Molecules as Automata
 Representing Biochemical Systems as Collectives of Interacting Automata

Luca Cardelli

Microsoft Research
Linz, 2007-11-08
http://LucaCardelli.name

Cells Compute

- No survival without computation!
- Finding food
- Avoiding predators
- How do they compute?
- Unusual computational paradigms.
- Proteins: do they work like electronic circuits? or process algebra?
- Genes: what kind of software is that?
- Signaling networks
- Clearly "information processing"
- They are "just chemistry": molecule interactions
- But what are their principles and algorithms?
- Complex, higher-order interactions
- MAPKKK = MAP Kinase Kinase Kinase: that which operates on that which operates on that which operates on protein.

Stochastic Collectives

Stochastic Collectives

- "Collective":
- A large set of interacting finite state automata:
- Not quite language automata ("large set")
- Not quite cellular automata ("interacting" but not on a grid)
- Not quite process algebra ("collective behavior")
- Cf. multi-agent systems and swarm intelligence
- "Stochastic":
- Interactions have rates
- Not quite discrete (hundreds or thousands of components)

- Not quite continuous (non-trivial stochastic effects)
- Not quite hybrid (no "switching" between regimes)
- Very much like biochemistry
- Which is a large set of stochastically interacting molecules/proteins
- Are proteins finite state and subject to automata-like transitions?
- Let's say they are, at least because:
- Much of the knowledge being accumulated in Systems Biology is described as state transition diagrams [Kitano].

Towards Systems Biology

Epidermal Growth Factor Receptor Pathway Map

Incompe

Compositionality (NOT!)

Interacting Automata

Communicating automata: a graphical FSA-like notation for "finite state restriction-free π calculus processes". Interacting automata do no \dagger even exchange values on communication.
The stochastic version has rates on communications, and delays.

"Finite state" means: no composition or restriction inside recursion. Analyzable by standard Markovian techniques, by first computing the "product automaton" to obtain the underlying finite Markov transition system. [Buchholz]

Interactions in a Population

Interactions in a Population

Interactions in a Population

Interactions in a Population (2)

Interactions in a Population (2)

> All-B stable population

Nondeterministic population behavior ("multistability")

CTMC Semantics

CTMC

Chemistry vs. Automata

A process algebra (chemistry)

$$
\begin{array}{ll}
r: A+B \rightarrow_{k 1} C+D & \begin{array}{l}
\text { Does } A \\
\text { become } \\
\text { Cor D? }
\end{array} \\
s: C+D \rightarrow_{k 2} A+B
\end{array}
$$

The same "model"
Maps to
a CTMC

A different process algebra (automata)

Interaction oriented
1 line per
component

$$
\begin{aligned}
& A=!r_{k i} C \\
& C=? s_{k} ; A \\
& B=? r_{k i} ; D \\
& D=!s_{k 2} ; B
\end{aligned}
$$

A compositional graphical representation (precise, dynamic and modular) and the corresponding calculus.

Groupies and Celebrities

Groupies and Celebrities

Celebrity

(does not want to be like somebody else)

directive sample 1.01000	a@1.0
directive plot $A() ; B()$	b@1.0
new a@1.0:chan()	
new b@1.0:chan()	
let $A()=$ do !a; $A()$ or ? $a ; B()$	
and $B()=d o l b ; B()$ or ? ${ }^{\text {; }} A()$	
run 100 of $(A) \mid B())$	

A stochastic collective of celebrities:

Stable because as soon as a A finds itself in the majority, it is more likely to find somebody in the same state, and hence change, so the majority is weakened.

Groupie

(wants to be like somebody different)

```
directive sample 1.01000
a@1.0
directive plot \(A() ; B()\)
b@1.0
```

new a@1.0:chan()
new b@1.0:chan()
let $A()=$ do !a; $A()$ or ? $b ; B()$ and $B()=d o!b ; B()$ or ?a; $A()$
run 100 of $(A() \mid B())$

A stochastic collective of groupies:

Unstable because within an A majority, an A has difficulty finding a B to emulate, but the few B^{\prime} s have plenty of A 's to emulate, so the majority may switch to B. Leads to deadlock when everybody is in the same state and there is nobody different to emulate.

Both Together

A way to break the deadlocks: Groupies with just a few Celebrities

directive sample 10.0 directive plot Ag()$; \mathrm{Bg}() ; \mathrm{Ac}() ; \mathrm{Bc}()$

```
new a@1.0:chan()
```

new b@1.0:chan()
let $A c()=$ do !a; $A c()$ or ? $a ; B C()$
and $B C()=d o!b ; B c()$ or ? $b ; A c()$
let Ag()$=$ do !a; Ag() or ? $\mathrm{b} ; \mathrm{Bg}()$
and Bg()$=\mathrm{do}!\mathrm{b} ; \mathrm{Bg}()$ or ? $\mathrm{a} ; \mathrm{Ag}()$
run 1 of $A C()$
run 100 of $(\mathrm{Ag}() \mid \mathrm{Bg}())$
never deadlock

Regularity can arise not far from chaos

Hysteric Groupies

We can get more regular behavior from groupies if they "need more convincing", or "hysteresis" (history-dependence), to switch states.

(With doping to break deadlocks)
N.B.: It will not oscillate without doping (noise)

directive sample 10.01000 directive plot $G a() ; G b()$
new a@1.0:chan() new b@1.0:chan()
let $G a()=$ do !a; $G a()$ or ? $b ;$? $b ; G b()$ and $G b()=d o!b ; G b()$ or ? $a ; ? a ; G a()$
let $D a()=!a ; D a()$
and $\operatorname{Db}()=!b ; D b()$
run 100 of $(G a() \mid G b())$
run 1 of $(\mathrm{Da}() \mid \mathrm{Db}())$

Semantics of Collective Behavior

The Two Semantic Sides of Chemistry

These diagrams commute via appropriate maps.
L. Cardelli: "On Process Rate Semantics" (TCS)
L. Cardelli: "A Process Algebra Master Equation" (QEST'07)

Quantitative Process Semantics

Continuous-state Semantics (Generalized Mass Action)

Process Rate Equation
$d[X] / d t=\left(\Sigma(Y \in E) \operatorname{Accr}_{E}(Y, X) \cdot[Y]\right)-\operatorname{Depl}_{E}(X) \cdot[X] \quad$ for all $X \in E$

Discrete-state Semantics
(Chemical Master Equation)

Defined over the syntax of processes
Stochastic
Semantics
$\partial p r(p, t) / \partial t=\sum_{1 \in \mathcal{J}} a_{1}\left(p-v_{1}\right) \cdot \operatorname{pr}\left(p-v_{1}, t\right)-a_{1}(p) \cdot \operatorname{pr}(p, t) \quad$ for all $p \in \operatorname{States}(E)$
Process Master Equation

Stochastic Processes \& Discrete Chemistry

Chemical Reactions

$$
\begin{array}{llllll}
A & \rightarrow^{r} & B_{1}+\ldots+B_{n}(n \geq 0) & \text { Unary Reaction } & d[A] / d t=-r[A] & \text { Exponential Decay } \\
A_{1}+A_{2} \rightarrow \rightarrow^{r} & B_{1}+\ldots+B_{n}(n \geq 0) & \text { Hetero Reaction } & d\left[A_{i}\right] / d t=-r\left[A_{1}\right]\left[A_{2}\right] & \text { Mass Action Law } \\
A+A & \rightarrow^{r} & B_{1}+\ldots+B_{n}(n \geq 0) & \text { Homeo Reaction } & d[A] / d t=-2 r[A]^{2} & \text { Mass Action Law } \\
& & & & & \\
& & \text { (assuming } A \neq B_{i} \neq A_{j} \text { for all } i, j \text {) }
\end{array}
$$

No other reactions!

JOURNAL OF CHEMICAL PHYSICS

The chemical Langevin equation
Daniel T. Gillespie ${ }^{\mathrm{a})}$
Research Department, Code 4T4100D, Naval Air Warfare Center, China Lake, California 93555

Genuinely trimolecular reactions do not physically occur in dilute fluids with any appreciable frequency. Apparently trimolecular reactions in a fluid are usually the combined result of two bimolecular reactions and one monomolecular reaction, and involve an additional short-lived species.

Chapter IV: Chemical Kinetics
 [David A. Reckhow , CEE 572 Course]

... reactions may be either elementary or nonelementary. Elementary reactions are those reactions that occur exactly as they are written, without any intermediate steps. These reactions almost always involve just one or two reactants. ... Non-elementary reactions involve a series of two or more elementary reactions. Many complex environmental reactions are non-elementary. In general, reactions with an overall reaction order greater than two, or reactions with some non-integer reaction order are non-elementary.

THE COLLISION THEORY OF REACTION RATES

www.chemguide.co.uk
The chances of all this happening if your reaction needed a collision involving more than 2 particles are remote. All three (or more) particles would have to arrive at exactly the same point in space at the same time, with everything lined up exactly right, and having enough energy to react. That's not likely to happen very often!

Reactions have rates. Molecules do not have rates.

$$
A+B+C \rightarrow r D
$$

the measured " r " is an (imperfect) aggregate of e.g.:

$$
A+B \leftrightarrow A B
$$

Trimolecular reactions:

Enzymatic reactions:

$$
S \xrightarrow{E} P
$$

the " r " is given by Michaelis-Menten!
iggregate of e.g.: (approximated steady-state) laws:

$$
E+S \leftrightarrow E S
$$

$$
A B+C \rightarrow D
$$

$$
E S \rightarrow P+E
$$

Chemical Ground Form (CGF)

```
E::= 0 :X=M,E Reagents
M::= 0 \vdots ;:P\oplusM Molecules
P::= 0 : X|P Solutions
\pi::=\mp@subsup{\tau}{(r)}{}}\vdots?\mp@subsup{a}{(r)}{}\vdots!\mp@subsup{a}{(r)}{}\mathrm{ Actions (delay, input, output)
CGF ::= E,P
```

Reagents
Molecules
Solutions
Actions (delay, input, output)
Reagents plus Initial Conditions

A stochastic

 subset of CCS

 subset of CCS
 (no values, no restriction)

Interacting Automata + dynamic forking
(To translate chemistry to processes we need a bit more than interacting automata: we may have "+" on the right of \rightarrow, that is we may need "|" after π.)
\oplus is stochastic choice (vs. + for chemical reactions)
0 is the null solution ($P|0=0| P=P$)
and null molecule $(M \oplus 0=0 \oplus M=M)$
Each X in E is a distinct species
Each name a is assigned a fixed rate r : $a_{(r)}$

Ex: Interacting Automata
(= finite-control CGFs: they use "|" only in initial conditions):

From Reagents to Reactions (by example)

Interacting Automata	Discrete Chemistry
initial states $\mathrm{A}\|\mathrm{~A}\| \ldots \mid \mathrm{A}$	initial quantities $\# \mathrm{~A}_{0}$
$\text { (A). } @ \mathrm{r}$	$\mathrm{A} \rightarrow \mathrm{r} \mathrm{A}^{\prime}$
	$\mathrm{A}+\mathrm{B} \rightarrow{ }^{\text {r }} \mathrm{A}^{\prime}+\mathrm{B}^{\prime}$
	$\mathrm{A}+\mathrm{A} \rightarrow 2 \mathrm{r} \mathrm{A}^{\prime}+\mathrm{A}^{\prime \prime}$

From Reactions to Reagents (by example)

$\mathrm{v}_{1}: A+B \rightarrow \mathrm{k}_{1} C+C$	Interaction
$\mathrm{v}_{2}: A+C \rightarrow \mathrm{k}_{2} D$	Matrix
$\mathrm{v}_{3}: C \rightarrow k_{3} E+F$	
$\mathrm{v}_{4}: F+F \rightarrow \mathrm{k}_{4} B$	

1: Fill the matrix by columns:
Degradation reaction $v_{i}: ~ X \rightarrow k_{i} P_{i}$

$$
\text { add } \tau ; P_{i} \text { to }\left\langle X, v_{i}\right\rangle \text {. }
$$

Hetero reaction $v_{i}: X+Y \rightarrow k_{i} P_{i}$ add ? $? P_{i}$ to $\left\langle X, v_{i}\right\rangle$ and ! ! 0 to $\left\langle Y, v_{i}\right\rangle$ Homeo reaction $v_{i}: X+X \rightarrow k_{i} P_{i}$ add ? ? P_{i} and ! : 0 to $\left\langle X, v_{i}\right\rangle$

Half-rate for homeo reactions

Entangled vs Detangled

Entangled: Two reactions on one channel

We need a semantics of automata that identifies automata that have the "same chemistry". No process algebra equivalence is like this!

Detangled processes are in simple correspondence with chemistry.

Same Semantics

Could chemistry itself be that semantics?

No: different sets of reactions can have the same behavior!

Discrete-State Semantics

Discrete Semantics of Reactions

$$
\begin{aligned}
& A+B \rightarrow^{r} A+A \\
& A+B \rightarrow^{r} B+B \\
& A+B+B
\end{aligned}
$$

Discrete Semantics of Reagents

Discrete State Equivalence

- Def: m is equivalent CTMC's (isomorphic graphs with same rates).
- Thm: Em $\mathrm{Ch}(\mathrm{E})$
- Thm: C m $\mathrm{Pi}(C)$

- For each E there is an E^{\prime} m E that is detangled $\left(E^{\prime}=\operatorname{Pi}(C h(E))\right)$
- For each E in automata form there is an an $E^{\prime} m E$ that is detangled and in automata form ($E^{\prime}=$ Detangle(E)).

Process Algebra = Discrete Chemistry

This is enough to establish that the process algebra is really faithful to the chemistry.

But CTMC are not the "ultimate semantics" because there are still questions of when two different CTMCs are actually equivalent (e.g. "lumping").

The "ultimate semantics" of chemistry is the
 Chemical Master Equation (derivable from the Chapman-Kolmogorov equation of the CTMC).

Continuous-State

Semantics
 (short version)

The Gillespie ${ }^{(?)}$ Conversion

Discrete Chemistry	Continuous Chemistry	$\gamma=\mathrm{N}_{\mathrm{A}} \mathrm{V}$	$: \mathrm{M}^{-1}$
initial quantities $\# \mathrm{~A}_{0}$	initial concentrations $[\mathrm{A}]_{0}$ with $[\mathrm{A}]_{0}=\# \mathrm{~A}_{0} / \gamma$		
$\mathrm{A} \rightarrow \mathrm{r} \mathrm{A}^{\prime}$	$\mathrm{A} \rightarrow^{\mathrm{k}} \mathrm{A}^{\prime}$	with $\mathrm{k}=\mathrm{r}$	$: \mathrm{s}^{-1}$

From Processes to ODEs via Chemistry!

directive sample 0.031000
directive plot $A() ; B() ; C()$
new a@1.0:chan new b@1.0:chan new c@1.0:chan let $A()=\operatorname{do}!a ; A()$ or ? $b ; B()$
and $B()=d o!b ; B()$ or ?c; $C()$
and $C()=d o!c ; C()$ or ? $a ; A()$
run (900 of $A() \mid 500$ of $B() \mid 100$ of $C())$

$$
\begin{aligned}
& A=!a_{(s)} ; A \oplus ? b_{(s)} ; B \\
& B=!b_{(s)} ; B \oplus ? c_{(s)} ; C \\
& C=!c_{(s)} ; C \oplus ? a_{(s)} ; A
\end{aligned}
$$

$A+B \rightarrow{ }^{s} B+B$
$B+C \rightarrow{ }^{s} C+C$ $C+A \rightarrow{ }^{5} A+A$
$d[A] / d t=-s[A][B]+s[C][A]$ $d[B] / d t=-s[B][C]+s[A][B]$ $d[C] / d t=-s[C][A]+s[B][C]$

Processes Rate Equation

Process Rate Equation for Reagents E in volume γ

$$
d[X] / d t=\left(\Sigma(Y \in E) \underset{\text { for all } X \in E}{\left.\operatorname{Accr}_{E}(Y, X) \cdot[Y]\right)-\operatorname{Dep}_{E}(X) \cdot[X]}\right.
$$

"The change in process concentration (!!) for X at time \dagger is: the sum over all possible (kinds of) processes Y of: the concentration at time t of y times the accretion from Y to X
minus the concentration at time t of X

times the depletion of X to some other $Y^{\prime \prime}$
$\operatorname{Depl}_{E}(X)=$

$$
\begin{aligned}
& \Sigma\left(i: E . X . i=\tau_{(r)} ; P\right) r+ \\
& \Sigma\left(i: E . X . i=? a_{(r)} ; P\right) r \gamma \cdot \operatorname{OutsOn}_{E}(a)+ \\
& \Sigma\left(i: E . X . i=!a_{(r)} ; P\right) r \gamma \cdot \operatorname{InsOn}_{E}(a)
\end{aligned}
$$

$\operatorname{Accr}_{E}(Y, X)=$

$$
\Sigma\left(\mathrm{i}: ~ E . Y . i=\tau_{(r)}: P\right) \# X(P) \cdot r+
$$

$$
\Sigma\left(i: E . Y . i=? a_{(r)} ; P\right) \# X(P) \cdot r \gamma \cdot O_{1} \operatorname{Outs}_{E}(a)+
$$

$$
\begin{aligned}
& X=? a_{(r)} ; 0 \\
& Y=!a_{(r)} ; 0
\end{aligned} \rightarrow \begin{aligned}
& d[X] / d t=-r \gamma[X][Y] \\
& d[Y] / d t=-r \gamma[X][Y]
\end{aligned}
$$

$$
\Sigma\left(i: E . Y . i=!a_{(r)} ; P\right) \# X(P) \cdot r \gamma \cdot \operatorname{InsOn}_{E}(a)
$$

InsOn $n_{E}(a)=\Sigma(Y \in E) \#\left\{Y . i \mid E . Y . i=? a_{(r)} ; P\right\} \cdot[Y]$

$$
X=? a_{(r)} ; 0 \rightarrow d[X] / d t=-2 r \gamma[X]^{2}
$$ OutsOn $_{E}(a)=\Sigma(Y \in E) \#\left\{Y . i \mid E . Y . i=!a_{(r)}: P\right\} \cdot[Y]$

$$
X=\tau_{(r)} ; 0 \rightarrow d[X] / d t=-r[X]
$$

$$
\oplus!a_{(r)} ; 0
$$

Continuous State Equivalence

- Def: \approx is equivalence of polynomials over the field of reals.
- Thm: $E \approx \operatorname{Cont}(\operatorname{Ch}(E))$
- Thm: Cont $(C) \approx \operatorname{Pi}(C)$

- For each E there is an $E^{\prime} \approx E$ that is detangled $\left(E^{\prime}=\operatorname{Pi}(C h(E))\right)$
- For each E in automata form there is an an $E^{\prime} \approx E$ that is detangled and in automata form ($E^{\prime}=\operatorname{Detangle}(E)$).

Model Compactness

Entangled vs detangled

n^{2} Scaling Problems

- E_{n} has $2 n$ variables (nodes) and $2 n$ terms (arcs).
- Ch(E_{n}) has $2 n$ species and n^{2} reactions.
- The stoichiometric matrix has size $2 n \cdot n^{2}=2 n^{3}$.
- The ODEs have $2 n$ variables and $2 n(n+n)=4 n^{2}$ terms (number of variables times number of accretions plus depletions when sums are distributed)
E_{3}
$X_{0}=? a_{(r)}: X_{1}$
$X_{1}=? a_{(r)}: X_{2}$
$X_{2}=? a_{(r)}: X_{0}$
$Y_{0}=!a_{(r)}: Y_{1}$
$Y_{1}=!a_{(r)}: Y_{2}$
$Y_{2}=!a_{(r)}: Y_{0}$

$$
\begin{aligned}
& \operatorname{Ch}\left(E_{3}\right) \\
& a_{00}: X_{0}+Y_{0} \rightarrow r X_{1}+Y_{1} \\
& a_{01}: X_{0}+Y_{1} \rightarrow{ }^{r} X_{1}+Y_{2} \\
& a_{02}: X_{0}+Y_{2} \rightarrow r X_{1}+Y_{0} \\
& a_{10}: X_{1}+Y_{0} \rightarrow r^{r} X_{2}+Y_{1} \\
& a_{11}: X_{1}+Y_{1} \rightarrow{ }^{r} X_{2}+Y_{2} \\
& a_{12}: X_{1}+Y_{2} \rightarrow^{r} X_{2}+Y_{0} \\
& a_{20}: X_{2}+Y_{0} \rightarrow{ }^{r} X_{0}+Y_{1} \\
& a_{21}: X_{2}+Y_{1} \rightarrow r^{r} X_{0}+Y_{2} \\
& a_{22}: X_{2}+Y_{2} \rightarrow r X_{0}+Y_{0}
\end{aligned}
$$

StoichiometricMatrix $\left(\operatorname{Ch}\left(E_{3}\right)\right)$

	a_{00}	a_{01}	a_{02}	a_{10}	a_{11}	a_{12}	a_{20}	a_{21}	a_{22}
X_{0}	-1	-1	-1				+1	+1	+1
x_{1}	+1	+1	+1	-1	-1	-1			
X_{2}				+1	+1	+1	-1	-1	-1
y_{0}	-1		+1	-1		+1	-1		+1
y_{1}	+1	-1		+1	-1		+1	-1	
y_{2}		+1	-1		+1	-1		+1	-1

$\operatorname{ODE}\left(E_{3}\right)$

$d\left[X_{0}\right] / d t=-r\left[X_{0}\right]\left[Y_{0}\right]-r\left[X_{0}\right]\left[Y_{1}\right]-r\left[X_{0}\right]\left[Y_{2}\right]+r\left[X_{2}\right]\left[Y_{0}\right]+r\left[X_{2}\right]\left[Y_{1}\right]+r\left[X_{2}\right]\left[Y_{2}\right]$ $d\left[X_{1}\right] / d t=-r\left[X_{1}\right]\left[Y_{0}\right]-r\left[X_{1}\right]\left[Y_{1}\right]-r\left[X_{1}\right]\left[Y_{2}\right]+r\left[X_{0}\right]\left[Y_{0}\right]+r\left[X_{0}\right]\left[Y_{1}\right]+r\left[X_{0}\right]\left[Y_{2}\right]$ $d\left[X_{2}\right] / d t=-r\left[X_{2}\right]\left[Y_{0}\right]-r\left[X_{2}\right]\left[Y_{1}\right]-r\left[X_{2}\right]\left[Y_{2}\right]+r\left[X_{1}\right]\left[Y_{0}\right]+r\left[X_{1}\right]\left[Y_{1}\right]+r\left[X_{1}\right]\left[Y_{2}\right]$ $d\left[Y_{0}\right] / d t=-r\left[X_{0}\right]\left[Y_{0}\right]-r\left[X_{1}\right]\left[Y_{0}\right]-r\left[X_{2}\right]\left[Y_{0}\right]+r\left[X_{0}\right]\left[Y_{2}\right]+r\left[X_{1}\right]\left[Y_{2}\right]+r\left[X_{2}\right]\left[Y_{2}\right]$ $d\left[Y_{1}\right] / d t=-r\left[X_{0}\right]\left[Y_{1}\right]-r\left[X_{1}\right]\left[Y_{1}\right]-r\left[X_{2}\right]\left[Y_{1}\right]+r\left[X_{0}\right]\left[Y_{0}\right]+r\left[X_{1}\right]\left[Y_{0}\right]+r\left[X_{2}\right]\left[Y_{0}\right]$ $d\left[Y_{2}\right] / d t=-r\left[X_{0}\right]\left[Y_{2}\right]-r\left[X_{1}\right]\left[Y_{2}\right]-r\left[X_{2}\right]\left[Y_{2}\right]+r\left[X_{0}\right]\left[Y_{1}\right]+r\left[X_{1}\right]\left[Y_{1}\right]+r\left[X_{2}\right]\left[Y_{1}\right]$

GMA $\neq C M E$

$$
\mathrm{A}+\mathrm{A} \rightarrow{ }^{2 \mathrm{r}} \mathrm{~A} \quad=? \quad \mathrm{~A}+\mathrm{A} \rightarrow^{\mathrm{r}} \mathbf{0}
$$

... as Automata

Continuous vs. Discrete Groupies

			(a) ! b All with Ix Doping
			Matlab
			$\begin{array}{r} \text { SPiM } \\ \times 200 \\ \times 20000 \end{array}$

And Yet It Moves

R.Blossey, L.Cardelli, A.Phillips:

Compositionality, Stochasticity and Cooperativity in Dynamic Models of Gene Regulation (HFSP Journal)

The Repressilator

A fine stochastic oscillator over a wide range of parameters.

la
lb
lc

Simulation: Time $=53810.179900$ (1070 points at 34439 simTime/sysTime and halted)

Parametric representation
$\operatorname{Neg}(a, b)=? a ; \operatorname{Inh}(a, b) \oplus \tau_{\varepsilon^{\prime}}(\operatorname{Tr}(b) \mid \operatorname{Neg}(a, b))$
$\operatorname{Inh}(a, b)=\tau_{\eta} ; \operatorname{Neg}(a, b)$
$\operatorname{Tr}(b)=!b ; \operatorname{Tr}(b) \oplus \tau_{\gamma} ; 0$
$\operatorname{Neg}\left(x_{(r)}, y_{(r)}\right)\left|\operatorname{Neg}\left(y_{(r)}, z_{(r)}\right)\right| \operatorname{Neg}\left(z_{(r)}, x_{(r)}\right)$

Neg/x,y $\rightarrow^{\varepsilon}$ Tr/y + Neg/x,y
Neg/y,z $\rightarrow^{\varepsilon}$ Tr/z + Neg/y, z
Neg/z, $x \rightarrow{ }^{\varepsilon} \operatorname{Tr} / x+$ Neg/z, x
$\mathrm{Tr} / \mathrm{x}+\mathrm{Neg} / \mathrm{x}, \mathrm{y} \rightarrow{ }^{\mathrm{r}} \mathrm{Tr} / \mathrm{x}+\mathrm{Inh} / \mathrm{x}, \mathrm{y}$
Tr/y + Neg/y, $z \rightarrow{ }^{r} \operatorname{Tr} / y+\operatorname{Inh} / y, z$
Tr/z + Neg/z, $x \rightarrow{ }^{r}$ Tr/z + Inh/z, x
$\operatorname{Inh} / x, y \rightarrow \eta$ Neg/x,y
Inh/y,z $\rightarrow \eta$ Neg/y,z
$\operatorname{Inh} / z, x \rightarrow \eta$ Neg/z, x
$\mathrm{Tr} / x \rightarrow{ }^{2} 0$
$\mathrm{Tr} / \mathrm{y} \rightarrow \mathrm{r} 0$
$\mathrm{Tr} / \mathrm{z} \rightarrow \mathrm{r} 0$
$\mathrm{Neg} / x, y+\mathrm{Neg} / \mathrm{y}, \mathrm{z}+\mathrm{Neg} / z, x$

simplifying (N is the quantity of each of the 3 gates)
$d[$ Neg $/ x, y] / d t=\eta N-(\eta+r[T r / x])[N e g / x, y]$ $d[N e g / y, z] / d t=\eta N-(\eta+r[T r / y])[N e g / y, z]$ $d[\mathrm{Neg} / \mathrm{z}, \mathrm{x}] / \mathrm{d} \dagger=\eta \mathrm{N}-(\eta+r[\mathrm{Tr} / \mathrm{z}])[\mathrm{Neg} / \mathrm{z}, \mathrm{x}]$ $\mathrm{d}[\mathrm{Tr} / x] / \mathrm{d} t=\varepsilon[\mathrm{Neg} / z, x]-\gamma[\mathrm{Tr} / x]$
$\mathrm{d}[\mathrm{Tr} / \mathrm{y}] / \mathrm{d} t=\varepsilon[\mathrm{Neg} / \mathrm{x}, \mathrm{y}]-\gamma[\operatorname{Tr} / \mathrm{y}]$
$\mathrm{d}[\mathrm{Tr} / \mathrm{z}] / \mathrm{d} t=\varepsilon[\mathrm{Neg} / \mathrm{y}, \mathrm{z}]-\gamma[\mathrm{Tr} / \mathrm{z}]$

Analytically not an oscillator!

Matlab

Conclusions

Conclusions

- Compositional models
- Accurate (at the "appropriate" abstraction level).
- Manageable (so we can scale them up by composition).
- Executable (stochastic simulation).
- Analysis techniques
- Mathematical techniques: Markov theory, Chemical Master Equation, and Rate Equation
- Computing techniques: Abstraction and Refinement, Model Checking, Causality Analysis.
- Many lines of extensions
- Parametric processes for model factorization
- Polyautomata for Bio-Chemistry: complexation and polymerization
- Ultimately, rich process-algebra based modeling languages.
- Quantitative techniques
- Important in the "real sciences".

