
Luca Cardelli

Microsoft Research

Algorithmic Bioprocesses
Leiden, 2007-12-04

http://LucaCardelli.name

Artificial Biochemistry

L
u
c
a
 C

a
rd

e
lli

Cells Compute

● No survival without computation!
– Finding food

– Avoiding predators

● How do they compute?
– Unusual computational paradigms.

– Proteins: do they work like electronic circuits?
or process algebra?

– Genes: what kind of software is that?

● Signaling networks
– Clearly “information processing”

– They are “just chemistry”: molecule interactions

– But what are their principles and algorithms?

● Complex, higher-order interactions
– MAPKKK = MAP Kinase Kinase Kinase:

that which operates on that which operates on that
which operates on protein.

2007-12-04 2

Ultrasensitivity in the mitogen-activated protein cascade,
Chi-Ying F. Huang and James E. Ferrell, Jr., 1996, Proc.
Natl. Acad. Sci. USA, 93, 10078-10083.

http://www.pnas.org/cgi/content/abstract/93/19/10078
http://www.pnas.org/cgi/content/abstract/93/19/10078
http://www.pnas.org/cgi/content/abstract/93/19/10078
http://www.pnas.org/cgi/content/abstract/93/19/10078
http://www.pnas.org/
http://www.pnas.org/

L
u
c
a
 C

a
rd

e
lli

2007-12-04 3

The View from Systems Biology

State Transitions!

S
y
nt

a
x

L
u
c
a
 C

a
rd

e
lli

2007-12-04 4

Stochastic Collectives

L
u
c
a
 C

a
rd

e
lli

2007-12-04 5

Stochastic Collectives

● “Collective”:
– A large set of interacting finite state automata:

●Not quite language automata (“large set”)
●Not quite cellular automata (“interacting” but not on a grid)
●Not quite process algebra (“collective behavior”)
●Cf. multi-agent systems and swarm intelligence

● “Stochastic”:
– Interactions have rates

●Not quite discrete (hundreds or thousands of components)
●Not quite continuous (non-trivial stochastic effects)
●Not quite hybrid (no “switching” between regimes)

● Very much like biochemistry
– Which is a large set of stochastically interacting molecules/proteins
– Are proteins finite state and subject to automata-like transitions?

●Let’s say they are, at least because:
●Much of the knowledge being accumulated in Systems Biology

is described as state transition diagrams [Kitano].

[Regev-Shapiro]

L
u
c
a
 C

a
rd

e
lli

2007-12-04 6

Interacting Automata

Communicating automata: a graphical FSA-like
notation for “finite state restriction-free p-
calculus processes”. Interacting automata do not
even exchange values on communication.

The stochastic version has rates on
communications, and delays.

t@λ1
t@λ2

t@λ3

t@λ4

t@λ5

@r1

@r2

@r3

?a
!a

?b

!b!c

?c

A1

A2

A3

B1

B2B3

C1 C2

C3

new a@r1

new b@r2

new c@r3

A1 = ?a; A2

A2 = !c; A3

A3 = t@λ5; A1

B1 = t@λ2; B2 + !a; B3

B2 = t@λ1; B1

B3 = ?b; B2

C1 = !b; C2 + ?c; C3

C2 = t@λ3; C1

C3 = t@λ4; C2

A1 | B1 | C1

Communication
channels

A
utom

ata

The system and
initial state

“Finite state” means: no composition or restriction inside recursion.

Analyzable by standard Markovian techniques, by first computing
the “product automaton” to obtain the underlying finite Markov
transition system. [Buchholz]

Current State

Interaction

Transition
Delay

Interactions have
rates. Actions DO
NOT have rates.

L
u
c
a
 C

a
rd

e
lli

2007-12-04 7

Interactions in a Population

A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b

Suppose this is the
next interaction

(stochastically chosen)

A

B

!a

?a ?b

!b

One lonely automaton

cannot interact

L
u
c
a
 C

a
rd

e
lli

2007-12-04 8

A

B

!a

?a ?b

!b

Interactions in a Population

A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b

L
u
c
a
 C

a
rd

e
lli

2007-12-04 9

A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b

Interactions in a Population

A

B

!a

?a ?b

!b

All-A stable
population

L
u
c
a
 C

a
rd

e
lli

2007-12-04 10

Interactions in a Population (2)

A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b

Suppose this is the
next interaction

L
u
c
a
 C

a
rd

e
lli

2007-12-04 11

A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b

Interactions in a Population (2)

A

B

!a

?a ?b

!b

All-B stable
population

Nondeterministic
population behavior

(“multistability”)

L
u
c
a
 C

a
rd

e
lli

CTMC Semantics

2007-12-04 12

A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b

{2A,1B}
{3A}

{1A,2B}
{3B}

2ra

2rb

2ra

2rb

CTMC

BA

r
CTMC
(homogeneous) Continuous Time
Markov Chain
- directed graph with no self loops
- nodes are system states
- arcs have transition rates

Probability of holding in state A:

Pr(HA>t) = e-rt

in general, Pr(HA>t) = e-Rt where R is
the sum of all the exit rates from A

L
u
c
a
 C

a
rd

e
lli

2007-12-04 13

r: A + B k1 C + D
s: C + D k2 A + B

A = !rk1; C
C = ?sk2; A

B = ?rk1; D
D = !sk2; B

Chemistry vs. Automata

A

C

B

D
rk1

A process algebra (chemistry) A different process algebra (automata)

A Petri-Net-like representation. Precise and dynamic,
but not modular, scalable, or maintainable.

A compositional graphical representation (precise,
dynamic and modular) and the corresponding calculus.

Reaction
oriented

Interaction

oriented

Maps to
a CTMC

Maps to
a CTMC

The same “model”

Interaction
oriented

1 line per
reaction

1 line per
component

Does A
become
C or D?

A
becomes
C not D!

A

C

B

D
sk2

!rk1 ?rk1?sk2 !sk2

L
u
c
a
 C

a
rd

e
lli

2007-12-04 14

Emergent
Collective Behavior

L
u
c
a
 C

a
rd

e
lli

2007-12-04 15

0

20

40

60

80

100

120

140

160

180

200

0 0.02 0.04 0.06 0.08 0.1

A() B()

Groupies and Celebrities

Groupie
(wants to be like somebody different)

Celebrity
(does not want to be like somebody else)

0

20

40

60

80

100

120

140

160

180

200

0 0.5 1 1.5 2

A() B()

always
eventually
deadlock

directive sample 0.1 200

directive plot A(); B()

new a@1.0:chan()

new b@1.0:chan()

let A() = do !a; A() or ?b; B()

and B() = do !b; B() or ?a; A()

run 100 of (A() | B())

directive sample 0.1 200

directive plot A(); B()

new a@1.0:chan()

new b@1.0:chan()

let A() = do !a; A() or ?a; B()

and B() = do !b; B() or ?b; A()

run 100 of (A() | B())

Unstable because within an A majority, an A has difficulty finding a B to
emulate, but the few B’s have plenty of A’s to emulate, so the majority may
switch to B. Leads to deadlock when everybody is in the same state and there is
nobody different to emulate.

Stable because as soon as a A finds itself in the majority, it is more likely to
find somebody in the same state, and hence change, so the majority is weakened.

A

B

!a

?b

!b

?a

A

B

!a

?a ?b

!b

A stochastic collective of celebrities: A stochastic collective of groupies:

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200

B()

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200

B()

equilibrium

time

#

#A

#
B

a@1.0

b@1.0

a@1.0

b@1.0

L
u
c
a
 C

a
rd

e
lli

2007-12-04 16

directive sample 10.0

directive plot Ag(); Bg(); Ac(); Bc()

new a@1.0:chan()

new b@1.0:chan()

let Ac() = do !a; Ac() or ?a; Bc()

and Bc() = do !b; Bc() or ?b; Ac()

let Ag() = do !a; Ag() or ?b; Bg()

and Bg() = do !b; Bg() or ?a; Ag()

run 1 of Ac()

run 100 of (Ag() | Bg())

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5 6 7 8 9 10

Ga() Gb() Ca() Cb()

Both Together

A way to break the deadlocks: Groupies with just a few Celebrities

A few
Celebrities

Many
Groupies

A tiny bit of
“noise” can make a
huge difference

?a

!a

?b

!b

!a

?a ?b

!b

Ac

Bc

Ag

Bg

never
deadlock

L
u
c
a
 C

a
rd

e
lli

2007-12-04 17

0

20

40

60

80

100

120

140

160

0 50 100 150

1 sample orbit
Ga vs. Gb

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5 6 7 8 9 10

Ga() Gb()

Hysteric Groupies

directive sample 10.0 1000

directive plot Ga(); Gb()

new a@1.0:chan()

new b@1.0:chan()

let Ga() = do !a; Ga() or ?b; ?b; Gb()

and Gb() = do !b; Gb() or ?a; ?a; Ga()

let Da() = !a; Da()

and Db() = !b; Db()

run 100 of (Ga() | Gb())

run 1 of (Da() | Db())

We can get more regular behavior from groupies if they “need more
convincing”, or “hysteresis” (history-dependence), to switch states.

(With doping to
break deadlocks)

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5 6 7 8 9 10

Ga() Gb()

a “solid threshold” to observe switching

A

B
?a
?a

?b
?b

!a

!b

A

B

?a
?a

?b
?b

!a

!b

?a ?b

!a !b

0

20

40

60

80

100

120

140

160

0 50 100 150

1 sample orbit
Ga vs. Gb

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200

Gb()

directive sample 10.0 1000

directive plot Ga(); Gb()

new a@1.0:chan()

new b@1.0:chan()

let Ga() = do !a; Ga() or ?b; ?b; ?b; Gb()

and Gb() = do !b; Gb() or ?a; ?a; ?a; Ga()

let Da() = !a; Da()

and Db() = !b; Db()

run 100 of (Ga() | Gb())

run 1 of (Da() | Db())

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200

Gb()

N.B.: It will not oscillate
without doping (noise)

Regularity can
arise not far
from chaos

“regular”
oscillation

L
u
c
a
 C

a
rd

e
lli

2007-12-04 18

Semantics of
Collective Behavior

L
u
c
a
 C

a
rd

e
lli

2007-12-04 19

The Two Semantic Sides of Chemistry

=

=

Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

CTMC

ODE ODE

CTMC

Continuous-state Semantics
(Generalized Mass Action)

Discrete-state Semantics

(Chemical Master Equation)

Nondeterministic

Semantics

Stochastic

Semantics

These diagrams commute
(for the “Chemical Ground Form” process algebra).

L. Cardelli: “On Process Rate Semantics” (TCS)

L. Cardelli: “A Process Algebra Master Equation” (QEST’07)

L
u
c
a
 C

a
rd

e
lli

2007-12-04 20

Quantitative Process Semantics

=

=

Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

CTMC

ODE ODE

CTMC

Continuous-state Semantics
(Generalized Mass Action)

Discrete-state Semantics

(Chemical Master Equation)

Nondeterministic

Semantics

Stochastic

Semantics

d[X]/dt = (S(YE) AccrE(Y,X)[Y]) - DeplE(X)[X] for all XE

Process Rate Equation

pr(p,t)/t = Si ai(p-vi)pr(p-vi,t) - ai(p)pr(p,t) for all pStates(E)

Process Master Equation

Defined over the
syntax of processes

Interactions Propensity

Accretion Depletion

L
u
c
a
 C

a
rd

e
lli

2007-12-04 21

Stochastic Processes
& Discrete Chemistry

=

=

Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

CTMC

ODE ODE

CTMC

L
u
c
a
 C

a
rd

e
lli

2007-12-04 22

Chemical Reactions

A r B1 +…+ Bn (n≥0)

A1 + A2 r B1 +…+ Bn (n≥0)

A + A r B1 +…+ Bn (n≥0)

Unary Reaction d[A]/dt = -r[A]

Hetero Reaction d[Ai]/dt = -r[A1][A2]

Homeo Reaction d[A]/dt = -2r[A]2

No other reactions!

Trimolecular reactions:

A + B + C r D

the measured “r” is an (imperfect)
aggregate of e.g.:

A + B AB

AB + C D

Exponential Decay

Mass Action Law

Mass Action Law

Chapter IV: Chemical Kinetics

[David A. Reckhow , CEE 572 Course]

... reactions may be either elementary or non-

elementary. Elementary reactions are those reactions

that occur exactly as they are written, without any

intermediate steps. These reactions almost always

involve just one or two reactants. ... Non-elementary

reactions involve a series of two or more elementary

reactions. Many complex environmental reactions are

non-elementary. In general, reactions with an overall

reaction order greater than two, or reactions with

some non-integer reaction order are non-elementary.

THE COLLISION THEORY OF

REACTION RATES

www.chemguide.co.uk

The chances of all this happening if your

reaction needed a collision involving more

than 2 particles are remote. All three (or

more) particles would have to arrive at

exactly the same point in space at the same

time, with everything lined up exactly right,

and having enough energy to react. That's

not likely to happen very often!

(assuming A≠Bi≠Aj for all i,j)

Enzymatic reactions:

S E r P

the “r” is given by Michaelis-Menten
(approximated steady-state) laws:

E + S ES

ES P + E

Reactions have
rates. Molecules

do not have rates.

Elementary Reactions: Reaction kinetics: [A] = concentration of A

L
u
c
a
 C

a
rd

e
lli

2007-12-04 23

Chemical Ground Form (CGF)

E ::= 0 ⋮ X=M, E Reagents

M ::= 0 ⋮ p;P M Molecules

P ::= 0 ⋮ X | P Solutions

p ::= t(r) ⋮ ?a(r) ⋮ !a(r) Interactions (delay, input, output)

CGF ::= E,P Reagents plus Initial Conditions

A

B

!a

?a ?b

!b

A = !a;A ?b;B

B = !b;B ?a;A

A|A|B|B

Ex: Interacting Automata
(= finite-control CGFs: they use “|” only in initial conditions):

Initial
conditions:
2A and 2B

Automaton in state A

Automaton in state B

is stochastic choice (vs. + for chemical reactions)
0 is the null solution (P|0 = 0|P = P)

and null molecule (M0 = 0M = M)
Each X in E is a distinct species
Each name a is assigned a fixed rate r: a(r)

(To translate chemistry to processes we
need a bit more than interacting
automata: we may have “+” on the right
of , that is we may need “|” after p.)

Interacting Automata
+ dynamic forking

A stochastic
subset of CCS

(no values, no restriction)

L
u
c
a
 C

a
rd

e
lli

2007-12-04 24

Automata to Chemistry

Automata

A 4 r A’A’A
@r

A k A’ with k = r

?a
A

B

A’

B’
!a A+B 4 r A’+B’@r A+B k A’+B’ with k = rg

g = NAV

?a
A

A’ A”

!a
A+A 4 2r A’+A”

@r
A+A 2k A’+A” with k = rg/2

=

=

Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

CTMC

ODE ODE

CTMC

CTMC ODE

#A0 [A]0 with [A]0 = #A0/gA | A | ... | A

initial states initial quantities initial concentrations

Think g= 1
i.e. V = 1/NA

V = interaction volume

NA = Avogadro’s number

([A] d[A]/dt
change of concentration
over time)

Discrete
Chemistry
(molecule counts)

Continuous
Chemistry
(concentrations)

Automata are n2

more compact!

L
u
c
a
 C

a
rd

e
lli

2007-12-04 25

Examples of
Chemical Kinetics

by
Interacting Automata

L
u
c
a
 C

a
rd

e
lli

2007-12-04 26

Zero-Order Regime

Or: build me a population like this:

L
u
c
a
 C

a
rd

e
lli

2007-12-04 27

Second-order and Zero-order Regime

?a

E

S

!a

P

directive sample 1000.0

directive plot S(); P(); E()

new a@1.0:chan()

let E() = !a; E()

and S() = ?a; P()

and P() = ()

run (1 of E() | 1000 of S())

E+S r E+P
Second-Order Regime
d[S]/dt = -r[E][S]

?a

E

S

!a
ES

P

directive sample 1000.0

directive plot S(); P(); E()

new a@1.0:chan()

let E() = !a; delay@1.0; E()

and S() = ?a; P()

and P() = ()

run (1 of E() | 1000 of S())

@1.0

@1.0

1000S, 1E

1000S, 1E

E+S r ES+P

ES s E

Zero-Order Regime
d[S]/dt ≅ -1 (by assuming d[ES]/dt=0)

E

S P

t(s)

?a(r)

!a(r)

@1.0

Notation

L
u
c
a
 C

a
rd

e
lli

2007-12-04 28

Cascades
!b

?a

bLo

bHi

!c

cLo

cHi

!a

aHi

?a

?b

?b

100aHi, 1000bLo, 1000cLo, rates=1.0

Second-Oder Regime cascade:
a signal amplifier (MAPK)

aHi > 0 cHi = max

directive sample 0.03

directive plot !a; !b; !c

new a@1.0:chan new b@1.0:chan new c@1.0:chan

let Amp_hi(a:chan, b:chan) =

do !b; delay@1.0; Amp_hi(a,b) or delay@1.0; Amp_lo(a,b)

and Amp_lo(a:chan, b:chan) =

?a; ?a; Amp_hi(a,b)

run 1000 of (Amp_lo(a,b) | Amp_lo(b,c))

let A() = !a; delay@1.0; A()

run 2000 of A()

!b

?a

bLo

bHi

!c

cLo

cHi

!a

aHi

?a

?b

?b
2000aHi, 1000bLo, 1000cLo, rates=1.0

directive sample 0.03

directive plot !a; !b; !c

new a@1.0:chan new b@1.0:chan new c@1.0:chan

let Amp_hi(a:chan, b:chan) =

do !b; Amp_hi(a,b) or delay@1.0; Amp_lo(a,b)

and Amp_lo(a:chan, b:chan) =

?a; ?a; Amp_hi(a,b)

run 1000 of (Amp_lo(a,b) | Amp_lo(b,c))

let A() = !a; A()

run 100 of A()

Zero-Oder Regime cascade:
a signal divider!

aHi = max cHi = 1/3 max

L
u
c
a
 C

a
rd

e
lli

2007-12-04 29

Ultrasensitivity

directive sample 215.0

directive plot S(); P(); E(); ES(); F(); FP()

new a@1.0:chan() new b@1.0:chan()

let S() = ?a; P()

and P() = ?b; S()

let E() = !a; delay@1.0; E()

and F() = !b; delay@1.0; F()

run 1000 of S()

let clock(t:float, tick:chan) = (* sends a tick every t time *)

(val ti = t/100.0 val d = 1.0/ti (* by 100-step erlang timers *)

let step(n:int) = if n<=0 then !tick; clock(t,tick) else delay@d; step(n-1)

run step(100))

let Sig(p:proc(), tick:chan) = (p() | ?tick; Sig(p,tick))

let raising(p:proc(), t:float) =

(new tick:chan run (clock(t,tick) | Sig(p,tick)))

run 100 of F()

run raising(E,1.0)

F!b

E

S P
?b

?a

!a

@1.0

@1.0

@1.0

@1.0

E+S ES+P
F+P FP+S
ES E
FP P

100F, 0..200E

Zero-Order Regime

A small E-F inbalance causes
a much larger S-P switch.

F!b

E

S P
?b

?a

!a

@1.0

@1.0

E+S E+P
F+P F+S

100F, 0..200E

Second-Order Regime

No switching behavior

directive sample 215.0 1000

directive plot S(); P(); E(); F()

new a@1.0:chan() new b@1.0:chan()

let S() = ?a; P()

and P() = ?b; S()

let E() = !a; E()

and F() = !b; F()

run 1000 of S()

let clock(t:float, tick:chan) = (* sends a tick every t time *)

(val ti = t/100.0 val d = 1.0/ti (* by 100-step erlang timers *)

let step(n:int) = if n<=0 then !tick; clock(t,tick) else delay@d; step(n-1)

run step(100))

let Sig(p:proc(), tick:chan) = (p() | ?tick; Sig(p,tick))

let raising(p:proc(), t:float) =

(new tick:chan run (clock(t,tick) | Sig(p,tick)))

run 100 of F()

run raising(E,1.0)

L
u
c
a
 C

a
rd

e
lli

2007-12-04 30

Waves

Or: build me a population like this:

L
u
c
a
 C

a
rd

e
lli

2007-12-04 31

Nonlinear Transition (NLT)

A

!c

B
?c

A = ?c(s);B

B = !c(s);B

A+B s B+B

d[A]/dt = -s[A][B]
d[B]/dt = s[A][B]

@s

0

200

400

600

800

1000

1200

0 0.002 0.004 0.006 0.008 0.01

A1() A2() A3()

Matlab
continuous_sys_generator

SPiM

interval/step [0:0.001:0.0]

(A) dx1/dt = - x1*x2 1000.0

(B) dx2/dt = x1*x2 1.0

directive sample 0.02 1000

directive plot B(); A()

val s=1.0

new c@s:chan

let A() = ?c; B()

and B() = !c;B()

run (1000 of A() | 1 of B())

N.B.: needs at
least 1 B to
“get started”.

L
u
c
a
 C

a
rd

e
lli

2007-12-04 32

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 0.0005 0.001 0.0015 0.002 0.0025

B() A() C()

Two NLTs: Bell Shape

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 0.0005 0.001 0.0015 0.002 0.0025

B()

A

!b

B
?b

!c

C
?c

directive sample 0.0025 1000

directive plot B(); A(); C()

new b@1.0:chan new c@1.0:chan

let A() = ?b; B()

and B() = do !b;B() or ?c; C()

and C() = !c;C()

run ((10000 of A()) | B() | C())

[B] = [B]([A]-[C])

A = ?b(1);B

B = !b(1);B ?c(1);C

C = !c(1);C

A+B 1 B+B
B+C 1 C+C

d[A]/dt = -[A][B]
d[B]/dt = [A][B]-[B][C]
d[C]/dt = [B][C]

interval/step [0:0.000001:0.0025]

(A) dx1/dt = -x1*x2 10000.0

(B) dx2/dt = x1*x2 – x2*x3 1.0

(C) dx3/dt = x2*x3 1.0

Matlab
continuous_sys_generator

SPiM

L
u
c
a
 C

a
rd

e
lli

NLT in a Cycle: Oscillator

directive sample 0.03 1000

directive plot A(); B(); C()

new a@1.0:chan new b@1.0:chan new c@1.0:chan

let A() = do !a;A() or ?b; B()

and B() = do !b;B() or ?c; C()

and C() = do !c;C() or ?a; A()

run (900 of A() | 500 of B() | 100 of C())
A B

!a

?c
?a

!b?b

C

!c

@1.0

@1.0

@1.0

900xA, 500xB, 100xC

A = !a(s);A ?b(s);B

B = !b(s);B ?c(s);C

C = !c(s);C ?a(s);A

A+B s B+B
B+C s C+C
C+A s A+A

[A] = -s[A][B]+s[C][A]
[B] = -s[B][C]+s[A][B]
[C] = -s[C][A]+s[B][C]

interval/step [0:0.001:20.0]

(A) dx1/dt = - x1*x2 + x3*x1 0.9

(B) dx2/dt = - x2*x3 + x1*x2 0.5

(C) dx3/dt = - x3*x1 + x2*x3 0.1 Matlab
continuous_sys_generator

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0.485

0.49

0.495

0.5

0.505

0.51

0.515

0.52

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0.46

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0.485

0.49

0.495

0.5

0.505

0.51

0.515

0.52

L
u
c
a
 C

a
rd

e
lli

2007-12-04 34

NLTs in Series: Soliton Propagation

0

200

400

600

800

1000

1200

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

A1() A2() A3() A4() A5() A6() A7()

A8() A9() A10() A11() A12() A13()

directive sample 0.1 1000

directive plot A1(); A2(); A3(); A4(); A5(); A6(); A7(); A8();
A9(); A10(); A11(); A12(); A13()

val r=1.0 val s=1.0

new a2@s:chan new a3@s:chan new a4@s:chan

new a5@s:chan new a6@s:chan new a7@s:chan

new a8@s:chan new a9@s:chan new a10@s:chan

new a11@s:chan new a12@s:chan new a13@s:chan

let A1() = do delay@r;A2() or ?a2; A2()

and A2() = do !a2;A2() or delay@r;A3() or ?a3; A3()

and A3() = do !a3;A3() or delay@r;A4() or ?a4; A4()

and A4() = do !a4;A4() or delay@r;A5() or ?a5; A5()

and A5() = do !a5;A5() or delay@r;A6() or ?a6; A6()

and A6() = do !a6;A6() or delay@r;A7() or ?a7; A7()

and A7() = do !a7;A7() or delay@r;A8() or ?a8; A8()

and A8() = do !a8;A8() or delay@r;A9() or ?a9; A9()

and A9() = do !a9;A9() or delay@r;A10() or ?a10; A10()

and A10() = do !a10;A10() or delay@r;A11() or ?a11; A11()

and A11() = do !a11;A11() or delay@r;A12() or ?a12; A12()

and A12() = do !a12;A12() or delay@r;A13() or ?a13; A13()

and A13() = !a13;A13()

run 1000 of A1()

A0

!a1

A1

?a1

!an

An

?an?a2

L
u
c
a
 C

a
rd

e
lli

2007-12-04 35

Lotka-Volterra

Or: beyond automata

!a

L
u
c
a
 C

a
rd

e
lli

2007-12-04 36

Predator-Prey
directive sample 1.0 1000

directive plot Carnivor(); Herbivor()

val mortality = 100.0

val breeding = 300.0

val predation = 1.0

new cull @predation:chan()

let Herbivor() =

do delay@breeding; (Herbivor() | Herbivor())

or ?cull; ()

and Carnivor() =

do delay@mortality; ()

or !cull; (Carnivor() | Carnivor())

run 100 of Herbivor()

run 100 of Carnivor()

An unbounded
state system!

@breedingHerbivor

Carnivor

@mortality

?cull

!cull

@predation

L
u
c
a
 C

a
rd

e
lli

2007-12-04 37

Lotka-Volterra in Matlab

H = tb; (H|H) ?c(p);0

C = tm;0 !c(p);(C|C)

#H0, #C0

H b H + H
C m 0
H + C pg C + C
[H]0 = #H0/g
[C]0 = #C0/g

[H] = b[H]-pg[H][C]
[C] = -m[C]+pg[H][C]
[H]0 = #H0/g
[C]0 = #C0/g

m=100.0
b=300.0
p=1.0
g=1.0
#H0 = 100
#C0 = 100

directive sample 0.35 1000

directive plot Carnivor(); Herbivor()

val mortality = 100.0

val breeding = 300.0

val predation = 1.0

new cull @predation:chan()

let Herbivor() =

do delay@breeding; (Herbivor() | Herbivor())

or ?cull; ()

and Carnivor() =

do delay@mortality; ()

or !cull; (Carnivor() | Carnivor())

run 100 of Herbivor()

run 100 of Carnivor()

Matlab
continuous_sys_generator

Extinction No extinction

Which one is the “right prediction”?

L
u
c
a
 C

a
rd

e
lli

2007-12-04 38

Biochemistry

Or: Interaction + Complexation

Without complexation, many “finite” combinatorial
systems can only be expressed by an infinite

number of elementary chemical reactions.

L
u
c
a
 C

a
rd

e
lli

2007-12-04 39

Polyautomata

?ai !ai

Dissociation

%@ri @ri

?ai !ai

Current States

?aS, !aT
k fresh

S+{?a,k} T+{!a,k}

i1..n-1

S T

?a0 !a0

Association

&@r0 @r0

?a0 !a0

S+{?a,k} T+{!a,k}

S T

a@r0,..,rn-1 (n≥2)

a@r0,..,rn-1 (n≥2)

&!a &@r0

{}

Af Ab Bb Bf

&?a

{}{?a,k}{!a,k}

%!a %?a
%@r1

directive sample 0.005

directive plot Af(); Ab(); Bf(); Bb()

val mu = 1.0 val lam = 1.0

new a@mu:chan(chan)

let Af() = (new n@lam:chan run !a(n); Ab(n))

and Ab(n:chan) = !n; Af()

let Bf() = ?a(n); Bb(n)

and Bb(n:chan) = ?n; Bf()

run (1000 of Af() | 500 of Bf())

Af Bf Ab Bb

association

dissociation

1000Af , 500Bf, r0 = 1.0, r1= 1.0

Can be encoded in p-calculus (and SPiM)
by bound-output/bound-input.

Two new operations
the current states S,T carry an

“associaton history”

L
u
c
a
 C

a
rd

e
lli

2007-12-04 40

(Compositional) Enzyme Kinetics

E+PES E+S
r0

r1

r2
E S E S E P

%!a2 %?a2%@r2

&!a
&@r0

{}

Ef Eb Sb Sf

&?a

{}{?a,k}{!a,k}

%!a1 %?a1

%@r1

P

{}

1000Ef , 2000Sf

r0 = 1.0, r1= 1.0,
r2 = 100.0

directive sample 0.05 1000

directive plot Ef(); Eb(); Sf(); Sb(); P()

val k1 = 1.0 val km1 = 1.0 val k2 = 100.0

new a@k1:chan(chan,chan)

let P() = ()

let Ef() =

(new n@km1:chan new m@k2:chan

run !a(n,m); Eb(n,m))

and Eb(n:chan,m:chan) =

do !n; Ef() or !m; Ef()

let Sf() = ?a(n,m); Sb(n,m)

and Sb(n:chan,m:chan) =

do ?n; Sf() or ?m; P()

run (1000 of Ef() | 2000 of Sf())

Ef Sf Eb Sb

Ef P

a@r0,r1,r2

L
u
c
a
 C

a
rd

e
lli

2007-12-04 41

ArAl

Bidirectional

Polymerization

new c@μ new stop@1.0

Afree =

!c(nrhtλ); Abrht(rht)) +

?c(lft); Ablft(lft)

Ablft(lft) =

!c(nrhtλ); Abound(lft,rht))

Abrht(rht) =

?c(lft); Abound(lft,rht)

Abound(lft,rht) = ?stop

A A A A

Free

Bound
right

Bound
left

Bound
both

Monomer
Automaton

Free

Bound
right

Bound
left

Bound
both

Free

Bound
right

Bound
left

Bound
both

directive sample 10000.0

directive plot Afree(); Ablft(); Abrht(); Abound()

val lam = 1.0 val mu = 1.0

new c@mu:chan(chan) new stop@1.0:chan

let Afree() =

(new rht@lam:chan run

do !c(rht); Abrht(rht)

or ?c(lft); Ablft(lft))

and Ablft(lft:chan) =

(new rht@lam:chan run

!c(rht); Abound(lft,rht))

and Abrht(rht:chan) =

?c(lft); Abound(lft,rht)

and Abound(lft:chan, rht:chan) =

?stop

run (2 of Afree())

Polyautomata
Bound output !c(nr) and input ?c(l)
on automata transitions
to model complexation

Polymerization is
iterated

complexation.
Af

Ab

&?a &!a

&!a &?a

1

2

4

3

&?a &!a

&!a &?a

&?a &!a

&!a &?a

L
u
c
a
 C

a
rd

e
lli

2007-12-04 42

Actin-like

Poly/Depolymerization
Ap pA

A p A p

new c@μ

Afree =

!c(nlftλ); Ablft(lft)) +

?c(rht); Abrht(rht)

Ablft(lft) =

!lft; Afree +

?c(rht); Abound(lft,rht)

Abrht(rht) =

?rht; Afree

Abound(lft,rht) =

!lft; Abrht(rht)

Free

Bound
right

Bound
left

Bound
both

{} {} {}

{}

{}

{?a,k} {!a,k}

{?a,k}

{!a,k,?a,j}

{!a,j}

& &

&

% &

%

%

{!a,j}{?a,j}

&

directive sample 1000.0

directive plot Af(); Al(); Ar(); Ab()

val lam = 1.0 (* dissoc *)

val mu = 1.0 (* assoc *)

new c@mu:chan(chan)

let Af() =

(new lft@lam:chan run

do !c(lft); Al(lft)

or ?c(rht); Ar(rht))

and Al(lft:chan) =

do !lft; Af()

or ?c(rht); Ab(lft,rht)

and Ar(rht:chan) =

?rht; Af()

and Ab(lft:chan, rht:chan) =

!lft; Ar(rht)

run 1000 of Af()

1000 monomers settle to
~100 polymers of size ~10

Af

Ab

ArAl

&!a &?a

&?a %!a

1

3

4

2

%!a %?a

Monomer
Automaton

L
u
c
a
 C

a
rd

e
lli

2007-12-04 43

Conclusions

L
u
c
a
 C

a
rd

e
lli

Compactness of Representation

2007-12-04 44

Ch(E3)

a00: X0+Y0
r X1+Y1

a01: X0+Y1
r X1+Y2

a02: X0+Y2
r X1+Y0

a10: X1+Y0
r X2+Y1

a11: X1+Y1
r X2+Y2

a12: X1+Y2
r X2+Y0

a20: X2+Y0
r X0+Y1

a21: X2+Y1
r X0+Y2

a22: X2+Y2
r X0+Y0

- En has 2n variables (nodes) and 2n terms (arcs). - The stoichiometric matrix has size 2nn2 = 2n3.

- Ch(En) has 2n species and n2 reactions. - The ODEs have 2n variables and 2n(n+n) = 4n2 terms
(number of variables times number of accretions plus depletions when sums are distributed)

E3

X0 = ?a(r);X1

X1 = ?a(r);X2

X2 = ?a(r);X0

Y0 = !a(r);Y1

Y1 = !a(r);Y2

Y2 = !a(r);Y0

a00 a01 a02 a10 a11 a12 a20 a21 a22

X0 -1 -1 -1 +1 +1 +1

X1 +1 +1 +1 -1 -1 -1

X2 +1 +1 +1 -1 -1 -1

Y0 -1 +1 -1 +1 -1 +1

Y1 +1 -1 +1 -1 +1 -1

Y2 +1 -1 +1 -1 +1 -1

ODE(E3)

d[X0]/dt = -r[X0][Y0] - r[X0][Y1] - r[X0][Y2] + r[X2][Y0] + r[X2][Y1] + r[X2][Y2]

d[X1]/dt = -r[X1][Y0] - r[X1][Y1] - r[X1][Y2] + r[X0][Y0] + r[X0][Y1] + r[X0][Y2]

d[X2]/dt = -r[X2][Y0] - r[X2][Y1] - r[X2][Y2] + r[X1][Y0] + r[X1][Y1] + r[X1][Y2]

d[Y0]/dt = -r[X0][Y0] - r[X1][Y0] - r[X2][Y0] + r[X0][Y2] + r[X1][Y2] + r[X2][Y2]

d[Y1]/dt = -r[X0][Y1] - r[X1][Y1] - r[X2][Y1] + r[X0][Y0] + r[X1][Y0] + r[X2][Y0]

d[Y2]/dt = -r[X0][Y2] - r[X1][Y2] - r[X2][Y2] + r[X0][Y1] + r[X1][Y1] + r[X2][Y1]

StoichiometricMatrix(Ch(E3))

=

E3

L
u
c
a
 C

a
rd

e
lli

Continuous vs. Discrete Kinetics

2007-12-04 45

A

B

?a
?a

?b
?b

!a

!b

?a ?b

A

B
?a
?a

?b
?b

!a

!b

A

B
?a ?b

!a

!b

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5 6 7 8 9 10

Ga() Gb()

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5 6 7 8 9 10

Ga() Gb()

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5 6 7 8 9 10

Ga() Gb() Da() Db()

Matlab
continuous_sys_generator

SPiM

Ad

!a

Bd

!b

All with
1x Doping

x200

x20000

L
u
c
a
 C

a
rd

e
lli

2007-12-04 46

Conclusions

● Compositional models
– Accurate (at the “appropriate” abstraction level).

– Manageable (so we can scale them up by composition).

– Executable (stochastic simulation).

● Analysis techniques
– Mathematical techniques: Markov theory,

Chemical Master Equation, and Rate Equation

– Computing techniques: Abstraction and Refinement,
Model Checking, Causality Analysis.

● Many lines of extensions
– Parametric processes for model factorization

– Ultimately, rich process-algebra based modeling languages.

● Quantitative techniques
– Important in the “real sciences”.

