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Cells Compute

No survival without computation!
- Finding food
- Avoiding predators

How do they compute?
- Unusual computational paradigms.

- Proteins: do they work like electronic circuits?
or process algebra?

- (Genes: what kind of software is that?

Signaling networks
- Clearly “information processing”
- They are "just chemistry”: molecule interactions
- But what are their principles and algorithms?

Complex, higher-order interactions

- MAPKKK = MAP Kinase Kinase Kinase:
that which operates on that which operates on that
which operates on protein.

Calbiochem’ MAPK Family Pathways

See cur iersctie pathway
wwwcalbiochem.com/MAPK
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Ultrasensitivity in the mitogen-activated protein cascade,

Chi-Ying F. Huang and James E. Ferrell, Jr., 1996, Proc.
Natl Acad. Sci. USA, 93, 10078-10083.



http://www.pnas.org/cgi/content/abstract/93/19/10078
http://www.pnas.org/cgi/content/abstract/93/19/10078
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The View from Systems Biology

Epidermal Growth Factor Receptor Pathway Map e

endocytosis

MAPK cascade
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Stochastic Collectives



Stochastic Collectives

[Regev-Shapiro]

e "Collective":

- A large set of interacting finite state automata:
e Not quite language automata (“large set")
e Not quite cellular automata (“interacting” but not on a grid)
e Not quite process algebra (“collective behavior")
o Cf. multi-agent systems and swarm intelligence

e "Stochastic”:

- Interactions have rates
e Not quite discrete (hundreds or thousands of components)
e Not quite continuous (non-trivial stochastic effects)
e Not quite hybrid (no "switching” between regimes)

e Very much like biochemistry
- Which is a large set of stochastically interacting molecules/proteins
- Are proteins finite state and subject to automata-like transitions?

e Let's say they are, at least because:

e Much of the knowledge being accumulated in Systems Biology
is described as state transition diagrams [Kitano].



Interacting Automata

new a@r,
Communication
new b@r'z channels
new c@r,
A, = ?a; A, \
A, =lc; A;
A3 = T@A5; Al
Bl = T@AZ; BZ + |0,’ B ‘g
@ current State BZ = T@Al; Bl > g
== P Delay B 1§ ')b 8
=== Transition 3- 70, BZ
== P> Interaction
(0| 0 | Moy O et | g 0
Communicating automata: a graphical FSA-like 1 1] 2 3
notation for “finite state restriction-free n- CZ i T@A3' Cl
calculus processes"”. Interacting automata do not C3 = t@A s C2 Ly
even exchange values on communication.
The stochastic version has rateson A4 | B1 | C1 The system and
communications, and delays. initiol state

"Finite state” means: no composition or restriction inside recursion.
Analyzable by standard Markovian techniques, by first computing
the "product automaton” to obtain the underlying finite Markov
transition system. [Buchholz]



Interactions in a Population

Suppose this is the =" ()

next interaction 0 @

(stochastically chosen)

.
7
-
-
-
-
-
-
-,
4
e
4
4
4
4

~
~
~
~
~
~
o ‘@ -
\
\
\
\
\

One lonely automaton
cannot interact



Interactions in a Population
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Interactions in a Population (2)
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Interactions in

a Population (2)
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CTMC Semantics

{38}

CTMC

(homogeneous) Continuous Time
Markov Chain

- directed graph with no self loops
- nodes are system states

- arcs have transition rates

Probability of holding in state A:

2r,  2r, {2A,1B}
CTMC

Ib
PP(HA>1’) = e'”
in general, Pr(H,>t) = eR" where R is
the sum of all the exit rates from A
{1A 2B} 2r,
2r,
{3A}




Chemistry vs. Automata

A process algebra (chemistry)

rA+B—>,C+D
s:C+D—>,A+B

1 line per
reaction

Does A
become
Cor D?

The same "model”

A different process algebra (automata)

B

Maps to -
aCTMC

| ?
RCIIRAL I
1 line per
component A = !r‘kl; C bec?mes
Maps to B = ? r'kll. D
aCTMC D — !Skz; B

A Petri-Net-like representation. Precise and dynamic
but not modular, scalable, or maintainable.

A compositional graphical representation (precise,
dynamic and modular) and the corresponding calculus.
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Groupies and Celebrities

Celebrity

(does not want to be like somebody else)
a@1.0
b@1.0

directive sample 0.1 200
directive plot A():; B()

new a@1.0:chan()
new b@1.0:chan()

let A() = do la; A() or ?a; B()
and B() = do Ib; B() or ?b; A()

run 100 of (A() | B()

Ib

A stochastic collective of celebrities:

—AQ) — B0

Groupie
(wants to be like somebody different)
directive sample 0.1 200 a@10
directive plot A(). B() b@1.0

new a@1.0:chan()
new b@1.0:chan()

let A() = do la; A() or ?b; B()
and B() = do 'b; B() or ?a; A()

run 100 of (A() | B())

A stochastic collective of groupies:
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Stable because as soon as a A finds itself in the majority, it is more likely to

find somebody in the same state, and hence change, so the majority is weakened.

200

— AQ) — B0
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——B(
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Unstable because within an A majority, an A has difficulty finding a B to
emulate, but the few B's have plenty of A's to emulate, so the majority may
switch to B. Leads to deadlock when everybody is in the same state and there is
nobody different to emulate.



Both Together

A way Yo break the deadlocks: Groupies with just a few Celebrities

directive sample 10.0
directive plot Ag(): Bg(): Ac(); Bc()

new a@1.0:chan()
new b@1.0:chan()
MGnY A f@W let Ac() = do la; Ac() or ?a; Bc()
Gr‘ouples Celebrities and Bc() = do Ib; Be() or ?b; Ac()
let Ag() = do la; Ag() or ?b; Bg()
and Bg() = do |b; Bg() or ?a; Ag()
run 1 of Ac()
run 100 of (Ag() | Bg())
never
deadlock
500 SPikA
2af)
Bal
150 il
100 |
a0
I:I } L




Hysteric Groupies

We can get more regular behavior from groupies if they "need more
convincing”, or “hysteresis” (history-dependence), to switch states.

—Ga) — Gb) . directive sample 10.0 1000
"solid threshold” to observe switching E Sirective plot-Cati-Cbr

new a@1.0:chan()
o new b@1.0:chan()

let Ga() = do la; Ga() or ?b; ?b; Gb()
and 6b() = do 'b; 6b() or ?a; ?a; Ga()

let Da() = la; Da()
and Db() = |b; Db()

run 100 of (Ga() | 6b())
run 1of (Da() | Db())

1 sample orbit
Gavs. Gb

(With doping to
break deadlocks)

N.B.: It will not oscillate
without doping (noise)

200 Gal) —— Gb0) ~ directive sample 10.0 1000
180 4 directive plot Ga():; Gb()
70 ) b 160 | new a@1.0:chan()
140 1 e new b@1.0:chan()
120
?a ? b 100 - 1 sample orbit let Ga() = do la; Ga() or ?b; ?b; ?b; Gb()
?a ? b 22 ] \, Ga vs. Gb and Gb() = do |b; Gb() or ?a; ?a; ?2a; Ga()
i let Da() = la; Da()
40'llllllllll EEENE SN N EEEE SN E NN NN NN NSNS EEEE NN EEE N andDb():lb,Db()
20 -\-
0 SLTHAVA VARV, ; : . ; g TR : L—’J run 100 of (Ga() | Gb()) .
0 1 2 3 4 5 6 7 8 9 10 * run 1of (Da() | Db())
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The Two Semantic Sides of Chemistry

Continuous-state Semantics
(Generalized Mass Action)

ODE = ODE
Continuous
Chemistry
1 T Process Nondeterministic
. Algebra Semantics
Discrete
Chemistry _
‘ Stochastic
CTMC - CTMC Semantics

Discrete-state Semantics
(Chemical Master Equation)

These diagrams commute
(for the "Chemical Ground Form” process algebra).

L. Cardelli: "On Process Rate Semantics” (TCS)
L. Cardelli: "A Process Algebra Master Equation” (QEST07)



Quantitative Process Semantics

Continuous-state Semantics

(Generalized Mass Action)

ODE

t

Continuous
Chemistry

'

Discrete
Chemistry

v

CTMC

Process
Algebra

l

CTMC

Discrete-state Semantics

(Chemical Master Equation)

Process Rate Equation

d[X]1/dt = (Z(YeE) Accrg(Y, X)-[Y]) - Deple(X)-[X]

ODIE/

Nondeterministic
Semantics

Stochastic

Semantics

Accretion

Depletion

Defined over the
syntax of processes

Intepactions Propensity

opr(p.t)/ot = X_5a(p-v)pr(p-v.t) - a(p)pr(p.t)

Process Master Equation

for all XeE

for all peStates(E)



Stochastic Processes
& Discrete Chemistry

ODE = ODE
t
Continuous
Chemistry
l T Process
Algebra
Discrete
Chemistry
b

0
—
<
O
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Chemical Reactions

Elementary Reactions: Reaction kinetics: [A]= concentration of A
A —r Bl nlLH Bn (n0) Unary Reaction d[A]/dt = -r[A] Exponential Decay
A+ A, " By +.+ B, (m0) HeteroReaction d[A;]/dt =-r[A][A;] Mass Action Law

A+A oF Bl HHIT Bn (n0) Homeo Reaction d[A])/dt = -2r[A]? Mass Action Law
(assuming AzB;zA; for all i,j)

No other reactions!

JOURNAL OF CHEMICAL PHYSICS VOLUME 113, NUMBER 1 Chapter IV: Chemical Kinetics THE COLLISION THEORY OF
. . . [David A. Reckhow , CEE 572 Course] REACTION RATES
The chemical Langevin equation .. reactions may be either elementary or non- www.chemguide.co.uk
Daniel T. Gillespie® i i i ino i
Research Departmfn!, Code 4T4100D, Naval Air Warfare Center, China Lake, California 93555 elementary. Elementarv I‘CaCthIl'S are th_ose reactions The c?hances Of all thlS. hap Penlng .lf your
that occur exactly as they are written, without any reaction needed a collision involving more
] ) ] . intermediate steps. These reactions almost always than 2 particles are remote. All three (or
Genuinely rrimolecular reactions do not physically occur  § involve just one or two reactants. ... Non-elementary | more) particles would have to arrive at

in dilute fluids with any appreciable frequency. Apparently | reactions involve a series of two or more elementary | exactly the same point in space at the same
trimolecular reactions in a fluid are usually the combined | reactions. Many complex environmental reactions aref| time, with everything lined up exactly right,
result of two bimolecular reactions and one monomolecular | hon-elementary. In general, reactions with an overall || and having enough energy to react. That's
reaction order greater than two, or reactions with not likely to happen very often!

some non-integer reaction order are non-elementary.

reaction, and inveolve an additional short-lived species.

Trimolecular reactions:
A+B+C—>rD
the measured "r" is an (imperfect)
aggregate of e.g.:
A+B<« AB
AB+C —> D

000 0000000000000 0000000000000000000000000000000

Enzymatic reactions:
S EyP
the "r" is given by Michaelis-Menten
(approximated steady-state) laws:
E+S<ES
ES>P+E

000 0000000000000 000000000000000000000000000000

® 0000000000000 0000COCOCKOGFINIS
0000 0000000000000 0O0C0OCOCFGNCITS
® 0000000000000 0000OCGOCOGNINITS

00 00000OCGOOOIOIOSINOSGNOGIOS



Chemical 6round Form (CGF)

i[O END e Reagents
M:=0:xP®&M Molecules
P::
Ta1E

= DD 1 Solutions

1l . 9 : I | Interacting Automata
= Ty ! 204y i lay) Interactions (delay, input, output) + dynamic forking

CGF ::=EP Reagents plus Initial Conditions

(To translate chemistry to processes we ® is stochastic choice (vs. + for chemical reactions)
yT1op w 0 is the null solution (P|0 = O|P = P)

need a bit more than interacting and null molecule (M@0 = 0&M = M)
automata: we may have "+" on the right Each X in E is a distinct species

of —, that is we may need *|" after n.) Each name a is assigned a fixed rate r: a,

I
Ex: Interacting Automata

0o (= finite-control CGFs: they use "|" only in initial conditions):
| Automatonin state A
?a?b AzlaA®2?bB

B=1b'B®2aA I Automaton in state B

A|A|B|B | TInitial

B
' conditions:
Ib

2A and 2B



Automata to Chemistry

V = interaction volume

Discrete Continuous N, = Avogadro’s number
Automata —p Chemistry =—> Chemistry Y=N,V Think y=1
(molecule counts) (concentrations) ie. V=1/N,
initial states initial quantities initial concentrations
AlAT.. 1A A [Al with [A]y=#A/y
ODE = ODE
A ot N A —k A’ withk=r Continuous ‘
Chemistry
l T Process
Algebra
Discrete
A+B - A’+B’ A+B —k A’+B’ with k = ry Cherilstry
CTMC| = |CIMC

A+A -2 A+A” | A+A 5K A+A” with k =1y/2 Automata are n?
more compact!
1 l ([A] = d[A)/dt
CTMC ODE change of concentration

over time)



Examples of
Chemical Kinetics

by
Interacting Automata



Zero-Order Regime

Or: build me a population like this:




Second-order and Zero-order Regime

Second-Order Regime
T E+SOTE4P d[S])/dt = -r[E][S]

875 gg
750
la ED i directive sample 1000.0

directive plot S(); P(); E()

?
M s . new a@1.0:chan()
. letEQ= la; EQ

and S() = ?a; P()
" 7 and P()= ()

1000xS, 1xE
run (1of E() | 1000 of S())

Zero-Order Regime

................................................................................................................................... B4 STESHP T e B....in0 iz

1000 B ES —5 E
@1.0 875
i la 625 =) directive plot S(): P(); E()
@1.0 :

new a@1.0:chan()

EQ IO :
| 5 @) Notation
1. a 75
250 'a
. let EQ) = la; delay@1.0; E() ! *A(r)
: 1

and S() = ?a; P()

: ?a
] : - 1 .
T mmene | adP0s0 M
© run(lof E()|1000 of S())




Cascades

| Second-Oder Regime cascade:

625 aH i > O = C H i - ma X new a@1.0:chan new b@1.0:chan new c@1.0:chan

let Amp_hi(aichan, bichan) =

500 la do Ib; Amp_hi(a,b) or delay@1.0; Amp_lo(a,b)
. and Amp_lo(a:chan, bichan) =
3785 Ib 2a: 7a; Amp_hi(a,b)
250 Iz £un 1000 of (Amp_lo(a,b) | Amp_lo(b,c))
let AQ) = la: AQ)
125 run 100 of AQ)

o

0 0.03
100xaHi, 1000xbLo, 1000xcLo, rates=1.0

SPikd M
Zero-Oder Regime cascade:
1750 | H L
'3 a signal dlivider/
1500 I |:|
! Hi = Hi = 1/3 -
1250 'C aHl=max = CHI = max directie sompe 003
1000 new a@1.0:chan new b@1.0:chan new c@1.0:chan
750 let Amp_hi(a:chan, b:chan) =
do Ib; delay@1.0; Amp_hi(a)b) or delay@1.0; Amp_lo(a,b)
500 and Amp_lo(a:chan, bichan) =
2a; ?2a; Amp_hi(a,b)
250 run 1000 of (Amp_lo(a,b) | Amp_lo(b,c))
Un 003 let A() = la; delay@1.0; A()

run 2000 of A()

2000xaHi, 1000xbLo, 1000xcLo, rates=1.0




Ultrasensitivit

E+S — ES+P
F+P — FP+S
ES— E
FP > P

10007

directive sample 215.0
directive plot S(); P(); EQ): ES(): FO: FP()

new a@1.0:chan() new b@1.0:chan()

let 5= 2a; P()
and P() = 2b; S()

let EQ) = la delay@1.0; E()
and F() = Ib; delay@1.0; F()

run 1000 of ()

let clock(t:float, tickichan) = (* sends a tick every t time *)
(val ti = /100.0 val d = 1.0/+i  (* by 100-step erlang timers *)
let step(niint) = if n<=0 then Itick: clock(t tick) else delay@d; step(n-1)
run step(100))
let Sig(p:proc(), tick:chan) = (p() | ?tick: Sig(p,tick))
let raising(piproc(), t:float) =
(new tick:chan run (clock(t tick) | Sig(p,tick)))

run 100 of F()
run raising(E 1.0)

Zero-Order Regime

A small E-F inbalance causes
a much larger S-P switch.

E+S — E+P
la F+P — F+S

1000 SFiM

800 F'I::I
?b :@1.0 0D EQ
400 F

directive sample 215.0 1000
directive plot S(); P(): E(): F()

new a@1.0:chan() new b@1.0:chan()

let () = 2a; P()
and P() = 2b; S()

let EQ) = la; EQ)
and F() = 1b; F()

run 1000 of S()

let clock(t:float, tickichan) = (* sends a tick every T time *)
(val ti = 1/100.0 val d = 1.0/ti  (* by 100-step erlang timers *)
let step(niint) = if n<z0 then Itick; clock(t tick) else delay@d; step(n-1)
run step(100))
let Sig(p:proc(), tick:chan) = (p() | ?tick: Sig(p,tick))
let raising(p:proc(), t:float) =
(new tickichan run (clock(ttick) | Sig(p,tick)))

run 100 of F()
run raising(E 1.0)

Second-Order Regime

No switching behavior



Or: build me a population like this:

BY)

3398 Al

=]
7398 4
59980
33932
19396
0

00002595 1003033 Live

Sirnulation: Time = 0.003033 (838 points at 7.0447e-06 simTime/sys Time ancl halted)

Luca Cardelli
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Nonlinear Transition (NLT)

lc

@s
oc ()

(A = ?Cs).B
B=lcyB

, v
A+B >sB+B |
v

.

(d[A]/dt = -s[A][B]
| d[B]/df = s[A][B]

999 B0

directive sample 0.02 1000
directive plot B(); A()

GGG val s=1.0

new c@s:chan
let A() = 2¢; B()
and B() = Ic;B()

333 run (1000 of A() | 1 of B())

SPiM
i
0.0015957 0.014324 Paused
Sirnulation: Time = 0.013443 (999 points at 0.0085215 simTime/sysTime and halted)

1200

1000

800

600

400

200

]

Matlab
0 10 20 0 0 20 i i

interval/step [0:0.001:0.0]
(A) dx1/dt = - x1*x2 1000.0
(B) dx2/dt = x1*x2 10

N.B.: needs at
least 1 B to
"get started".



Two NLTs: Bell Shape

Ib Ic

?b,” N ?c,”
@®——@

[B] = [BI([A]-[C])

directive sample 0.0025 1000
directive plot B(); A(): €()

new b@1.0:chan new c@1.0:chan

let A() = ?b; B()
and B() = do Ib:B() or ?c: C()
and €() = lc:C()

run ((10000 of A()) | BO) | €())

e
A = ?b(l); B

\C = !C(l); C

~N

B = Ib(l),B @D 7C(1),C

J

[ A+B >1B+B
| B+C 1 C+C

d[A]/dt = -[A][B]

d[B]/dt = [A][B]-[B][C]

d[C]/dt = [B][C]

999999

999999

999999

Qrom
[=f=y=t

]
00000000

00000000

500 1000 1500 2000

interval/step [0:0.000001:0.0025]

(A)  dx1/dt=-x1*x2 10000.0
(B) dx2/dt = x1*x2 - x2*x3 10

©) dx3/dt = x2*x3 10

2500

3000



NLT in a Cycle: Oscillator

Al
co

‘0 900xA, 500xB, 100xC 162

directive sample 0.03 1000
directive plot A(): B(): €()

new a@1.0:chan new b@1.0:chan new c@1.0:chan
let A() = do la;A() or ?b; B()
and B() = do Ib;B() or ?c; €()
and €() = do lc;C() or ?2a; A()

run (900 of A() | 500 of B() | 100 of C())

/A = IG(S),A @ 7b(5), B\
B = Ib(s),B @ QC(S),C
\C = IC(S),C @ ?G(S);A/
(A+B —>sB+B

B+C —»sC+C
\C+A —S A+A

([AT = -s[A][BI+s[C][A]
[B]* = -s[B][C]+s[A][B]
[C] = -S[CI[AT+s[B][C]

interval/step [0:0.001:20.0]

A) dx1/dt = - x1*x2 + x3*x1 0.9
dx2/dt = - x2*x3 + x1*x2 05
C dx3/dt= - x3*x1 + x2*x3 0.1

continuous_sys_generator




NLTs in Series: Soliton Propagation

1000

a7h

750

625

500

arh

250

125

0.

directive sample 0.1 1000
directive plot A1(); A2(); A3(); A4(): AB(); A6(); A7(); A8():
A9(); A10(); A11(); A12(); A13()

val r=1.0 val s=1.0

new a2@s:chan new a3@s:chan new a4@s:chan

new a5@s:chan new a6@s:chan new a7@s:chan

new a8@s:chan new a9@s:chan new al0@s:chan

new al1@s:chan new a12@s:chan new a13@s:chan

let A1() = do delay@r;A2() or 2a2; A2()

and A2() = do la2;A2() or delay@r; A3() or ?a3; A3()

and A3() = do la3;A3() or delay@r; A4() or 2a4; A4()

and A4() = do la4; A4() or delay@r;A5() or ?a5; A5()

and A5() = do la5; A5() or delay@r;A6() or 2a6; A6()

and A6() = do la6:A6() or delay@r; A7() or 2a7; A7()

and A7() = do la7;A7() or delay@r;A8() or ?a8; A8()

and A8() = do 'a8;A8() or delay@r; A9() or 2a9; A9()

and A9() = do a9; A9() or delay@r;A10() or ?a10; A10()
and A10() = do la10; A10() or delay@r; A11() or ?all; Al1()
and A11() = do la11;A11() or delay@r; A12() or 2a12; A12()
and A12() = do la12; A12() or delay@r; A13() or ?al3; A13()
and A13() = la13;A13()

run 1000 of A1()



Or: beyond automata

a1 Luca Cardelli

w



Predator-Prey

gunt®
o* "eag,
< “l-

Herbivor ;- @breeding

?cull

leull

Carnivor

L ]
l..l..‘o

@mortality

Carnivar)

785 Herbivar
628
471
314
157
0

00070479 0.24341

Flotting: Live
Simulation: Halted. Tirme = 0.343410 {317 points at 0.0068489 simTimelsysTime)

directive sample 1.0 1000
directive plot Carnivor(); Herbivor()

val mortality = 100.0

val breeding = 300.0

val predation = 1.0

new cull @predation:chan()

let Herbivor() =
do delay@breeding; (Herbivor() | Herbivor())
or 2cull; ()

and Carnivor() =
do delay@mortality; ()
or leull; (Carnivor() | Carnivor())

run 100 of Herbivor()
run 100 of Carnivor()

An unbounded
state system!



Lotka-Volterra in Matlab

( directive sample 0.35 1000
- . ) . directive plot Carnivor(); Herbivor()
H T (H | H) @ > C(p),o m=100.0 —
_ . . val mortality = X
C - Tm’o @ Ic(p)' (C I C) b:3000 val breeding = 300.0
— val predation = 1.0
\#HOI #CO p_]:.l g new cull @predation:chan()
y— ‘ let Herbivor() =
( b \ #HO = ].OO do delay@breeding; (Herbivor() | Herbivor())
H N H + H #C _ 100 or 2cull; ()
C _)m O 0 and Carnivor() =
H +C o C+C do delay@mortality; ()
[H] _ #H /’Y or leull; (Carnivor() | Carnivor())
0~ 0
[C]O = #CO/'Y run 100 of Herbivor()

\ / run 100 of Carnivor()

([H]. = b[H]-pY[H][C] Carnivor) i
[C]* = -m[Cl+py[H][C] 200 Herbivord
[H]o = #Ho/y #00
\[C]o = #Coly 70 -

600 [

G600

500 S00

400 A

200 300 [

200 200

100

100
0 u] 50 100 150 200 250 300 350 400

Extinction / No extinction
Which one is the "right prediction”?




Biochemistry

Or: Interaction + Complexation

2P 2> T 2

Without complexation, many “finite" combinatorial
systems can only be expressed by an infinite
number of elementary chemical reactions.



Polyautomata

Two new operations

the current states S,T carry an
“associaton history"”

Association a@r,,..r, ; (n>2)
S T
?a¢S, lagT
k fresh

la ?a la
&, 0 @7 0 0
0

S+{(?a k)} T+{(!ak)}

Current States

Dissociation a@r,,..,r, ; (n>2)
S+H(?a k)} - T+{(!a k)}

iel.n-1

dissociation

°/'a vt ~._ %?a
e . %@r, 7

<'a K} (%, k>
&@r, &7a

*—___...._——

association

SPik

BFC
20 <

Bb{

1000xA;, 500xB;, 1, = 1.0, ;= 1.0

0.ons

Can be encoded in n-calculus (and SPiM)
by bound-output/bound-input.

directive sample 0.005
directive plot Af(); Ab(); Bf(); Bb()

valmu=10 vallam=10
new a@mu:chan(chan)

let Af() = (new n@lam:chan run la(n); Ab(n))
and Ab(n:chan) = In; Af()

let Bf() = ?a(n); Bb(n)
and Bb(n:chan) = ?n; Bf()

run (1000 of Af() | 500 of Bf())



(Compositional) Enzyme Kinetics

Po r
o RKE->R® E+S5 > ES—> E+P
r1

directive sample 0.05 1000

2000 " iy @ PN directive plot Ef(); Eb(); SF(): Sb(); P(

1500 Ebi valkl =10 val kml1=10 val k2 =100.0
1000 gLﬁﬂ 1000XEf, 2000><Sf ¢ new a@kl:chan(chan,chan)
500 ro=1.0,1,= 1.0, @ let PO = ()
un- 7 12=1000 let EF() =
(new n@km1:chan new m@k2:chan
run la(n,m); Eb(n,m))
a@r()/rllrz and Eb(n:chan,m:chan) =

do In; Ef() or Im; Ef()

let Sf() = 2a(n,m); Sb(n,m)
and Sb(n:chan,m:chan) =
do ?n; Sf() or ?m; P()

run (1000 of Ef() | 2000 of Sf())



Bidirectional

28> 28> T 2R

Polymerization
new c@p new stop@1.0 Monomer Free
Automaton

Afree T
lc(brht,); Apni(rht)) +
2c(Ift); Ape(Ift)

Apisr(ITT) =
lc(rht)); Apoung(Ift.rht))

&?a

Bound
right

Bound
left

Abr‘h‘r(rhT) il

?C(lfT); Abound(lfT,PhT) both Free

Apound(Ift,rht) = ?2stop

PRl

Polymerization is
iterated
complexation.

Polyautomata

Bound output lc(¥r) and input 2¢(l)
on automata transitions

to model complexation

Free




: —_ Actin-like
gz?_» % Poly/Depolymerization

1000

new c@y Monomer Free . Y
| Automaton a
Afree T 0 Ery
!C(VlfTA); Ab|f1-(|f1')) + 1000 monomers settle to
2¢(rht); Agpi(rht) Bound Bound 100 polymers of size =10 ==
left
Apier(IfT) =
It Afree +
?2c(rht); A, ung(Iftrht) Bound
both
Aprpi(rht) = °
?rht; Aspe.
Abound(lf."/rh-r) T

IH:T, Abr.h*(r'h'r)
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Compactness of Representation

- E, has 2n variables (nodes) and 2n terms (arcs). - The stoichiometric matrix has size 2n-n2 = 2n3,
- Ch(E,) has 2n species and n? reactions. - The ODEs have 2n variables and 2n(n+n) = 4n2 terms

(number of variables times number of accretions plus depletions when sums are distributed)

E; Ch(E;) StoichiometricMatrix(Ch(E;))

;Zf :: ;2((:));:21 22(: ::23,/10 _—:: >><<1 1:;/21 doo do1 do2 G0 Qi Gz G0 Q21 G
Xz = 20(:Xo Aozt Xg+Yz =" X+Yo e -t Lol 1«1 4l
Yo = lagy Y, Ao Xi+Yo =" Xo+Y, X; +1 +1 +1 -1 -1 -1

Yi=laeY, gt XYy o7 X+ X5 +1 +1 +#1 -1 -1 -
Y2 =lagyYo apt Xi+Y, o XYy Yy -1 o -1 o -1 o1

a0 XotYo 2" Xo+Yy

Qo XotY, o XY, Y, +1 -1 +1 -1 +1 -1

Aozt XtV o Xty Y, +1 -1 +1 -1 +1 -1
ODE(E;)
d[Xo)/dt = -r[Xol[Yol - PIXoI[Y1] - PIXoIY,1+ rIXaI[Yol + PIXo11Y:1] + PIX,1IY,]
d[X;1/dt = -r[X,1[Yo] - rIX;I0Y1] - rIXI0Y2] + PIXoY ol *+ rIXollY 1] + r[Xo1IY2]
d[X,1/dt = -r[X,][Yol - rIXaIY1] - PIXRIIYo0 + rIX I Yol + PIX Y, + rIX(IIY2] | = 2 @) () |
d[Yol/dt = -r[Xo][Yo] - rXi1[Yo] - rX2I[Yol + r[XoIIY21 + PIX Y21+ rIX,IY2]
d[Y,)/dt = -r[Xo][Y1] - PIXY4] - rIXGI0Y 1]+ rIXol[Yol + PIX Yol + r[X 1Y) () @

d[Y,1/dt = -r[XoI[Y2] - r[X 1Y 2] - rDXRIIY 2] + r[XoI[Y ] + r[XI0Y 4] + P[X,I1Y4] E;



Continuous vs. Discrete Kinetics

o

Ib

All with
1x Doping

?b

=C®@Ds

Matlab

oooooooooo _sys_generator

Mﬂ , SPiM
ﬂﬁ{w x200

VR \
LYAYSANS ; .
\
o LA W L DU

0 2 6 7 8 9 10
11000 sAMo | o000 il
eeony | fUg W U W N W 16000
BE00 12000
4400 3000
2200 000 XZOOOO

o A A ot

0 21108 0 10
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Conclusions

Compositional models
- Accurate (at the "appropriate” abstraction level).
- Manageable (so we can scale them up by composition).
- Executable (stochastic simulation).

Analysis techniques

- Mathematical techniques: Markov theory,
Chemical Master Equation, and Rate Equation

- Computing techniques: Abstraction and Refinement,
Model Checking, Causality Analysis.

Many lines of extensions
- Parametric processes for model factorization
- Ultimately, rich process-algebra based modeling languages.

Quantitative techniques
- Important in the "real sciences”.



