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Scientific Method vs. Engineering Method
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(Macro-) Molecules as
(Interacting) Automata



Process Algebra

[Hoare, Milner, Pnueli, etc.]

Reactive systems (living organisms, computer networks, operating systems, ...)

- Math is based on entities that react/interact with their environment
("processes”), not on functions from domains to codomains.

Concurrent

- Events (reactions/interactions) happen concurrently and asynchronously,
not sequentially like in function composition.

Stochastic

- Or probabilistic, or nondeterministic,
but is never about deterministic system evolution.

Stateful

- Each concurrent activity ("process”) maintains its own local state,
as opposed to stateless functions from inputs to outputs.

Discrete

- Evolution through discrete ftransitions between discrete states,
not incremental changes of continuous quantities.

Kinetics of interaction
- An‘interaction” is anything that moves a system from one state to another.



“****% Interaction

Kinetic laws:

Interacting Automata
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@r, @s

1S a state
is a channel i.e. a named
interaction interface

(e.g. a surface patch)

indicate any complementarity of
interaction (e.g. charge)

indicate complementary actions,

are rates



Interacting Automata

Legend

Current State la
..... 'S Decay :
== Transition .
""="*® TInteraction : @r

 @s

Two complementary
Kinetic laws: actions may result in
an interaction.
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@r, @s

1S a state
is a channel i.e. a named
interaction interface

(e.g. a surface patch)

indicate any complementarity of
interaction (e.g. charge, shape)

indicate complementary actions,
joined by an interaction arrow ===p

are rates



Interacting Automata

A, is a state
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is a channel i.e. a named
interaction interface
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joined by an interaction arrow ===p
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@r, @s are rates

Two complementary A decay may happen
Kinetic laws: actions may result in spontaneously.
an interaction.



Interacting Automata

The equivalent process algebra mode/

new a@r,
Communication
new b@r'z channels
new c@r;
A, = 2a; A, I
A, =lc; A;
A3 = T@A5; Al
N o it
= Transition B, = T@Al; B > 2
=== P Tnteraction B3 i 7b' BZ . ]
~
Cl - Ib, CZ illiee C3
C3 = T@A4; CZ - J

initial state

Al | Bl I Cl } The system and



Interactions in a Population

Suppose this is the ) ()
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Interactions in a Population
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Interactions in a Population
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Interactions in a Population (2)

next interaction

’ Suppose this is the
@ PP
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Interactions in a Population (2)
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CTMC Semantics

CTMC

(homogeneous) Continuous Time
Markov Chain

- directed graph with no self loops
- nodes are system states

- arcs have transition rates

-7 b Probability of holding in state A:
i Pr(Hpt) = et

in general, Pr(H,>t) = eR" where R is
the sum of all the exit rates from A

{1A2B}2r, 5
(3B} @e——ag_ 20— @ (3A)
2r,  2r, {2A,1B}

CTMC




Reactions vs. Components

Says what "A" does.

r:A+B—,C+D D=t
ssC+D—>,A+B corp?

1 line per
reaction

Can add a new component
without changing the old
ones (if their interface

remains fixed).

1 line per
component

The same "state space”

CTMC

Says what "A" is.

A
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Groupies and Celebrities



Groupies and Celebrities

Celebrity

(does not want to be like somebody else)

directive sample 1.0 1000 a@10
directive plot A(); B() b@1.0

new a@1.0:chan()
new b@1.0:chan()

let A() = do la; A() or ?a; B()
and B() = do |b; B() or ?b; A()

run 100 of (A() | BO)

Ib

A stochastic collective of celebrities:

——A() —B
200 0 0

180
160 E /I e
equilibrium

140

120 - /

180 4
80 - 160
140 4
60 - |
100 4
40 & 1 \
60
[fimey| - #A
0 T T T T 0 T T T V=
0 50 100 150 200
0 0.02 0.04 0.06 0.08 0.1

Stable because as soon as a A finds itself in the majority, it is more likely to
find somebody in the same state, and hence change, so the majority is weakened.



Groupies and Celebrities

Groupie
(wants to be like somebody different)

directive sample 1.0 1000 a@1.0
directive plot A(); B() b@1.0

new a@1.0:chan()
new b@1.0:chan()

let A() = do la; A() or ?b; B()
and B() = do Ib; B() or ?a; A()

run 100 of (A() | BQ)

A stochastic collective of groupies:

—AQ —B0
200

~
180 always
160 - eventually
140 | deadlock
120 -
100 . —
80 by

160 4
140 4
120 4
100 4
80 4
60

60 |
40 -

20 | o]
0 ‘ ‘ ‘ 5]

0 5;0 1‘00 1;0 Zl‘)ﬁ
0 0.5 1 15 2 .

Unstable because within an A majority, an A has difficulty finding a B to
emulate, but the few B's have plenty of A's to emulate, so the majority may
switch to B. Leads to deadlock when everybody is in the same state and there is
nobody different to emulate.




Both Together

A way Yo break the deadlocks: Groupies with just a few Celebrities

directive sample 10.0
directive plot Ag(); Bg(): Ac(). Bc()

new a@1.0:chan()
new b@1.0:chan()

ManY A fe_W. let Ac() = do la; Ac() or ?a; Bc()
Gr'ouples Celebrities and Bc() = do Ib; Bc() or ?b; Ac()
let Ag() = do la; Ag() or ?b; Bg()
and Bg() = do Ib; Bg() or ?a; Ag()
run 1 of Ac()
run 100 of (Ag() | Bg())
never
deadlock
500 SFikd
Aag)
Bal)
150 el
100 '
R0
Ik




Hysteric Groupies

We can get more regular behavior from groupies if they "need more
convincing”, or “hysteresis” (history-dependence), to switch states.

200 Ga) —— G0 directive sample 10.0 1000
@1 a"solid threshold” to observe switching E directive plot Ga(); &b()

new a@1.0:chan()
“w new b@1.0:chan()

let Ga() = do la; Ga() or ?b; ?b; Gb()
and 6b() = do |b; Gb() or ?a; ?a; Ga()

let Da() = la; Da()
and Db() = Ib; Db()

run 100 of (Ga() | 6b())
run 1 of (Da() | Db())

i 1 sample orbit
® Avs. B

la b (With doping to

break deadlocks)
N.B.: Tt will not oscillate “regular”
oscillation

without doping (noise)

200 Ga) —— GO / directive sample 10.0 1000
180 directive plot Ga(); Gb()
160 1 new a@1.0:chan()

122 - new b@1.0:chan()

100 -
80
60
40
20

1 sample orbit let Ga() = do la; Ga() or ?b; ?b; ?b; Gb()
Avs. B and Gb() = do Ib; Gb() or ?a; ?a; ?a; Ga()

let Da() = la; Da()
and Db() = Ib; Db()

run 100 of (Ga() | 6b()) ‘
run 1 of (Da() | Db())




Some Devices

Linear Pump Cascade Amplifier

1000 SFiM 1000 SRt
@1.0 o s
E EEEEEERN
; 750 5|:| 750
'la w2 P w25
. a0} EQ
: 500
: : ?a 376 la
375 b
250 |
M -
125
125
g 1000
1000xS, 1xE o] i
100xaHi, 1000xbLo, 1000%cLo, rates=1.0

1Y

Ib@L0 -
@.‘.:;@ " 00K, 0.2000E 7 \

Simulaion: Time = 0033033 (838 aaints et 7.0447e-08 simTime/sys ime and hatted)
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Some Devices

Oscillator

] !
1000 4 ; M | !
. JJM /&\ /Jﬂr\m wm\j o
600 ” JJ\\’ ‘\/ I )/ “ \/‘ Y
400 }\\ l\f p }\\ ﬁ\\ Jl\ /l\
- IS VALY

0 900xA, 500xB, 100xC iy

5 “alset
Sirdatan “ine = 32210 T80 07 s ) 40 i ez Tin: &l :

Ib (signal
[ § restoring) :

:
?a?b

Inputs:
10 la for 4t
2t; 10 Ib for 4+
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The Two Semantic Sides of Chemistry

Continuous-state Semantics

(Mass Action Kinetics)
ODE = ODE
Continuous
Chemistry
1 T Process Nondeterministic
. Algebra Semantics
Discrete
Chemistry .
‘ Stochastic
CTMC —1 CTMC Semantics

Discrete-state Semantics
(Chemical Master Equation)

These diagrams commute via appropriate maps.
L. Cardelli: "*On Process Rate Semantics” (TCS)
L. Cardelli: "A Process Algebra Master Equation” (QEST'07)



Quantitative Process Semantics

Continuous-state Semantics Pr‘ocess Ra‘l’e Equa'ﬁon
(Mass Action Kinetics)

d[X]1/dt = (E(YeE) Accrg(Y. X)-[Y]) - Deple(X)[X]  forall XeE

ODE ODV
1 Accrefion Depletion

Continuous
Chemistry
1 T Process Nondeterministic
. Algebra Semantics Defined over the
Discrete syntax of processes
Chemistry .
‘ Stochastic
CTMC _! CTMC Semantics

Intepactions Propensity

Discrete-state Semantics
(Chemical Master Equation) apr(p,’r)/a‘r =) (2L al(p—vl)-pr'(p—vl,‘r) - al(p)-pr'(p,‘r) for all pe States(E)

Process Master Equation



From Automata to Reactions (by example)

Interacting __ Discrete
Automata Chemistry

initial states initial quantities
AlAL.TA #Ag

ODE = ODE
1 A
@r ,
@ ....... e A -t A Continuous
Chemistry
1 T Process
? Algebra
Discrete
\@r A+B -~ A’+B’ Chemistry

lar
G @ CT%\/IC = CTY\/IC




From Reactions to Automata (by example)

channels and rates

2.8
I:0

ODE

vii A+B =k, C+C  Interaction (1 per reaction)
: A+C —k Matrix
Ve . D Vikty Veke) V3k3) Vaka/2)
v F+F Sk, B 2% 8 1o
9 l;
8 C ;0 T (EIF)
/ =W b
“ g
: Fill the matrix by columns: 3% E
Degradation reaction v;: X —« P, F
add t;P; to <X, v;>.
Hetero reaction v;: X+Y —k P, 1
add ?;P; to <X,vp> and ;0 to <Y v
Homeo reaction v;: X+X —k P; 2: Read the result by rows:

add ?;P; and ;0 to <X v
A= 7V1(k1),(C|C) S) ?V2(k2);D

B-= !vl(kl):O

C= Wypay0 @ 75:(EIF)
D=0

E=0

F= 2Vakas2yB @ WVyapa/2).0

t

Continuous
Chemistry

i

Discrete
Chemistry

v

CTMC

Half-rate for
homeo reactions

ODE

Process
Algebra

CTMC
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Discrete Semantics of Reactions

Syntax:
A+B =T A+A
A+B —' B+B
A+B+B ODE = ODE
1 A
Continuous
Chemistry
l T Process
Algebra
Discrete
Chemistry
Semantics: ‘ v
CTMC = CTMC
{1A,2B} 2r,

{3B} ﬁ—ooﬂn {3A}

2r,  2r, {2A,1B}
CTMC



Discrete Semantics of Reagents

" "
0O 0
70 ?a
e @ 77
-~ (B
/ /’/’/ ’
I// Ib /,,”/ /,z’ i |b
Semantics:
{1A 2B} 2r, o
{3B} @«——@ ~»® {3A}
2r,  2r, {2A,1B}

CTMC

ODE

t

Continuous
Chemistry

'

Discrete
Chemistry

v

CTMC

ODE

Process
Algebra

l

CTMC




Discrete State Equivalence

Def: 2% is equivalent CTMC's (isomorphic graphs with same rates).

ODE = ODE ODE = ODE
Thm: E 22 Ch(E) 1 1
Continuous Continuous I
) Chemistry Chemistry
Thm: C 2= PI(C) l T Process
Algebra
Discrete
Chemistry l
CTMC = CTMC CTMC = CTMC

For each E there is an E' 2 E that is detangled (E' = Pi(Ch(E)))

For each E in automata form there is an an E' 22 E that is detangled
and in automata form (E' = Detangle(E)).



Interacting Automata = Discrete Chemistry

This is enough to establish that the process

algebra is really faithful to the chemistry. O;)E = |ODE
T
But CTMC are not the "ultimate semantics” Sﬁg‘gi’g‘“‘ ‘
because there are still questions of when two 1 T Process
different CTMCs are actually equivalent (e.g. S Algebra
"lum P i ng ")- Chemistry
v

CTMC

CTMC

The "ultimate semantics” of chemistry is the
Chemical Master Eguation (derivable from the
Chapman-Kolmogorov equation of the CTMC).
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Continuous State Equivalence

Def: = is equivalence of polynomials over the field of reals.

ODE = ODE ODE = ODE
Thm: E = Cont(Ch(E)) $ f
| Continuous Continuous ‘
. . i Chemistry Chemistry
Thm: Cont(C) = Pi(C) | I Process
. Algebra
!— Discrete
Law of Mass Action | Chemistry
Gillespie Conversion CIMC| = |CIMC CIMC| = |[CTMC

For each E there is an E' = E that is detangled (E' = Pi(Ch(E)))

For each E in automata form there is an an E' = E that is detangled and
in automata form (E' = Detangle(E)).



GMA z CME

. [ODE] = [ODE } Semantics #1
1 =~ Continuous state space
Continuous
» Chemistry
Process
i 1 T Algebra >~ Syn.rax
v, Discrete l
Chemistry
. ] ‘ .
TLEIME| = [CIMC } Semantics #2

Discrete state space



Continuous vs. Discrete Groupies

QPO ARRPD G330

2000

1000

2000 1

1000 -

50

directive sample 5.0 1000
directive plot B(; AQ

new a@1.0:chan()
new ba1.0:chan()

let AQ = do fa; A or ?b; BO
and BO = do 1b; BO or ?a; AQ

let AdQ
and Bd()

la; AdQ
1b; BdQ

run 2000 of AQ
run 1 of (AdQ) | Bd0)

directive sample 5.0 1000
ive plot B(; AQ

let A() = la; Ad()
and Bd() = Ib; BA()

f AQ

5 0

directive sample 5.0 1000
directive plot B; A(

new a@1.0:chan()
new bal0:chan()

let A = do a; A() o 2; 2; 7; B()
and B) = do 1b; B or 7a;73; %2; AQ

letAd() =1a; Ad()
and Bd() = tb; Bd()

run 20000f A()
run1of (Ad( | Bd()

B
A

50

50

2000xA , 0xB , 1xA4, 1xB4, r=1.0

Groupe ODES - Groupiesmat

[0:0.001:5.0] r=10 k=10
Adxi/dt = -(x1-x2), 20000
Bdx2/dt = (x1-x2), 00

Groupe ODES - Groupies Hysteric Lmat

[0:000155.0] r=10 k=10

A dx1/dt=xI"x4-x3*x1-x1+x4, 2000.0
A dx2/dt=x3x1-x3*x2+x1-x2, 00

B dx3/dt=x3*x2-x1"x3-x3+x2, 00

B dxd/dt=x1*x3-x1*x4+x3-x4, 00

all with doping)

Matlab

SPi

Groupe ODES - Groupies Hysteric 2mat

[0:0.001:5.0] r=10 k=10

A dx1/dt=xI"x6-x3*x1-x1+x6, 20000
A dx2/dt=x3"x1-x3*x2ex1-x2, 00
A" dx5/d1=x3*x2-x3*X5+x2-%5, 00

B dx3/dt=x3"x5-x1"x3-x3+x5, 00
B’ dxd/dt=x1*x3-xI"xd+x3-x4, 0.0
B dx6/dt=x1x4-x1"x6+x4-x6, 0.0



Scientific Predictions

QRSO

After a while, all 4
states are almost
equally occupied.

The 4 states are
almost never
equally occupied.
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The Program vs. the State Space

The "program”:

Finite

Potentially infinite

State
Event /nstance



Simulation

Run "the program” through a walk in
states space.

Basic stochastic algorithm: Gillespie

- Exact (i.e. based on physics) stochastic
simulation of chemical kineftics.

- Can compute concentrations and reactio
times for biochemical networks.

"

Stochastic Process Algebras

- Now many [BioSPi, SPiM, BioPEPA,
BetaBinders, ...]

Hybrid approaches

e Continuous + discrete/stochastic
switching
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Control Flow Analysis

e Who may call who?

e Overapproximation of behavior used to What eveﬂ’r mag/ (or
answer questions about what “cannot may ”OT)_ ave been
happen”. involved in reaching

this state?
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Causality Analysis

e What event caused what other event or " "
state to happen? What event "caused

P , . . 5
e E.g..if in all possible executions one this state:
event always precedes another.

\
“
.
““
.
.
“

e Need a different level of representation
(the “"event space")

e Petri Nets
e Event Structures

uy
]
.....
oy
vy



Abstract Interpretation

e Precisely relating abstract views to more
concrete views of the system

L)/. May now be finite!




Modelchecking

e Asking questions (in Temporal Logic) Is this state a
about structure of a (finite) state necessary checkpoint
space. to reach this state?

e Various flavors of modelchecking:
- Temporal
e About paths through state space
- Quantitative
e About quantitative measures of state

- Probabilistyc/Stochastic
e About probabilities of reaching states.




Bisimulation

e Are two programs generating the same
state space?
- E.g.: Is a compact description of a

system equivalent to a more detailed one
in all possible environments?

Ty
a,y
.....
Ty
Ny
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Conclusions

Process Algebra ODE|] = [ODE

- Anextension of automata theory to populations of interacting automata Continuous

- Modeling the behavior of individuals in an arbitrary environment Chimifs”y S
- Compositionality (combining models by juxtaposition) Algebra

Discrete
Chemistry

Connections between modeling approaches CIMC| -
- Connecting the discrete/concurrent/stochastic/molecular approach
- to the continuous/sequential/deterministic/population approach

Connecting syntax with semantics
- Syntax = model presentation (equations/programs/diagrams/blobs etc.)
- Semantics = state space (generated by the syntax)

Ultimately, connections between analysis techniques

- We need (and sometimes have) good semantic techniques to analyze state
spaces (e.g. calculus, but also increasingly modelchecking)

- But we need equally good syntactic techniques to structure complex models
(e.g. compositionality) and analyze them (e.g. process algebra)



