The Computational Power of Biochemistry

Luca Cardelli

 Microsoft Research with
Gianluigi Zavattaro

University of Bologna
2008-06-05, Formal Methods in Systems Biology, Cambridge
http://LucaCardelli.name

(Macro-) Molecules as (Interacting) Automata

- Concurrent
- Asynchronous
- Stochastic
- Stateful
- Discrete
- Interacting
(math is based on processes, not functions)
(no global clock)
(or nondeterministic)
(e.g. phosphorylation state)
(transitions between states)
(an "interaction" can be pretty much anything you want that changes molecular state)
- Based on work on process algebra and biological modeling; see references in related papers.

Interacting Automata

A_{1}	is a state
a	is a channel i.e. a named

?,! indicate any complementarity of interaction (e.g. charge)
?a, !a indicate complementary actions,
@r, @s are rates

Interacting Automata

Kinetic laws:
Two complementary actions may result in an interaction.

$\mathrm{A}_{1} \quad$ is a state
a is a channel i.e. a named interaction interface (e.g. a surface patch)
indicate any complementarity of interaction (e.g. charge)
indicate complementary actions, joined by an interaction arrow \cdots...
@r, @s are rates

Interacting Automata

Kinetic laws:
Two complementary actions may result in an interaction.

A decay may happen spontaneously.
$\mathrm{A}_{1} \quad$ is a state
a is a channel i.e. a named interaction interface (e.g. a surface patch)
indicate any complementarity of interaction (e.g. charge)
indicate complementary actions, joined by an interaction arrow \cdots... are rates

Interactions in a Population

Interactions in a Population

Interactions in a Population

Interactions in a Population (2)

Interactions in a Population (2)

CTMC Semantics

Termination

Example 1: Does it Halt?

- Starting population: $\mathbf{A} \mid \mathbf{A}^{\prime}$

Example 1: Does it Halt?

- Starting population: $\mathbf{A} \mid \mathbf{A}^{\prime}$

Example 1: Does it Halt?

- Starting population: $\mathbf{A} \mid \mathbf{A}^{\prime}$

Dnwar of

Example 1: Does it Halt?

- Starting population: $\mathbf{A} \mid \mathbf{A}^{\prime}$

Example 1: Does it Halt?

- Starting population: $\mathbf{A} \mid \mathbf{A}^{\prime}$

Example 1: Does it Halt?

- Starting population: $\mathbf{A} \mid \mathbf{A}^{\prime}$

Example 1: Does it Halt?

- Starting population: $\mathbf{A} \mid \mathbf{A}^{\prime}$

Example 1: Does it Halt?

- Starting population: $\mathbf{A} \mid \mathbf{A}^{\prime}$

Example 1: Does it Halt?

- Starting population: $\mathbf{A} \mid \mathbf{A}^{\prime}$

Example 1: Does it Halt?

- Starting population: $\mathbf{A} \mid \mathbf{A}^{\prime}$

Pnumar of

Example 1: Does it Halt?

- Starting population: $\mathbf{A} \mid \mathbf{A}^{\prime}$

Example 1: Does it Halt?

- Starting population: $\mathbf{A} \mid \mathbf{A}^{\prime}$

Example 1: Does it Halt?

- Starting population: $\mathbf{A} \mid \mathbf{A}^{\prime}$

Example 1: Does it Halt?

- Starting population: $\mathbf{A} \mid \mathbf{A}^{\prime}$

Example 1: Does it Halt?

- Starting population: $\mathbf{A} \mid \mathbf{A}^{\prime}$

Example 1: Does it Halt?

- Starting population: $\mathbf{A} \mid \mathbf{A}^{\prime}$

Example 1: Does it Halt?

- Starting population: $\mathbf{A} \mid \mathbf{A}^{\prime}$

Example 2: Does it Halt?

- Starting population: $\mathbf{A} \mid \mathbf{A}^{\prime}$

Example 2: Does it Halt?

- Starting population: $\mathbf{A} \mid \mathbf{A}^{\prime}$

Cambridge
ก $n \rightarrow$ ก

Example 2: Does it Halt?

- Starting population: $\mathbf{A} \mid \mathbf{A}^{\prime}$

Example 2: Does it Halt?

- Starting population: $\mathbf{A} \mid \mathbf{A}^{\prime}$

Example 2: Does it Halt?

- Starting population: $\mathbf{A} \mid \mathbf{A}^{\prime}$

Example 2: Does it Halt?

- Starting population: $\mathbf{A} \mid \mathbf{A}^{\prime}$

Example 2: Does it Halt?

- Starting population: $\mathbf{A} \mid \mathbf{A}^{\prime}$

Example 2: Does it Halt?

- Starting population: $\mathbf{A} \mid \mathbf{A}^{\prime}$

Example 2: Does it Halt?

- Starting population: $\mathbf{A} \mid \mathbf{A}^{\prime}$

Example 2: Does it Halt?

- Starting population: $\mathbf{A} \mid \mathbf{A}^{\prime}$

Example 2: Does it Halt?

- Starting population: $\mathbf{A} \mid \mathbf{A}^{\prime}$

Example 2: Does it Halt?

- Starting population: $\mathbf{A} \mid \mathbf{A}^{\prime}$

Example 2: Does it Halt?

- Starting population: $\mathbf{A} \mid \mathbf{A}^{\prime}$

Example 3. Does it halt?

Example 3. Does it halt?

3 Automata

Example 3. Does it halt?

4 Automata

Example 3. Does it halt?

1500 Automata

Example 3. Does it halt?

"Experimental Evidence"

Continuous-State
 Simulation

interval/step [0:0.0001:0.03]
(A) $d x 1 / d t=-x 1^{\star} \times 2+x 3^{\star} \times 1$
900.0
(B) $d x 2 / d t=-x 2^{*} \times 3+x 1^{*} \times 2$
(C) $d x 3 / d t=-x 3^{*} x 1+x 2^{*} \times 3$500.0
100.0

Discrete-State
Simulation
directive sample 0.031000
directive plot $A() ; B() ; C()$
new a@1.0:chan new b@1.0:chan new c@1.0:chan let $A()=d o!a ; A()$ or ? $b ; B()$ and $B()=d o!b ; B()$ or $? c ; C()$
and $C()=$ do !c;C() or ?a; $A()$
run $(900$ of $A() \mid 500$ of $B() \mid 100$ of $C())$

Example 3. Does it halt?

But in a longer experiment...

Example 3. Does it halt?

Termination strategy
It can terminate. (Apply reaction b until no more A's, then apply reaction c until no more B's. Then all are C.)

Nondeterministic termination
It may diverge (with 4+ molecules).
Stochastic termination
The probability measure of the terminated states of the oscillator's CMTC is 1.
=> Stochastic fairness
It cannot diverge!

Chemical Ground Form

Chemistry vs. Automata

A process algebra (chemistry)

$$
\begin{array}{lr}
r: A+B \rightarrow_{k 1} C+D & \begin{array}{r}
\text { Does } A \\
\text { become } \\
\text { C or } D ?
\end{array} \\
S: C+D \rightarrow_{k 2} A+B &
\end{array}
$$

A different process algebra (automata)

A Petri-Net-like representation. Precise and dynamic, but not modular, scalable, or maintainable.

A compositional graphical representation (precise, dynamic and modular) and the corresponding calculus.

Chemical Ground Form (CGF)

$E::=0: X=M, E$	Reagents
$M::=0 \vdots \pi ; P \oplus M$	Molecules
$P::=0 \vdots X \mid P$	Solutions
$\pi::=\tau_{(r)} \vdots ? a_{(r)} \vdots!a_{(r)}$	Actions (delay, input, output)
$C G F::=E, P$	
	Reagents plus Initial Conditions

(To translate chemistry to processes we need a bit more than interacting automata: we may have " + " on the right of $®$, that is we may need " \mid " after p.)
\oplus is stochastic choice (vs. + for chemical reactions)
0 is the null solution ($\mathrm{P}|0=0| \mathrm{P}=\mathrm{P}$)
and null molecule ($M \oplus 0=0 \oplus M=M$)
Each X in E is a distinct species
Each name a is assigned a fixed rate $r: a_{(r)}$

!b

Ex: Interacting Automata
(= finite-control CGFs: they use "|" only in initial conditions):

Finite Stochastic Reaction Networks

$$
\begin{array}{lll}
\mathrm{A} & \rightarrow^{r} \mathrm{~B}_{1}+\ldots+\mathrm{B}_{\mathrm{n}} \quad(n \geq 0) \\
\mathrm{A}_{1}+\mathrm{A}_{2} & \rightarrow^{r} & \mathrm{~B}_{1}+\ldots+\mathrm{B}_{\mathrm{n}}(n \geq 0) \\
\mathrm{A}+\mathrm{A} & \rightarrow^{r} \mathrm{~B}_{1}+\ldots+\mathrm{B}_{\mathrm{n}}(n \geq 0)
\end{array}
$$

No other reactions!

JOURNAL OF CHEMICAL PHYSICS

VOLUME 113, NUMBER 1

The chemical Langevin equation
Daniel T. Gillespie ${ }^{\text {a) }}$
Research Department, Code 4T4100D, Naval Air Warfare Center, China Lake, California 93555

Genuinely trimolecular reactions do not physically occur in dilute fluids with any appreciable frequency. Apparently trimolecular reactions in a fluid are usually the combined result of two bimolecular reactions and one monomolecular reaction, and involve an additional short-lived species.

Unary Reaction
Hetero Reaction
Homeo Reaction
$\mathrm{d}[\mathrm{A}] / \mathrm{dt}=-\mathrm{r}[\mathrm{A}]$
$\mathrm{d}\left[\mathrm{A}_{\mathrm{i}}\right] / \mathrm{dt}=-\mathrm{r}\left[\mathrm{A}_{1}\right]\left[\mathrm{A}_{2}\right]$
$\mathrm{d}[\mathrm{A}] / \mathrm{dt}=-2 \mathrm{r}[\mathrm{A}]^{2}$
(assuming $A \neq B_{i} \neq A_{j}$ for all i, j)

Exponential Decay
Mass Action Law
Mass Action Law

THE COLLISION THEORY OF REACTION RATES www.chemguide.co.uk
The chances of all this happening if your reaction needed a collision involving more than 2 particles are remote. All three (or more) particles would have to arrive at exactly the same point in space at the same time, same point in space at the same time,
with everything lined up exactly right, and having enough energy to react. That's not likely to happen very often!

Trimolecular reactions:

$$
A+B+C \rightarrow r D
$$

the measured " r " is an (imperfect) aggregate of e.g.:

$$
\begin{aligned}
& A+B \leftrightarrow A B \\
& A B+C \rightarrow D
\end{aligned}
$$

Chapter IV: Chemical Kinetics

[David A. Reckhow, CEE 572 Course]
... reactions may be either elementary or nonelementary. Elementary reactions are those reactions that occur exactly as they are written, without any intermediate steps. These reactions almost always involve just one or two reactants. ... Non-elementary reactions involve a series of two or more elementary reactions. Many complex environmental reactions are nonelementary. In general, reactions with an overall reaction order greater than two, or reactions with some non-integer reaction order are non-elementary.

$$
\begin{aligned}
& \text { Enzymatic reactions: } \\
& \begin{array}{l}
\mathrm{S} \xrightarrow{\mathrm{E}} \mathrm{P} \\
\text { the "r" is given by Michaelis-Menten } \\
\text { (approximated steady-state) laws: } \\
\mathrm{E}+\mathrm{S} \leftrightarrow \mathrm{ES} \\
\mathrm{ES} \rightarrow \mathrm{P}+\mathrm{E}
\end{array}
\end{aligned}
$$

From CGF to FSRN (by example)

Interacting Automata	Discrete Chemistry
initial states $A\|A\| \ldots \mid A$	initial quantities \# A_{0}
$\text { (A. @r } A^{\prime}$	$A \rightarrow r A^{\prime}$
	$A+B \cdots{ }^{\prime} A^{\prime}+B^{\prime}$
	$A+A \rightarrow 2 r A^{\prime}+A^{\prime \prime}$

From FSRN to CGF (by example)

Discrete Semantics of FSRN

Syntax:

$$
\begin{aligned}
& A+B \rightarrow^{r} A+A \\
& A+B \rightarrow^{r} B+B \\
& A+B+B
\end{aligned}
$$

Semantics:

$$
\begin{aligned}
& \{3 B\} \bullet \underset{2 r_{b}}{\{1 A, 2 B\} 2 r_{a}} \xrightarrow[2 r_{b}\{2 A, 1 B\}]{2 r_{a}}\{3 A\} \\
& \text { CTMC }
\end{aligned}
$$

Discrete Semantics of CGF

Discrete State Equivalence

- Def: m is equivalent CTMC's (isomorphic graphs with same rates).
- Thm: Em m (E)
- Thm: C m $\mathrm{mi}(\mathrm{C})$

- For each E there is an E^{\prime} m E that is detangled $\left(E^{\prime}=\operatorname{Pi}(C h(E))\right)$
- For each E in automata form there is an an E^{\prime} im E that is detangled and in automata form ($E^{\prime}=$ Detangle(E)).

CGF = FSRN

This is enough to establish that the process algebra is really faithful to the chemistry.

But CTMC are not the "ultimate semantics" because there are still questions of when two different CTMCs are actually equivalent (e.g. "lumping").

The "ultimate semantics" of chemistry is the Chemical Master Equation (derivable from the Chapman-Kolmogorov equation of the CTMC).

But it's all just Petri Nets!

- It is possible to translate an arbitrary CGF or FSRN into a Place/Transition Petri Net.
- Ignoring rates, and of course loosing compositionality.
- Pretty much everything is decidable in P/T Nets.
- In particular, reachability of a dead state.
- Hence both CGF and FSRN are not Turing-complete!
- Basic chemistry can't compute! (Soloveichik et. al., Natural Computing 2008)
- Even though stochastic chemistry is extremely rich, e.g. including chaotic systems.

A Petri net semantics for CGF

- One place for each Species
- One transition for each reaction

On the
Computationa
I Power of
Biochemistry

A Petri net semantics for CGF

- One place for each Species
- One transition for each reaction

A Petri net semantics for CGF

- One place for each Species
- One transition for each reaction

A Petri net semantics for CGF

- One place for each Species
- One transition for each reaction

A Petri net semantics for CGF

- One place for each Species
- One transition for each reaction

Biochemical Ground Form

Biochemistry $=$ Interaction + Complexation

- Complexation is what proteins "do", in contrast to simpler chemicals.

- Leading to a process algebra that we call the Biochemical Ground Form (BGF).

Biochemical Ground Form (BGF)

$\mathrm{E}::=0 \quad \vdots \quad \mathrm{X}=\mathrm{M}, \mathrm{E}$	Reagents
$M::=0 \vdots \pi ; P \oplus M$	Molecules
$\mathrm{P}::=0 \vdots \mathrm{X} \mid \mathrm{P}$	Products
$\begin{array}{rll} \pi::=\tau_{(r)} & \vdots ? \mathrm{a}_{(\mathrm{r})} & \vdots!\mathrm{a}_{(\mathrm{r})} \\ \vdots & \mathbb{\&} ? \mathrm{a}_{(\mathrm{r})} & \vdots \mathbb{\&}!\mathrm{a}_{(\mathrm{r})} \\ \vdots & \% ? \mathrm{a}_{(\mathrm{r})} & \vdots \%!\mathrm{a}_{(\mathrm{r})} \end{array}$	Actions (delay, input, output, association, dissociation)
$S::=0: X_{H} \mid S$	Solutions
$\begin{array}{rlr} H::=0 & \vdots & <? a, k>:: H \\ & \vdots & <!a, k>: H \end{array}$	Association Histories
BGF : $:=\mathrm{E}, \mathrm{S}$	Reagents plus Initial Solution

$S::=0 \vdots X_{H} \mid S \quad$ Solutions
$\mathrm{H}::=0 \vdots<? \mathrm{a}, \mathrm{k}>:: \mathrm{H} \quad$ Association Histories

Reagents plus Initial Solution
\oplus is stochastic choice (vs. + for chemical reactions)
0 is the null solution $(P|0=0| P=P)$
and null molecule $(M \oplus 0=0 \oplus M=M)$
Each X in E is a distinct species
Each name a is assigned a fixed rate $r: a_{(r)}$

Ex 1: Linear Polymerization

$$
\begin{aligned}
& S=\& ? a ; S^{\prime} \\
& M=\&!a ; M^{\prime} \\
& M^{\prime}=\& ? a ; M^{\prime \prime}
\end{aligned}
$$

Seed

Monomer

Ex 1: Linear Polymerization

$$
\begin{aligned}
& S=\& ? a ; S^{\prime} \\
& M=\&!a ; M^{\prime} \\
& M^{\prime}=\& ? a ; M^{\prime \prime}
\end{aligned}
$$

Ex 1: Linear Polymerization

$$
\begin{aligned}
& S=\&!a ; S^{\prime} \\
& M=\&!a ; M^{\prime} \\
& M^{\prime}=\& ? a ; M \text { M }
\end{aligned}
$$

Ex 1: Linear Polymerization

$$
\begin{aligned}
& S=\& ? a ; S^{\prime} \\
& M=\&!a ; M^{\prime} \\
& M^{\prime}=\& \in a ; M^{\prime \prime}
\end{aligned}
$$

Ex 1: Linear Polymerization

$$
\begin{aligned}
& S=\& ? a ; S^{\prime} \\
& M=\&!a ; M^{\prime} \\
& M^{\prime}=\& ? a ; M^{\prime \prime}
\end{aligned}
$$

Ex 1: Linear Polymerization

$$
\begin{aligned}
& S=\& ? a ; S^{\prime} \\
& M=\&!a ; M^{\prime} \\
& M^{\prime}=\& \in a ; M^{\prime \prime}
\end{aligned}
$$

Ex 2: Actin Polymerization

$$
\begin{aligned}
& M^{f}=\&!a ; M^{l} \oplus \& ? a ; M^{r} \\
& M^{l}=\%!a ; M^{f} \oplus \& ? a ; M^{b} \\
& M^{r}=\% ? a ; M^{f} \\
& M^{b}=\%!a ; M^{r}
\end{aligned}
$$

Grows only to the right, shrinks only from the left

$M^{f}=$ free on both sides $M^{l}=$ bound on the left $\mathrm{M}^{\mathrm{r}}=$ bound on the right $M^{b}=$ bound on both sides

Ex 2: Actin Polymerization

$$
\begin{aligned}
& M^{f}=\&!a ; M^{l} \oplus \& ? a ; M^{r} \\
& M^{l}=\%!a ; M^{f} \oplus \& ? a ; M^{b} \\
& M^{r}=\% ? a ; M^{f} \\
& M^{b}=\%!a ; M^{r}
\end{aligned}
$$

Ex 2: Actin Polymerization

- Each association has a unique key
- Keys are stored in the molecule's history

$$
\begin{aligned}
& M^{f}=\&!a ; M^{l} \oplus \& ? a ; M^{r} \\
& M^{l}=\%!a ; M^{f} \oplus \& ? a ; M^{b} \\
& M^{r}=\% ? a ; M^{f} \\
& M^{b}=\%!a ; M^{r}
\end{aligned}
$$

Ex 2: Actin Polymerization

- Each association has a unique key
- Keys are stored in the molecule's history

$$
\begin{aligned}
& M^{f}=\&!a ; M^{l} \oplus \& ? a ; M^{r} \\
& M^{l}=\%!a ; M^{f} \oplus \& ? a ; M^{b} \\
& M^{r}=\% ? a ; M^{f} \\
& M^{b}=\%!a ; M^{r}
\end{aligned}
$$

Ex 2: Actin Polymerization

$$
\begin{aligned}
& M^{f}=\&!a ; M^{l} \oplus \& ? a ; M^{r} \\
& M^{l}=\%!a ; M^{f} \oplus \& ? a ; M^{b} \\
& M^{r}=\% ? a ; M^{f} \\
& M^{b}=\%!a ; M^{r}
\end{aligned}
$$

$\&!a$

Ex 2: Actin Polymerization

$$
\begin{aligned}
& M^{f}=\&!a ; M^{l} \oplus \& ? a ; M^{r} \\
& M^{l}=\%!a ; M^{f} \oplus \& ? a ; M^{b} \\
& M^{r}=\% ? a ; M^{f} \\
& M^{b}=\%!a ; M^{r}
\end{aligned}
$$

ambridge
ก 07 ก8

Ex 2: Actin Polymerization

$$
\begin{aligned}
& M^{f}=\&!a ; M^{l} \oplus \& ? a ; M^{r} \\
& M^{l}=\%!a ; M^{f} \oplus \& ? a ; M^{b} \\
& M^{r}=\% ? a ; M^{f} \\
& M^{b}=\%!a ; M^{r}
\end{aligned}
$$

Not possible!
$\mathrm{s} \neq \mathrm{k}$

ambridge
ก 07 ก8

Ex 2: Actin Polymerization

$$
\begin{aligned}
& M^{f}=\&!a ; M^{l} \oplus \& ? a ; M^{r} \\
& M^{l}=\%!a ; M^{f} \oplus \& ? a ; M^{b} \\
& M^{r}=\% ? a ; M^{f} \\
& M^{b}=\%!a ; M^{r}
\end{aligned}
$$

Ex 2: Actin Polymerization

$$
\begin{aligned}
& M^{f}=\&!a ; M^{l} \oplus \& ? a ; M^{r} \\
& M^{l}=\%!a ; M^{f} \oplus \& ? a ; M^{b} \\
& M^{r}=\% ? a ; M^{f} \\
& M^{b}=\%!a ; M^{r}
\end{aligned}
$$

Cambridge
5 ก 0

Ex 2: Actin Polymerization

$$
\begin{aligned}
& M^{f}=\&!a ; M^{l} \oplus \& ? a ; M^{r} \\
& M^{l}=\%!a ; M^{f} \oplus \& ? a ; M^{b} \\
& M^{r}=\% ? a ; M^{f} \\
& M^{b}=\%!a ; M^{r}
\end{aligned}
$$

Cambridge
Dnwar nf

Ex 2: Actin Polymerization

$$
\begin{aligned}
& M^{f}=\&!a ; M^{l} \oplus \& ? a ; M^{r} \\
& M^{l}=\%!a ; M^{f} \oplus \& ? a ; M^{b} \\
& M^{r}=\% ? a ; M^{f} \\
& M^{b}=\%!a ; M^{r}
\end{aligned}
$$

Turing completeness of BGF

- Random Access Machines: [Min67]
- Registers: $r_{1} \ldots r_{n}$ hold natural numbers
- Program: sequence of numbered instructions
- $i: \operatorname{lnc}\left(r_{j}\right)$: add 1 to the content of r_{j} and go to the next instruction
- i: DecJump $\left(r_{j}, s\right)$: if the content of r_{j} is not 0 then decrease by 1 and go to the next instruction; otherwise jump to instruction s
- There is a RAM encoding in BGF
- But not, as we already showed, in CGF.

Registers as Polymers

- Initially empty register r_{j} : a seed $\mathbf{Z}_{\mathbf{j}}$
- Increment on r_{j} : produce a new monomer and associate it to the polymer
- Decrement on r_{j} : remove last monomer

RAM encoding in BGF

Termination Problems in Chemical Kinetics

Probability Measure for a Markov Chain

- 1-step probability
- If a state A has n outgoing transitions to states B_{1}, \ldots, B_{n}, labeled with rates r_{1}, \ldots, r_{n}, the probability of going from A to B_{k} in one step is:
- $\quad p^{(1)}\left(A, B_{k}\right)=r_{k} / \sum_{i} r_{i}$
- Many-step probability (Chapman-Kolmogorov equation)
- The probability of going from A to B in $n+m$ steps is the sum of all ways of going in n steps form A to any X and then in m steps from X to B.
- $\quad p^{(n+m)}(A, B)=\sum_{X} p^{(n)}(A, X) p^{(m)}(X, B)$

Termination Problems

- Probability Measure
- Let p be the probability measure associated to the computations in a CGF (E, P) that lead to a terminated solution.
- Existential Termination
- (E, P) existentially terminates if $p>0$.
- Universal Termination
- (E, P) universally terminates if $p=1$.
- Probabilistic Termination
- (E,P) terminates with probability higher than $0<\varepsilon<1$, if $p>\varepsilon$.

Termination Results

	Stochastic	Nondeterministic
Existential Termination	Decidable 1	Decidable 4
Universal Termination	Undecidable 2	Decidable 5
Probabilistic Termination	Undecidable 3	N.A.

- Chemical kinetics is not Turing-complete ${ }^{1}$
- Chemical kinetics is Turing-complete up to an arbitrary error ${ }^{3}$
- Existential Termination is equally hard in stochastic and nondeterministic ${ }^{1,4}$
- Universal termination is harder in stochastic than in nondeterministicc ${ }^{2,5}$
- The fairness implicit in stochastic computation makes checking universal termination undecidable ${ }^{2}$
(${ }^{1,3}$ due to Soloveichik et. al., Natural Computing 2008)

Conclusions

- Chemistry (CGF) is not Turing complete
- It is decidable weather given a molecule will be produced.
- Surprisingly (since this is decidable nondeterministically), it is undecidable whether a program will terminate with probability measure 1.
- However, chemistry can (slowly) approximate a Turing machine to any degree of precision: it is undecidable whether a given molecule is likely to be produced.
- Biochemistry (BGF) is Turing complete.
- Of course, π-calculus is Turing complete too, but it contains operators that do not have a direct biological interpretation.
- The BGF a minimal extension of chemistry with biologically inspired operators (complexation/decomplexation) and is already Turing complete
- Finite Turing-powerful programming constructs can be found in biochemistry but not in basic chemistry.

