Molecules as Automata
 Representing Biochemical Systems as Collectives of Interacting Automata

Luca Cardelli

Microsoft Research

University of Western Ontario London Ontario, 2008-08-20
http://LucaCardelli.name

Scientific Method vs. Engineering Method

Engineering
Method

Scientific
 Method

Reverse Engineering
(Systems Biology)

Scientific Method vs. Engineering Method

Engineering
Method

Direct Engineering

Scientific
 Method

Reverse Engineering

Scientific Method vs. Engineering Method

Direct Engineering

Scientific

Method

Reverse Engineering

Scientific Method vs. Engineering Method

Engineering Method

Direct Engineering

Scientific Method

Scientific Method vs. Engineering Method

When the models and the systems are both too complex to either be the full Truth

The models that we discover should be suitable for construction

Combined
Method

Scientific Method vs. Engineering Method

Direct Engineering

-inspired models

Nature (Biology)
-inspired systems

Surprising systems (don't "fix" it, understand itl)

Reverse Engineering

Motivation: Cells Compute

- No survival without computation!
- Finding food
- Avoiding predators
- How do they compute?
- Unusual computational paradigms.
- Proteins: do they work like electronic circuits?
- Genes: what kind of software is that?
- Signaling networks
- Clearly "information processing"
- They are "just chemistry": molecule interactions
- But what are their principles and algorithms?
- Complex, higher-order interactions
- MAPKKK = MAP Kinase Kinase Kinase:
that which operates on that which operates on that which operates on protein.
- General models of biological computation
- What are the appropriate ones?

Ultrasensitivity in the mitogen-activated protein cascade, Chi-Ying F. Huang and James E. Ferrell, Jr., 1996, Proc. Natl. Acad. Sci. USA, 93, 10078-10083.

(Macro-) Molecules as (Interacting) Automata

Process Algebra

- Reactive systems (living organisms, computer networks, operating systems, ...)
- Math is based on entities that react/interact with their environment ("processes"), not on functions from domains to codomains.
- Concurrent
- Events (reactions/interactions) happen concurrently and asynchronously, not sequentially like in function composition.
- Stochastic
- Or probabilistic, or nondeterministic, but is never about deterministic system evolution.
- Stateful
- Each concurrent activity ("process") maintains its own local state, as opposed to stateless functions from inputs to outputs.
- Discrete
- Evolution through discrete transitions between discrete states, not incremental changes of continuous quantities.
- Kinetics of interaction
- An "interaction" is anything that moves a system from one state to another.

Interacting Automata

$\mathrm{A}_{1} \quad$ is a state
a is a channel i.e. a named interaction interface (e.g. a surface patch)
indicate any complementarity of interaction (e.g. charge)
indicate complementary actions,
@r, @s are rates

Kinetic laws:

Interacting Automata

Legend

Two complementary actions may result in an interaction.

$\mathrm{A}_{1} \quad$ is a state
a is a channel i.e. a named interaction interface (e.g. a surface patch)
indicate any complementarity of interaction (e.g. charge, shape)
indicate complementary actions, joined by an interaction arrow \cdots are rates
@r, @s
@r, @s

A_{1}	is a state
a	is a channel i.e. a named interaction interface (e.g. a surface patch)

Kinetic laws:

Interacting Automata

Legend

Two complementary actions may result in an interaction.
$\mathrm{A}_{1} \quad$ is a state
a is a channel i.e. a named interaction interface (e.g. a surface patch)
indicate any complementarity of interaction (e.g. charge)
indicate complementary actions, joined by an interaction arrow \cdots
@r, @s are rates

A decay may happen spontaneously.

Interacting Automata

Interactions have rates. Actions DO NOT have rates.

The equivalent process algebra model

Interactions in a Population

Interactions in a Population

Interactions in a Population

N

Interactions in a Population (2)

Interactions in a Population (2)

All-B stable population

Nondeterministic population behavior
("multistability")

CTMC Semantics

Reactions vs. Components

Says what "A" does.

$$
\begin{array}{ll}
r: A+B \rightarrow_{k 1} C+D & \begin{array}{l}
\text { Does } A \\
\text { become } \\
\text { Cor } D ?
\end{array}
\end{array}
$$

Says what "A" is.
 oriented
1 line per component

$$
\begin{aligned}
& C=? S_{k} ; A \\
& B=? r_{k i} D \\
& D=!s_{k 2} ; B
\end{aligned}
$$

Groupies and Celebrities

Groupies and Celebrities

A stochastic collective of celebrities:

Stable because as soon as a A finds itself in the majority, it is more likely to find somebody in the same state, and hence change, so the majority is weakened.

Groupies and Celebrities

! b

Groupie

(wants to be like somebody different)

directive sample 1.01000	$a @ 1.0$
directive plot $A() ; B()$	$b @ 1.0$

new a@1.0:chan()
new b@1.0:chan()
let $A()=$ do !a; $A()$ or ? $b ; B()$ and $B()=$ do ! $b ; B()$ or ? $a ; A()$
run 100 of $(A() \mid B())$

A stochastic collective of groupies:

Unstable because within an A majority, an A has difficulty finding a B to emulate, but the few B's have plenty of A's to emulate, so the majority may switch to B. Leads to deadlock when everybody is in the same state and there is nobody different to emulate.

Both Together

A way to break the deadlocks: Groupies with just a few Celebrities

Hysteric Groupies

We can get more regular behavior from groupies if they "need more convincing", or "hysteresis" (history-dependence), to switch states.

! b

directive sample 10.01000 directive plot $G a() ; G b()$
new a@1.0:chan() new b@1.0:chan()
let $G a()=$ do !a; $G a()$ or ?b; ?b; $G b()$ and $G b()=d o!b ; G b()$ or ? $a ; ? a ; G a()$
let $D a()=!a ; D a()$
and Db()$=!\mathrm{b} ; \mathrm{Db}()$
run 100 of $(G a() \mid G b())$
run 1 of $(\mathrm{Da}() \mid \mathrm{Db}())$

(With doping to break deadlocks)

N.B.: It will not oscillate

 without doping (noise)
"regular"

 oscillation
directive sample 10.01000 directive plot $G a() ; G b()$
new a@1.0:chan() new b@1.0:chan()
let $G a()=$ do !a; $G a()$ or ? $b ;$? $b ;$? $b ; G b()$ and $G b()=d o!b ; G b()$ or ? $a ; ? a ; ? a ; G a()$
let $D a()=!a ; D a()$
and $\operatorname{Db}()=!b ; D b()$
run 100 of $(G a() \mid G b())$
run 1 of $(D a() \mid D b())$

Some Devices

Linear Pump

Cascade Amplifier

Ultrasensitive Switch

Symmetric Wave Generator

Some Devices

Repressilator (1 of 3 similar gates)

Semantics of Collective Behavior

The Two Semantic Sides of Chemistry

These diagrams commute via appropriate maps.
L. Cardelli: "On Process Rate Semantics" (TCS)
L. Cardelli: "A Process Algebra Master Equation" (QEST'07)

Quantitative Process Semantics

From Automata to Reactions (by example)

Interacting Automata	Discrete Chemistry
initial states $\mathrm{A}\|\mathrm{~A}\| \ldots \mid \mathrm{A}$	initial quantities $\# \mathrm{~A}_{0}$
$\text { (A. }{ }^{@ r}$	A $\rightarrow \rightarrow \mathrm{r} \mathrm{A}^{\prime}$
	$\mathrm{A}+\mathrm{B} \rightarrow \mathrm{r}^{\prime} \mathrm{A}^{\prime}+\mathrm{B}^{\prime}$
	$\mathrm{A}+\mathrm{A} \rightarrow{ }^{\text {r }}$ 2r $\mathrm{A}^{\prime}+\mathrm{A}^{\prime \prime}$

From Reactions to Automata (by example)

Discrete-State Semantics

Discrete Semantics of Reactions

Syntax:

$$
\begin{aligned}
& \mathrm{A}+\mathrm{B} \rightarrow^{\mathrm{r}} \mathrm{~A}+\mathrm{A} \\
& \mathrm{~A}+\mathrm{B} \rightarrow^{\mathrm{r}} \mathrm{~B}+\mathrm{B} \\
& \mathrm{~A}+\mathrm{B}+\mathrm{B}
\end{aligned}
$$

Semantics:

$$
\begin{aligned}
& \{3 B\} \bullet \underset{2 r_{b}}{\{1 A, 2 B\} 2 r_{a}} \stackrel{\underset{2 r_{b}}{ } \xrightarrow[\{2 A, 1 B\}]{2 r_{a}}}{ } \rightarrow\{3 A\} \\
& \text { CTMC }
\end{aligned}
$$

Discrete Semantics of Reagents

Discrete State Equivalence

- Def: m is equivalent CTMC's (isomorphic graphs with same rates).
- Thm: E m $\operatorname{Ch}(E)$
- Thm: C m $\mathrm{Pi}(C)$

- For each E there is an E^{\prime} in E that is detangled $\left(E^{\prime}=\operatorname{Pi}(C h(E))\right)$
- For each E in automata form there is an an E^{\prime} m E that is detangled and in automata form ($E^{\prime}=\operatorname{Detangle}(E)$).

Interacting Automata $=$ Discrete Chemistry

This is enough to establish that the process algebra is really faithful to the chemistry.

But CTMC are not the "ultimate semantics" because there are still questions of when two different CTMCs are actually equivalent (e.g. "lumping").

The "ultimate semantics" of chemistry is the
 Chemical Master Equation (derivable from the Chapman-Kolmogorov equation of the CTMC).

Continuous-State Semantics

(summary)

Continuous State Equivalence

- Def: \approx is equivalence of polynomials over the field of reals.
- Thm: $E \approx \operatorname{Cont}(\operatorname{Ch}(E))$
- Thm: $\operatorname{Cont}(C) \approx \operatorname{Pi}(C)$

- For each E there is an $E^{\prime} \approx E$ that is detangled $\left(E^{\prime}=\operatorname{Pi}(C h(E))\right)$
- For each E in automata form there is an an $E^{\prime} \approx E$ that is detangled and in automata form ($E^{\prime}=\operatorname{Detangle}(E)$).

GMA $\neq C M E$

Continuous vs. Discrete Groupies

Scientific Predictions

After a while, all 4 states are almost equally occupied.

The 4 states are almost never equally occupied.

Discrete Analysis Techniques

The Program vs. the State Space

The "program":

Finite

Potentially infinite

Simulation

- Run "the program" through a walk in states space.
- Basic stochastic algorithm: Gillespie
- Exact (i.e. based on physics) stochastic simulation of chemical kinetics.
- Can compute concentrations and reaction times for biochemical networks.
- Stochastic Process Algebras
- Now many [BioSPi, SPiM, BioPEPA,
 BetaBinders, ...]
- Hybrid approaches
- Continuous + discrete/stochastic switching

Control Flow Analysis

- Who may call who?
- Overapproximation of behavior used to answer questions about what "cannot happen".

What event may (or may not) have been involved in reaching this state?

Causality Analysis

- What event caused what other event or state to happen?
- E.g.: if in all possible executions one event always precedes another.
- Need a different level of representation (the "event space")
- Petri Nets
- Event Structures

Abstract Interpretation

- Precisely relating abstract views to more concrete views of the system

Modelchecking

- Asking questions (in Temporal Logic) about structure of a (finite) state space.

Is this state a necessary checkpoint to reach this state?

- Various flavors of modelchecking:
- Temporal
- About paths through state space
- Quantitative
- About quantitative measures of states
- Probabilistyc/Stochastic

- About probabilities of reaching states.

Bisimulation

- Are two programs generating the same state space?
- E.g.: Is a compact description of a system equivalent to a more detailed one in all possible environments?

Conclusions

Conclusions

- Process Algebra
- An extension of automata theory to populations of interacting automata
- Modeling the behavior of individuals in an arbitrary environment
- Compositionality (combining models by juxtaposition)
- Connections between modeling approaches

- Connecting the discrete/concurrent/stochastic/molecular approach
- to the continuous/sequential/deterministic/population approach
- Connecting syntax with semantics
- Syntax = model presentation (equations/programs/diagrams/blobs etc.)
- Semantics = state space (generated by the syntax)
- Ultimately, connections between analysis techniques
- We need (and sometimes have) good semantic techniques to analyze state spaces (e.g. calculus, but also increasingly modelchecking)
- But we need equally good syntactic techniques to structure complex models (e.g. compositionality) and analyze them (e.g. process algebra)

