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Motivation:

No survival without computation!
- Finding food
- Avoiding predators

How do they compute?
- Unusual computational paradigms.
- Proteins: do they work like electronic circuits?
- Genes: what kind of software is that?

Signaling networks
- Clearly “information processing”
- They are "just chemistry”: molecule interactions
- But what are their principles and algorithms?

Complex, higher-order interactions

- MAPKKK = MAP Kinase Kinase Kinase:
that which operates on that which operates on that
which operates on protein.

General models of biological computation
- What are the appropriate ones?

Cells Compute

MAPK Family Pathways

Calbiochem

INPUT | EMD Biosciences  §

[Eﬂ e p——

¥
MAPKKK 2 > MAPKKK*

4
E2

MAPKK 2> MAPKK-P Z_* MAPKK-FP

MAPKK F'ase
MAPK 5= MAPK-P =~ MAPK-PP
MAPK P'ase l

QuTPUT

Ultrasensitivity in the mitogen-activated protein cascade,

Chi-Ying F. Huang and James E. Ferrell, Jr., 1996, Proc.
Natl_ Acad. Sci. USA, 93, 10078-10083.




(Macro-) Molecules as
(Interacting) Automata

Concurrent (math is based on processes, not functions)
Asynchronous (no global clock)

Stochastic (or nondeterministic)

Stateful (e.g. phosphorylation state)

Discrete (tfransitions between states)

Interacting (an “interaction” can be pretty much anything

you want that changes molecular state)

Based on work on process algebra and biological modeling;
see references in related papers.



Interacting Automata
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Interacting Automata
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Interacting Automata

‘ Current State

-+ Decay A, is a state
=== Transition @' la
=== P Tnteraction . .
a is a channel i.e. a named

interaction interface
(e.g. a surface patch)

®
—

Kinetic laws:

?,! indicate any complementarity of
interaction (e.g. charge)

‘llllllllllllll

Two complementary
actions may result in an
interaction.

@s ?a, la indicate complementary actions,
joined by an interaction arrow ===p
A decay may happen ‘ ] y
spontancously. @r, @s are rates



Interacting Automata

The equivalent process algebra mode/

new a@r,
Communication
new b@r'z channels
new c@r;
A, = 2a; A, I
A, =lc; A;
A3 = T@A5; Al
N o it
= Transition B, = T@Al; B > 2
=== P Tnteraction B3 i 7b' BZ . ]
~
Cl - Ib, CZ illiee C3
C3 = T@A4; CZ - J

initial state

Al | Bl I Cl } The system and



Interactions in a Population

Suppose this is the ) ()
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Interactions in a Population
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Interactions in a Population
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Interactions in a Population (2)

next interaction

’ Suppose this is the
@ PP
»



Interactions in a Population (2)
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Nondeterministic
population behavior

(“multistability")



CTMC Semantics

CTMC

(homogeneous) Continuous Time
Markov Chain

- directed graph with no self loops
- nodes are system states

- arcs have transition rates

-7 b Probability of holding in state A:
i Pr(Hpt) = et

in general, Pr(H,>t) = eR" where R is
the sum of all the exit rates from A

{1A2B}2r, 5
(3B} @e——ag_ 20— @ (3A)
2r,  2r, {2A,1B}

CTMC




Stochastic Automata Collectives

e "Collective":

- A large set of interacting finite state automata:
e Not quite language automata (“large set")
e Not quite cellular automata (“interacting” but not on a grid)
e Not quite process algebra (“collective behavior")
e Cf. multi-agent systems and swarm intelligence

e "Stochastic”:

- Interactions have rates
e Not quite discrete (hundreds or thousands of components)
e Not quite continuous (non-trivial stochastic effects)
e Not quite hybrid (no "switching” between regimes)

e Very much like biochemistry
- Which is a large set of stochastically interacting molecules/proteins
- Are proteins finite state and subject to automata-like transitions?

e Let's say they are, at least because:

e Much of the knowledge being accumulated in Systems Biology
is described as state transition diagrams [Kitano].



Discrete State Transitions
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Chemistry vs. Automata

A process algebra (chemistry) A different process algebra (automata)
rA+B—, C+D Doesa B
become
S:C-'-D%sz-l-B CorD?
I ?r
- i ) IS,
1 line per
reaction D
1 line per
- . A
component A - !r'klt C o
- . C !
C - ?Skz, A not D
The same "model”
Maps to ' Maps to B - ?rkll D
aCTMC : aCTMC D - |S . B
I = k2r

A Petri-Net-like representation. Precise and dynamic
but not modular, scalable, or maintainable.

A compositional graphical representation (precise,
dynamic and modular) and the corresponding calculus.



Groupies and Celebrities



Groupies and Celebrities

Celebrity Groupie
(does not want to be like somebody else) (wants to be like somebody different)
directive sample 1.0 1000 a@1.0 directive sample 1.0 1000 a@10
directive plot A(); B() b@1.0 directive plot A(); B() b@1.0
new a@1.0:chan() new a@1.0:chan()

new b@1.0:chan() new b@1.0:chan()

let A() = do la; A() or ?a; B()
and B() = do |b; B() or ?b; A()

run 100 of (A() | BO)

let A() = do la; A() or ?b; B()
and B() = do Ib; B() or ?a; A()

run 100 of (A() | BQ)

Ib

A stochastic collective of celebrities: A stochastic collective of groupies:

200 ——AO) —B() 0 —— A0 — B0 _

180 @ 180 always

160 - P 160 - eventually

o /l equilibrium o deadlock

120 - pd 120 |

100 W@M 200 4 ——B0 100 200 —— B0

80 - by 80 | by

60 b 60 | ]

40 - ol AN 40 ol

2 - -m o] ,—'j 2 - ol

0 T T T T 227 T T #A vy— 0 T T T 227 T T 1

0 002 004 006 008 T 0 0.5 1 15 2 0P .

Unstable because within an A majority, an A has difficulty finding a B to
emulate, but the few B's have plenty of A's to emulate, so the majority may
Stable because as soon as a A finds itself in the majority, it is more likely to switch to B. Leads to deadlock when everybody is in the same state and there is
find somebody in the same state, and hence change, so the majority is weakened. nobody different to emulate.



Both Together

A way Yo break the deadlocks: Groupies with just a few Celebrities

directive sample 10.0
directive plot Ag(); Bg(): Ac(). Bc()

new a@1.0:chan()
new b@1.0:chan()

ManY A fe_W. let Ac() = do la; Ac() or ?a; Bc()
Gr'ouples Celebrities and Bc() = do Ib; Bc() or ?b; Ac()
let Ag() = do la; Ag() or ?b; Bg()
and Bg() = do Ib; Bg() or ?a; Ag()
run 1 of Ac()
run 100 of (Ag() | Bg())
never
deadlock
500 SFikd
Aag)
Bal)
150 el
100 '
R0
Ik
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?b
?b

?b
?b
?b

200

180 -
160 -
140 1
120 1
100 1
80 -
60 -
40 -

20
0

Hysteric Groupies

We can get more regular behavior from groupies if they "need more

convincing”, or “hysteresis” (history-dependence), to switch states.

a “solid threshold” to observe switching
| Am M mu 0,
la b (With doping to
break deadlocks)
N.B.: It will not oscillate
without doping (noise)
— Ga() —— Gb() 7
7\~ rw\‘ YUY, / AJ

1 sample orbit
Avs. B

0 50 100 150

1 sample orbit
Avs. B

directive sample 10.0 1000
directive plot Ga(); Gb()

new a@1.0:chan()
new b@1.0:chan()

let Ga() = do la; Ga() or ?b; ?b; Gb()
and 6b() = do !b; Gb() or ?a; ?a; Ga()

let Da() = la; Da()
and Db() = |b; Db()

run 100 of (Ga() | Gb())
run 1of (Da() | Db())

directive sample 10.0 1000
directive plot Ga(); 6b()

new a@1.0:chan()
new b@1.0:chan()

let Ga() = do la; Ga() or ?b; ?b; ?b; Gb()
and 6b() = do |b; Gb() or ?a; ?a; ?a; Ga()

let Da() = la; Da()
and Db() = |b; Db()

run 100 of (Ga() | 6b()) .
run 1of (Da() | Db())
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The Two Semantic Sides of Chemistry

Continuous-state Semantics

(Mass Action Kinetics)
ODE = ODE
Continuous
Chemistry
1 T Process Nondeterministic
. Algebra Semantics
Discrete
Chemistry .
‘ Stochastic
CTMC —1 CTMC Semantics

Discrete-state Semantics
(Chemical Master Equation)

These diagrams commute via appropriate maps.
L. Cardelli: "*On Process Rate Semantics” (TCS)
L. Cardelli: "A Process Algebra Master Equation” (QEST'07)



Quantitative Process Semantics

Continuous-state Semantics Pr‘ocess Ra‘l’e Equa'ﬁon
(Mass Action Kinetics)

d[X]1/dt = (E(YeE) Accrg(Y. X)-[Y]) - Deple(X)[X]  forall XeE

ODE ODV
1 Accrefion Depletion

Continuous
Chemistry
1 T Process Nondeterministic
. Algebra Semantics Defined over the
Discrete syntax of processes
Chemistry .
‘ Stochastic
CTMC _! CTMC Semantics

Intepactions Propensity

Discrete-state Semantics
(Chemical Master Equation) apr(p,’r)/a‘r =) (2L al(p—vl)-pr'(p—vl,‘r) - al(p)-pr'(p,‘r) for all pe States(E)

Process Master Equation



From Automata to Reactions (by example)

Interacting __ Discrete
Automata Chemistry

initial states initial quantities
AlAL.TA #Ag

ODE = ODE
1 A
@r ,
@ ....... e A -t A Continuous
Chemistry
1 T Process
? Algebra
Discrete
\@r A+B -~ A’+B’ Chemistry

lar
G @ CT%\/IC = CTY\/IC




From Reactions to Automata (by example)

channels and rates

2.8
I:0

ODE

vii A+B =k, C+C  Interaction (1 per reaction)
: A+C —k Matrix
Ve . D Vikty Veke) V3k3) Vaka/2)
v F+F Sk, B 2% 8 1o
9 l;
8 C ;0 T (EIF)
/ =W b
“ g
: Fill the matrix by columns: 3% E
Degradation reaction v;: X —« P, F
add t;P; to <X, v;>.
Hetero reaction v;: X+Y —k P, 1
add ?;P; to <X,vp> and ;0 to <Y v
Homeo reaction v;: X+X —k P; 2: Read the result by rows:

add ?;P; and ;0 to <X v
A= 7V1(k1),(C|C) S) ?V2(k2);D

B-= !vl(kl):O

C= Wypay0 @ 75:(EIF)
D=0

E=0

F= 2Vakas2yB @ WVyapa/2).0

t

Continuous
Chemistry

i

Discrete
Chemistry

v

CTMC

Half-rate for
homeo reactions

ODE

Process
Algebra

CTMC
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Discrete Semantics of Reactions

Syntax:
A+B =T A+A
A+B —' B+B
A+B+B ODE = ODE
1 A
Continuous
Chemistry
l T Process
Algebra
Discrete
Chemistry
Semantics: ‘ v
CTMC = CTMC
{1A,2B} 2r,

{3B} ﬁ—ooﬂn {3A}

2r,  2r, {2A,1B}
CTMC



Discrete Semantics of Reagents

" "
0O 0
70 ?a
e @ 77
-~ (B
/ /’/’/ ’
I// Ib /,,”/ /,z’ i |b
Semantics:
{1A 2B} 2r, o
{3B} @«——@ ~»® {3A}
2r,  2r, {2A,1B}

CTMC

ODE

t

Continuous
Chemistry

'

Discrete
Chemistry

v

CTMC

ODE

Process
Algebra

l

CTMC




Discrete State Equivalence

Def: 2% is equivalent CTMC's (isomorphic graphs with same rates).

ODE = ODE ODE = ODE
Thm: E 22 Ch(E) 1 1
Continuous Continuous I
) Chemistry Chemistry
Thm: C 2= PI(C) l T Process
Algebra
Discrete
Chemistry l
CTMC = CTMC CTMC = CTMC

For each E there is an E' 2 E that is detangled (E' = Pi(Ch(E)))

For each E in automata form there is an an E' 22 E that is detangled
and in automata form (E' = Detangle(E)).



Process Algebra = Discrete Chemistry

This is enough to establish that the process
algebra is really faithful to the chemistry.

But CTMC are not the "ultimate semantics”
because there are still questions of when two
different CTMCs are actually equivalent (e.g.
“lumping").

The "ultimate semantics” of chemistry is the
Chemical Master Eguation (derivable from the
Chapman-Kolmogorov equation of the CTMC).

ODE

t

Continuous
Chemistry

i

Discrete
Chemistry

v

CTMC

ODE

Y

Process
Algebra

l

CTMC
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Continuous State Equivalence

Def: = is equivalence of polynomials over the field of reals.

ODE = ODE ODE = ODE
Thm: E = Cont(Ch(E)) ¢ 1
| Continuous Continuous ‘
N | Chemistry Chemistry
Thm: Cont(C) = Pi(C) | I Process
N Algebra
I—Discrete
Law of Mass Action _ | Chemistry l
CIMC| = |CIMC CIMC| = |CIMC

Gillespie Conversion

For each E there is an E' = E that is detangled (E' = Pi(Ch(E)))

For each E in automata form there is an an E' = E that is detangled and
in automata form (E' = Detangle(E)).



Build me a population like this:
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Second-order and Zero-order Regime

Second-Order Regime
T E¥STE+P d[S]/dt = -r[E][S]

375 gg
7E0
la ED . directive sample 1000.0

directive plot S(); P(); EQ)

12
M 375 ¢ new a@1.0:chan()
250

let E() = la; E()
and S() = ?a; P()

’ and P() =
' 1000xS, 1xE ’ 0=0

run (1 of E() | 1000 of S())

Zero-Order Regime

........................................................................................................................................  E+S >TES+P Tt e T

1000 SPiM ES —>S E

@1.0 -
M 750 50 directive sample 1000.0
| 825 P i directive plot S(): P(); EQ)

T
@10 | - EQ ==, () .
i ?a 75 new a@l.O:chan() @ NOTGTIOY\
280 '
@ ( ) © let EQ) = la; delay@1.0; E() Ay

1
125 : 1
H 1

and S() = ?a; P()

: ?
K 1000 and P() = () @La(ﬂb@
1000xS, 1XE
~ run (1 of EQ | 1000 of S()




Design Exercise:
Making Waves

Build me a population like this:

B}
3398 A0
Ch
79984
59980
33932
19936
0
00002595 0003033 Live

Simulation: Time = 0.003033 (838 points st 7.0447-06 simTime/sysTime and halted)



@s
oc ()

Nonlinear Transition (NLT)

lc

A = ?C(S);B
B = !C(s);B

\

:A+B —s B+B ]

\

([A] =
[B]' -

-s[A][B]
s[A][B]

999 Eg
GBE
333

SPiM

0
0.0015957 0014324

directive sample 0.02 1000

directive plot B(): A() .

e N.B.: needs at
new c@s:chan IZGST 1 B 1'0

let A() = 2c; B() w n

and B() = 1c:B() 961’ started”.

run (1000 of A() | 1 of B())

Paused

Simulation: Time = 0.013448 (3939 points at 0.0085215 simTime/sysTime and halted)

1200

1000

8OO0

600

400 -

200 -

Matlab

0 L . . . —
0 10 20 30 40 a0 &0 ?dﬁ_a

interval/step [0:0.001:0.0]
(A)  dx1/dt= - x1*x2 1000.0
(B) dx2/dt = x1*x2 10

a0



Two NLTs: Bell Shape

Ib Ic

[B] = [BI([A]-[C])

directive sample 0.0025 1000
directive plot B(); A(): €()

new b@1.0:chan new c@1.0:chan

let A() = ?b; B()
and B() = do Ib;B() or ?c; C()
and C() = 1c;C()

run ((10000 of A()) | B() | €())

4 N\
A = ?b(l); B

B = Ib(l),B @® QC(I),C

(A+B —!B+B
| B+C 51C+C

[A]* = -[A][B]
[B]* = [A][B]-[B][C]
[C] = [B][C]

99999

99999

99999

]
00000000

0000000

orm
SSS

500 1000 1500 2000 2500

3000



NLT in a Cycle: Oscillator (unstable)

directive plot A(); 'B() ;;;;

(A = | Ay A @ by B) ¢ W & Matlab |
B=1lby B ®?cyC i |
C =l C D ?a.A . |
(A+B —sB+B |
B+C —5 C+C °
(C+A 3 A+A} Eﬁif ode23t d o3t

¢ ¢

) 1

£8 ggggg,gg; f

f

: HM

' " " ' ( WMH e




998

798.4

598.8

399.2

199.6

il
0.00037355

Sirmulation: Time = 0.224210 (1946 points at 0.010896 simTime/sysTime and hated)

998

798.4

598.8

399.2

1996

i}
00032243
Simulation:

Time = 0.723952 (432 points

022421

at 0010541 simTime/sy=Time an

072995

d hat

Oscillator (stable)

/A = IG(S),A @ Tr.,'B ® 7b(s),A\

directive sample 0.1 1000
directive plot A1(); A2(); A3()

val r=1.0 val s=1.0

new al@s:chan new a2@s:chan new a3@s:chan

let A1() = do lal;A1() or delay@r; A2() or ?a2; ?a2; A2()
and A2() = do !a2;A2() or delay@r;A3() or 2a3; ?a3; A3()
and A3() = do a3;A3() or delay@r;A1() or ?al; ?al; Al()

run 1000 of A1()

N.B. this does
not deadlock!

Robust
Stochastic
Oscillation

A' = 7b(s),B
B' = ?C(S);c

\¢

= ?G(S); A

B= Ib(s),B (&) ’C,.,'C @ ?C(S),' B'

C:= IC(S),C ® Tr.,'A @ ?G(S),'C'

Sustained
Determinisitic

/

(A > B ‘
A+B =S A'+B
A'+B —sB+B
B—r C

B+C —sB'+C
B'+C —=sC+C
C-r A

C+A -sC+A

C+A —S A+A

SPiM

A2(

\[CT = -s[C][A] + s[C][A] J

(AT = -r[A]-S[A][BI+r[CI+s[CTA])
[B]* = -r[B]-s[B]ICJ+r[Al+s[A'][B]
[C]* = -r[C]-s[CI[ATr[B]+s[BI[C]

[A'] = -S[A'][B] + S[A][B]

[B']" = -s[B']C] + S[BIIC]

SPiM

Itech)

Oscillation

1000

0 200 400 GO0 800 1000 1200

u ‘" u u
bl mmlmmmm.um

1000

900
SDD
700
EI]EI
500
400
ann
znn
1111Ju“MJJHUJMMMJHJ

35




GMA z CME

ODE

t

Continuous
Chemistry

# '

v Discrete
) Chemistry

v

“ [[CTMC

ODE

|

Process
Algebra

l

CTMC

}

~

}

Semantics #1

>  Syntax

Semantics #2



A+A 2 A

1*reaction rate ry because
1*A is lost in reaction.

d[A]/dt = irf[A]? = d[A]/dt = c[A]2

A+A ST A
[Alg=2/y

A+A 52T A
A+A

v

2r
M‘
A+A A

=?  A+A >0

2*reaction rate ry/2 because
2*A are lost in reaction.

T Law of Mass Action
A+A — 20
[A]l=2/y

I Gillespie conversion

A+A =10
A+A

{ 1 CTMC

r
A+A 0

(For conservation of mass, consider instead A+A -2 A+B  vs. A+A —'B+B)



Continuous vs. Discrete Groupies

QPO ARRPD G330

2000

1000

2000 1

1000 -

50

directive sample 5.0 1000
directive plot B(; AQ

new a@1.0:chan()
new ba1.0:chan()

let AQ = do fa; A or ?b; BO
and BO = do 1b; BO or ?a; AQ

let AdQ
and Bd()

la; AdQ
1b; BdQ

run 2000 of AQ
run 1 of (AdQ) | Bd0)

directive sample 5.0 1000
ive plot B(; AQ

let A() = la; Ad()
and Bd() = Ib; BA()

f AQ

5 0

directive sample 5.0 1000
directive plot B; A(

new a@1.0:chan()
new bal0:chan()

let A = do a; A() o 2; 2; 7; B()
and B) = do 1b; B or 7a;73; %2; AQ

letAd() =1a; Ad()
and Bd() = tb; Bd()

run 20000f A()
run1of (Ad( | Bd()

B
A

50

50

2000xA , 0xB , 1xA4, 1xB4, r=1.0

Groupe ODES - Groupiesmat

[0:0.001:5.0] r=10 k=10
Adxi/dt = -(x1-x2), 20000
Bdx2/dt = (x1-x2), 00

Groupe ODES - Groupies Hysteric Lmat

[0:000155.0] r=10 k=10

A dx1/dt=xI"x4-x3*x1-x1+x4, 2000.0
A dx2/dt=x3x1-x3*x2+x1-x2, 00

B dx3/dt=x3*x2-x1"x3-x3+x2, 00

B dxd/dt=x1*x3-x1*x4+x3-x4, 00

all with doping)

Matlab

SPi

Groupe ODES - Groupies Hysteric 2mat

[0:0.001:5.0] r=10 k=10

A dx1/dt=xI"x6-x3*x1-x1+x6, 20000
A dx2/dt=x3"x1-x3*x2ex1-x2, 00
A" dx5/d1=x3*x2-x3*X5+x2-%5, 00

B dx3/dt=x3"x5-x1"x3-x3+x5, 00
B’ dxd/dt=x1*x3-xI"xd+x3-x4, 0.0
B dx6/dt=x1x4-x1"x6+x4-x6, 0.0



Scientific Predictions

QRSO

After a while, all 4
states are almost
equally occupied.

The 4 states are
almost never
equally occupied.




Model Compactness

ODE — ODE
1 A
Continuous
Chemistry
1 T Process
Algebra
Discrete
Chemistry
1 b

CTMC CTMC




Entangled vs detangled

E, Detangle(E;)

(closely related to
Pi(Ch(E;)) )



n? Scaling Problems

- E,, has 2n variables (nodes) and 2n terms (arcs). - The stoichiometric matrix has size 2n-n? = 2n3,
- Ch(E,) has 2n species and n? reactions. - The ODEs have 2n variables and 2n(n+n) = 4n2 terms

(number of variables times number of accretions plus depletions when sums are distributed)

E; Ch(E;) StoichiometricMatrix(Ch(E;))
X1 - ?a(p):xz 001: X0+y1 _yr X1+y2 00 01 02 10 11 12 20 21 22
X, = 20,5 X0 Aozt Xg*Y2 =" X#Yg Xo -1 -1 -1 +1 +1 4l
Yo = lagy: Y ot Xi+Yo =" XYy A 1 1 41 -1 -1 -1
Y1=lagy Y, ayt Xp+Yy =" Xp+Yo X5 +1 +1 +1 -1 -1 -1
Y2 =laeyYo Az >><<1+</2 ad >><<2*\</0 Yo -1 U T +

Ayt Xo+Yg =" Xty

Qy XptY, o7 XY, Y, +1 -1 +1 -1 +1 -1

ozt XY, =" X+ Y, Y, +1 -1 +1 -1 +1 -1
ODE(E)
d[Xo1/dt = -r[XoI[Yol - rXollY1] - r[Xol[Y2] + PIX 1Yol + rIXGI[Y1] + r[XC1Y2]
d[X;1/dt = -r[X;1[Yo] - r[X;1[Y1] - rX(I0Y 2] + PIXo1[Y o] + r[XoI[Y1] + P[Xo1Y-] fa la
d[Xz1/dt = -r[X;1[Yo] - r[XR1[Y1] - rDXRIIY ]+ XY o] + rIX( LY ] + rIXILY ] = nl & Q@ |-
d[Yol/dt = -r[Xs1[Yol - r[X{1[Yol - r[XRI[Yol + r[XollY2] + r[X1[Y2]+ r[X,I[Y ] fa la
dIY1)/dt = -P[Xo]Y:] - PIX Y41 - PIXAIY:] + PIXoIYol + PIX:I[Y o] + PIXA]Yo] () @

d[Yo)/dt = -r[Xol[Y2] - riXilY2] - rXaI0Y2] + r[XoIY1] + rDX{IY 1] + rIXR]0Y4]
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Can this program terminate?

b: A+B = B+B
c: B+C - C+C
a: C+A 2 A+A
900A + 500B + 100C




"Experimantal

1200

1000 |

800

600

400¢

200¢

0 50 100 150 200 250 300

Continuous-State
Simulation

interval/step [0:0.0001:0.03]

(A) dx1/dt=-x1*x2 + x3*x1  900.0
(B) dx2/dt=-x2*x3 +x1*x2 500.0
(€) dx3/dt=-x3*x1+x2*x3 100.0

evidence”

$900- SFit

10001
800
B0
4001

2001

I .
0 0.03

Discrete-State
Simulation

directive sample 0.03 1000
directive plot A(); B(): €()

new a@1.0:chan new b@1.0:chan new c@1.0:chan
let A() = do la;A() or ?b; B()
and B() = do 'b;B() or ?c; C()
and €() = do lc;C() or 2a; A()

run (900 of A() | 500 of B() | 100 of €())



But in a longer simulation...

DDDDD Yes!
§ \
S

WWW |
L) M&Mv\

Discrete-State 0A + 15003 0C
Simulation




Is termination (possible death) decidable in Chemistry?

e Three equivalent definitions of "basic chemistry”:

- FSRN: Finite Stochastic Reaction Networks
(finite systems of stochastic chemical reactions)

- CGF: our process algebra.
- Place-Transition Petri nets.

e Surprising answer: termination in basic chemistry is decidable/

- (Soloveichik et al. Computation with Finite Stochastic Chemical Reaction
Networks. In Nat. Computing. 2008) by reduction to a decidable problem in
Petri Nets (reachability).

e Hence, basic chemistry cannot computel
- By Turing's theorem, termination for a universal computer is undecidable.
- Hence basic chemistry is not Turing-complete.
- (Although the full story for stochastic systems is a bit more subtle.)



Biochemistry = Interaction + Complexation

A‘<<Bf <> A<Bb

e Complexation is what proteins "do", in contrast to simpler chemicals.

dissociation
/1y  emmmm—m—— - o/ "
ola Shar, - %?a
. {(fak)} {(7a, k>} .
&la “~-.. &0 &?a

association

e Leading to a process algebra that we call
the Biochemical Ground Form (BGF).



RAM encoding in BGF

§?1.

| Q@‘ﬁl°
i: Inc(r;) k: Declump(r;,S) »,576.
‘ J

@ Q ?in

register r;: tack,| ¢o1.

JV
?1j !11j O ack O%T1, ®vaec oor. ©




Expressiveness of Biochemistry

Basic chemistry (FSRN, or CGF) is not Turing-complete
Biochemistry (FSRN + complexation, or BGF) is Turing-complete.

More powerful process algebras of course are Turing complete

- They (e.g. m-calculus) include BGF, but they also have mechanisms that are
not directly biologically justifiable.

- In BGF we have in a sense the minimal biologically-inspired extension of
FSRN, and it is already Turing-complete.

Intrinsic to biochemistry (but not to simple chemistry) is a Turing-
complete mechanism.
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Conclusions

e Connections between modeling approaches

- Connecting the discrete/concurrent/stochastic/molecular approach
- to the continuous/sequential/deterministic/population approach

e Connecting syntax with semantics

- Syntax = model presentation (equations/programs/diagrams/blobs etc.)
- Semantics = state space (generated by the syntax)

Ultimately, connections between analysis techniques

- We need (and sometimes have) good semantic techniques fo analyze state
spaces (e.g. calculus, but also increasingly modelchecking)

- But we need equally good syntactic techniques to structure complex models
(e.g. compositionality) and analyze them (e.g. process algebra)

ODE

Continuous
Chemistry

vi

Discrete
Chemistry

CTMC

ODE

Process
Algebra

CTMC




