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Scientific Method vs. Engineering Method
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<- Abstract ->

How do we 
describe what the 
system does?
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(we must reflect 

reality)

More freedom 
(we can invent 
our own reality)



Motivation: Cells Compute

● No survival without computation!
– Finding food

– Avoiding predators

● How do they compute?
– Unusual computational paradigms.

– Proteins: do they work like electronic circuits? 

– Genes: what kind of software is that?

● Signaling networks
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● Signaling networks
– Clearly “information processing”

– They are “just chemistry”: molecule interactions

– But what are their principles and algorithms?

● Complex, higher-order interactions
– MAPKKK = MAP Kinase Kinase Kinase: 

that which operates on that which operates on that 
which operates on protein.

● General models of biological computation
– What are the appropriate ones?
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Ultrasensitivity in the mitogen-activated protein cascade, 
Chi-Ying F. Huang and James E. Ferrell, Jr., 1996, Proc. 
Natl. Acad. Sci. USA, 93, 10078-10083.



(Macro-) Molecules as 
(Interacting) Automata

● Concurrent (math is based on processes, not functions)
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● Concurrent (math is based on processes, not functions)
● Asynchronous (no global clock)
● Stochastic (or nondeterministic)
● Stateful (e.g. phosphorylation state)
● Discrete (transitions between states)
● Interacting (an “interaction” can be pretty much anything

you want that changes molecular state)

● Based on work on process algebra and biological modeling; 
see references in related papers.



Interacting Automata

?a

A1

B1

!a

B2

@s

A1 is a state

a is a channel i.e. a named 
interaction interface
(e.g. a surface patch)

?,! indicate any complementarity of 
interaction (e.g. charge)

?a, !a indicate complementary actions, 

Current State

Interaction
Transition
Decay
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B3

@s ?a, !a indicate complementary actions, 

@r, @s are rates



Interacting Automata

?a
B1

!a

B2

@s

@r

A1 is a state

a is a channel i.e. a named 
interaction interface
(e.g. a surface patch)

?,! indicate any complementarity of 
interaction (e.g. charge)

?a, !a indicate complementary actions, 

Kinetic laws:

Two complementary 
actions may result in an 
interaction.

Current State

Interaction
Transition
Decay

A1
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B3

@s ?a, !a indicate complementary actions, 
joined by an interaction arrow

@r, @s are rates



Interacting Automata

?a
B1

!a

B2

@r

@s

Current State

Interaction
Transition
Decay

Kinetic laws:

Two complementary 
actions may result in an 
interaction.

A1

A1 is a state

a is a channel i.e. a named 
interaction interface
(e.g. a surface patch)

?,! indicate any complementarity of 
interaction (e.g. charge)

?a, !a indicate complementary actions, 
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B3

@s

A decay may happen
spontaneously.

?a, !a indicate complementary actions, 
joined by an interaction arrow

@r, @s are rates



Interacting Automata

τ@λ1
τ@λ2

τ@λ3

τ@λ5

@r1

@r2

@r3

?a !a

?b

!b!c

?c

A1

A2

A3

B1

B2B3

C1 C2

new a@r1

new b@r2

new c@r3

A1 = ?a; A2

A2 = !c; A3

A3 = τ@λ5; A1

B = τ@λ ; B + !a; B

Communication 
channels

A
utom

ata
The equivalent process algebra model
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τ@λ4

?c

C3

B1 = τ@λ2; B2 + !a; B3

B2 = τ@λ1; B1

B3 = ?b; B2

C1 = !b; C2 + ?c; C3

C2 = τ@λ3; C1

C3 = τ@λ4; C2

A1 | B1 | C1

A
utom

ata

The system and 
initial state

Current State

Interaction
Transition
Delay

Interactions have 
rates. Actions DO 
NOT have rates.



Interactions in a Population

!a

A

B

!a

?a ?b

!b

A

B

!a

?a ?b
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Suppose this is the 
next interaction

(stochastically chosen)
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!b

!b !b

A

B

!a

?a ?b

!b

One lonely automaton

cannot interact
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Interactions in a Population
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!b!b

A
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!a

?a ?b

!b

All-A stable 
population



Interactions in a Population (2)
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?a ?b
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!b !b

Suppose this is the 
next interaction
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Interactions in a Population (2)
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!b

A

B

!a

?a ?b

!b

!b

All-B stable 
population

Nondeterministic 
population behavior

(“multistability”)



CTMC Semantics

A

!a

?a ?b

A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b

BA

r
CTMC
(homogeneous) Continuous Time 
Markov Chain
- directed graph with no self loops
- nodes are system states 
- arcs have transition rates

Probability of holding in state A:

Pr(HA>t) = e-rt

in general, Pr(HA>t) = e-Rt where R is 
the sum of all the exit rates from A
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B

?a ?b

!b

{2A,1B}
{3A}

{1A,2B}
{3B}

2ra

2rb

2ra

2rb

CTMC



Stochastic Automata Collectives

● “Collective”:
– A large set of interacting finite state automata:

●Not quite language automata (“large set”)
●Not quite cellular automata (“interacting” but not on a grid)
●Not quite process algebra (“collective behavior”)
●Cf. multi-agent systems and swarm intelligence

● “Stochastic”:
– Interactions have rates
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– Interactions have rates
●Not quite discrete (hundreds or thousands of components)
●Not quite continuous (non-trivial stochastic effects)
●Not quite hybrid (no “switching” between regimes)

● Very much like biochemistry 
– Which is a large set of stochastically interacting molecules/proteins
– Are proteins finite state and subject to automata-like transitions?

●Let’s say they are, at least because:
●Much of the knowledge being accumulated in Systems Biology 

is described as state transition diagrams [Kitano].



Discrete State Transitions
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r: A + B →k1 C + D
s: C + D →k2 A + B

Chemistry vs. Automata

A B

r

A process algebra (chemistry) A different process algebra (automata)

Reaction
oriented

1 line per 
reaction

Does A 
become 
C or D?

A B !rk1 ?rk1?sk2 !sk2Reaction
oriented
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A  =  !rk1; C
C  =  ?sk2; A

B  =  ?rk1; D
D  =  !sk2; B

C D
rk1

A Petri-Net-like representation. Precise and dynamic, 
but not modular, scalable, or maintainable.

A compositional graphical representation (precise, 
dynamic and modular) and the corresponding calculus.

Ιντεραχτιον
οριεντεδ

Maps to 
a CTMC

Maps to 
a CTMC

The same “model”

Interaction
oriented

reaction

1 line per 
component A 

becomes 
C not D!

C D
sk2



Groupies and Celebrities
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Groupies and Celebrities
Groupie

(wants to be like somebody different)
Celebrity

(does not want to be like somebody else)

directive sample 1.0 1000

directive plot A(); B()

new a@1.0:chan()

new b@1.0:chan()

let A() = do !a; A() or ?b; B()

and B() = do !b; B() or ?a; A()

run 100 of (A() | B())

directive sample 1.0 1000

directive plot A(); B()

new a@1.0:chan()

new b@1.0:chan()

let A() = do !a; A() or ?a; B()

and B() = do !b; B() or ?b; A()

run 100 of (A() | B())

A

B

!a

?b

!b

?a

A

B

!a

?a ?b

!b

a@1.0

b@1.0

a@1.0

b@1.0
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A() B()

always 
eventually 
deadlock

Unstable because within an A majority, an A has difficulty finding a B to 
emulate, but the few B’s have plenty of A’s to emulate, so the majority may 
switch to B. Leads to deadlock when everybody is in the same state and there is 
nobody different to emulate.

Stable because as soon as a A finds itself in the majority, it is more likely to 
find somebody in the same state, and hence change, so the majority is weakened.

A stochastic collective of celebrities: A stochastic collective of groupies:
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directive sample 10.0

directive plot Ag(); Bg(); Ac(); Bc()

new a@1.0:chan()

new b@1.0:chan()

let Ac() = do !a; Ac() or ?a; Bc()

and Bc() = do !b; Bc() or ?b; Ac()

let Ag() = do !a; Ag() or ?b; Bg()

and Bg() = do !b; Bg() or ?a; Ag()

run 1 of Ac() 

Both Together

A way to break the deadlocks: Groupies with just a few Celebrities 

A few
Celebrities

Many
Groupies ?a

!a

?b

!a

?a ?b

Ac

Bc

Ag

Bg
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run 1 of Ac() 

run 100 of (Ag() | Bg())

A tiny bit of 
“noise” can make a 
huge difference

!b!b
never

deadlock
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Ga() Gb()

Hysteric Groupies

directive sample 10.0 1000

directive plot Ga(); Gb()

new a@1.0:chan()

new b@1.0:chan()

let Ga() = do !a; Ga() or ?b; ?b; Gb()

and Gb() = do !b; Gb() or ?a; ?a; Ga()

let Da() = !a; Da()

and Db() = !b; Db()

run 100 of (Ga() | Gb())

run   1 of (Da() | Db())

We can get more regular behavior from groupies if they “need more 
convincing”, or “hysteresis” (history-dependence), to switch states. 

(With doping to 

a “solid threshold” to observe switching

A

B
?a
?a

?b
?b

!a

!b !a !b
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Regularity can 
arise not far 
from chaos
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A vs. B

(With doping to 
break deadlocks)

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5 6 7 8 9 10

Ga() Gb()

!b

A

B

?a
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?b
?b

!a

!b

?a ?b

!a !b

directive sample 10.0 1000

directive plot Ga(); Gb()

new a@1.0:chan()

new b@1.0:chan()

let Ga() = do !a; Ga() or ?b; ?b; ?b; Gb()

and Gb() = do !b; Gb() or ?a; ?a; ?a; Ga()

let Da() = !a; Da()

and Db() = !b; Db()

run 100 of (Ga() | Gb())

run   1 of (Da() | Db())

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200

Gb()

N.B.: It will not oscillate 
without doping (noise)

“regular” 
oscillation



Semantics of 
Collective Behavior 
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The Two Semantic Sides of Chemistry

=

Continuous
Chemistry

Discrete

Process
Algebra

ODE ODE

Continuous-state Semantics 
(Mass Action Kinetics)

Nondeterministic 

Semantics
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=

Discrete
Chemistry

CTMC CTMC

Discrete-state Semantics

(Chemical Master Equation)

Stochastic

Semantics

These diagrams commute via appropriate maps.

L. Cardelli: “On Process Rate Semantics” (TCS)

L. Cardelli: “A Process Algebra Master Equation” (QEST’07)



Quantitative Process Semantics

=

Continuous
Chemistry

Discrete

Process
Algebra

ODE ODE

Continuous-state Semantics 
(Mass Action Kinetics)

Nondeterministic 

Semantics

d[X]/dt = (Σ(Y∈E) AccrE(Y,X)⋅[Y]) - DeplE(X)⋅[X] for all X∈E

Process Rate Equation

Defined over the 
syntax of processes

Accretion Depletion
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=

Discrete
Chemistry

CTMC CTMC

Discrete-state Semantics

(Chemical Master Equation)

Stochastic

Semantics

∂pr(p,t)/∂t   =   Σι∈ℑ aι(p-vι)⋅pr(p-vι,t) - aι(p)⋅pr(p,t) for all p∈States(E)

Process Master Equation

syntax of processes

Interactions Propensity



From Automata to Reactions (by example)

Interacting
Automata

Discrete 
Chemistry

A  � r A’A’A
@r

=

Continuous
Chemistry

Process
Algebra

ODE ODE
#A0A | A | ... | A

initial states initial quantities
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?a
A

B

A’

B’
!a A+B � r A’+B’@r

?a
A

A’ A”

!a
A+A � 2r A’+A”

@r

=

Discrete
Chemistry

Algebra

CTMC CTMC



From Reactions to Automata (by example)

v1: A+B →k1 C+C

v2: A+C →k2 D

v3: C →k3 E+F

v4: F+F →k4 B

v1(k1) v2(k2) v3(k3) v4(k4/2)

A ?;(C|C) ?;D

B !;0

C !;0 τ;(E|F)

D

E

?;B

channels and rates 
(1 per reaction)

d
ef

in
it
io
ns

(1
 p
er

 s
pe

ci
es

)

Interaction
Matrix

1: Fill the matrix by columns:

Half-rate for 
homeo reactions
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F
?;B

!;0
(1
 p
er

 s
pe

ci
es

)
Degradation reaction vi: X →ki Pi

add τ;Pi to <X,vii>. 

Hetero reaction vi: X+Y →ki Pi

add ?;Pi to <X,vi> and !;0 to <Y,vi>

Homeo reaction vi: X+X →ki Pi

add ?;Pi and !;0 to <X,vi>
2: Read the result by rows:

A = ?v1(k1);(C|C)  ⊕ ?v2(k2);D 

B = !v1(k1);0

C = !v2(k2);0  ⊕ τk3;(E|F)

D = 0 

E = 0 

F = ?v4(k4/2);B  ⊕ !v4(k4/2);0 

=

=

Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

CTMC

ODE ODE

CTMC

?v1
A

C

D

!v2

!v2 F

E B

!v4

?v4
!v1



Discrete-State
Semantics
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=

=

Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

CTMC

ODE ODE

CTMC



Discrete Semantics of Reactions

=

Continuous
Chemistry

Process
Algebra

ODE ODE

A+B →r A+A

A+B →r B+B

A+B+B

Syntax:
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=

Discrete
Chemistry

Algebra

CTMC CTMC

{2A,1B}
{3A}

{1A,2B}
{3B}

2ra

2rb

2ra

2rb

CTMC

Semantics:



Discrete Semantics of Reagents

=

Continuous
Chemistry

Process
Algebra

ODE ODE

A

!a

?a ?b

A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b

Syntax:
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=

Discrete
Chemistry

Algebra

CTMC CTMC

B

?a ?b

!b

{2A,1B}
{3A}

{1A,2B}
{3B}

2ra

2rb

2ra

2rb

CTMC

Semantics:



Discrete State Equivalence

● Def: � is equivalent CTMC’s (isomorphic graphs with same rates).

● Thm: E � Ch(E)

● Thm: C � Pi(C)

=

=

Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

ODE ODE

=

=

Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

ODE ODE
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● For each E there is an E’ � E that is detangled (E’ = Pi(Ch(E)))

● For each E in automata form there is an an E’ � E that is detangled 
and in automata form (E’ = Detangle(E)).

2008-06-27 32

=CTMC CTMC =CTMC CTMC



Process Algebra = Discrete Chemistry

This is enough to establish that the process 
algebra is really faithful to the chemistry. 

But CTMC are not the “ultimate semantics” 
because there are still questions of when two 
different CTMCs are actually equivalent (e.g. 
“lumping”).

=

=

Continuous
Chemistry

Process
Algebra

ODE ODE

Discrete
Chemistry
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The “ultimate semantics” of chemistry is the 
Chemical Master Equation (derivable from the 
Chapman-Kolmogorov equation of the CTMC).

=CTMC CTMC



Continuous-State
Semantics

(summary)

=
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=

=

Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

CTMC

ODE ODE

CTMC



Continuous State Equivalence

● Def: ≈ is equivalence of polynomials over the field of reals.

● Thm: E ≈ Cont(Ch(E))

● Thm: Cont(C) ≈ Pi(C)

=

=

Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

ODE ODE

=

=

Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

ODE ODE

Law of Mass Action
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● For each E there is an E’ ≈ E that is detangled (E’ = Pi(Ch(E)))

● For each E in automata form there is an an E’ ≈ E that is detangled and 
in automata form (E’ = Detangle(E)).

2008-06-27 35

=CTMC CTMC =CTMC CTMCGillespie Conversion



Design Exercise: 
Making Lines

Build me a population like this:
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Second-order and Zero-order Regime

?a

E

S

!a

P

directive sample 1000.0

directive plot S(); P(); E()

new a@1.0:chan()

let E() = !a; E()

and S() = ?a; P()

and P() = ()

run (1 of  E() | 1000 of S())

E+S →r E+P
Second-Order Regime
d[S]/dt = -r[E][S]

1000×S, 1×E

@1.0
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?a

E

S

!a
ES

P

directive sample 1000.0

directive plot S(); P(); E()

new a@1.0:chan()

let E() = !a; delay@1.0; E()

and S() = ?a; P()

and P() = ()

run (1 of  E() | 1000 of S())

@1.0

@1.0

1000×S, 1×E

E+S →r ES+P

ES →s E

Zero-Order Regime 
d[S]/dt ≅ -1  (by assuming d[ES]/dt =0)

E

S P

τ(s)

?a(r)

!a(r)

Notation



Design Exercise: 
Making Waves

Build me a population like this:
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Nonlinear Transition (NLT)

A

!c

B
?c

A = ?c(s);B

B = !c(s);B

A+B →s B+B

@s

SPiM

directive sample 0.02 1000

directive plot B(); A()

val s=1.0

new c@s:chan

let A() = ?c; B()

and B() = !c;B()

run (1000 of A() | 1 of B())

N.B.: needs at 
least 1 B to 
“get started”.
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A+B →s B+B

[A]• = -s[A][B]
[B]• = s[A][B]

Matlab
continuous_sys_generator

interval/step [0:0.001:0.0]

(A) dx1/dt = - x1*x2 1000.0

(B) dx2/dt = x1*x2 1.0



Two NLTs: Bell Shape

A

!b

B
?b

!c

C
?c

[B]• = [B]([A]-[C])

A = ?b(1);B

B = !b(1);B ⊕ ?c(1);C

C = !c(1);C

A+B →1 B+B

SPiM
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directive sample 0.0025 1000

directive plot B(); A(); C()

new b@1.0:chan new c@1.0:chan

let A() = ?b; B()

and B() = do !b;B() or ?c; C()

and C() = !c;C()

run ((10000 of A()) | B() | C())

A+B →1 B+B
B+C →1 C+C

[A]• = -[A][B]
[B]• = [A][B]-[B][C]
[C]• = [B][C]

interval/step [0:0.000001:0.0025]

(A) dx1/dt = -x1*x2 10000.0

(B) dx2/dt = x1*x2 – x2*x3 1.0

(C) dx3/dt = x2*x3 1.0

Matlab
continuous_sys_generator



NLT in a Cycle: Oscillator (unstable)

directive sample 0.03 1000

directive plot A(); B(); C()

new a@1.0:chan new b@1.0:chan new c@1.0:chan

let A() = do !a;A() or ?b; B()

and B() = do !b;B() or ?c; C()

and C() = do !c;C() or ?a; A()

run (900 of A() | 500 of B() | 100 of C())
A B

!a

?c
?a

!b?b

C

!c

@1.0

@1.0

@1.0

900xA, 500xB, 100xC

A = !a(s);A ⊕ ?b(s);B

interval/step [0:0.001:20.0]

(A) dx1/dt = - x1*x2 + x3*x1 0.9

(B) dx2/dt = - x2*x3 + x1*x2 0.5

(C) dx3/dt = - x3*x1 + x2*x3 0.1 Matlab
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A = !a(s);A ⊕ ?b(s);B

B = !b(s);B ⊕ ?c(s);C

C = !c(s);C ⊕ ?a(s);A

A+B →s B+B
B+C →s C+C
C+A →s A+A

[A]• = -s[A][B]+s[C][A]
[B]• = -s[B][C]+s[A][B]
[C]• = -s[C][A]+s[B][C]

Matlab
continuous_sys_generator
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interval/step [0:0.01:400.0]

(A) dx1/dt = - x1*x2 + x3*x1 0.51

(B) dx2/dt = - x2*x3 + x1*x2 0.5

(C) dx3/dt = - x3*x1 + x2*x3 0.49

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0.485

0.49

0.495

0.5

0.505

0.51

0.515

0.52

ode45
ode23t ode23tb



Oscillator (stable)

directive sample 0.1 1000

directive plot A1(); A2(); A3()

val r=1.0 val s=1.0

new a1@s:chan new a2@s:chan new a3@s:chan

let A1() = do !a1;A1() or delay@r;A2() or ?a2; ?a2; A2()

and A2() = do !a2;A2() or delay@r;A3() or ?a3; ?a3; A3()

and A3() = do !a3;A3() or delay@r;A1() or ?a1; ?a1; A1()

run 1000 of A1()

A = !a(s);A ⊕ τr;B ⊕ ?b(s);A’

A’ = ?b(s);B

B = !b(s);B ⊕ τr;C ⊕ ?c(s);B’

B’ = ?c(s);C

C = !c(s);C ⊕ τr;A ⊕ ?a(s);C’

C’ = ?a(s);A

A →r B
A+B →s A’+B
A’+B →s B+B
B →r C
B+C →s B’+C
B’+C →s C+C

N.B. this does 
not deadlock!

A B

C

!c

!a

?c

?a

!b?b

?a

?b

?c

Sustained 
Determinisitic 

Oscillation
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B’+C →s C+C
C →r A
C+A →s C’+A
C’+A →s A+A

[A]• = -r[A]-s[A][B]+r[C]+s[C’][A]
[B]• = -r[B]-s[B][C]+r[A]+s[A’][B]
[C]• = -r[C]-s[C][A]+r[B]+s[B’][C]
[A’]• = -s[A’][B] + s[A][B]
[B’]• = -s[B’][C] + s[B][C]
[C’]• = -s[C’][A] + s[C][A]

SPiM

SPiM

Robust 
Stochastic 
Oscillation

interval/step [0:0.0001:0.1]

(A) dx1/dt = -x1 - x1*x2 + x3 + x6*x1 1000.0

(B) dx2/dt = -x2 - x2*x3 + x1 + x4*x2 0.0

(C) dx3/dt = -x3 - x3*x1 + x2 + x5*x3 0.0

(A’) dx4/dt = -x4*x2 + x1*x2 0.0

(B’) dx5/dt = -x5*x3 + x2*x3 0.0

(C’) dx6/dt = -x6*x1 + x3*x1 0.0

Matlab
continuous_sys_generator

Matlab
continuous_sys_generator



GMA ≠ CME
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A+A →→→→2r A      =? A+A →→→→r 0

A+A → rγ/2 0
[A]0=2/γ

A+A →r 0

d[A]/dt = -rγ[A]2

A+A →rγ A
[A]0=2/γ

A+A →2r A

d[A]/dt = -rγ[A]2

2*reaction rate rγ/2 because 
2*A are lost in reaction.

1*reaction rate rγ because 
1*A is lost in reaction.

Gillespie conversion

Law of Mass Action
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A+A →r 0
A+A

A+A 0

r

A+A →2r A
A+A

A+A A

2r

Gillespie conversion

CTMC

(For conservation of mass, consider instead    A+A →2r A+B      vs. A+A →r B+B)



Continuous vs. Discrete Groupies
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a
b

(all with doping)
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2000×A , 0×B , 1×Ad , 1×Bd , r = 1.0

Groupe ODEs - Groupies.mat

[0:0.001:5.0] r=1.0 k=1.0

A dx1/dt = -(x1-x2),   2000.0

B dx2/dt = (x1-x2),   0.0

Groupe ODEs - Groupies Hysteric 1.mat

[0:0.001:5.0] r=1.0 k=1.0

A dx1/dt=x1*x4-x3*x1-x1+x4, 2000.0

A’ dx2/dt=x3*x1-x3*x2+x1-x2, 0.0

B dx3/dt=x3*x2-x1*x3-x3+x2, 0.0

B’ dx4/dt=x1*x3-x1*x4+x3-x4, 0.0

Groupe ODEs - Groupies Hysteric 2.mat

[0:0.001:5.0] r=1.0 k=1.0

A  dx1/dt=x1*x6-x3*x1-x1+x6, 2000.0

A’  dx2/dt=x3*x1-x3*x2+x1-x2, 0.0

A” dx5/dt=x3*x2-x3*x5+x2-x5, 0.0

B   dx3/dt=x3*x5-x1*x3-x3+x5, 0.0

B’  dx4/dt=x1*x3-x1*x4+x3-x4, 0.0

B”  dx6/dt=x1*x4-x1*x6+x4-x6, 0.0

directive sample 5.0 1000
directive plot B(); A()

new a@1.0:chan()

new b@1.0:chan()

let A() = do !a; A() or ?b; ?b; B()

and B() = do !b; B() or ?a; ?a; A()

let Ad() = !a; Ad()

and Bd() = !b; Bd()

run 2000 of A()

run 1 of (Ad() | Bd())

directive sample 5.0 1000

directive plot B(); A()

new a@1.0:chan()

new b@1.0:chan()

let A() = do !a; A() or ?b; ?b; ?b; B()

and B() = do !b; B() or ?a; ?a; ?a; A()

let Ad() = !a; Ad()

and Bd() = !b; Bd()

run  2000 of A() 

run 1 of (Ad() | Bd())

directive sample 5.0 1000

directive plot B(); A()

new a@1.0:chan()

new b@1.0:chan()

let A() = do !a; A() or ?b; B()

and B() = do !b; B() or ?a; A()

let Ad() = !a; Ad()

and Bd() = !b; Bd()

run 2000 of A() 

run 1 of (Ad() | Bd())



Scientific Predictions
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states are almost 
equally occupied.

L
u
c
a
 C

a
rd

e
lli

S
P

iM

The 4 states are 
almost never 
equally occupied.



Model Compactness
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Entangled vs detangled

?a

?a

X1

X0

!a

Y1

Y0

?a

!a

!a

?a00

X1

X0

Y1

Y0

?a01

?a02

?a10

?a11

?a20

?a21

?a22

!a00

!a01

!a02

!a10

!a11

!a20

!a21

!a22
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Detangle(E3)

(closely related to 
Pi(Ch(E3)) )

X2 Y2

E3

X2 Y2

?a11

?a12

!a11

!a12



n2 Scaling Problems

Ch(E3)

a00: X0+Y0 →r X1+Y1

a01: X0+Y1 →r X1+Y2

a02: X0+Y2 →r X1+Y0

a10: X1+Y0 →r X2+Y1

a11: X1+Y1 →r X2+Y2

- En has 2n variables (nodes) and 2n terms (arcs). - The stoichiometric matrix has size 2n⋅n2 = 2n3.

- Ch(En)  has 2n species and n2 reactions. - The ODEs have 2n variables and 2n(n+n) = 4n2 terms
(number of variables times number of accretions plus depletions when sums are distributed)

E3

X0 = ?a(r);X1

X1 = ?a(r);X2

X2 = ?a(r);X0

Y0 = !a(r);Y1

Y1 = !a(r);Y2

Y = !a ;Y

a00 a01 a02 a10 a11 a12 a20 a21 a22

X0 -1 -1 -1 +1 +1 +1

X1 +1 +1 +1 -1 -1 -1

X2 +1 +1 +1 -1 -1 -1

StoichiometricMatrix(Ch(E3))
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11 1 1 2 2

a12: X1+Y2 →r X2+Y0

a20: X2+Y0 →r X0+Y1

a21: X2+Y1 →r X0+Y2

a22: X2+Y2 →r X0+Y0

1 (r) 2

Y2 = !a(r);Y0

X2 +1 +1 +1 -1 -1 -1

Y0 -1 +1 -1 +1 -1 +1

Y1 +1 -1 +1 -1 +1 -1

Y2 +1 -1 +1 -1 +1 -1

ODE(E3)

d[X0]/dt = -r[X0][Y0] - r[X0][Y1] - r[X0][Y2] + r[X2][Y0] + r[X2][Y1] + r[X2][Y2]

d[X1]/dt = -r[X1][Y0] - r[X1][Y1] - r[X1][Y2] + r[X0][Y0] + r[X0][Y1] + r[X0][Y2]

d[X2]/dt = -r[X2][Y0] - r[X2][Y1] - r[X2][Y2] + r[X1][Y0] + r[X1][Y1] + r[X1][Y2]

d[Y0]/dt = -r[X0][Y0] - r[X1][Y0] - r[X2][Y0] + r[X0][Y2] + r[X1][Y2] + r[X2][Y2]

d[Y1]/dt = -r[X0][Y1] - r[X1][Y1] - r[X2][Y1] + r[X0][Y0] + r[X1][Y0] + r[X2][Y0]

d[Y2]/dt = -r[X0][Y2] - r[X1][Y2] - r[X2][Y2] + r[X0][Y1] + r[X1][Y1] + r[X2][Y1]

=
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b: A+B � B+B

c: B+C � C+C

a: C+A � A+A

Can this program terminate?

?c
?a C

!c

100
@1.0

@1.0
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a: C+A � A+A

900A + 500B + 100C

51

A B

!a

?c

!b?b

900 500

@1.0



“Experimantal evidence”

No! No?
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interval/step [0:0.0001:0.03]

(A) dx1/dt = - x1*x2 + x3*x1 900.0

(B) dx2/dt = - x2*x3 + x1*x2 500.0

(C) dx3/dt = - x3*x1 + x2*x3 100.0

directive sample 0.03 1000

directive plot A(); B(); C()

new a@1.0:chan new b@1.0:chan new c@1.0:chan

let A() = do !a;A() or ?b; B()

and B() = do !b;B() or ?c; C()

and C() = do !c;C() or ?a; A()

run (900 of A() | 500 of B() | 100 of C())

Discrete-State
Simulation

Continuous-State     
Simulation



But in a longer simulation…

Yes!
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0A + 1500B + 0CDiscrete-State
Simulation



Is termination (possible death) decidable in Chemistry?

● Three equivalent definitions of “basic chemistry”:
– FSRN: Finite Stochastic Reaction Networks 

(finite systems of stochastic chemical reactions) 

– CGF: our process algebra.

– Place-Transition Petri nets.

● Surprising answer: termination in basic chemistry is decidable!
– (Soloveichik et al. Computation with Finite Stochastic Chemical Reaction 
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– (Soloveichik et al. Computation with Finite Stochastic Chemical Reaction 
Networks. In Nat. Computing. 2008) by reduction to a decidable problem in 
Petri Nets (reachability).

● Hence, basic chemistry cannot compute!
– By Turing’s theorem, termination for a universal computer is undecidable.

– Hence basic chemistry is not Turing-complete.

– (Although the full story for stochastic systems is a bit more subtle.)

2008-06-27



● Complexation is what proteins “do”, in contrast to simpler chemicals.

Biochemistry = Interaction + Complexation

Af Bf Ab Bb

%!a %?a
dissociation
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● Leading to a process algebra that we call
the Biochemical Ground Form (BGF).

&!a &@r0

{}

Af Ab Bb Bf

&?a

{}{〈?a,k〉}{〈!a,k〉}

%!a %?a
%@r1

association

552008-06-27



&?lj

%?lj

RAM encoding in BGF

i: Inc(rj) k: DecJump(rj,s)

Ii

!incj

Ik

!decj
!zeroj

Zj

?zeroj

?incj
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&?lj

%?lj

Cambridge - 05.02.08

Ii+1

?ackj

Ik+1

?ackj

Is

!zeroj

register rj:

Zj Rj
!lj?lj ?lj

Rj

!ackj

&!lj

?decj%!lj!ack

56



Expressiveness of Biochemistry

● Basic chemistry (FSRN, or CGF) is not Turing-complete

● Biochemistry (FSRN + complexation, or BGF) is Turing-complete.

● More powerful process algebras of course are Turing complete 
– They (e.g. π-calculus) include BGF, but they also have mechanisms that are 

not directly biologically justifiable.

– In BGF we have in a sense the minimal biologically-inspired extension of 
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– In BGF we have in a sense the minimal biologically-inspired extension of 
FSRN, and it is already Turing-complete.

● Intrinsic to biochemistry (but not to simple chemistry) is a Turing-
complete mechanism.
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Conclusions
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Conclusions

● Connections between modeling approaches
– Connecting the discrete/concurrent/stochastic/molecular approach

– to the continuous/sequential/deterministic/population approach

● Connecting syntax with semantics
– Syntax = model presentation (equations/programs/diagrams/blobs etc.)

– Semantics = state space (generated by the syntax)

● Ultimately, connections between analysis techniques
– We need (and sometimes have) good semantic techniques to analyze state 
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– We need (and sometimes have) good semantic techniques to analyze state 
spaces (e.g. calculus, but also increasingly modelchecking)

– But we need equally good syntactic techniques to structure complex models 
(e.g. compositionality) and analyze them (e.g. process algebra)
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