Molecules as Automata Representing Biochemical Systems as Collectives of Interacting Automata

Luca Cardelli

Microsoft Research

NEWSYNBIO, Paris, 2008-06-27

http://LucaCardelli.name

Scientific Method vs. Engineering Method

NLUCA Cardelli

Scientific Method vs. Engineering Method

2008-06-27

Scientific Method vs. Engineering Method

2008-06-27

Motivation: Cells Compute

- No survival without computation!
 - Finding food
 - Avoiding predators
- How do they compute?
 - Unusual computational paradigms.
 - Proteins: do they work like electronic circuits?
 - Genes: what kind of software is that?
- Signaling networks
 - Clearly "information processing"
 - They are "just chemistry": molecule interactions
 - But what are their principles and algorithms?
- Complex, higher-order interactions
 - MAPKKK = MAP Kinase Kinase Kinase: that which operates on that which operates on that which operates on protein.
- General models of biological computation
 - What are the appropriate ones?

(Macro-) Molecules as (Interacting) Automata

- Concurrent
- Asynchronous
- Stochastic
- Stateful
- Discrete
- Interacting

- (math is based on processes, not functions)
- (no global clock)
- (or nondeterministic)
 - (e.g. phosphorylation state)
- (transitions between states)
 - (an "interaction" can be pretty much anything you want that changes molecular state)
- Based on work on process algebra and biological modeling; see references in related papers.

- is a *state*
- is a *channel* i.e. a named *interaction interface* (e.g. a surface patch)
 - indicate any *complementarity* of interaction (e.g. charge)
- ?a, !a indicate *complementary actions*,

@r, @s are rates

Interactions have rates. Actions DO NOT have rates.

The equivalent process algebra model

Interactions in a Population

Luca Cardelli

Interactions in a Population

N Luca Cardell

Interactions in a Population

ਲੋਂ Luca Cardell

Interactions in a Population (2)

F Luca Cardell

Interactions in a Population (2)

CTMC Semantics

CTMC

Stochastic Automata Collectives

- "Collective":
 - A large set of interacting finite state automata:
 - Not quite language automata ("large set")
 - Not quite cellular automata ("interacting" but not on a grid)
 - Not quite process algebra ("collective behavior")
 - Cf. multi-agent systems and swarm intelligence
- "Stochastic":
 - Interactions have *rates*
 - Not quite discrete (hundreds or thousands of components)
 - Not quite continuous (non-trivial stochastic effects)
 - Not quite hybrid (no "switching" between regimes)
- Very much like biochemistry
 - Which is a large set of stochastically interacting molecules/proteins
 - Are proteins finite state and subject to automata-like transitions?
 - Let's say they are, at least because:
 - Much of the knowledge being accumulated in Systems Biology is described as state transition diagrams [Kitano].

Discrete State Transitions

Epidermal Growth Factor Receptor Pathway Map

Kanae Oda (13), Yukiko Mahauska (4, Hinseid Kitano (134) (5) Te kyue king mila, (5) semena kusaesi kena at kenang, kenang,

A Petri-Net-like representation. Precise and dynamic, A compositional graphical representation (precise, but not modular, scalable, or maintainable. dynamic *and* modular) and the corresponding calculus.

o Luca Cardelli

Groupies and Celebrities

Groupies and Celebrities

?a

A stochastic collective of celebrities:

Stable because as soon as a A finds itself in the majority, it is more likely to find somebody in the same state, and hence change, so the majority is weakened.

A stochastic collective of groupies:

Unstable because within an A majority, an A has difficulty finding a B to emulate, but the few B's have plenty of A's to emulate, so the majority may switch to B. Leads to deadlock when everybody is in the same state and there is nobody different to emulate.

Both Together

A way to break the deadlocks: Groupies with just a few Celebrities

R Luca Cardelli

Regularity can arise not far from chaos

Hysteric Groupies

We can get more regular behavior from groupies if they "need more convincing", or "hysteresis" (history-dependence), to switch states.

Semantics of Collective Behavior

The Two Semantic Sides of Chemistry

These diagrams commute via appropriate maps.

L. Cardelli: "On Process Rate Semantics" (TCS)

L. Cardelli: "A Process Algebra Master Equation" (QEST'07)

Quantitative Process Semantics

From Automata to Reactions (by example)

Interacting Automata	Discrete Chemistry					
initial states A A A	initial quantities #A ₀					
A @r A'	A ⊶•r A'					
A ?a A' B !a' [@] r B'	A+B → r A'+B'					
?a A !a A' @r A"	A+A→ ² r A'+A''					

From Reactions to Automata (by example)

LUCA VAI UEIII

Discrete-State Semantics

Discrete Semantics of Reactions

Discrete Semantics of Reagents

CTMC

Discrete State Equivalence

- Def: 🗯 is equivalent CTMC's (isomorphic graphs with same rates).
- Thm: E 🗯 Ch(E)
- Thm: C = Pi(C)

- For each E there is an E' \approx E that is detangled (E' = Pi(Ch(E)))

Process Algebra = Discrete Chemistry

This is enough to establish that the process algebra is really faithful to the chemistry.

But CTMC are not the "ultimate semantics" because there are still questions of when two different CTMCs are actually equivalent (e.g. "lumping").

The "ultimate semantics" of chemistry is the *Chemical Master Equation* (derivable from the Chapman-Kolmogorov equation of the CTMC).

Continuous-State Semantics (summary)

Continuous State Equivalence

• Def: \approx is equivalence of polynomials over the field of reals.

- For each E there is an $E' \approx E$ that is detangled (E' = Pi(Ch(E)))
- For each E in automata form there is an an E' ≈ E that is detangled and in automata form (E' = Detangle(E)).

Design Exercise: Making Lines

Build me a population like this:

Second-order and Zero-order Regime

Second-Order Regime d[S]/dt = -r[E][S]

 $E+S \rightarrow^{r} ES+P$ $ES \rightarrow^{s} E$

directive sample 1000.0 directive plot S(); P(); E()

new a@1.0:chan()

let E() = !a; delay@1.0; E() and S() = ?a; P() and P() = ()

. .

run (1 of E() | 1000 of S())

Zero-Order Regime d[S]/dt ≅ -1 (by assuming d[ES]/dt =0)

Design Exercise: Making Waves

Build me a population like this:

Nonlinear Transition (NLT)

N.B.: needs at

"get started".

least 1 B to

Two NLTs: Bell Shape

NLT in a Cycle: Oscillator (unstable)

directive sample 0.03 1000 directive plot A(); B(); C()

new a@1.0:chan new b@1.0:chan new c@1.0:chan
let A() = do !a;A() or ?b; B()
and B() = do !b;B() or ?c; C()
and C() = do !c;C() or ?a; A()

run (900 of A() | 500 of B() | 100 of C())

Oscillator (stable)

GMA ≠ CME

$A+A \rightarrow^{2r} A =? A+A \rightarrow^{r} 0$

(For conservation of mass, consider instead $A+A \rightarrow^{2r} A+B$ vs. $A+A \rightarrow^{r} B+B$)

Continuous vs. Discrete Groupies

tive sample 5.0 1000 tive plot B(); A()	directive sample 5.0 1000 directive plot B(); A()	directive sample 5.0 1000 directive plot B(); A()		
new a#1.0:chan() new b#1.0:chan()	new a⊕1.0:chan() new b⊕1.0:chan()	new a@1.0:chan() new b@1.0:chan()		Groupe ODEs - Groupies Hysteric 1,mat
let A0 = do !a; A() or ?b; B() and B() = do !b; B() or ?a; A0	let A() = do la; A() or 2b; 2b; B() and B() = do lb; B() or 2a; 2a; A()	let A() = do !a; A() or ?b; ?b; ?b; B() and B() = do !b; B() or ?a; ?a; ?a; A()	Groupe OD(:s - Groupies.mat [0:0.001:5,0] r=1.0 k=1.0 4 dx1/dt = (x1,x2) 2000.0	[0:0.001:5.0] r=1.0 k=1.0 A dx1/dt=x1*x4-x3*x1-x1+x4, 2000.0 A' dx2/dt=x3*x1-x3*x2+x1-x2, 0.0
let Ad() = la; Ad() and Bd() = lb; Bd()	let Ad() = la; Ad() and Bd() = lb; Bd()	let Ad() =!a; Ad() and Bd() =!b; Bd()	$B dx^2/dt = (x^1 \cdot x^2), 0.0$	B dx3/dt=x3*x2-x1*x3-x3+x2, 0.0 B' dx4/dt=x1*x3-x1*x4+x3-x4, 0.0
run 2000 of A0 run 1 of (Ad() Bd())	run 2000 of A() run I of (Ad() Bd())	run 2000 of A() run 1 of (Ad() Bd())		

2008-06-27

Scientific Predictions

After a while, all 4 states are almost equally occupied.

The 4 states are almost never equally occupied.

Model Compactness

Entangled vs detangled

(closely related to $Pi(Ch(E_3))$)

n² Scaling Problems

- E_n has 2n variables (nodes) and 2n terms (arcs).
 Ch(E_n) has 2n species and n² reactions.
- The stoichiometric matrix has size $2n \cdot n^2 = 2n^3$.
- The ODEs have 2n variables and 2n(n+n) = 4n² terms (number of variables times number of accretions plus depletions when sums are distributed)

E ₃	Ch(E ₃)	StoichiometricMatrix(Ch(E3))									
$X_0 = 2a_{(r)}; X_1$	$a_{00}: X_0 + Y_0 \rightarrow^r X_1 + Y_1$		a ₀₀	a ₀₁	a ₀₂	a ₁₀	a ₁₁	a ₁₂	a ₂₀	a ₂₁	a ₂₂
$X_1 = Pa_{(r)}, X_2$ $X_2 = Pa_{(r)}; X_0$	$a_{01}: X_0 + Y_2 \rightarrow^r X_1 + Y_0$	X ₀	-1	-1	-1				+1	+1	+1
$Y_0 = a_{(r)}; Y_1$	$a_{10}: X_1 + Y_0 \rightarrow^r X_2 + Y_1$	X ₁	+1	+1	+1	-1	-1	-1			
$\mathbf{Y}_1 = \mathbf{a}_{(r)}; \mathbf{Y}_2$	$a_{11}: X_1 + Y_1 \rightarrow^r X_2 + Y_2$	X ₂				+1	+1	+1	-1	-1	-1
$\mathbf{Y}_2 = \mathbf{a}_{(r)}; \mathbf{Y}_0$	$a_{12}: X_1 + Y_2 \rightarrow^r X_2 + Y_0$	Y ₀	-1		+1	-1		+1	-1		+1
	$a_{20}: X_2 + Y_0 \rightarrow X_0 + Y_1$ $a_{20}: X_2 + Y_1 \rightarrow X_0 + Y_2$	У ₁	+1	-1		+1	-1		+1	-1	
	$\mathbf{a}_{21}: \mathbf{X}_2: \mathbf{Y}_1 \to \mathbf{X}_0: \mathbf{Y}_2$ $\mathbf{a}_{22}: \mathbf{X}_2 + \mathbf{Y}_2 \to^r \mathbf{X}_0 + \mathbf{Y}_0$	Y ₂		+1	-1		+1	-1		+1	-1

ODE(E₃)

 $d[X_0]/dt = -r[X_0][Y_0] - r[X_0][Y_1] - r[X_0][Y_2] + r[X_2][Y_0] + r[X_2][Y_1] + r[X_2][Y_2] \\ d[X_1]/dt = -r[X_1][Y_0] - r[X_1][Y_1] - r[X_1][Y_2] + r[X_0][Y_0] + r[X_0][Y_1] + r[X_0][Y_2] \\ d[X_2]/dt = -r[X_2][Y_0] - r[X_2][Y_1] - r[X_2][Y_2] + r[X_1][Y_0] + r[X_1][Y_1] + r[X_1][Y_2] \\ d[Y_0]/dt = -r[X_0][Y_0] - r[X_1][Y_0] - r[X_2][Y_0] + r[X_0][Y_2] + r[X_1][Y_2] + r[X_2][Y_2] \\ d[Y_1]/dt = -r[X_0][Y_1] - r[X_1][Y_1] - r[X_2][Y_1] + r[X_0][Y_0] + r[X_1][Y_0] + r[X_2][Y_0] \\ d[Y_2]/dt = -r[X_0][Y_2] - r[X_1][Y_2] - r[X_2][Y_2] + r[X_0][Y_1] + r[X_1][Y_1] + r[X_2][Y_1] \\ d[Y_2]/dt = -r[X_0][Y_2] - r[X_1][Y_2] - r[X_2][Y_2] + r[X_0][Y_1] + r[X_1][Y_1] + r[X_2][Y_1] \\ d[Y_2]/dt = -r[X_0][Y_1] - r[X_1][Y_2] - r[X_2][Y_2] + r[X_0][Y_1] + r[X_1][Y_1] + r[X_2][Y_1] \\ d[Y_2]/dt = -r[X_0][Y_2] - r[X_1][Y_2] - r[X_2][Y_2] + r[X_0][Y_1] + r[X_1][Y_1] + r[X_2][Y_1] \\ d[Y_2]/dt = -r[X_0][Y_2] - r[X_1][Y_2] - r[X_2][Y_2] + r[X_0][Y_1] + r[X_1][Y_1] + r[X_2][Y_1] \\ d[Y_2]/dt = -r[X_0][Y_1] - r[X_1][Y_1] - r[X_2][Y_2] + r[X_0][Y_1] + r[X_1][Y_1] + r[X_2][Y_1] \\ d[Y_2]/dt = -r[X_0][Y_1] - r[X_1][Y_1] - r[X_2][Y_2] + r[X_0][Y_1] + r[X_1][Y_1] + r[X_2][Y_1] \\ d[Y_2]/dt = -r[X_0][Y_2] - r[X_1][Y_2] - r[X_2][Y_2] + r[X_0][Y_1] + r[X_1][Y_1] + r[X_2][Y_1] \\ d[Y_2]/dt = -r[X_0][Y_1] - r[X_1][Y_1] - r[X_2][Y_2] + r[X_0][Y_1] + r[X_1][Y_1] + r[X_2][Y_1] \\ d[Y_2]/dt = -r[X_0][Y_1] - r[X_1][Y_1] - r[X_2][Y_2] + r[X_0][Y_1] + r[X_1][Y_1] + r[X_2][Y_1] \\ d[Y_2]/dt = -r[X_0][Y_1] - r[X_1][Y_1] - r[X_2][Y_2] + r[X_0][Y_1] + r[X_1][Y_1] + r[X_2][Y_1] \\ d[Y_2]/dt = -r[X_0][Y_1] - r[X_1][Y_1] - r[X_2][Y_2] - r[X_2][Y_2] + r[X_0][Y_1] + r[X_1][Y_1] + r[X_2][Y_1] \\ d[Y_1] - r[X_0][Y_1] - r[X_1][Y_1] - r[X_2][Y_2] + r[X_0][Y_1] + r[X_1][Y_1] + r[X_2][Y_1] \\ d[Y_1] - r[X_0][Y_1] - r[X_1][Y_1] - r[X_1][Y_1] - r[X_1][Y_1] + r[X_1][Y_1] + r[X_1][Y_1] \\ d[Y_1] - r[X_0][Y_1] - r[X_1][Y_1] - r[X_1][Y_1] + r[X_1][Y_1] + r[X_1][Y_1] \\ d[Y_1] - r[X_0][Y_1] - r[X_1][Y_1] - r[X_1][Y_1] + r[X_1][Y_1] + r[X_1][Y_1] \\ d[Y_1] - r[X_0][Y_1] - r[X_1][Y_1] -$

6 Luca Cardelli

On the Computational Power of Biochemistry

joint work with Gianluigi Zavattaro

University of Bologna

in: Algebraic Biology '08

Can this program terminate?

b: A+B \rightarrow B+B c: B+C \rightarrow C+C a: C+A \rightarrow A+A 900A + 500B + 100C

"Experimantal evidence"

Continuous-State Simulation

interval/step [0:0.0001:0.03]	
(A) dx1/dt = - x1*x2 + x3*x1	900.0
(B) dx2/dt = - x2*x3 + x1*x2	500.0
(C) dx3/dt = - x3*x1 + x2*x3	100.0

Discrete-State Simulation

But in a longer simulation...

Is termination (possible death) decidable in Chemistry?

- Three equivalent definitions of "basic chemistry":
 - FSRN: Finite Stochastic Reaction Networks (finite systems of stochastic chemical reactions)
 - CGF: our process algebra.
 - Place-Transition Petri nets.
- Surprising answer: termination in basic chemistry is *decidable!*
 - (Soloveichik et al. Computation with Finite Stochastic Chemical Reaction Networks. In Nat. Computing. 2008) by reduction to a decidable problem in Petri Nets (reachability).
- Hence, basic chemistry cannot compute!
 - By Turing's theorem, termination for a universal computer is undecidable.
 - Hence basic chemistry is not Turing-complete.
 - (Although the full story for stochastic systems is a bit more subtle.)

Biochemistry = Interaction + Complexation

• Complexation is what proteins "do", in contrast to simpler chemicals.

• Leading to a process algebra that we call the Biochemical Ground Form (BGF).

RAM encoding in BGF

Expressiveness of Biochemistry

- Basic chemistry (FSRN, or CGF) is not Turing-complete
- Biochemistry (FSRN + complexation, or BGF) is Turing-complete.
- More powerful process algebras of course *are* Turing complete
 - They (e.g. π -calculus) include BGF, but they also have mechanisms that are not directly biologically justifiable.
 - In BGF we have in a sense the minimal biologically-inspired extension of FSRN, and it is already Turing-complete.
- Intrinsic to biochemistry (but not to simple chemistry) is a Turingcomplete mechanism.

Conclusions

Conclusions

- Connections between modeling approaches
 - Connecting the discrete/concurrent/stochastic/molecular approach
 - to the continuous/sequential/deterministic/population approach
- Connecting syntax with semantics
 - Syntax = model presentation (equations/programs/diagrams/blobs etc.)
 - Semantics = state space (generated by the syntax)
- Ultimately, connections between analysis techniques
 - We need (and sometimes have) good semantic techniques to analyze state spaces (e.g. calculus, but also increasingly modelchecking)
 - But we need equally good syntactic techniques to structure complex models (e.g. compositionality) and analyze them (e.g. process algebra)

