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50 Years of Molecular Cell Biology

● The genome (human: 3 GBases = 750MB) 
is made of DNA
– Stores digital information as sequences of 4 

different nucleotides

– Directs protein assembly through RNA and the 
Genetic Code

● Proteins (~1M coded from ~30K genes) 
are made of amino acids strings
– Catalyze all biochemical reactions

– Control metabolism (energy & materials)

– Process signals, activate genes

● Bootstrapping still a mystery
– DNA, RNA, proteins, membranes are today 

interdependent. Not clear who came first

– Not understood, not essential for us
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Cells Compute

● No survival without computation!
– Finding food

– Avoiding predators

● How do they compute?
– Unusual computational paradigms.

– Proteins: do they work like electronic circuits? 
or process algebra?

– Genes: what kind of software is that?

● Signaling networks
– Clearly “information processing”

– They are “just chemistry”: molecule interactions

– But what are their principles and algorithms?

● Complex, higher-order interactions
– MAPKKK = MAP Kinase Kinase Kinase: 

that which operates on that which operates on that 
which operates on protein.
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Ultrasensitivity in the mitogen-activated protein cascade, 
Chi-Ying F. Huang and James E. Ferrell, Jr., 1996, Proc. 
Natl. Acad. Sci. USA, 93, 10078-10083.

http://www.pnas.org/cgi/content/abstract/93/19/10078
http://www.pnas.org/cgi/content/abstract/93/19/10078
http://www.pnas.org/cgi/content/abstract/93/19/10078
http://www.pnas.org/cgi/content/abstract/93/19/10078
http://www.pnas.org/
http://www.pnas.org/
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Towards Systems Biology

State Transitions!

S
y
nt

a
x
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Compositionality (NOT!)

http://www.expasy.ch/cgi-bin/show_thumbnails.pl

Roche Applied Sciences Biochemical Pathways Wall Chart

http://www.expasy.ch/cgi-bin/show_thumbnails.pl
http://www.expasy.ch/cgi-bin/show_thumbnails.pl
http://www.expasy.ch/cgi-bin/show_thumbnails.pl
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Stochastic Collectives
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Stochastic Collectives

● “Collective”:
– A large set of interacting finite state automata:

●Not quite language automata (“large set”)
●Not quite cellular automata (“interacting” but not on a grid)
●Not quite process algebra (“collective behavior”)
●Cf. multi-agent systems and swarm intelligence

● “Stochastic”:
– Interactions have rates

●Not quite discrete (hundreds or thousands of components)
●Not quite continuous (non-trivial stochastic effects)
●Not quite hybrid (no “switching” between regimes)

● Very much like biochemistry 
– Which is a large set of stochastically interacting molecules/proteins
– Are proteins finite state and subject to automata-like transitions?

●Let’s say they are, at least because:
●Much of the knowledge being accumulated in Systems Biology 

is described as state transition diagrams [Kitano].
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Interacting Automata

@λ1
@λ2

@λ3

@λ4

@λ5

@r1

@r2

@r3

?a
!a

?b

!b!c

?c

A1

A2

A3

B1

B2B3

C1 C2

C3

new a@r1

new b@r2

new c@r3

A1 = ?a; A2

A2 = !c; A3

A3 = @λ5; A1

B1 = @λ2; B2 + !a; B3

B2 = @λ1; B1

B3 = ?b; B2

C1 = !b; C2 + ?c; C3

C2 = @λ3; C1

C3 = @λ4; C2

A1 | B1 | C1

Communication 
channels

A
utom

ata

The system and 
initial state

Current State

Interaction

Transition
Delay

Interactions have 
rates. Actions DO 
NOT have rates.
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Interactions in a Population

A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b

Suppose this is the 
next interaction

(stochastically chosen)

A

B

!a

?a ?b

!b

One lonely automaton

cannot interact
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A

B

!a

?a ?b

!b

Interactions in a Population

A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b
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A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b

Interactions in a Population

A

B

!a

?a ?b

!b

All-A stable 
population
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Interactions in a Population (2)

A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b

Suppose this is the 
next interaction
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A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b

Interactions in a Population (2)

A

B

!a

?a ?b

!b

All-B stable 
population

Nondeterministic 
population behavior

(“multistability”)
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A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b

{2A,1B}
{3A}

{1A,2B}
{3B}

2ra

2rb

2ra

2rb

CTMC

BA

r
CTMC
(homogeneous) Continuous Time 
Markov Chain
- directed graph with no self loops
- nodes are system states 
- arcs have transition rates

Probability of holding in state A:

Pr(HA>t) = e-rt

in general, Pr(HA>t) = e-Rt where R is 
the sum of all the exit rates from A
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0

20

40

60

80

100

120

140

160

180

200
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A() B()

Groupies and Celebrities

Groupie
(wants to be like somebody different)

Celebrity
(does not want to be like somebody else)

0

20

40

60

80

100

120

140

160

180

200

0 0.5 1 1.5 2

A() B()

always 
eventually 
deadlock

directive sample 0.1 200

directive plot A(); B()

new a@1.0:chan()

new b@1.0:chan()

let A() = do !a; A() or ?b; B()

and B() = do !b; B() or ?a; A()

run 100 of (A() | B())

directive sample 0.1 200

directive plot A(); B()

new a@1.0:chan()

new b@1.0:chan()

let A() = do !a; A() or ?a; B()

and B() = do !b; B() or ?b; A()

run 100 of (A() | B())

Unstable because within an A majority, an A has difficulty finding a B to 
emulate, but the few B’s have plenty of A’s to emulate, so the majority may 
switch to B. Leads to deadlock when everybody is in the same state and there is 
nobody different to emulate.

Stable because as soon as a A finds itself in the majority, it is more likely to 
find somebody in the same state, and hence change, so the majority is weakened.

A

B

!a

?b

!b

?a

A

B

!a

?a ?b

!b

A stochastic collective of celebrities: A stochastic collective of groupies:
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B()
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0 50 100 150 200

B()

equilibrium

time

#

#A

#
B

a@1.0

b@1.0

a@1.0

b@1.0
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directive sample 10.0

directive plot Ag(); Bg(); Ac(); Bc()

new a@1.0:chan()

new b@1.0:chan()

let Ac() = do !a; Ac() or ?a; Bc()

and Bc() = do !b; Bc() or ?b; Ac()

let Ag() = do !a; Ag() or ?b; Bg()

and Bg() = do !b; Bg() or ?a; Ag()

run 1 of Ac() 

run 100 of (Ag() | Bg())

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5 6 7 8 9 10

Ga() Gb() Ca() Cb()

Both Together

A way to break the deadlocks: Groupies with just a few Celebrities 

A few
Celebrities

Many
Groupies

A tiny bit of 
“noise” can make a 
huge difference

?a

!a

?b

!b

!a

?a ?b

!b

Ac

Bc

Ag

Bg

never
deadlock
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1 sample orbit 
Ga vs. Gb
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Ga() Gb()

Hysteric Groupies

directive sample 10.0 1000

directive plot Ga(); Gb()

new a@1.0:chan()

new b@1.0:chan()

let Ga() = do !a; Ga() or ?b; ?b; Gb()

and Gb() = do !b; Gb() or ?a; ?a; Ga()

let Da() = !a; Da()

and Db() = !b; Db()

run 100 of (Ga() | Gb())

run   1 of (Da() | Db())

We can get more regular behavior from groupies if they “need more 
convincing”, or “hysteresis” (history-dependence), to switch states. 

(With doping to 
break deadlocks)
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a “solid threshold” to observe switching

A

B
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?b
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Gb()

directive sample 10.0 1000

directive plot Ga(); Gb()

new a@1.0:chan()

new b@1.0:chan()

let Ga() = do !a; Ga() or ?b; ?b; ?b; Gb()

and Gb() = do !b; Gb() or ?a; ?a; ?a; Ga()

let Da() = !a; Da()

and Db() = !b; Db()

run 100 of (Ga() | Gb())

run   1 of (Da() | Db())
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0 50 100 150 200

Gb()

N.B.: It will not oscillate 
without doping (noise)

Regularity can 
arise not far 
from chaos

“regular” 
oscillation
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Semantics of 
Collective Behavior 

The collective behavior of even very simple automata 
is difficult to predict.
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Automata to Chemistry

Automata
Discrete 
Chemistry
(molecule counts)

Continuous
Chemistry
(concentrations)

A  4 r A’A’A
@r

A  k A’ with k = r

?a
A

B

A’

B’
!a A+B 4 r A’+B’@r A+B k A’+B’ with k = r

= NAV

?a
A

A’ A”

!a
A+A 4 2r A’+A”

@r
A+A 2k A’+A” with k = r /2

=

=

Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

CTMC

ODE ODE

CTMC

CTMC ODE

#A0 [A]0 with [A]0 = #A0/A | A | ... | A

initial states initial quantities initial concentrations

Think = 1
i.e. V = 1/NA

V = interaction volume

NA = Avogadro’s number

([A] d[A]/dt
change of concentration 
over time)
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Quantitative Process Semantics

=

=

Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

CTMC

ODE ODE

CTMC

Continuous-state Semantics 
(Generalized Mass Action)

Discrete-state Semantics

(Chemical Master Equation)

Nondeterministic 

Semantics

Stochastic

Semantics

d[X]/dt = ( (Y E) AccrE(Y,X) [Y]) - DeplE(X) [X] for all X E

Process Rate Equation

pr(p,t)/ t   =   a (p-v ) pr(p-v ,t) - a (p) pr(p,t) for all p States(E)

Process Master Equation

Defined over the 
syntax of processes

Interactions Propensity

Accretion Depletion
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Waves

A programming exercise:

build me a population like this:
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Nonlinear Transition (NLT)

A

!c

B
?c

A = ?c(s);B

B = !c(s);B

A+B s B+B

[A] = -s[A][B]
[B] = s[A][B]

@s

0

200

400

600

800

1000

1200

0 0.002 0.004 0.006 0.008 0.01

A1() A2() A3()

Matlab
continuous_sys_generator

SPiM

interval/step [0:0.001:0.0]

(A) dx1/dt = - x1*x2 1000.0

(B) dx2/dt = x1*x2 1.0

directive sample 0.02 1000

directive plot B(); A()

val s=1.0

new c@s:chan

let A() = ?c; B()

and B() = !c;B()

run (1000 of A() | 1 of B())

N.B.: needs at 
least 1 B to 
“get started”.

([A] d[A]/dt
change of concentration 
over time)
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0
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9000

10000

0 0.0005 0.001 0.0015 0.002 0.0025

B() A() C()

Two NLTs: Bell Shape

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 0.0005 0.001 0.0015 0.002 0.0025

B()

A

!b

B
?b

!c

C
?c

directive sample 0.0025 1000

directive plot B(); A(); C()

new b@1.0:chan new c@1.0:chan

let A() = ?b; B()

and B() = do !b;B() or ?c; C()

and C() = !c;C()

run ((10000 of A()) | B() | C())

[B] = [B]([A]-[C])

A = ?b(1);B

B = !b(1);B ?c(1);C

C = !c(1);C

A+B 1 B+B
B+C 1 C+C

[A] = -[A][B]
[B] = [A][B]-[B][C]
[C] = [B][C]

interval/step [0:0.000001:0.0025]

(A) dx1/dt = -x1*x2 10000.0

(B) dx2/dt = x1*x2 – x2*x3 1.0

(C) dx3/dt = x2*x3 1.0

Matlab
continuous_sys_generator

SPiM
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NLT in a Cycle: Oscillator

directive sample 0.03 1000

directive plot A(); B(); C()

new a@1.0:chan new b@1.0:chan new c@1.0:chan

let A() = do !a;A() or ?b; B()

and B() = do !b;B() or ?c; C()

and C() = do !c;C() or ?a; A()

run (900 of A() | 500 of B() | 100 of C())
A B

!a

?c
?a

!b?b

C

!c

@1.0

@1.0

@1.0

900xA, 500xB, 100xC

A = !a(s);A ?b(s);B

B = !b(s);B ?c(s);C

C = !c(s);C ?a(s);A

A+B s B+B
B+C s C+C
C+A s A+A

[A] = -s[A][B]+s[C][A]
[B] = -s[B][C]+s[A][B]
[C] = -s[C][A]+s[B][C]

interval/step [0:0.001:20.0]

(A) dx1/dt = - x1*x2 + x3*x1 0.9

(B) dx2/dt = - x2*x3 + x1*x2 0.5

(C) dx3/dt = - x3*x1 + x2*x3 0.1

Matlab
continuous_sys_generator

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0.485

0.49

0.495

0.5

0.505

0.51

0.515

0.52

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0.46

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

interval/step [0:0.01:400.0]

(A) dx1/dt = - x1*x2 + x3*x1 0.51

(B) dx2/dt = - x2*x3 + x1*x2 0.5

(C) dx3/dt = - x3*x1 + x2*x3 0.49

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0.485

0.49

0.495

0.5

0.505

0.51

0.515

0.52

ode45
ode23t ode23tb
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Lotka-Volterra

Beyond Automata
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Predator-Prey
directive sample 1.0 1000

directive plot Carnivor(); Herbivor() 

val mortality = 100.0

val breeding = 300.0

val predation = 1.0

new cull @predation:chan()

let Herbivor() =

do delay@breeding; (Herbivor() | Herbivor())

or ?cull; ()

and Carnivor() = 

do delay@mortality; ()

or !cull; (Carnivor() | Carnivor())

run 100 of Herbivor()

run 100 of Carnivor()

An unbounded 
state system!

@breedingHerbivor

Carnivor

@mortality

?cull

!cull

@predation
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Lotka-Volterra in Matlab

H = b; (H|H) ?c(p);0

C = m;0 !c(p);(C|C) 

#H0, #C0

H b H + H
C m 0
H + C p C + C
[H]0 = #H0/
[C]0 = #C0/

[H] = b[H]-p [H][C]
[C] = -m[C]+p [H][C]
[H]0 = #H0/
[C]0 = #C0/

m=100.0
b=300.0
p=1.0
=1.0

#H0 = 100
#C0 = 100

directive sample 0.35 1000

directive plot Carnivor(); Herbivor() 

val mortality = 100.0

val breeding = 300.0

val predation = 1.0

new cull @predation:chan()

let Herbivor() =

do delay@breeding; (Herbivor() | Herbivor())

or ?cull; ()

and Carnivor() = 

do delay@mortality; ()

or !cull; (Carnivor() | Carnivor())

run 100 of Herbivor()

run 100 of Carnivor()

Matlab
continuous_sys_generator

Extinction No extinction

Which one is the “right prediction”?
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Conclusions
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Conclusions

● Compositional models
– Accurate (at the “appropriate” abstraction level).

– Manageable (so we can scale them up by composition).

– Executable (stochastic simulation).

● Analysis techniques
– Mathematical techniques: Markov theory, 

Chemical Master Equation, and Rate Equation

– Computing techniques: Abstraction and Refinement, 
Model Checking, Causality Analysis.

● Many “obvious” lines of extensions
– Parametric processes for model factorization

– Polyautomata for Bio-Chemistry: complexation and polymerization

– Ultimately, rich process-algebra based modeling languages.

● An Artificial Biochemistry
– A scalable mathematical and computational modeling framework.

– To understand “real biochemistry” on a large scale.


