
Luca Cardelli

Microsoft Research

ECOOP 2007
Dahl-Nygaard Senior Prize

2007-08-02

http://LucaCardelli.name

An Accidental
Simula User

L
u
c
a
 C

a
rd

e
lli

Abstract

● It was a simple choice, really, on an IBM 370 in the 70’s, between APL, Fortran, Lisp 1.5,
PL/1, COBOL, and Simula’67. Nothing could come close to Simula’s combination of strong
typing, garbage collection, and proper string processing. Separate compilation (prefix
classes) and coroutines were nice bonuses. And then there were these ... “objects” but,
well, nothing is perfect. Hot topics in those days were the freshly invented denotational
semantics (which Simula didn’t have), formal type systems (which objects didn’t have),
and abstract data types (which seemed to have confusingly little to do with classes).
Still, Simula was the obvious choice to get something done comfortably because, after
all, it was an improved Algol. It even supported the functional programming feature of
call-by-name. So, it became my first favorite language, for every reason other than it
being object-oriented.

● The story I am going to tell is the very, very slow realization that Simula was the
embodiment of a radically different philosophy of programming, and the gradual and
difficult efforts to reconcile that philosophy with the formal methods that were being
developed for procedural and functional programming. Along the way, domain theory
helped rather unexpectedly, at least for a while. Type theory had to be recast for the
task at hand. Landin’s lambda-reductionism had to be partially abandoned. Always, there
seemed to be a deep fundamental mismatch between objects and procedures, well
described by Reynolds, that made any unification impossibly complicated. But in the end,
both object-oriented and procedural programming have benefited from the clash of
cultures. And the story is far from over yet, as witnessed by the still blooming area of
program verification for both procedural and object-oriented languages.

2007-08-02 2

L
u
c
a
 C

a
rd

e
lli

Outline

● I am under no pressure to present new results
– (I understand.)

● Hence, a personal perspective:
– How did I get here?

– How did Ole-Johan Dahl and Kristen Nygaard influence my work?

● Only two things really marked me as an undergraduate:
– -calculus

– Simula 67

2007-08-02 3

L
u
c
a
 C

a
rd

e
lli

I: Functions

2007-08-02 4

L
u
c
a
 C

a
rd

e
lli

Things I Learned in Pisa

● Functional Programming
– -calculus, Scheme, abstract machines, program transformations,

denotation semantics, etc. etc.

● “Structured Programming” book [Dahl, Dijkstra, Hoare] (1972)

– Dijkstra: “Structured Programming” (nested program structures)

– Hoare: “Data structuring” (data types and type constructors)

– Dahl & Hoare: “Hierarchical Program Structures” (Simula 67):

●“A procedure which is capable of giving rise to block instances which
survive its call will be known as a class, and the instances will be known
as objects of that class” ... “Any variables or procedures declared local
to the class body are called attributes of that class”.

●“Concatenation [subclassing] is an operation defined between two
classes A and B, or a class A and a block C, and results in the formation
of a new class or block. Concatenation consists in a merging of the
attributes of both components, and the composition or their actions.”
Note: “this” is used in examples but never discussed.

2007-08-02 5

L
u
c
a
 C

a
rd

e
lli

Things I Used in Pisa

● I wanted to use Algol’68!
– State of the art (way overdesigned) algorithmic language.

– But luckily, as it turned out, it was not available on IBM machines.

● But Simula’67 was available (on IBM 370)
– Other languages I tried: Fortran, APL, Lisp 1.5, PL/1. Yucc! gross!

– So, I did most of my programming in Simula 67,
mostly because of garbage collection and strong typing and strings!

– But I did not buy the o-o propaganda; I just exploited it:
● to obtain heap-allocated, garbage collected, data structures

● for separate compilation (via a rather weird mode of class prefixing)

– NO (reasonable) CHOICE BUT SIMULA

● Conversely, John Reynolds:
– Wanted to use Simula but it was too expensive,

and had to use Algol!

2007-08-02

SIMULA Always First! Ole-Johan Dahl

(left) and Kristen Nygaard, 1982.

Courtesy of Rune Myhre, Dagbladet.

In the late sixties and the early seventies there were four main implementations of Simula:

UNIVAC 1100 by NCC

System/360 and System/370 by Swedish Research Institute for National Defence (FOA)

CDC 3000 by University of Oslo's Joint Computer Installation at Kjeller

TOPS-10 by ENEA AB

[Wikipedia]

http://en.wikipedia.org/wiki/Image:Algol68RevisedReportCover.jpg
http://en.wikipedia.org/wiki/UNIVAC
http://en.wikipedia.org/wiki/Norwegian_Computing_Center
http://en.wikipedia.org/wiki/System/360
http://en.wikipedia.org/wiki/System/370
http://en.wikipedia.org/wiki/CDC_3000
http://en.wikipedia.org/wiki/University_of_Oslo
http://en.wikipedia.org/wiki/TOPS-10
http://en.wikipedia.org/wiki/TOPS-10
http://en.wikipedia.org/wiki/TOPS-10
http://en.wikipedia.org/wiki/ENEA_AB

L
u
c
a
 C

a
rd

e
lli

The Goals of the Times

● To categorize all program constructions
– And translate them to -calculus [Landin]

– or give them denotational semantics [Scott-Strachey]

– or something (which turned out later to be Operational Semantics [Plotkin]).

● My Master Thesis
– On denotational semantics of programming languages

– Tried to capture “all” program concepts in a single language

– Mildly influenced by Simula:
● Had a section on classes and subtyping by explicit injections.

● But I realized there was a lot more to it.

2007-08-02 7

L
u
c
a
 C

a
rd

e
lli

Things I Learned in Edinburgh

● Polymorphism
– “A function that belongs to many types”. Hmm... familiar??

● ML
– Finally, a nice programming language!

– No objects, and not even records (just binary products).

– Interactive (in a way more “object-oriented” than batch Simula).

● Pascal
– Finally, a nice implementation language! (To implement ML!)

– No objects, but nice records and enumeration types.

– So began a slippery slope away from functional languages.

● From Gordon Plotkin:
– Contravariance from Category Theory

– Product/sum duality (records/variants) from Category Theory

– Operational semantics (on a slippery slope away from denotational)

● From Robin Milner (and David Park):
– Calculus of Communicating Systems (how not to be a slave of -calculus)

– Bisimulation (later, unlikely, useful for recursive types)
2007-08-02 8

L
u
c
a
 C

a
rd

e
lli

But Still Bugged by Simula

● ML extensions
– Added records and variants to ML.

– Tried to add record subtyping by type
inference, but gave up.
(This later became a little industry.)

● Galileo, with Albano and Orsini
(and Ghelli as a student) back in Pisa.
– A DataBase programming language

(with records and variants)

– With ML-inspired typing and aggregation/bulk
constructs (map/filter).

– With Simula-inspired subtyping (for OODB).

– Ghelli later made important contributions to
the theory of subtyping, providing the first
example of undecidability of F<:.

2007-08-02 9

Contemporary
slides

L
u
c
a
 C

a
rd

e
lli

A Gaping Gap in the Literature

● Where was the Theory of Object-Oriented Languages ?!?
– Logic languages: --> Predicate logic

– Database languages: --> Relational calculus

– Functional languages: --> -calculus

– Imperative languages: --> Hoare Logic / Weakest Preconditions

– Modular languages: --> Algebraic semantics

– Object-oriented languages: --> ???

● Instead, a clash of cultures:
– “Everything is an object” (Smalltalk)

– “Everything is a function” (-calculus)

– The latter had plenty of mathematical justification.

2007-08-02 10

L
u
c
a
 C

a
rd

e
lli

What Simula did not Have (or Need?)

● No denotational semantics
– Not necessarily useful in itself

but, e.g. useful to check that the type rules are correct.

● No formal type system
– Simula was believed to be a safe language, like ML (and unlike

Pascal), but (a subset of) ML had a formal type system and a
proof of type safety via denotational semantics.

● No abstract data types, or modules
– Are classes the same as abstract data types [Liskov]?

– Are classes the same as modules [Parnas]?

– The Norwegian Computing Center approach to software
architecture was widely misunderstood.

● ... not to mention Smalltalk
– Which did not even have a syntax, let alone a semantics!!

– But had Super inheritance instead of Simula’s Inner, indicating
the need of a whole framework in which to study inheritance.

2007-08-02 11
August 1981

L
u
c
a
 C

a
rd

e
lli

But O-O too is “Higher-Order”

● Closer to functional programming than to imperative programming:
– Need first-class function spaces (to model methods)

– Need recursive types (to model self)

– Need higher-order logics (to model class invariants)

● My Simula vs ML experience: O-o is a lot more “heavywheight”
– Lots of work to set up simple inductive data types

● A dummy virtual superclass with lots of subclasses that never inherit.

– Lots of work to set up simple first-class functions
● “Anonymous delegates” in C#.

● But is any of that essential or incidental?
– Can we do functional programming in o-o?

– Can we do o-o in functional programming?

● So many quasi-connections
– Are polymorphism for objects and for functions related?

– The Reynolds duality: extending code by adding functions or by adding objects.

2007-08-02 12

L
u
c
a
 C

a
rd

e
lli

A slide from a much later time
(apparently edited by Kim Bruce)

What’s “Important” about O-O?

● To build a theory you have to start simple
– What are the simplest features that are unique to o-o?

● Simula had lots of interesting features. My pick was:
– #1 subtyping (as a foundation for class hierarchies)

– #2 this/self (as a foundation for inheritance)

● Hence, question #1 (at the time): What is subtyping?
– Mathematicians, oddly believe that:

● A function space is a subset of a cartesian product
(Uh? functions subtypes of records? we don’t want that!)

– Conversely mathematicians, oddly, believe that:
● The set of 3-tuples is not a subset of the set of 2-tuples.

(Uh? but we want that!)

– Dahl & Hoare clearly stated that
● “Any object of a subclass also belongs to the prefix class”

– So, what is subtyping?
● <silence>

● In the mist of that confusion, I moved to Bell Labs...
2007-08-02 13

L
u
c
a
 C

a
rd

e
lli

II: Records

2007-08-02 14

L
u
c
a
 C

a
rd

e
lli

Things I Learned at Bell Labs

● Systems programming (Unix group)
– ML not good “as such” for systems programming

● Pointer arithmetic? What’s that??

– Using C (yucc! gross! but at least you can see the metal)
● Had a pretty careful definition

– But never C++ (mostly out of induced disgust with C)
● N.B.: Bjorne just down the corridor.

● The rumor was that he was trying to turn C into Simula.

● The MacQueen-Sethi-Plotkin Ideal Model
– In early denotational models, types were “retracts” of the

universal value set, which did not support subtyping.

– The Ideal Model was designed as a semantics for polymorphism,
which was modeled as a “big intersection” of domains.

– So, it accidentally provided a subset-based denotational semantics
of subtyping (via non-empty intersections between domains)

– Therefore enabling:
● records as functions (well-known lisp hack)

● record types as domains (label-dependent function types)

● record subtyping as set inclusion of function spaces

2007-08-02 15

Systems Programming in C

L
u
c
a
 C

a
rd

e
lli

Semantics of Subtyping

● “A Semantics of Multiple Inheritance” paper
– Subtyping for Record, Variant, Function types

– It introduced “objects as recursive records” to
model self/this.

– The contravariance rule was introduced here.

– The (later named) subsumption rule was a
theorem in the system. (Ait-Kaci used that
term in a different context.) Any value of a
subtype also belongs to the supertype.

● Historical Footnotes
– “Inheritance” here means “Subtyping”: the famous paper

“Inheritance is not subtyping” was written much later!

– It was a “semantics”, but it allowed me to justify the type
rules, which were the real focus of the paper.

– A question by Pavel Curtis about this paper led to bounded
quantification.

2007-08-02 16

Hence a “pair” record
could belong to a
“singleton” type.

L
u
c
a
 C

a
rd

e
lli

● At my first OOPSLA
– I was looking at an exhibition booth about a new

French o-o programming language. A rather
animated guy looked at my badge and said
something like:
“Luca Cardelli: Ah! Contravariance! I read your
paper. I know I have a problem, but I promise
you, I’ll fix it, I’ll fix it”

– I had no idea what he was talking about, but I
wrote his name on a piece of paper: Bertrand
Meyer.

– I am still waiting to hear back from him.

● Contravariance is a fact about functions
– But not necessarily about objects/methods

– Some languages were unsound because they
failed to adopt it

– But there are many different ways to deploy it
in a type system

Contravariance Becomes (Un)Popular

2007-08-02 17

L
u
c
a
 C

a
rd

e
lli

Extending Subtyping to Quantifiers (SOL)

● After that, I had a “mission”
– To boldly go and investigate subtyping for all

type constructors.

– E.g. to mix ML (polymorphism) with Simula
(subtyping).

– Next in line after records, variants, and
functions were...

● Type quantifiers
– Universal quantifiers captured polymorphism

[Reynolds]

– Existential quantifiers just shown to capture
data abstraction [Mitchell-Plotkin]

– Both together give you modules [MacQueen]

– Bounded Quantification was born (“On
understanding Types, Data Abstraction, and
Polymorphism” with Peter Wegner).

– N.B. this was a “survey” article. Appendix with
type rules added at the last minute, with a
restricted bounded quantification rule.

2007-08-02 18

L
u
c
a
 C

a
rd

e
lli

● Distributed O-O Programming
– Network Objects

● Seriously studying Type Theory
– Denotational semantics was a start

– Type theory was the real theory of types
● Martin-Loef (dependent types)

● Girard (second-order -calculus)

● Reynolds (polymorphism and data abstraction)

– Proper contravariant rule for quantifiers

● Around this time
– I invented the (ASCII!!) subtyping symbol “<:”

– Named the “subsumption” rule.

Things I Learned at DEC

2007-08-02 19

L
u
c
a
 C

a
rd

e
lli

On A Long-Term Quest

● Quest (Quantifiers & subtypes)
– Setting out to design a language that would unify functional and object-

oriented programming through subtyping.

2007-08-02 20

L
u
c
a
 C

a
rd

e
lli

System F<: (Pure Bounded Quantification)

● While I was “moving to higher kinds”
– POPL paper on Power Types

● Pierre-Louis Curien and Giorgio Ghelli
were simplifying SOL
– Wanted a simpler system to study: F<:

– No records: just functions.

– They thought they were loosing power by
cutting it down.

2007-08-02 21

L
u
c
a
 C

a
rd

e
lli

System F<: was Enough

● But nothing was lost!
– I showed how to encode record typing and

subtyping in pure F<:.

– That established F<: as a “core system” to
study subtyping.

– Much work followed on that basis [Cook,
Mitchell et. al.: F-bounded quantification]
[Pierce] Etc.

2007-08-02 22

L
u
c
a
 C

a
rd

e
lli

Finally: Subtyping Recursive Types

● Back to the “mission”: Recursive Types
– They should be necessary (?!?) to model Self.

– Hence what are their subtyping rules?

● The Amber Rule
– At Bell Labs, coding up the typechecker for

Amber (a first-order language with subtyping) I
arrived at the case for subtyping recursive
types, and went: “uh-oh... now what?”.

– I made up a rule that seemed to work. It was
inspired by a proof rule for bisimulation in CCS.

● Now, with Amadio, we finally proved its
soundness and completeness
– Later several people [Palsberg] studied its

typechecking efficiency.

– And still later it was set on proper coinductive
grounds [Pierce], in the original bisimulation
spirit.

2007-08-02 23

L
u
c
a
 C

a
rd

e
lli

III: Real Languages

2007-08-02 24

L
u
c
a
 C

a
rd

e
lli

Yes, But What About O-O?

● At DEC I got involved in the design of Modula-3
– Industrial-strength Modula-2 for systems (o-o) programming

2007-08-02 25

L
u
c
a
 C

a
rd

e
lli

Particularly, Modula-3 Types
● Driven by extensive discussions on

the “value set” rule (subsumption)
and when it was ok to use it.

● Innovating in “partial revelation”
types (somewhat akin to bounded
existentials).

● Reuniting Simula67 and Algol68 !

2007-08-02 26

L
u
c
a
 C

a
rd

e
lli

Signs of Trouble

● Mission accomplished!
– We had subtyping rules for all

(classical) type constructors.

● But lots more was now happening
– “Inheritance is not Subtyping”

[Cook Hill Canning ’90]

– POPL’92 Tutorial: puzzling out
recursive ColorPoints.

– Polymorphic Row Variables [Wand]

– Operations on Records [with Mitchell] to
find a way towards objects.

● Basically, something wasn’t clicking.

2007-08-02 27

L
u
c
a
 C

a
rd

e
lli

Something Fishy About Self

● In the 80’s...
– We had been focusing on “getting the foundations right”.

– But once we got those, we still had difficulties modeling objects and
classes.

● By the early 90’s...
– The typed semantics of objects and classes was a widespread and

increasingly baroque activity.

– ColorPoints became the factorial of O-O Type Theory.

– Handling “self” in a typed calculus was still a major puzzle.

● Reductionism in trouble
– We could reduce untyped objects to untyped -calculus in many ways.

– We were hoping that reducing object types to typed -calculus would help
understand the type rules for objects and classes.

– But that approach, despite great activity and great progress [FOOL
workshops], was becoming “heavy”.

2007-08-02 28

L
u
c
a
 C

a
rd

e
lli

Meanwhile, back in the Real World

● Apparently...
– I was not the only one to suspect that I

was getting lost in type theory

– My bosses thought so as well:
“Why don’t you do something useful?”

● Ok, I will do something useful
– It will have objects (objects are useful)

– It will have no types whatsoever (types are not useful)

2007-08-02 29

L
u
c
a
 C

a
rd

e
lli

Obliq

● An object-based language
– (I was still scared of classes.)

– For distributed (LAN) programming.

– A scripting language to complement Modula-3.

– Using the -calculus notion of lexical scoping
to manage network objects.

● Born out of schizophrenia
– Strikingly similar to the object calculus (done at the same time). But:

●I refused to give semantics or type theory to Obliq (others did).

●I refused to present Obliq as an implementation of the object calculus.

●Because this was my “useful” work. Not to be confused!

– “Most Influential POPL Paper Award” 2005 (for 1995)

2007-08-02 30

L
u
c
a
 C

a
rd

e
lli

IV: Objects

2007-08-02 31

L
u
c
a
 C

a
rd

e
lli

A Break with Tradition

● Enough already with -calculus!
– Martin Abadi had invented “Baby Modula-3”, as

a simplified o-o language to study.

– We had a conversation about the pain of
encodings objects in -calculus and we went:

– This is too hard. Why don’t we just invent an
object calculus, with its own rules, the rules it
should have, and then later we figure out how
it relates to lambda-calculus?

– We were inspired by -calculus in the sense
that there was more out there than -calculus!

● The Object Calculus
– Within ½ hour, as I recall, we had the original

untyped object calculus on the whiteboard.

– Very soon we figure out how to encode -
calculus in it, and then we knew we “had it”.

– Despite the credo of “everything is an object”
nobody had bothered to show that “functions
are objects too”.

2007-08-02 32

L
u
c
a
 C

a
rd

e
lli

A Theory of Objects

● Rapid progress [with Martin Abadi]
– 1992 POPL Tutorial: lost in type theory.

– 1994 ESOP: “A Theory of Primitive Objects” (first of many papers)

– 1996: Book “A Theory of Objects”

2007-08-02 33

A very early web search
(1995!) revealed that
there were no other
“theories of objects”,
except in philosophy.

L
u
c
a
 C

a
rd

e
lli

... the problem in hindsight

2007-08-02 34

Ramesh Viswanathan
(then a student) found
it after we told him it
could not be done!

L
u
c
a
 C

a
rd

e
lli

● Finally, covariance of Self Types
– By combining bounded Existantials

● Which are naturally covariant

– With recursive subtypes
● I knew they would be needed someday!

– To give a covariant Self Type
● With recursion going through the bound!

Finally Nailed Object Types

2007-08-02 35

L
u
c
a
 C

a
rd

e
lli

What About Classes?

● By this time (after 20 years)
– About ready to tackle Simula’s classes.

● In the later chapters of our book
– (which almost nobody read)

– we encode Class Types with Self-type, into
object calculus.

– we encode Matching [Bruce] as third-order
subtyping.

● Reductionism
– It’s still a “reductionist” encoding of class

calculi (e.g. the ones due to Mitchell and Bruce)
into object calculi (but at least not).

– Is it a good idea to reduce/encode again?
That’s where we stopped.

– But we can systematically derive interesting
and general type rules for different flavors of
class-based languages.

2007-08-02 36

L
u
c
a
 C

a
rd

e
lli

V: Mainstream

2007-08-02 37

L
u
c
a
 C

a
rd

e
lli

Post-Book

● Java eventually kills Modula-3
– Without being obviously superior

●Apart from bytecode verification

– As I discovered when trying to translate my Modula-3 programs to Java.
● Programs --> Programs

●Abstract Types (with subtyping) --> Interfaces

●Modules --> ?!? Packages ?!? Yucc! gross!

● But progress nonetheless
– I hear that Gosling “carefully read” our Modula-3 tech reports.

– Java allowed me to move from one type safe language (Modula-3)
to another, narrowly avoiding the entire age of C++ !

– The original dream comes true: proofs of type soundness for (subsets of) a
mainstream o-o language [Drossopoulou, Eisenbach]

2007-08-02 38

L
u
c
a
 C

a
rd

e
lli

At Microsoft Cambridge

● Generics in .NET and C#
– Another dream comes true: full parametric

polymorphism into mainstream o-o.

– Thanks to (former) ML programmers!
[Don Syme and Andrew Kennedy].

● Still a bit pissed that Java killed Modula-3
– And a bit burned out about type theory.

– I wanted to work on some feature that Java didn’t
have.

● Turning to concurrency (didn’t Simula ...)
– Java copied threads from Modula-3, and I knew

from extensive personal experience at DEC that
threads were a big yucc! gross! to work with.

– (Unfortunately, C# then copied them from Java!)

– Working on Ambient Calculus (with Andy Gordon),
originally inspired by Obliq object mobility,
but the world was not ready for that kind of
concurrency.

2007-08-02 39

J. Stolfi

L
u
c
a
 C

a
rd

e
lli

Joins

● Looking again for inspiration to functional
programming.
– Concurrency (-calculus) had been adopted in

functional programming (at INRIA) as the much
more convenient and very elegant Join Calculus
[Gonthier & Fournet]

– The only new idea in concurrent programming
since Simula coroutines and Hoare monitors.

– What could be the o-o version of Join Calculus?

● Polyphonic C#, and C
– Amazingly, Join Calculus fits extremely naturally

in the o-o framework. No threads required!

– With Cedric Fournet and Nick Benton (and then
Claudio Russo) we worked out an extension of C#
for join concurrency.

– I still think it is a widely underappreciated idea.

2007-08-02 40

L
u
c
a
 C

a
rd

e
lli

VI: Epilogue

2007-08-02 41

L
u
c
a
 C

a
rd

e
lli

Morale: Embrace Higher-Order

● A goal of Simula (and Beta)
– has been to embed functions into data, and unify them

● A goal of functional programming
– has been to embed data into functions, and unify them

● We still see this trend developing today
– Functional languages (F#) talk to object frameworks.

– O-o languages (C#) acquire parametric polymorphism, and closures.
And soon type inference!

● The true power and the true difficulty
– Is in higher-order structures

meaning: passing functions around as data or inside data.

– Is in data and computation mixed together.

– This is the legacy of both Simula and -calculus.

2007-08-02 42

L
u
c
a
 C

a
rd

e
lli

● An accidental Simula user
– How o-o snuck behind a functional programmer and hit him in the head.

● A (very incomplete) fragment of a fragment of history.
– Too many things I have forgotten!

– Too many people and ideas to acknowledge!

– Apologies to EVERYBODY!

● And most of all...
– Never throw away old slides! They know more than you do...

Conclusions

2007-08-02 43

