Artificial Biochemistry

Luca Cardelli

Microsoft Research
Algorithmic Bioprocesses Leiden, 2007-12-04
http://LucaCardelli.name

Cells Compute

- No survival without computation!
- Finding food
- Avoiding predators
- How do they compute?
- Unusual computational paradigms.
- Proteins: do they work like electronic circuits? or process algebra?
- Genes: what kind of software is that?
- Signaling networks
- Clearly "information processing"
- They are "just chemistry": molecule interactions
- But what are their principles and algorithms?
- Complex, higher-order interactions
- MAPKKK = MAP Kinase Kinase Kinase: that which operates on that which operates on that which operates on protein.

Ultrasensitivity in the mitogen-activated protein cascade,

The View from Systems Biology

Incmen

Stochastic Collectives

Stochastic Collectives

- "Collective":
- A large set of interacting finite state automata:
- Not quite language automata ("large set")
- Not quite cellular automata ("interacting" but not on a grid)
- Not quite process algebra ("collective behavior")
- Cf. multi-agent systems and swarm intelligence
- "Stochastic":
- Interactions have rates
- Not quite discrete (hundreds or thousands of components)

- Not quite continuous (non-trivial stochastic effects)
- Not quite hybrid (no "switching" between regimes)
- Very much like biochemistry
- Which is a large set of stochastically interacting molecules/proteins
- Are proteins finite state and subject to automata-like transitions?
- Let's say they are, at least because:
- Much of the knowledge being accumulated in Systems Biology is described as state transition diagrams [Kitano].

Interacting Automata

Communicating automata: a graphical FSA-like notation for "finite state restriction-free π calculus processes". Interacting automata do no \dagger even exchange values on communication.
The stochastic version has rates on communications, and delays.

"Finite state" means: no composition or restriction inside recursion. Analyzable by standard Markovian techniques, by first computing the "product automaton" to obtain the underlying finite Markov transition system. [Buchholz]

Interactions in a Population

Interactions in a Population

Interactions in a Population

Interactions in a Population (2)

Interactions in a Population (2)

> All-B stable population

Nondeterministic population behavior ("multistability")

CTMC Semantics

CTMC

Chemistry vs. Automata

A process algebra (chemistry)

$$
\begin{array}{ll}
r: A+B \rightarrow{ }_{k 1} C+D & \begin{array}{l}
\text { Does } A \\
\text { become } \\
\text { Cor D? }
\end{array} \\
s: C+D \rightarrow{ }_{\mathrm{k} 2} A+B
\end{array}
$$

The same "model"

Maps to	
a CTMC	Maps to
a CTMC	

A different process algebra (automata)

A compositional graphical representation (precise, dynamic and modular) and the corresponding calculus.

Emergent Collective Behavior

Groupies and Celebrities

Celebrity

(does not want to be like somebody else)

directive sample 0.1200 $a @ 1.0$ directive plot $A() ; B()$ $b @ 1.0$ new $a @ 1.0$:chan () new $b @ 1.0$:chan () let $A()=$ do !a; $A()$ or ?a; $B()$ and $B()=$ do ! $b ; B()$ or ?b; $A()$ run 100 of $(A() \mid B())$ 	

A stochastic collective of celebrities:

 find somebody in the same state, and hence change, so the majority is weakened.

Groupie

(wants to be like somebody different)

```
directive sample 0.1200
a@1.0
directive plot \(A() ; B()\)
b@1.0
```

new a@1.0:chan()
new b@1.0:chan()
let $A()=$ do !a; $A()$ or ? $b ; B()$ and $B()=d o!b ; B()$ or ?a; $A()$
run 100 of $(A() \mid B())$

A stochastic collective of groupies:

Unstable because within an A majority, an A has difficulty finding a B to emulate, but the few B's have plenty of A 's to emulate, so the majority may switch to B. Leads to deadlock when everybody is in the same state and there is nobody different to emulate.

Both Together

A way to break the deadlocks: Groupies with just a few Celebrities

directive sample 10.0
directive plot Ag()$; \mathrm{Bg}() ; \mathrm{Ac}() ; \mathrm{Bc}()$

```
new a@1.0:chan()
```

new b@1.0:chan()
let $A C()=$ do !a; $A C()$ or ? $a ; B C()$ and $B c()=d o!b ; B c()$ or ? $b ; A c()$ let Ag()$=$ do ! $\mathrm{a} ; \mathrm{Ag}()$ or ? $\mathrm{b} ; \mathrm{Bg}()$ and Bg()$=\mathrm{do}!\mathrm{b} ; \mathrm{Bg}()$ or ? $\mathrm{a} ; \mathrm{Ag}()$
run 1 of $A C()$
run 100 of $(\mathrm{Ag}() \mid \mathrm{Bg}())$
never deadlock

Regularity can arise not far from chaos

Hysteric Groupies

We can get more regular behavior from groupies if they "need more convincing", or "hysteresis" (history-dependence), to switch states.

directive sample 10.01000 directive plot $G a() ; G b()$
new a@1.0:chan() new b@1.0:chan()
let $G a()=$ do !a; $G a()$ or ? $b ;$? $b ; G b()$ and $G b()=d o!b ; G b()$ or ? $a ; ? a ; G a()$
let $\operatorname{Da}()=!a ; D a()$ and $\operatorname{Db}()=!b ; D b()$
run 100 of $(G a() \mid G b())$
run 1 of $(\mathrm{Da}() \mid \mathrm{Db}())$

Semantics of Collective Behavior

The Two Semantic Sides of Chemistry

Continuous-state Semantics
(Generalized Mass Action)

These diagrams commute (for the "Chemical Ground Form" process algebra).
L. Cardelli: "On Process Rate Semantics" (TCS)
L. Cardelli: "A Process Algebra Master Equation" (QEST'07)

Quantitative Process Semantics

Continuous-state Semantics
(Generalized Mass Action)

Process Master Equation

Stochastic Processes \& Discrete Chemistry

Chemical Reactions

Elementary Reactions:

$$
\begin{array}{lll}
A & \rightarrow^{r} B_{1}+\ldots+B_{n}(n \geq 0) & \text { Unary Reaction } \\
A_{1}+A_{2} & \rightarrow^{r} B_{1}+\ldots+B_{n} \quad(n \geq 0) & \text { Hetero Reaction } \\
A+A & B^{r} B_{1}+\ldots+B_{n}(n \geq 0) & \text { Homeo Reaction }
\end{array}
$$

Reaction kinetics: $[A]=$ concentration of A

$$
\begin{aligned}
d[A] / d t & =-r[A]
\end{aligned} r \text { Exponential Deca) }
$$

No other reactions!

JOURNAL OF CHEMICAL PHYSICS VOLUME 113, NUMBER 1

The chemical Langevin equation

Daniel T. Gillespie ${ }^{\text {a) }}$
Research Department, Code 4T4100D, Naval Air Warfare Center, China Lake, California 93555

Genuinely trimolecular reactions do not physically occur in dilute fluids with any appreciable frequency. Apparently trimolecular reactions in a fluid are usually the combined result of two bimolecular reactions and one monomolecular reaction, and involve an additional short-lived species.

Abstract

Chapter IV: Chemical Kinetics [David A. Reckhow, CEE 572 Course] ... reactions may be either elementary or nonelementary. Elementary reactions are those reactions that occur exactly as they are written, without any intermediate steps. These reactions almost always involve just one or two reactants. ... Non-elementary reactions involve a series of two or more elementary reactions. Many complex environmental reactions are non-elementary. In general, reactions with an overall reaction order greater than two, or reactions with some non-integer reaction order are non-elementary.

THE COLLISION THEORY OF REACTION RATES

www.chemguide.co.uk
The chances of all this happening if your reaction needed a collision involving more than 2 particles are remote. All three (or more) particles would have to arrive at exactly the same point in space at the same time, with everything lined up exactly right, and having enough energy to react. That's not likely to happen very often!

> Reactions have rates. Molecules do not have rates.

$$
A+B+C \rightarrow r^{r} D
$$

the measured " r " is an (imperfect) aggregate of e.g.:

$$
A+B \leftrightarrow A B
$$

$A B+C \rightarrow D$

Enzymatic reactions:

$$
S \xrightarrow{E} P
$$

the " r " is given by Michaelis-Menten! (approximated steady-state) laws:
$E+S \leftrightarrow E S$
$E S \rightarrow P+E$

Chemical Ground Form (CGF)

$$
\begin{aligned}
& E::=0: X=M, E \\
& M::=0 \vdots \pi ; P \oplus M \\
& P::=0 \vdots X \mid P \\
& \pi::=\tau_{(r)} \vdots ? a_{(r)} \vdots!a_{(r)} \\
& C G F::=E, P
\end{aligned}
$$

Reagents
Molecules
Solutions
Interactions (delay, input, output)

A stochastic

subset of CCS

(no values, no restriction)

Interacting Automata + dynamic forking

Reagents plus Initial Conditions
(To translate chemistry to processes we need a bit more than interacting automata: we may have "+" on the right of \rightarrow, that is we may need "|" after π.)
\oplus is stochastic choice (vs. + for chemical reactions)
0 is the null solution $(P|O=O| P=P)$ and null molecule $(M \oplus 0=0 \oplus M=M)$
Each X in E is a distinct species
Each name a is assigned a fixed rate r : $a_{(r)}$

Ex: Interacting Automata
(= finite-control CGFs: they use "|" only in initial conditions):

Automata to Chemistry

Examples of Chemical Kinetics by

Interacting Automata

Zero-Order Regime

Or: build me a population like this:

Second-order and Zero-order Regime

Cascades

Second-Oder Regime cascade: a signal amplifier (MAPK)
$\mathrm{aHi}>\mathrm{O} \Rightarrow \mathrm{cHi}=\max$
directive sample e 0.03
directive plot la: lb: lc
new a@1.0:chan new b@1.0:chan new c@1.0:chan
let Amp_hi(a:chan, b:chan) =
do Ib: Amp_hi(a.b) or delay $@ 1.0$: Amp_10(a,b)
and Amp_Io(a.chan, b:chan)
Pa: ?a: Amp_hi(a,b)
run 1000 of (Amp_10(a,b) \mid Amp_1o(b, c))
$\operatorname{let} A()=\operatorname{la}: A()$
$\operatorname{let} A(=10: A O$
run 100 of $A()$

Zero-Oder Regime cascade:
a signal divider!
$a H i=\max \Rightarrow c H i=1 / 3 \max$

directive sample 0.03
 directive plot la: b. 1 : c
 new o@1.0:chan new b@1.0:chan new ©@1.:chan
 let Amp_hi(a:chan, b:chan) (do lb: delay@1.0: Amp_hi(a,b) or delay@1.0: Amp_1o(a,b)
 and Amp_Io(a:chan, b:chan) $=$
 and Amp_lo(a:china, b:c
 run 1000 of (Amp_lo(a,b) \mid Amp_lo(b, c))
 let $A()=$ la; delay@1.0; $A()$
 run 2000 of A()

Ultrasensitivity

directive sample 215.0
directive plot $S($): PO: EO: ES(): FO): FP()
new a@1.0:chan() new b@1.0:chan()

let $E($ = la: delay@1.0: $E(0)$

run 1000 of $S()$
let clock(t: float, tick:chan) $=\left({ }^{*}\right.$ sends a tick every + time $\left.*\right)$
 run step(100))
let Sig(p:proc(). tick:chan) $=($ P0 \mid I Jtick; Sig(p.tick))

run 100 of F)
run raising(E,1.0)
run

Zero-Order Regime
A small E-F inbalance causes a much larger S-P switch.

directive sample 215.01000

directive plot $S()$: $P($): $E($): $F()$
new a@1.0:chan() new b@1.0: chan()
let 5()$=? a ; P(0)$
and $P()=7 b$: S_{0}
$\operatorname{let} E(\mathrm{O}=\mathrm{aq}: E(\mathrm{E}$
$\begin{aligned} & \mid e t E(=a: E O \\ & \text { and } F()=: b: F()\end{aligned}$
run 1000 of S)

let Sig(p:proc(), tick:chan) $=($ (p0 \mid ? tick; Sig(p.tick))
let raising(p:proc(c), t :float)
(new tick:chan run (clock(t)
(new tick:chan run (clock(t,tick) | Sig(p.tick)))
run 100 of $F()$
run raising(E.1.0)

Second-Order Regime
No switching behavior

Waves

Or: build me a population like this:

Nonlinear Transition (NLT)

Two NLTs: Bell Shape

interval/step [0:0.000001:0.0025]
(A) $d \times 1 / d t=-\times 1^{\star} \times 2$
(B) $d \times 2 / d t=x 1^{*} \times 2-\times 2^{*} \times 3$
(C) $\mathrm{d} \times 3 / \mathrm{dt}=\times 2^{*} \times 3$

NLT in a Cycle: Oscillator

new a@1.0:chan new b@1.0:chan new c@1.0:chan let $A()=d o!a ; A()$ or ? $b ; B()$
and $B()=d o!b ; B()$ or ?c; $C()$
and $C()=$ do ! $c ; C()$ or ?a; $A()$
run (900 of $A() \mid 500$ of $B() \mid 100$ of $C())$

$$
\begin{aligned}
& A=!a_{(s)} ; A \oplus ? b_{(s)} ; B \\
& B=!b_{(s)} ; B \oplus ? c_{(s)} ; C \\
& C=!c_{(s)} ; C \oplus ? a_{(s)} ; A \\
& A+B \rightarrow \rightarrow^{s} B+B \\
& B+C \rightarrow \rightarrow^{s} C+C \\
& C+A \rightarrow{ }^{s} A+A
\end{aligned}
$$

$[A]^{\circ}=-s[A][B]+s[C][A]$ $[B]^{\circ}=-s[B][C]+s[A][B]$ $[C]^{\circ}=-s[C][A]+s[B][C]$

NLTs in Series: Soliton Propagation

new a2@s:chan new a3@s:chan new a4@s:chan new a5@s:chan new a6@s:chan new a7@s:chan new a8@s:chan new a9@s:chan new a10@s:chan new a11@s:chan new a12@s:chan new a13@s:chan let $\mathrm{A1}()=$ do delay@r:A2() or ?a2; A2()
and $A 2()=$ do !az; $A 2\left(\right.$) or delay@r; $A 3()$ or ? ${ }^{3} 3 ; A 3()$ and $A 3()=$ do !a3;A3() or delay@r:A4() or ?a4; A4() and $A 4()=$ do !a4; $A 4()$ or delay@r: $A 5()$ or ?a5: $A 5()$ and $A 5()=$ do la5: $A 5()$ or delay@r: $A 6()$ or ? $a 6: A 6()$ and $A 6()=$ do la6: $A 6()$ or delay@r:A7() or ?a7: $A 7()$ and $A 7()=$ do !a7: $A 7()$ or delay@r:A8() or ?a8; A8() and $A 9()=$ do !a9; $A 9()$ or delay@r:A10() or ?a10; $A 10$ and $A 9()=$ do as:A9() or delay@r:A10) or ?a10; A10 (a11) and A10) = do !a10:A11) or delay@r:A11() or ?a11; A11) and A11) $=$ do alif:A11(or delay@r:A12) or ?a12; A12 and A13() = 1a13:A130
run 1000 of A 1 ()

Lotka-Volterra

Or: beyond automata

Predator-Prey

Carnivoro Herbivoro
directive sample 1.01000
directive plot Carnivor(); Herbivor()

```
val mortality = 100.0
val breeding=300.0
val predation = 1.0
new cull @predation:chan()
let Herbivor()=
do delay@breeding; (Herbivor()| Herbivor())
or ?cull; ()
and Carnivor() =
do delay@mortality; ()
or !cull; (Carnivor() | Carnivor())
```

run 100 of Herbivor()
run 100 of Carnivor()

An unbounded state system!

Lotka-Volterra in Matlab

```
\(H=\tau_{b} ;(H \mid H) \oplus ? c_{(p)} ; 0\)
\(C=\tau_{m} ; 0 \oplus!c_{(p)} ;(C \mid C)\)
\(\# H_{0}, \# C_{0}\)
\(\mathrm{H} \rightarrow^{b} \mathrm{H}+\mathrm{H}\)
C \(\rightarrow\) m
\(\mathrm{H}+\mathrm{C} \rightarrow \mathrm{pr} \mathrm{C}+\mathrm{C}\)
\([H]_{0}=\# H_{0} / \gamma\)
\([C]_{0}=\# C_{0} / \gamma\)
\[
\begin{aligned}
& m=100.0 \\
& b=300.0 \\
& p=1.0 \\
& \gamma=1.0 \\
& \# H_{0}=100 \\
& \# C_{0}=100
\end{aligned}
\]
```

directive sample 0.351000
directive plot Carnivor(); Herbivor()
val mortality $=100.0$
val breeding $=300.0$
val predation = 1.0
new cull @predation:chan()
let Herbivor() =
do delay@breeding; (Herbivor() | Herbivor())
or ?cull; ()
and Carnivor ()$=$
do delay@mortality; ()
or !cull; (Carnivor() | Carnivor())
run 100 of Herbivor(
run 100 of Carnivor()

$$
\begin{aligned}
& {[\mathrm{H}]^{\circ}=\mathrm{b}[\mathrm{H}]-\mathrm{pr}[\mathrm{H}][\mathrm{C}]} \\
& {[\mathrm{C}]^{\circ}=-\mathrm{m}[\mathrm{C}]+\mathrm{p} \mathrm{\gamma}[\mathrm{H}][\mathrm{C}]} \\
& {[\mathrm{H}]_{0}=\# \mathrm{H}_{0} / \gamma} \\
& {[\mathrm{C}]_{0}=\# \mathrm{C}_{0} / \gamma}
\end{aligned}
$$

Which one is the "right prediction"?

Biochemistry

Or: Interaction + Complexation

Without complexation, many "finite" combinatorial systems can only be expressed by an infinite number of elementary chemical reactions.

Polyautomata

Two new operations

 the current states S,T carry an "associaton history"

Can be encoded in π-calculus (and SPiM) by bound-output/bound-input.

```
directive sample 0.005
directive plot Af(); Ab(); Bf(); Bb()
```

val $\mathrm{mu}=1.0$ val lam=1.0
new a@mu:chan(chan)
let $A f()=$ (new n@lam:chan run !a(n); $A b(n)$)
and $A b(n: c h a n)=!n ; A f()$

(Compositional) Enzyme Kinetics

$$
\mathrm{a} @ \mathrm{r}_{0}, \mathrm{r}_{1}, \mathrm{r}_{2}
$$

$\mathrm{E}+\mathrm{S} \underset{r_{1}}{\stackrel{r_{0}}{\rightleftarrows}} \mathrm{ES} \xrightarrow{\mathrm{r}_{2}} \mathrm{E}+\mathrm{P}$

[^0]
Polymerization

new $c @ \mu$ new stop@1.0
$A_{\text {free }}=$
$\left.!c\left({ }^{v} r h t_{\lambda}\right) ; A_{\text {brht }}(r h t)\right)+$?c(lft); $A_{\text {blft }}(\mathrm{lft})$
$A_{\mathrm{blft}}(\mathrm{lft})=$
Ic($\left.\left.{ }^{\vee} r h t_{\lambda}\right) ; A_{\text {bound }}(I f t, r h t)\right)$
$A_{\text {brht }}(r h t)=$?c(lft); $A_{\text {bound }}(\mathrm{lft}, \mathrm{rht})$
$A_{\text {bound }}(\mathrm{lft}, \mathrm{rht})=$? stop

Monomer
Automaton

Polymerization is iterated complexation.

Bound
both

Polyautomata

Bound output ! $c\left({ }^{\vee} r\right)$ and input ?c(l) on automata transitions to model complexation

Conclusions

Compactness of Representation

- E_{n} has $2 n$ variables (nodes) and $2 n$ terms (arcs).
- Ch(E_{n}) has $2 n$ species and n^{2} reactions.
- The stoichiometric matrix has size $2 n \cdot n^{2}=2 n^{3}$.
- The ODEs have $2 n$ variables and $2 n(n+n)=4 n^{2}$ terms (number of variables times number of accretions plus depletions when sums are distributed)
E_{3}
$X_{0}=? a_{(r)} ; X_{1}$
$X_{1}=? a_{(r)} ; X_{2}$
$X_{2}=? a_{(r)} ; X_{0}$
$Y_{0}=!a_{(r)}: Y_{1}$
$Y_{1}=!a_{(r)} ; Y_{2}$
$Y_{2}=!a_{(r)}: Y_{0}$

$$
\begin{aligned}
& \operatorname{Ch}\left(E_{3}\right) \\
& a_{00}: X_{0}+Y_{0} \rightarrow r X_{1}+Y_{1} \\
& a_{01}: X_{0}+Y_{1} \rightarrow{ }^{r} X_{1}+Y_{2} \\
& a_{02}: X_{0}+Y_{2} \rightarrow^{r} X_{1}+Y_{0} \\
& a_{10}: X_{1}+Y_{0} \rightarrow^{r} X_{2}+Y_{1} \\
& a_{11}: X_{1}+Y_{1} \rightarrow{ }^{r} X_{2}+Y_{2} \\
& a_{12}: X_{1}+Y_{2} \rightarrow^{r} X_{2}+Y_{0} \\
& a_{20}: X_{2}+Y_{0} \rightarrow^{r} X_{0}+Y_{1} \\
& a_{21}: X_{2}+Y_{1} \rightarrow r^{r} X_{0}+Y_{2} \\
& a_{22}: X_{2}+Y_{2} \rightarrow{ }^{r} X_{0}+Y_{0}
\end{aligned}
$$

StoichiometricMatrix $\left(\operatorname{Ch}\left(E_{3}\right)\right)$

	a_{00}	a_{01}	a_{02}	a_{10}	a_{11}	a_{12}	a_{20}	a_{21}	a_{22}
X_{0}	-1	-1	-1				+1	+1	+1
X_{1}	+1	+1	+1	-1	-1	-1			
X_{2}				+1	+1	+1	-1	-1	-1
y_{0}	-1		+1	-1		+1	-1		+1
y_{1}	+1	-1		+1	-1		+1	-1	
y_{2}		+1	-1		+1	-1		+1	-1

$\operatorname{ODE}\left(\mathrm{E}_{3}\right)$

$d\left[X_{0}\right] / d t=-r\left[X_{0}\right]\left[Y_{0}\right]-r\left[X_{0}\right]\left[Y_{1}\right]-r\left[X_{0}\right]\left[Y_{2}\right]+r\left[X_{2}\right]\left[Y_{0}\right]+r\left[X_{2}\right]\left[Y_{1}\right]+r\left[X_{2}\right]\left[Y_{2}\right]$ $d\left[X_{1}\right] / d t=-r\left[X_{1}\right]\left[Y_{0}\right]-r\left[X_{1}\right]\left[Y_{1}\right]-r\left[X_{1}\right]\left[Y_{2}\right]+r\left[X_{0}\right]\left[Y_{0}\right]+r\left[X_{0}\right]\left[Y_{1}\right]+r\left[X_{0}\right]\left[Y_{2}\right]$ $d\left[X_{2}\right] / d t=-r\left[X_{2}\right]\left[Y_{0}\right]-r\left[X_{2}\right]\left[Y_{1}\right]-r\left[X_{2}\right]\left[Y_{2}\right]+r\left[X_{1}\right]\left[Y_{0}\right]+r\left[X_{1}\right]\left[Y_{1}\right]+r\left[X_{1}\right]\left[Y_{2}\right]$ $d\left[Y_{0}\right] / d t=-r\left[X_{0}\right]\left[Y_{0}\right]-r\left[X_{1}\right]\left[Y_{0}\right]-r\left[X_{2}\right]\left[Y_{0}\right]+r\left[X_{0}\right]\left[Y_{2}\right]+r\left[X_{1}\right]\left[Y_{2}\right]+r\left[X_{2}\right]\left[Y_{2}\right]$ $d\left[Y_{1}\right] / d t=-r\left[X_{0}\right]\left[Y_{1}\right]-r\left[X_{1}\right]\left[Y_{1}\right]-r\left[X_{2}\right]\left[Y_{1}\right]+r\left[X_{0}\right]\left[Y_{0}\right]+r\left[X_{1}\right]\left[Y_{0}\right]+r\left[X_{2}\right]\left[Y_{0}\right]$ $d\left[Y_{2}\right] / d t=-r\left[X_{0}\right]\left[Y_{2}\right]-r\left[X_{1}\right]\left[Y_{2}\right]-r\left[X_{2}\right]\left[Y_{2}\right]+r\left[X_{0}\right]\left[Y_{1}\right]+r\left[X_{1}\right]\left[Y_{1}\right]+r\left[X_{2}\right]\left[Y_{1}\right]$

Continuous vs. Discrete Kinetics

			(a) ! b B All with $1 \times$ Dopin
			Matlab
			$\begin{array}{r} \text { SPiM } \\ \times 200 \\ \times 20000 \end{array}$

Conclusions

- Compositional models
- Accurate (at the "appropriate" abstraction level).
- Manageable (so we can scale them up by composition).
- Executable (stochastic simulation).
- Analysis techniques
- Mathematical techniques: Markov theory, Chemical Master Equation, and Rate Equation
- Computing techniques: Abstraction and Refinement, Model Checking, Causality Analysis.
- Many lines of extensions
- Parametric processes for model factorization
- Ultimately, rich process-algebra based modeling languages.
- Quantitative techniques
- Important in the "real sciences".

[^0]: directive sample 0.051000
 directive plot $E f()$: $E b() ; S f() ; S b() ; P()$
 val k1 = $1.0 \quad$ val $\mathrm{km} 1=1.0 \quad$ val $\mathrm{k} 2=100.0$ new a@k1:chan(chan,chan)
 let $P()=()$
 let $E f()=$
 (new n@km1:chan new m@k2:chan
 run !a(n,m); Eb(n,m))
 and $E b(n$:chan,m:chan $)=$
 do $!n ; E f()$ or !m; Ef()
 let $S f()=? a(n, m) ; S b(n, m)$
 and $\mathrm{Sb}(\mathrm{n}$:chan,m:chan $)=$
 do ?n; Sf() or ?m; P()
 run (1000 of Ef() | 2000 of $S f())$

