Artificial Biochemistry

Luca Cardelli

Microsoft Research
MSRC $10^{\text {th }}$ Anniversary
Cambridge, 2007-07-09

50 Years of Molecular Cell Biology

- The genome (human: 3 GBases $=750 \mathrm{MB}$) is made of DNA
- Stores digital information as sequences of 4 different nucleotides
- Directs protein assembly through RNA and the Genetic Code
- Proteins (1 M coded from ~30K genes) are made of amino acids strings
- Catalyze all biochemical reactions
- Control metabolism (energy \& materials)
- Process signals, activate genes

- Bootstrapping still a mystery
- DNA, RNA, proteins, membranes are today interdependent. Not clear who came firs \dagger
- Not understood, not essential for us

Cells Compute

- No survival without computation!
- Finding food
- Avoiding predators
- How do they compute?
- Unusual computational paradigms.
- Proteins: do they work like electronic circuits? or process algebra?
- Genes: what kind of software is that?
- Signaling networks
- Clearly "information processing"
- They are "just chemistry": molecule interactions
- But what are their principles and algorithms?
- Complex, higher-order interactions
- MAPKKK = MAP Kinase Kinase Kinase: that which operates on that which operates on that which operates on protein.

Ultrasensitivity in the mitogen-activated protein cascade, Chi-Ying F. Huang and James E. Ferrell, Jr., 1996, Proc. Natl. Acad. Sci. USA, 93, 10078-10083.

Towards Systems Biology

Epidermal Growth Factor Receptor Pathway Map

uncanna

Compositionality (NOT!)

Stochastic Collectives

Stochastic Collectives

- "Collective":
- A large set of interacting finite state automata:
- Not quite language automata ("large set")
- Not quite cellular automata ("interacting" but not on a grid)
- Not quite process algebra ("collective behavior")
- Cf. multi-agent systems and swarm intelligence
- "Stochastic":
- Interactions have rates
- Not quite discrete (hundreds or thousands of components)

- Not quite continuous (non-trivial stochastic effects)
- Not quite hybrid (no "switching" between regimes)
- Very much like biochemistry
- Which is a large set of stochastically interacting molecules/proteins
- Are proteins finite state and subject to automata-like transitions?
- Let's say they are, at least because:
- Much of the knowledge being accumulated in Systems Biology is described as state transition diagrams [Kitano].

Interacting Automata

Interactions in a Population

Interactions in a Population

Interactions in a Population

Interactions in a Population (2)

Interactions in a Population (2)

> All-B stable population

Nondeterministic population behavior ("multistability")

CTMC Semantics

CTMC
(homogeneous) Continuous Time
Markov Chain

CTMC

Groupies and Celebrities

Celebrity

(does not want to be like somebody else)

directive sample 0.1200 $a @ 1.0$ directive plot $A() ; B()$ $b @ 1.0$ new $a @ 1.0$:chan () new $b @ 1.0$:chan () let $A()=$ do $!a ; A()$ or ?a; $B()$ and $B()=$ do $!b ; B()$ or ? $b ; A()$ run 100 of $(A() \mid B())$ 	

A stochastic collective of celebrities:

Stable because as soon as a A finds itself in the majority, it is more likely to find somebody in the same state, and hence change, so the majority is weakened.

Groupie

(wants to be like somebody different)

```
directive sample 0.1200
a@1.0
directive plot \(A() ; B()\)
b@1.0
```

new a@1.0:chan()
new b@1.0:chan()
let $A()=$ do !a; $A()$ or ? $b ; B()$ and $B()=d o!b ; B()$ or ?a; $A()$
run 100 of $(A() \mid B())$

A stochastic collective of groupies:

Unstable because within an A majority, an A has difficulty finding a B to emulate, but the few B's have plenty of A's to emulate, so the majority may switch to B. Leads to deadlock when everybody is in the same state and there is nobody different to emulate.

Both Together

A way to break the deadlocks: Groupies with just a few Celebrities

directive sample 10.0

directive plot $A g() ; B g() ; A c() ; B c()$

new a@1.0:chan()

new b@1.0:chan()
let $A C()=$ do !a; $A C()$ or ? $a ; B C()$ and $B C()=d o!b ; B c()$ or ? $b ; A c()$
let Ag()$=$ do ! $\mathrm{a} ; \mathrm{Ag}()$ or ? $\mathrm{b} ; \mathrm{Bg}()$ and Bg()$=\mathrm{do}!\mathrm{b} ; \mathrm{Bg}()$ or ? $\mathrm{a} ; \mathrm{Ag}()$
run 1 of $A C()$ run 100 of $(\mathrm{Ag}() \mid \mathrm{Bg}())$
never deadlock

Regularity can arise not far from chaos

Hysteric Groupies

We can get more regular behavior from groupies if they "need more convincing", or "hysteresis" (history-dependence), to switch states.

directive sample 10.01000 directive plot $G a() ; G b()$
new a@1.0:chan() new b@1.0:chan()
let $G a()=$ do !a; $G a()$ or ? $b ;$? $b ; G b()$ and $G b()=d o!b ; G b()$ or ? $a ; ? a ; G a()$
let $\operatorname{Da}()=!a ; D a()$ and $\operatorname{Db}()=!b ; D b()$
run 100 of $(G a() \mid G b())$
run 1 of $(\mathrm{Da}() \mid \mathrm{Db}())$

Semantics of Collective Behavior

The collective behavior of even very simple automata is difficult to predict.

Automata to Chemistry

Quantitative Process Semantics

Continuous-state Semantics
(Generalized Mass Action)

Waves

A programming exercise:
build me a population like this:

Nonlinear Transition (NLT)

Two NLTs: Bell Shape

interval/step [0:0.000001:0.0025]
(A) $\mathrm{d} \times 1 / \mathrm{d} t=-\times 1^{\star} \times 2$
(B) $\mathrm{d} \times 2 / \mathrm{dt}=\times 1^{*} \times 2-\times 2^{*} \times 3$
C) $\mathrm{d} \times 3 / \mathrm{dt}=\times 2^{*} \times 3$

NLT in a Cycle: Oscillator

directive sample 0.031000 directive plot $A() ; B() ; C()$
new a@1.0:chan new b@1.0:chan new c@1.0:chan let $A()=\operatorname{do}$!a; $A()$ or ? $b ; B()$
and $B()=d o!b ; B()$ or ?c; $C()$
and $C()=$ do ! $c ; C()$ or ?a; $A()$
run (900 of $A() \mid 500$ of $B() \mid 100$ of $C())$

$$
\begin{aligned}
& A=!a_{(s)} ; A \oplus ? b_{(s)} ; B \\
& B=!b_{(s)} ; B \oplus ? C_{(s)} ; C \\
& C=!C_{(s)} ; C \oplus ? a_{(s)} ; A \\
& A+B \rightarrow \rightarrow^{s} B+B \\
& B+C \rightarrow \rightarrow^{s} C+C \\
& C+A \rightarrow s A+A \\
& {[A]^{\circ}=-s[A][B]+s[C][A]} \\
& {[B]^{\circ}=-s[B][C]+s[A][B]} \\
& {[C]^{\circ}=-s[C][A]+s[B][C]}
\end{aligned}
$$

Lotka-Volterra

Beyond Automata

Predator-Prey

Carnivoro Herbivoro
directive sample 1.01000
directive plot Carnivor(); Herbivor()

```
val mortality = 100.0
val breeding=300.0
val predation = 1.0
new cull @predation:chan()
let Herbivor()=
do delay@breeding; (Herbivor()| Herbivor())
or ?cull; ()
and Carnivor() =
do delay@mortality; ()
or !cull; (Carnivor() | Carnivor())
```

run 100 of Herbivor()
run 100 of Carnivor()

An unbounded state system!

Lotka-Volterra in Matlab

```
\(H=\tau_{b} ;(H \mid H) \oplus ? c_{(p)} ; 0\)
\(C=\tau_{m} ; 0 \oplus!c_{(p)} ;(C \mid C)\)
\(\# H_{0}, \# C_{0}\)
\(H \rightarrow{ }^{b} H+H\)
C \(\rightarrow^{m} 0\)
\(\mathrm{H}+\mathrm{C} \rightarrow \mathrm{pr}_{\gamma} \mathrm{C}+\mathrm{C}\)
\([H]_{0}=\# H_{0} / \gamma\)
\([C]_{0}=\# C_{0} / \gamma\)
\[
\begin{aligned}
& m=100.0 \\
& b=300.0 \\
& p=1.0 \\
& \gamma=1.0 \\
& \# H_{0}=100 \\
& \# C_{0}=100
\end{aligned}
\]
```


$[\mathrm{H}]^{\circ}=\mathrm{b}[\mathrm{H}]-\mathrm{p} \mathrm{\gamma}[\mathrm{H}][\mathrm{C}]$

$[C]^{*}=-m[C]+\mathrm{p} \mathrm{\gamma}[\mathrm{H}][\mathrm{C}]$
$[H]_{0}=\# H_{0} / \gamma$
$[C]_{0}=\# C_{0} / \gamma$

Which one is the "right prediction"?

Conclusions

Conclusions

- Compositional models
- Accurate (at the "appropriate" abstraction level).
- Manageable (so we can scale them up by composition).
- Executable (stochastic simulation).
- Analysis techniques
- Mathematical techniques: Markov theory, Chemical Master Equation, and Rate Equation
- Computing techniques: Abstraction and Refinement, Model Checking, Causality Analysis.
- Many "obvious" lines of extensions
- Parametric processes for model factorization
- Polyautomata for Bio-Chemistry: complexation and polymerization
- Ultimately, rich process-algebra based modeling languages.
- An Artificial Biochemistry
- A scalable mathematical and computational modeling framework.
- To understand "real biochemistry" on a large scale.

