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Basic Chemistry
e Molecules belong to Species

e Behavior is described by reactions between species:
o Monomolecular: A — C,+...+C_
o Bimolecular: A+B —» D;+...+D,

e A.k.a. FSRN (Finite Stochastic Reaction Networks [Sol’08])



Basic Biochemistry

e Molecules may also form reversible complexes
o Association: A+B —>A:B
o Dissociation: A:B—>A+B
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What’s the Difference?
Consider linear polymerization: (IS

The “chemical program”
for polymerization:

Po+ M — P,
P,+M—>P,
P, + M — P;
P, +M— P,

« an infinite (non-)program
« an infinite set of species
« an infinite set of ODEs

Pio7s7 + M — Pyg7ss
Such specificity is unreal.

But “nature’s program” for polymerization
has to fit e.g. in the genome, so it cannot

be infinite! Clearly, nature must be using a
different “language” than basic chemistry:

» - >

molecule with convex patch +
molecule with concave patch —
molecule with convex patch

« a finite program
« a local rule
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Example: Can it halt?
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Example: Can it halt?

3 Automata Ic YES

Moreover, there is
no infinite trace.
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Example: Can it halt?

“Experimental Evidence”

Continuous-State
Simulation

interval/step [0:0.0001:0.03]

(A) dx1/dt=-x1*x2 + x3*x1  900.0
(B) dx2/dt=-x2*x3+x1*x2 500.0
(€) dx3/dt=-x3*x1+x2*x3 100.0
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Discrete-State
Simulation

directive sample 0.03 1000
directive plot A(); B(): €()

new a@1.0:chan new b@1.0:chan new c@1.0:chan
let A() = do la;A() or ?b; B()
and B() = do |b;B() or 2c; C()
and €() = do lc;C() or ?2a; A()

run (900 of A() | 500 of B() | 100 of C())

0.03



Example: Can it halt?

But in a longer experiment...

- y
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BB . .

0.12417

Discrete-State
Simulation



Example: Can it halt?

Termination strategy
It can terminate. (Apply reaction b until no more A’s, then apply
reaction c until no more B’s. Then all are C.)

Nondeterministic termination
It may diverge (with 4+ molecules).

Stochastic termination

The probability measure of the terminated states
of the oscillator’s CMTC is 1.

=> Stochastic fairness
It cannot diverge!
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But it’s all just Petri Nets!

e |t is possible to translate an arbitrary CGF (or FSRN) into
a Place/Transition Petri Net.
o lgnoring rates, and of course losing compositionality.

e Pretty much everything is decidable in P/T Nets.
o In particular, reachability of a dead (“halting”) state.

e Hence both CGF and FSRN are not Turing-complete!

o Basic chemistry can’t compute!
(Soloveichik et. al., Natural Computing 2008)

o Even though stochastic chemistry is extremely rich,
e.g. it includes chaotic systems.



A Petri net semantics for CGF

e One place for each Species
e One transition for each reaction
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A Petri net semantics for CGF

e One place for each Species
e One transition for each reaction
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Probability Measure for a Markov Chain

e 1-step probability
o If a state A has n outgoing transitions to states B, ..., B, labeled with
rates r,, ..., I, the probability of going from A to B, in one step is:

O pM(A,B,) = ./ Zi I

e Many-step probability (Chapman-Kolmogorov equation)
o The probability of going from A to B in n+m steps is the sum of all ways of
going in n steps form A to any X and then in m steps from X to B.

o p™mm(A,B) = Xy pM(A,X) pM(X,B)

e Termination probability (reaching an absorbing state)

o The probability of going from state A to an absorbing state B
is the limit of going from A to B in n steps:

e P(A,B) = lim___ pM(A,B)



Ex.:

%)

»

O—Q@)
((A,B) = 1/2 P((A,A) = 1/2 p™(B,B) = 1
@)(A,B) = pM(A,A) p((A,B) + p()(A,B) p"(B,B) =1/4 +1/2 = 3/4
3)(A,B) = p"(A,A) p@(A,B) + pM(A,B) p@(B,B)=3/8+1/2=7/8
4)(A,B) = pM(A,A) p@®(A,B) + p(A,B) p®(B,B) =7/16 + 1/2 = 15/16

p(A,B) = lim___p™(A,B) = lim___(n-1)/n = 1



Termination Problems

Probability Measure

o Let p be the probability measure associated to the computations
in a CGF (E,P) that lead to a terminated solution.

Existential Termination
o (E,P) existentially terminates if p > 0.

Universal Termination
o (E,P) universally terminates if p = 1.

Probabilistic Termination
o (E,P) terminates with probability higher than 0 < e <1, if p > €.



Termination Results

Stochastic Nondeterministic
Existential Termination Decidable’ Decidable*
Universal Termination Undecidable? Decidable
Probabilistic Termination Undecidable? N.A.

- Chemical kinetics is not Turing-complete’

- Chemical kinetics is Turing-complete up to an arbitrary error3

- Existential Termination is equally hard in stochastic and nondeterministic'’-4

- Universal termination is harder in stochastic than in nondeterministicc?:>

- The fairness implicit in stochastic computation makes checking universal
termination undecidable?

(-3 due to Soloveichik et. al., Natural Computing 2008)
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“Turifying” Chemistry

e What can we add to basic chemistry
to make it Turing-complete?

e Lots of stuff
o E.g. we can go from CGF to full w-calculus

e But is there...
o A basic mechanism
o which is also biologically realistic?



Association and Dissociation in BGF

Association patches are named the a shape

& — association

o &?a associate @
o &la co-associate ’

% — dissociation 8
o %fa dissociate

o %la co-dissociate —> Q

A given patch can hold only one association at a time
Two molecules can dissociate only if they are associated



Example: Linear Polymerization

[S — &?a’ S’ N A/‘A;y;uther
ehavior
M = &la; W
Seed factory and &73 M”
Monomer factory Seed

'\‘ NOTE: this is a
G @ finite program! S>
&?a
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G &la U &?a
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Example: Linear Polymerization
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Example: Linear Polymerization

C &?a C
O &la O &7a O B»




Example: Linear Polymerization

Each association
has a unique key

Keys are stored in
the molecule’s
association history




Example: Linear Polymerization
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Example: Actin Polymerization

Grows only to the E

right, shrinks only M’ = free on both sides

from the left M! = bound on the left
M" = bound on the right
MP = bound on both sides

%?a

K Mf = &la; Ml @ &?a; Mr
00|
d@‘ M = %la; M @ &2a; MP
M = %?a; Mf
&?a\‘ J
%la

MP = %la; Mr



Example: Actin Polymerization

e Purple associates with green
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Example: Actin Polymerization
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Example: Actin Polymerization

e Each association has a unique key
Keys are stored in the molecule’s history

e Black cannot associate with purple
No complementary actions available,
enforcing the “grow only to the right” constraint




Example: Actin Polymerization

e Green associates with black




Example: Actin Polymerization

e Black cannot dissociate from green
No complementary actions available,
enforcing the “shrink only from left” constraint

e But black can dissociate from purple (really?)

e And green can dissociate from purple
Mf

&la ‘

%la | \&?a
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Example: Actin Polymerization

e No, black cannot dissociate from purple
The association history prevents it

Not possible!
h#k




Example: Actin Polymerization

e Purple dissociates from green

Possible!
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Example: Actin Polymerization

e Now purple could reassociate to black
on the other side, but we are not going to do that




Example: Actin Polymerization

e Green dissociates from black




Example: Actin Polymerization

e Ready to start again

Mf
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Turing completeness of BGF

e Random Access Machines: [Min67]
o Registers: r, ... r, hold natural numbers (unbounded)

o Program: finite sequence of numbered instructions
e i: Inc(r;): add 1 to the content of r; and go to the next instruction

e i: DecJump(ry,s): if the content of r; is not 0 then decrease by 1 and go to
the next instruction; otherwise jump to instruction s

e There is a RAM encoding in BGF

o But not, as we already showed, in CGF.
o (Hence it is not possible to compile BGF to CGF.)



Registers as Polymers

e Initially empty register r;: a seed Z,

e Increment on r;: produce a new monomer and associate it to
the polymer

e Decrement on r;: remove last monomer




RAM encoding in BGF

llnc:frf k: DecJump(r;,s) 17870
¥ ]
o
2inc; 13

hnc 'dec

lzero;
?ack; ?ack,
@ @ &l |
o
register r;: lack;

)% UWHRYY, | Tack | wIl  dec °‘f/?l




RAM encoding in BGF
r;=0; l=Inc(r;); next, new R, monomer G &2l o
( ,‘“__L’?lj
i Incfrf k: DecJump(r;,s) 22870
-
?inc, ltii>

hnc 'decj

?ack; ?2ack.

lack ~ %!l;  ?dec Cnifﬁéz



RAM encoding in BGF

next, new R; binds to Z, 6 &2l
. O
G‘“__L’/)?lj

llnc:frf k: DecJump(r;,s) ST
' ]
ﬁnc-‘It:>

ling; ldec,

?ack ?2ack.
DO «
e
!aij &21.
O—— 0——— 0—O0—*0

lack %!l ?dec; %21,



RAM encoding in BGF
next, ack; is sent back Inc; &2l
(:::)%QL
i: Inc(r;) k: DecJump( S) ?G :
.zeroj
ﬁncj‘It:>

hnc 'dec

'zeroJ
?ack ?ack.
W® e
-
!aij &21.
O—— 0——— 0—O0—*0

lack %!l ?dec; %21,



RAM encoding in BGF
r;=1; next instruction is I, &2l
(:::)%QL
i: Inc(r;) k: DecJump(r;,s) ?zeCrc; J
< > ‘Z€ero;
ﬁncj‘It:>

hnc 'dec

'zeroJ
?ack; ?2ack.
@ @ &lly |
(@
!aij &21.
04—04—04—‘4—_‘]-'0

lack %!l ?dec; %21,



Luca Cardelli 2008-09-21 72



Conclusions

e Chemistry (CGF) is not Turing complete
o It is decidable weather given a molecule will be produced.

o Surprisingly (since this is decidable nondeterministically), it is undecidable
whether a program will terminate with probability measure 1.

o However, chemistry can (slowly) approximate a Turing machine to any degree
of precision: it is undecidable whether a given molecule is likely to be
produced.

e Biochemistry (BGF) is Turing complete.

o Of course, m-calculus is Turing complete too, but it contains operators that do
not have a direct biological interpretation.

o The BGF a minimal extension of chemistry with biologically inspired operators
(complexation/decomplexation) and is already Turing complete

o Finite Turing-powerful programming constructs can be found in biochemistry
but not in basic chemistry.



Conclusions

e A theoretical result

o Basic Biochemistry > Basic Chemistry
(should please the biologists...)

e Some practical modeling implications:

o Afinite model in BGF (e.g. of polymerization)
may correspond to an infinite model in FSRN

o A model in BGF (e.g. of multiple protein phosphorylation states)
may correspond to an O(2") bigger model in FSRN

o Even a model in CGF
may correspond to an O(n2) bigger model in FSRN

e Process algebra modeling leads to:
o Compact model presentation
o Component-based modeling
o Compositional (separate-subsystems) modeling



