Process Rate Semantics
 Representing Biochemical Systems as
 Collectives of Interacting Automata

Luca Cardelli

Microsoft Research

Computational and Systems Biology Course CoSBi, Trento, 2008-03-13
http://LucaCardelli.name

Aims

- Connections between modeling approaches
- Connecting the discrete/concurrent/stochastic/molecular approach
- to the continuous/sequential/deterministic/population approach
- Connecting syntax with semantics
- Syntax = model (equations/programs/diagrams/blobs etc.)

- Semantics = state space (generated by the syntax)
- N.B. model $=$ state space !!
- The same model can be interpreted in different state spaces
- Different models can have the same state space
- Different models of the same state space can support different analysis
- Ultimately, connections between analysis techniques
- We need (and sometimes have) good semantic techniques to analyze state spaces (e.g. calculus, but also modelchecking)
- But we need equally good syntactic techniques to structure complex models (e.g. compositionality) and analyze them (e.g. process algebra)

Motivation: Cells Compute

- No survival without computation!
- Finding food
- Avoiding predators
- How do they compute?
- Unusual computational paradigms.
- Proteins: do they work like electronic circuits?
- Genes: what kind of software is that?
- Signaling networks
- Clearly "information processing"
- They are "just chemistry": molecule interactions
- But what are their principles and algorithms?
- Complex, higher-order interactions
- MAPKKK = MAP Kinase Kinase Kinase:
that which operates on that which operates on that which operates on protein.
- General models of biological computation
- What are the appropriate ones?

Ultrasensitivity in the mitogen-activated protein cascade, Chi-Ying F. Huang and James E. Ferrell, Jr., 1996, Proc. Natl. Acad. Sci. USA, 93, 10078-10083.

(Macro)Molecules as Interacting Automata

- Concurrent
- Asynchronous
- Stochastic
- Stateful
- Discrete
- Interacting
(math is based on processes, not functions)
(no global clock)
(or nondeterministic)
(e.g. phosphorylation state)
(transitions between states)
(an "interaction" can be pretty much anything
you want that changes molecular state)
- Based on work on process algebra and biological modeling; see references in related papers.

Stochastic Automata Collectives

- "Collective":
- A large set of interacting finite state automata:
- Not quite language automata ("large set")
- Not quite cellular automata ("interacting" but not on a grid)
- Not quite process algebra ("collective behavior")
- Cf. multi-agent systems and swarm intelligence
- "Stochastic":
- Interactions have rates
- Not quite discrete (hundreds or thousands of components)

- Not quite continuous (non-trivial stochastic effects)
- Not quite hybrid (no "switching" between regimes)
- Very much like biochemistry
- Which is a large set of stochastically interacting molecules/proteins
- Are proteins finite state and subject to automata-like transitions?
- Let's say they are, at least because:
- Much of the knowledge being accumulated in Systems Biology is described as state transition diagrams [Kitano].

Towards Systems Biology

Epidermal Growth Factor Receptor Pathway Map

Compositionality (NOT!)

Interacting Automata

$\begin{array}{ll}\mathrm{A}_{1} & \text { is a state } \\ \text { a } & \text { is a channel i.e. a named }\end{array}$ interaction interface (e.g. a surface patch)
indicate any complementarity of interaction (e.g. charge)
?a, !a indicate complementary actions,
@r, @s are rates

Interacting Automata

Kinetic laws:

Two complementary actions may result in an interaction.

$\mathrm{A}_{1} \quad$ is a state
a is a channel i.e. a named interaction interface (e.g. a surface patch)
indicate any complementarity of interaction (e.g. charge)
indicate complementary actions, joined by an interaction arrow \cdots
@r, @s are rates

Interacting Automata

Kinetic laws:

Two complementary actions may result in an interaction.

A decay may happen spontaneously.
$\mathrm{A}_{1} \quad$ is a state
a is a channel i.e. a named interaction interface (e.g. a surface patch)
indicate any complementarity of interaction (e.g. charge)
indicate complementary actions, joined by an interaction arrow \cdots...
@r, @s are rates

Interacting Automata

Interactions have rates. Actions DO NOT have rates.

The equivalent process algebra model

Interactions in a Population

Interactions in a Population

Interactions in a Population

Interactions in a Population (2)

Interactions in a Population (2)

All-B stable population

Nondeterministic population behavior
("multistability")

CTMC Semantics

Chemistry vs. Automata

A process algebra (chemistry)

$$
\begin{array}{ll}
r: A+B \rightarrow_{k 1} C+D & \begin{array}{l}
\text { Does } A \\
\text { become } \\
\text { Cor } D ?
\end{array} \\
s: C+D \rightarrow_{k 2} A+B &
\end{array}
$$

A different process algebra (automata)

A Petri-Net-like representation. Precise and dynamic but not modular, scalable, or maintainable.

A compositional graphical representation (precise, dynamic and modular) and the corresponding calculus.

Groupies and Celebrities

Groupies and Celebrities

A stochastic collective of celebrities:

Stable because as soon as a A finds itself in the majority, it is more likely to find somebody in the same state, and hence change, so the majority is weakened.

Groupie

(wants to be like somebody different)

directive sample 1.01000	$a @ 1.0$
directive plot $A(): B()$	b@1.0

new a@1.0:chan()
new b@1.0:chan()
let $A()=$ do !a; $A()$ or ? $b ; B()$ and $B()=$ do ! b; $B()$ or ? $a ; A()$
run 100 of $(A() \mid B())$

A stochastic collective of groupies:

Unstable because within an A majority, an A has difficulty finding a B to emulate, but the few B's have plenty of A's to emulate, so the majority may switch to B. Leads to deadlock when everybody is in the same state and there is nobody different to emulate.

Both Together

A way to break the deadlocks: Groupies with just a few Celebrities

Regularity can arise not far from chaos

Hysteric Groupies

We can get more regular behavior from groupies if they "need more convincing", or "hysteresis" (history-dependence), to switch states.

! b

(With doping to break deadlocks)
N.B.: It will not oscillate without doping (noise)

directive sample 10.01000 directive plot $G a() ; G b()$
new a@1.0:chan() new b@1.0:chan()
let $G a()=$ do !a; $G a()$ or ?b; ?b; $G b()$ and $G b()=d o!b ; G b()$ or ? $a ; ? a ; G a()$
let $D a()=!a ; D a()$
and Db()$=!\mathrm{b} ; \mathrm{Db}()$
run 100 of $(G a() \mid G b())$
run 1 of $(\mathrm{Da}() \mid \mathrm{Db}())$

directive sample 10.01000 directive plot $G a() ; G b()$
new a@1.0:chan() new b@1.0:chan()
let $G a()=$ do !a; $G a()$ or ? $b ; ~ ? b ; ~ ? b ; G b()$ and $G b()=d o!b ; G b()$ or $? a ; ? a ; ? a ; G a()$
let $D a()=!a ; D a()$
and Db()$=!\mathrm{b} ; \mathrm{Db}()$
run 100 of $(G a() \mid G b())$
run 1 of $(\mathrm{Da}() \mid \mathrm{Db}())$

Semantics of Collective Behavior

The Two Semantic Sides of Chemistry

These diagrams commute via appropriate maps.
L. Cardelli: "On Process Rate Semantics" (TCS)
L. Cardelli: "A Process Algebra Master Equation" (QEST'07)

Quantitative Process Semantics

Stochastic Processes \& Discrete Chemistry

Chemical Reactions

$$
\begin{array}{lll}
A & \rightarrow^{r} & B_{1}+\ldots+B_{n} \quad(n \geq 0) \\
A_{1}+A_{2} & \rightarrow^{r} & B_{1}+\ldots+B_{n}(n \geq 0) \\
A+A & \rightarrow^{r} & B_{1}+\ldots+B_{n}(n \geq 0)
\end{array}
$$

Unary Reaction
Hetero Reaction
Homeo Reaction

$d[A] / d t=-r[A]$
Exponential Decay
$d\left[A_{i}\right] / d t=-r\left[A_{1}\right]\left[A_{2}\right]$
Mass Action Law
Mass Action Law
(assuming $A \neq B_{i} \neq A_{j}$ for all i, j)

No other reactions!

Journal of chemical physics
 VOLUME 113, NUMBER 1

The chemical Langevin equation

Daniel T. Gillespie ${ }^{\text {a) }}$
Research Department, Code 4T4100D, Naval Air Warfare Center, China Lake, California 93555

Genuinely trimolecular reactions do not physically occur in dilute fluids with any appreciable frequency. Apparently trimolecular reactions in a fluid are usually the combined result of two bimolecular reactions and one monomolecular reaction, and involve an additional short-lived species.

> Chapter IV: Chemical Kinetics [David A. Reckhow, CEE 572 Course]
> .. reactions may be either elementary or nonelementary. Elementary reactions are those reactions that occur exactly as they are written, without any intermediate steps. These reactions almost always involve just one or two reactants. ... Non-elementary reactions involve a series of two or more elementary reactions. Many complex environmental reactions are non-elementary. In general, reactions with an overall reaction order greater than two, or reactions with some non-integer reaction order are non-elementary.

THE COLLISION THEORY OF REACTION RATES
 www.chemguide.co.uk

The chances of all this happening if your reaction needed a collision involving more than 2 particles are remote. All three (or more) particles would have to arrive at exactly the same point in space at the same time, with everything lined up exactly right, and having enough energy to react. That's not likely to happen very often!

> Reactions have rates. Molecules do not have rates.

Enzymatic reactions:

$$
S \xrightarrow{E r} P
$$

the " r " is given by Michaelis-Menten

(approximated steady-state) laws:
$E+S \leftrightarrow E S$
$E S \rightarrow P+E$

Chemical Ground Form (CGF)

$$
\begin{array}{ll}
E::=0 \vdots X=M, E & \text { Reagents } \\
M::=0 \vdots \pi ; P \oplus M & \text { Molecules } \\
P::=0 \vdots X \mid P & \text { Solutions } \\
\pi::=\tau_{(r)} \vdots ? a_{(r)} \vdots!a_{(r)} & \text { Actions (delay, input, output) } \\
C G F::=E, P & \text { Reagents plus Initial Conditions }
\end{array}
$$

A stochastic subset of CCS
 (no values, no restriction)

Interacting Automata

+ dynamic forking
\oplus is stochastic choice (vs. + for chemical reactions)
0 is the null solution ($\mathrm{P}|0=0| P=P$)
and null molecule ($M \oplus 0=0 \oplus M=M$)
Each X in E is a distinct species
Each name a is assigned a fixed rate $r: a_{(r)}$

Ex: Interacting Automata
(= finite-control CGFs: they use "|" only in initial conditions):

From Reagents to Reactions (by example)

Interacting Automata	Discrete Chemistry
initial states $\mathrm{A}\|\mathrm{~A}\| \ldots \mid \mathrm{A}$	initial quantities $\# \mathrm{~A}_{0}$
$\text { (A. } \mathrm{C}_{\mathrm{r}}^{\mathrm{r}} \cdot \mathrm{~A}$	$\mathrm{A} \rightarrow \mathrm{r} \mathrm{A}^{\prime}$
	$\mathrm{A}+\mathrm{B} \rightarrow \mathrm{r} \mathrm{A}^{\prime}+\mathrm{B}^{\prime}$
	$\mathrm{A}+\mathrm{A}{ }^{\rightarrow+2 \mathrm{r}} \mathrm{A}^{\prime}+\mathrm{A}^{\prime \prime}$

From Reactions to Reagents (by example)

Entangled vs Detangled

Entangled: Two reactions on one channel

Detangled: Two reactions on two separate channels

We need a semantics of automata that identifies automata that have the "same chemistry".
No process algebra equivalence is like this!

Entangled automata lead to more compact models than in chemistry.

Detangled automata are in simple correspondence with chemistry.

Same Semantics

Could chemistry itself be that semantics?

No: different sets of reactions can have the same behavior!

Discrete-State Semantics

Discrete Semantics of Reactions

Syntax:

$$
\begin{aligned}
& \mathrm{A}+\mathrm{B} \rightarrow^{\mathrm{r}} \mathrm{~A}+\mathrm{A} \\
& \mathrm{~A}+\mathrm{B} \rightarrow^{\mathrm{r}} \mathrm{~B}+\mathrm{B} \\
& \mathrm{~A}+\mathrm{B}+\mathrm{B}
\end{aligned}
$$

Semantics:

$$
\begin{aligned}
& \{3 B\} \bullet \underset{2 r_{b}}{\{1 A, 2 B\} 2 r_{a}} \stackrel{\underset{2 r_{b}}{ } \xrightarrow[\{2 A, 1 B\}]{2 r_{a}}}{ } \rightarrow\{3 A\} \\
& \text { CTMC }
\end{aligned}
$$

Discrete Semantics of Reagents

Discrete State Equivalence

- Def: m is equivalent CTMC's (isomorphic graphs with same rates).
- Thm: E m $\operatorname{Ch}(E)$
- Thm: C m $\mathrm{Pi}(C)$

- For each E there is an E^{\prime} in E that is detangled $\left(E^{\prime}=\operatorname{Pi}(C h(E))\right)$
- For each E in automata form there is an an E^{\prime} m E that is detangled and in automata form ($E^{\prime}=\operatorname{Detangle}(E)$).

Process Algebra $=$ Discrete Chemistry

This is enough to establish that the process algebra is really faithful to the chemistry.

But CTMC are not the "ultimate semantics" because there are still questions of when two different CTMCs are actually equivalent (e.g. "lumping").

The "ultimate semantics" of chemistry is the
 Chemical Master Equation (derivable from the Chapman-Kolmogorov equation of the CTMC).

Exercise: Making Lines

Or: build me a population like this:

Second-order and Zero-order Regime

Cascades

Second-Oder Regime cascade: a signal amplifier (MAPK)
$\mathrm{aHi}>\mathrm{O} \Rightarrow \mathrm{cHi}=\max$

```
directive sample 0.03
directive samplot la: ib: lc
new @@1.0:chan new b@1.::chan new c@1.:chan
    le Amp_hi(:C.chn, b:c.can)=
    and Amp lo(a:chan, b:chan)=
    run 1000 of (Amp_lo(a,b) | Amp_lo(b,c))
    leta()=1:AO
```


Zero-Oder Regime cascade: a signal divider!
$a H i=\max \Rightarrow c H i=1 / 3$ max

```
l}\begin{array}{l}{\mathrm{ directive sample 0.03}}\\{\mathrm{ directive plot la: b:1c. }}
directive plot la: b: :lc
new a@1.: chan new be10:chan new c@1.0:chan
    let Amp_hi(:c:chn, b:chan) =
    do Ib:\mathrm{ delaye(1.:Amp hi(a,b) or delay@1.:: Amp_LO(a,b)}
    and Amp.lo(a:chan, b:chan)
    run 1000 of (Amp_Io(a.b) | Amp \o(b,c))
    let AO = la; deloy@1.0: A)
    run 2000 of AO
```


Ultrasensitivity


```
directive sample 215.0
```

l

```
l
new ae1.0:Chan() new be1.0:chan()
new ae1.0:Chan() new be1.0:chan()
ler S() = Pa; P()
ler S() = Pa; P()
lef EO= la delay(1.0: EO
lef EO= la delay(1.0: EO
run 1000 of S)
```

```
run 1000 of S)
```

```


```

```
    *)
```

```
    *)
    let Sig(P:proc(), tick: chan) = (p) | Ptick; Sig(p, tick))
    let Sig(P:proc(), tick: chan) = (p) | Ptick; Sig(p, tick))
    *)
    *)
    run 100 of F0)
```

 run 100 of F0)
    ```
```

run 100 of F()

```
```

run 100 of F()

```



Zero-Order Regime A small E-F inbalance causes a much larger S-P switch.

\footnotetext{
directive sample 215.01000
directive e loo SO: PO: EO: FO
new oe10 chan) new be10 ch
let \(S(0)=7 a \cdot P(0)\)
and \(P()=? b ; S()\)
and \(\mathrm{PO}=2 \mathrm{~b}\) : S

run 1000 of S)
let clock(t:float, tick: chan) \(=\quad\) (* sends a tick every \(t\) time \({ }^{*}\)

run step(100))


run 100 of FO)
}

Second-Order Regime

\section*{Continuous-State Semantics}
(short version)


\section*{The Gillespie \({ }^{(?)}\) Conversion}
\begin{tabular}{|c|c|c|c|}
\hline Discrete Chemistry & Continuous Chemistry & \(\gamma=\mathrm{N}_{\mathrm{A}} \mathrm{V}\) & : \(\mathrm{M}^{-1}\) \\
\hline initial quantities
\[
\# \mathrm{~A}_{0}
\] & \multicolumn{3}{|l|}{initial concentrations} \\
\hline \(\mathrm{A} \rightarrow \mathrm{r} \mathrm{A}^{\prime}\) & \(\mathrm{A} \rightarrow^{\mathrm{k}} \mathrm{A}^{\prime}\) & with \(\mathrm{k}=\mathrm{r}\) & : \(\mathrm{s}^{-1}\) \\
\hline \(\mathrm{A}+\mathrm{B} \rightarrow \mathrm{r} \mathrm{A}^{\prime}+\mathrm{B}^{\prime}\) & \(\mathrm{A}+\mathrm{B} \rightarrow{ }^{\mathrm{k}} \mathrm{A}^{\prime}+\mathrm{B}^{\prime}\) & with \(\mathrm{k}=\mathrm{r} \gamma\) & \(: \mathrm{M}^{-1} \mathrm{~s}^{-1}\) \\
\hline \(A+A \rightarrow r A^{\prime}+A^{\prime \prime}\) & \(\mathrm{A}+\mathrm{A} \rightarrow{ }^{\mathrm{k}} \mathrm{A}^{\prime}+\mathrm{A}^{\prime \prime}\) & with \(\mathrm{k}=\mathrm{r} \gamma / 2\) & : \(\mathrm{M}^{-1} \mathrm{~s}^{-1}\) \\
\hline
\end{tabular}
\(\mathrm{V}=\) interaction volume
\(\mathrm{N}_{\mathrm{A}}=\) Avogadro's number
Think \(\gamma=1\)
i.e. \(\mathrm{V}=1 / \mathrm{N}_{\mathrm{A}}\)
\(\mathrm{M}=m o l \cdot L^{-1}\)
molarity (concentration)


\section*{From Reactions to ODEs}


\section*{Processes Rate Equation}

Process Rate Equation for Reagents E in volume \(\gamma\)
\[
d[X] / d t=\left(\Sigma(Y \in E) \underset{\text { for all } X \in E}{\left.\operatorname{Accr}_{E}(Y, X) \cdot[Y]\right)-\operatorname{Depl}_{E}(X) \cdot[X]}\right.
\]
"The change in process concentration (!!) for \(X\) at time \(\dagger\) is the sum over all possible (kinds of) processes \(Y\) of:
the concentration at time \(t\) of \(y\) times the accretion from \(Y\) to \(X\)
minus the concentration at time \(t\) of \(X\) times the depletion of \(X\) to some other \(Y^{\prime \prime}\)
\(\operatorname{Depl}_{E}(X)=\)
\(\Sigma\left(i: E . X . i=\tau_{(r)} ; P\right) r+\)
\(\Sigma\left(i:\right.\) E.X.i=? \(a_{(r)} ;\) P) r \(\gamma\) OutsOn \(n_{E}(a)+\)
\(\Sigma\left(i: E . X . i=!a_{(r)} ; P\right) r \gamma \cdot \operatorname{InsOn} n_{E}(a)\)
\(\operatorname{Accr}_{E}(Y, X)=\)
\(\Sigma\left(i: E . Y . i=\tau_{(r)} ; P\right) \# X(P) \cdot r+\)
\(\Sigma\left(i:\right.\) E.Y.i \(\left.i=? a_{(r)} ; P\right) \# X(P) \cdot r \gamma \cdot\) OutsOn \(_{E}(a)+\) \(\Sigma\left(i: E . Y . i=!a_{(r)} ; P\right) \# X(P) \cdot r \gamma \cdot\) InsOn \(_{E}(a)\)
\(\operatorname{InsOn}_{E}(a)=\Sigma(\mathrm{Y} \in \mathrm{E}) \#\left\{\mathrm{Y} . \mathrm{i} \mid \mathrm{E.Y.i=?} \mathrm{a}_{(r)} ; P\right\}\). \([\mathrm{Y}]\)
OutsOne \((a)=\Sigma(Y \in E) \#\left\{Y_{\text {. }} \mid E . Y_{. i=!} a_{(r)} \cdot P\right\} \cdot[Y]\)
\[
\begin{aligned}
X=\tau_{(r)} ; 0 & \rightarrow d[X] / d t=-r[X] \\
X & =? a_{(r)} ; 0 \\
Y & =!a_{(r)} ; 0
\end{aligned} \rightarrow \begin{aligned}
& d[X] / d t=-r \gamma[X][Y] \\
& d[Y] / d t=-r \gamma[X][Y]
\end{aligned} \begin{aligned}
X & =? a_{(r)} ; 0 \rightarrow d[X] / d t=-2 r \gamma[X]^{2} \\
& \oplus!a_{(r)} ; 0
\end{aligned}
\]

\section*{Continuous State Equivalence}
- Def: \(\approx\) is equivalence of polynomials over the field of reals.

- For each \(E\) there is an \(E^{\prime} \approx E\) that is detangled \(\left(E^{\prime}=\operatorname{Pi}(C h(E))\right)\)
- For each \(E\) in automata form there is an an \(E^{\prime} \approx E\) that is detangled and in automata form ( \(E^{\prime}=\operatorname{Detangle}(E)\) ).

\title{
Exercise: Making Waves
}

Or: build me a population like this:


\section*{Nonlinear Transition (NLT)}


N.B.: needs at least 1 B to "get started".

Smulation: Time \(=0.013448\) (999 points at 0.0085215 simTime/sysTime and halted) Paused

\section*{Two NLTs: Bell Shape}

\([B]^{\circ}=[B]([A]-[C])\)
directive sample 0.00251000
directive plot \(B() ; A() ; C()\)
new b@1.0:chan new c@1.0:chan
let \(A()=? b ; B()\)
and \(B()=d o!b ; B()\) or \(? c ; C()\)
and \(C()=!c ; C()\)
run \(((10000\) of \(A())|B()| C())\)

interval/step [0:0.000001:0.0025] (A) \(\mathrm{d} \times 1 / \mathrm{dt}=-\times 1 \times \times 2\)
(B) \(\mathrm{d} \times 2 / \mathrm{dt}=\times 1^{*} \times 2-\times 2^{*} \times 3 \quad 1.0\)
(C) \(d \times 3 / d t=\times 2 * \times 3 \quad 10\)

\section*{NLT in a Cycle: Oscillator (unstable)}



\section*{Oscillator (stable)}


\section*{directive sample 0.11000 directive plot \(A 1\) (); A 2() ; A 3 ()}
val \(r=1.0\) val \(s=1.0\)
new a1@s:chan new a2@s:chan new a3@s:chan let A 1()\(=\) do !a1;A1() or delay@r:A2() or ?a2; ?a2; A2() and \(A 2()=\) do !a2;A2() or delay@r;A3() or ?a3; ?a3; A3() and \(A 3()=\) do !a3;A3() or delay@r:A1() or ?a1; ?a1; A1()
run 1000 of A10
\[
\begin{aligned}
& A=!\mathrm{a}_{(s)} ; A \oplus \tau_{r} ; B \oplus ? \mathrm{~b}_{(\mathrm{s})} ; A \\
& \mathrm{~A}^{\prime}=? \mathrm{~b}_{(s)} ; \mathrm{B} \\
& \mathrm{~B}=!\mathrm{b}_{(\mathrm{s})} ; \mathrm{B} \oplus \tau_{\mathrm{r}} ; C \oplus ? \mathrm{c}_{(\mathrm{s})} ; \mathrm{B}^{\prime} \\
& \mathrm{B}^{\prime}=? \mathrm{c}_{(\mathrm{s})} ; \mathrm{C} \\
& C=!\mathrm{c}_{(\mathrm{s})} ; C \oplus \tau_{r} ; \mathrm{A} \oplus ? \mathrm{a}_{(\mathrm{s})} ; C^{\prime} \\
& C^{\prime}=? \mathrm{a}_{(\mathrm{s})} ; \mathrm{A}
\end{aligned}
\] Determinisitic Oscillation
N.B. this does not deadlock!
\(A \rightarrow r^{r} B\)
\(A+B \rightarrow s A^{\prime}+B\)
\(A^{\prime}+B \rightarrow{ }^{s} B+B\)
\(B \rightarrow \rightarrow^{r} C\)
\(B+C \rightarrow s B^{\prime}+C\)
\(B^{\prime}+C \rightarrow \rightarrow^{s} C+C\)
\(C \rightarrow \rightarrow^{r} A\)
\(C+A \rightarrow s C^{\prime}+A\)
\(C^{\prime}+A \rightarrow{ }^{s} A+A\)
\[
\begin{aligned}
& {[A]^{\circ}=-r[A]-s[A][B]+r[C]+s\left[C^{\prime}\right][A]} \\
& {[B]^{\circ}=-r[B]-s[B][C]+r[A]+s\left[A^{\prime}\right][B]} \\
& {[C]^{\circ}=-r[C]-s[C][A]+r[B]+s\left[B^{\prime}\right][C]} \\
& {\left[A^{\prime}\right]^{\circ}=-s\left[A^{\prime}\right][B]+s[A][B]} \\
& {\left[B^{\prime}\right]^{\circ}=-s\left[B^{\prime}\right][C]+s[B][C]} \\
& {\left[C^{\prime}\right]^{\circ}=-s\left[C^{\prime}\right][A]+s[C][A]}
\end{aligned}
\]



\footnotetext{

}

\section*{NLTs in Series: Soliton Propagation}

val \(r=1.0\) val \(s=1.0\)
new a2@s:chan new a3@s:chan new a4@s:chan new a5@s:chan new a6@s:chan new a7@s:chan new a8@s:chan new a9@s:chan new a10@s:chan let \(A 1()\) ) do delay@r:A2() or ?az: \(A^{2}()\)
let A1 \()=\) do delay@r:A2( or ?az: A2 (
and \(A 3()=\) do \(1 a 2 ; A 2()\) or delay \(@ r: A 3()\) or ?a3; \(A 3()\)
and \(A 3: A 3()\) or delay \(@ r: A 4()\) or ?a4: \(A 4()\)
 and \(A 5()\) ) do la5:A5() or delay@r:A6() or ?a6: A6 () and \(A 6()=\) do lab: \(A 6(\) ) or delay \(@ r ; A 7()\) or ?a7; \(A 7()\) and \(A 7()=\) do la7: \(A 7(\) ) or delay@r: \(A 8(\) ) or ? \(a 8 ; A 8()\) and \(A 8()=\) do \(198: A 8()\) or delay@r: \(A 9(\) ) or ? \(99: A 9()\)
and \(A 9()=\) da and \(A 9()=\) do la9: \(A 9(\) ) or delay \(@ r: A 10()\) or ?a10; \(A 10()\) and A11( ) = do la10:A10) or delay@r:A11) or ?a11; A11( and A12 () = do la12;A12() or delay@r:A13() or ?a13; A13() and A 13()\(=\) ! \(113: \mathrm{A} 13(\) )
run 1000 of A1)

\section*{GMA \(\neq C M E\)}


\section*{\(\mathrm{A}+\mathrm{A} \rightarrow{ }^{2 \mathrm{r}} \mathrm{A} \quad=? \quad \mathrm{~A}+\mathrm{A} \rightarrow{ }^{\mathrm{r}} \mathbf{0}\)}

1*reaction rate ry because \(1^{*} A\) is lost in reaction.

2* reaction rate \(r \gamma / 2\) because 2*A are lost in reaction.


\section*{... as Automata}
\[
\mathrm{d}[\mathrm{~A}] / \mathrm{dt}=-2 \mathrm{r} \gamma[\mathrm{~A}]^{2}=\mathrm{d}[\mathrm{~A}] / \mathrm{dt}=-4 \mathrm{k}[\mathrm{~A}]^{2}=\mathrm{d}[\mathrm{~A}] / \mathrm{dt}=-4 \mathrm{k}[\mathrm{~A}]^{2}=\mathrm{d}[\mathrm{~A}] / \mathrm{dt}=-2 \mathrm{r} \gamma[\mathrm{~A}]^{2}
\]

(a@2r)


\section*{Continuous vs. Discrete Groupies}
(all with doping)

Matlab
SPiM
\begin{tabular}{|c|}
\hline ditactivesmples. 1000 \\
\hline new aml.0:chan0 \\
\hline let \(\mathrm{A} 0=\mathrm{do}\) la; A 0 or \(2 \mathrm{~b} ; \mathrm{B} 0\) and \(B 0=\) do !b; 0 or ?a; A0 \\
\hline \[
\begin{aligned}
& \text { let } \mathrm{AdO}=1 \mathrm{a}: \operatorname{AdO} \\
& \text { and } \operatorname{Bd} O=1 \mathrm{~b} ; \operatorname{Bd}()
\end{aligned}
\] \\
\hline \begin{tabular}{l}
run 2000 of A0 \\
run 1 of \((\operatorname{Ad}) \mid \mathrm{Bd}()\) )
\end{tabular} \\
\hline
\end{tabular}


\section*{And Yet It Moves}

\section*{The Repressilator}


A fine stochastic oscillator over a wide range of parameters.


Paused

Parametric representation
```

$\operatorname{Neg}(a, b)=? a ; \operatorname{Inh}(a, b) \oplus \tau_{\varepsilon^{\prime}}(\operatorname{Tr}(b) \mid \operatorname{Neg}(a, b))$
$\operatorname{Inh}(a, b)=\tau_{\eta} ; \operatorname{Neg}(a, b)$
$\operatorname{Tr}(b)=!b ; \operatorname{Tr}(b) \oplus \tau_{\gamma^{\prime}} 0$
$\operatorname{Neg}\left(x_{(r)}, y_{(r)}\right)\left|\operatorname{Neg}\left(y_{(r)}, z_{(r)}\right)\right| \operatorname{Neg}\left(z_{(r)}, x_{(r)}\right)$

```
\(d[\) Neg \(/ x, y] / d t=-r[T r / x][\) Neg \(/ x, y]+\eta[\operatorname{Inh} / x-y\)
\(\mathrm{d}[\) Neg \(/ y, z] / \mathrm{d} t=-r[\operatorname{Tr} / y][\mathrm{Neg} / y, z]+\eta[\operatorname{Inh} / y ; z]+\cdots\) \(\mathrm{d}[\mathrm{Ne}\) eg/z,x]/dt \(=-\mathrm{r}[\mathrm{Tr} / \mathrm{z}][\mathrm{Ne}\) eg/z,x]+ \(\eta[\operatorname{Inh} / z ; x]\) \(d[\operatorname{Inh} / x, y] / d t=r[\operatorname{Tr} / x][\mathrm{Neg} / x, y]-\eta[\operatorname{Inh} / x, y]\) \(d[\) Inh \(/ y, z] / d t=r[\operatorname{Tr} / y][\) Neg \(/ y, z]-\eta[I n h / y, z]\) \(d[\operatorname{Inh} / z, x] / d t=r[\operatorname{Tr} / z][\) Neg \(/ z, x]-\eta[\operatorname{Inh} / z, x]\) \(\mathrm{d}[\mathrm{Tr} / \mathrm{x}] / \mathrm{d} t=\varepsilon[\mathrm{Neg} / \mathrm{z}, \mathrm{x}]-\gamma[\mathrm{Tr} / \mathrm{x}]\) \(\mathrm{d}[\mathrm{Tr} / \mathrm{y}] / \mathrm{d} t=\varepsilon[\mathrm{Neg} / \mathrm{x}, \mathrm{y}]-\gamma[\mathrm{Tr} / \mathrm{y}]\) \(d[\operatorname{Tr} / z] / d t=\varepsilon[\) Neg \(/ y, z]-\gamma[\operatorname{Tr} / z]\)

Neg/x,y \(\rightarrow^{\varepsilon} \operatorname{Tr} / y+\) Neg/x,y
Neg/y,z \(\rightarrow^{\varepsilon} \operatorname{Tr} / z+\) Neg/y,z
Neg/z,x \(\rightarrow^{\varepsilon} \operatorname{Tr} / x+\) Neg/z, \(x\)
\(\mathrm{Tr} / \mathrm{x}+\mathrm{Neg} / \mathrm{x}, \mathrm{y} \rightarrow \mathrm{r} \mathrm{Tr} / \mathrm{x}+\mathrm{Inh} / \mathrm{x}, \mathrm{y}\)
\(\operatorname{Tr} / y+\) Neg/y, \(z \rightarrow r \operatorname{Tr} / y+\operatorname{Inh} / y, z\)
\(\mathrm{Tr} / \mathrm{z}+\mathrm{Neg} / z, x \rightarrow^{r} \mathrm{Tr} / z+\operatorname{Inh} / z, x\)
Inh/x,y \(\rightarrow^{\eta}\) Neg/x,y
Inh/y,z \(\rightarrow \eta\) Neg/y,z
Inh/z, \(x \rightarrow \eta\) Neg/z, \(x\)
\(\operatorname{Tr} / x \rightarrow \gamma 0\)
\(\operatorname{Tr} / y \rightarrow r 0\)
\(\mathrm{Tr} / z \rightarrow \gamma 0\)
Neg/x,y + Neg/y,z + Neg/z,x
simplifying ( \(N\) is the quantity of each of the 3 gates)
```

d[Neg/x,y]/dt=\etaN - (\eta+r[Tr/x])[Neg/x,y]
d[Neg/y,z]/dt = \etaN - (\eta+r[Tr/y])[Neg/y,z]
d[Neg/z,x]/dt = \etaN - (\eta+r[Tr/z])[Neg/z,x]
d[Tr/x]/dt = \&[Neg/z,x]-\gamma[Tr/x]
d[Tr/y]/dt = [[Neg/x,y]-\gamma[Tr/y]
d[Tr/z]/dt = \&[Neg/y,z]-\gamma[Tr/z]

```

Analytically not an oscillator!
\begin{tabular}{|c|c|c|}
\hline interel/step [0:0:0.20000] & \(01 . \mathrm{N}=1, \mathrm{r}=1.0, \mathrm{c}=0.1, n=0.001, r=0.001\) & \\
\hline (Neg/ \(/, y\) ) & \(\mathrm{dx} 1 / \mathrm{dt}=0.001-(0.001+\times 4)^{*} \times 1\) & 1.0 \\
\hline ( \(\mathrm{Neg} / \mathrm{x}, \mathrm{y}\) ) & \(d \times 2 / d t=0.001-(0.001+\times 5) \times \times 2\) & 1.0 \\
\hline ( \({ }^{\text {Neg } / \text { / }, \text { ) }}\) ) & \(d \times 3 / d t=0.001-(0.001+\times 6)^{*} \times 3\) & 1.0 \\
\hline (Tr/x) & \(\mathrm{dx4} / \mathrm{dt}=0.1 \times 3\) - \(0.001^{1} \times 4\) & 100.0 \\
\hline (Tr/y) & \(\mathrm{d} \times 5 / \mathrm{dt}=0.1 \times \times 1-0.001 * \times 5\) & 0 \\
\hline (Tr/z) & \(\mathrm{dx6} / \mathrm{dt}=0.1 \times \times 2-0.00{ }^{1} \times 6\) & 0 \\
\hline
\end{tabular}

\section*{Model Compactness}


\section*{Entangled vs detangled}


\section*{\(n^{2}\) Scaling Problems}
- \(E_{n}\) has \(2 n\) variables (nodes) and \(2 n\) terms (arcs).
- \(\mathrm{Ch}\left(\mathrm{E}_{n}\right)\) has 2 n species and \(n^{2}\) reactions.
- The stoichiometric matrix has size \(2 n \cdot n^{2}=2 n^{3}\).
- The ODEs have \(2 n\) variables and \(2 n(n+n)=4 n^{2}\) terms
(number of variables times number of accretions plus depletions when sums are distributed)
\(E_{3}\)
\(X_{0}=? a_{(r)} ; X_{1}\)
\(X_{1}=? a_{(r)} ; X_{2}\)
\(X_{2}=? a_{(r)} ; X_{0}\)
\(Y_{0}=!a_{(r)} \div Y_{1}\)
\(Y_{1}=!a_{(r)} ; Y_{2}\)
\(Y_{2}=!a_{(r)} \div Y_{0}\)
\[
\begin{aligned}
& \operatorname{Ch}\left(E_{3}\right) \\
& a_{00}: X_{0}+Y_{0} \rightarrow^{r} X_{1}+Y_{1} \\
& a_{01}: X_{0}+Y_{1} \rightarrow^{r} X_{1}+Y_{2} \\
& a_{02}: X_{0}+Y_{2} \rightarrow^{r} X_{1}+Y_{0} \\
& a_{10}: X_{1}+Y_{0} \rightarrow^{r} X_{2}+Y_{1} \\
& a_{11}: X_{1}+Y_{1} \rightarrow^{r} X_{2}+Y_{2} \\
& a_{12}: X_{1}+Y_{2} \rightarrow^{r} X_{2}+Y_{0} \\
& a_{20}: X_{2}+Y_{0} \rightarrow^{r} X_{0}+Y_{1} \\
& a_{21}: X_{2}+Y_{1} \rightarrow^{r} X_{0}+Y_{2} \\
& a_{22}: X_{2}+Y_{2} \rightarrow{ }^{r} X_{0}+Y_{0}
\end{aligned}
\]

\section*{StoichiometricMatrix \(\left(\operatorname{Ch}\left(E_{3}\right)\right)\)}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline & \(a_{00}\) & \(a_{01}\) & \(a_{02}\) & \(a_{10}\) & \(a_{11}\) & \(a_{12}\) & \(a_{20}\) & \(a_{21}\) & \(a_{22}\) \\
\hline\(X_{0}\) & -1 & -1 & -1 & & & & +1 & +1 & +1 \\
\hline\(X_{1}\) & +1 & +1 & +1 & -1 & -1 & -1 & & & \\
\hline\(X_{2}\) & & & & +1 & +1 & +1 & -1 & -1 & -1 \\
\hline \(\mathrm{Y}_{0}\) & -1 & & +1 & -1 & & +1 & -1 & & +1 \\
\hline \(\mathrm{Y}_{1}\) & +1 & -1 & & +1 & -1 & & +1 & -1 & \\
\hline \(\mathrm{Y}_{2}\) & & +1 & -1 & & +1 & -1 & & +1 & -1 \\
\hline
\end{tabular}
\[
\begin{aligned}
& \operatorname{ODE}\left(E_{3}\right) \\
& d\left[X_{0}\right] / d t=-r\left[X_{0}\right]\left[Y_{0}\right]-r\left[X_{0}\right]\left[Y_{1}\right]-r\left[X_{0}\right]\left[Y_{2}\right]+r\left[X_{2}\right]\left[Y_{0}\right]+r\left[X_{2}\right]\left[Y_{1}\right]+r\left[X_{2}\right]\left[Y_{2}\right] \\
& d\left[X_{1}\right] / d t=-r\left[X_{1}\right]\left[Y_{0}\right]-r\left[X_{1}\right]\left[Y_{1}\right]-r\left[X_{1}\right]\left[Y_{2}\right]+r\left[X_{0}\right]\left[Y_{0}\right]+r\left[X_{0}\right]\left[Y_{1}\right]+r\left[X_{0}\right]\left[Y_{2}\right] \\
& d\left[X_{2}\right] / d t=-r\left[X_{2}\right]\left[Y_{0}\right]-r\left[X_{2}\right]\left[Y_{1}\right]-r\left[X_{2}\right]\left[Y_{2}\right]+r\left[X_{1}\right]\left[Y_{0}\right]+r\left[X_{1}\right]\left[Y_{1}\right]+r\left[X_{1}\right]\left[Y_{2}\right] \\
& d\left[Y_{0}\right] / d t=-r\left[X_{0}\right]\left[Y_{0}\right]-r\left[X_{1}\right]\left[Y_{0}\right]-r\left[X_{2}\right]\left[Y_{0}\right]+r\left[X_{0}\right]\left[Y_{2}\right]+r\left[X_{1}\right]\left[Y_{2}\right]+r\left[X_{2}\right]\left[Y_{2}\right] \\
& d\left[Y_{1}\right] / d t=-r\left[X_{0}\right]\left[Y_{1}\right]-r\left[X_{1}\right]\left[Y_{1}\right]-r\left[X_{2}\right]\left[Y_{1}\right]+r\left[X_{0}\right]\left[Y_{0}\right]+r\left[X_{1}\right]\left[Y_{0}\right]+r\left[X_{2}\right]\left[Y_{0}\right] \\
& d\left[Y_{2}\right] / d t=-r\left[X_{0}\right]\left[Y_{2}\right]-r\left[X_{1}\right]\left[Y_{2}\right]-r\left[X_{2}\right]\left[Y_{2}\right]+r\left[X_{0}\right]\left[Y_{1}\right]+r\left[X_{1}\right]\left[Y_{1}\right]+r\left[X_{2}\right]\left[Y_{1}\right]
\end{aligned}
\]


\section*{Conclusions}

\section*{Conclusions}
- Compositional models
- Accurate (at the "appropriate" abstraction level).
- Manageable (so we can scale them up by composition).
- Executable (stochastic simulation).
- Analysis techniques
- Mathematical techniques: Markov theory, Chemical Master Equation, and Rate Equation
- Computing techniques: Abstraction and Refinement, Model Checking, Causality Analysis.
- Many lines of extensions
- Parametric processes for model factorization
- Polyautomata for Bio-Chemistry: complexation and polymerization
- Ultimately, rich process-algebra based modeling languages.
- Quantitative techniques
- Important in the "real sciences".```

