming biomolecular self-assembly pathways

P. Yin, H.M.T. Choi, C.R. Calvert, N.A. Pierce

Nature, 451:318-322, 2008.

522008-10-31Luca Cardelli

This is a quite different set of DNA primitives.

But it has this function:

1⊥ 2⊥3⊥

1⊥2⊥ 4⊥3⊥5⊥

2⊥1⊥4⊥ 3⊥6⊥

X

0

Y

0

Doing the same in Strand Algebra

If we just think of the function of that network:

1⊥ 2⊥3⊥

1⊥2⊥ 4⊥3⊥5⊥

2⊥1⊥4⊥ 3⊥6⊥

X

0

Y

0

532008-10-31Luca Cardelli

Then we can implement that function in strand algebra:

X = (1⊥:3⊥:2⊥).[(5⊥:3⊥),(2⊥:4⊥:1⊥)]

Y = (2⊥:4⊥:1⊥).[(6⊥:4⊥),(1⊥:3⊥:2⊥)]

This leads to a different DNA implementation (according to the canonical

DNA semantics of strand algebra).

But this is what algebra is good for: abstracting implementation models.

Open Problems/Questions

542008-10-31Luca Cardelli

Implementing Choice in DNA

● I.e. compiling Choice to Join.

● This is hard.

● Particularly because we don’t have a restriction operator (in strand

algebra); otherwise there are some classical techniques to compile some

π-calculus choice operators to parallel compositions.

● Note that there is no restriction operator in DNA, unless maybe one

throws in the whole DNA transcription apparatus. Therefore, many

encodings, particularly when replicated, tend to self-interfere.

552008-10-31Luca Cardelli

encodings, particularly when replicated, tend to self-interfere.

Compiling Join to Choice

● I.e., compiling strand algebra to interacting automata (or CCS).

● This should be just an exercise.

● Trivial if one admits divergence (by using the same “reversible binding”

trick as in the DNA implementation of join).

● But how can one compile join to choice in a termination-preserving way?

562008-10-31Luca Cardelli

Compiling Choice to Join

● I.e., compiling interacting automata to strand algebra without going

through the n2-expansion of the chemical translation.

● There is no known direct/compositional/linear translation of Interacting

Automata (CGF) to strand algebra, because of the difficulties in

translating choice.

572008-10-31Luca Cardelli

Bib

For possible DNA implementations of the strand algebra see:

DNA as a Universal Substrate for Chemical Kinetics (Extended Abstract)
David Soloveichik, Georg Seelig, and Erik Winfree
http://www.dna.caltech.edu/Papers/DNA_for_CRNs_preprint_DNA14.pdf
(The primitives used here are x.y, x.[y,z], and [x,y].z).

and

Programming biomolecular self-assembly pathways P. Yin, H.M.T. Choi, C.R.

582008-10-31Luca Cardelli

Programming biomolecular self-assembly pathways P. Yin, H.M.T. Choi, C.R.
Calvert, N.A. Pierce Nature, 451:318-322, 2008.
(The primitives used here are x.y and x.[y,z], although “dissociation” is also
used to great effect, and this is not easily expressible.)

