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50 Years of Molecular Cell Biology

● The genome (human: 3 GBases = 750MB) 
is made of DNA
– Stores digital information as sequences of 4 

different nucleotides

– Directs protein assembly through RNA and the 
Genetic Code

● Proteins (~1M coded from ~30K genes) 
are made of amino acids strings
– Catalyze all biochemical reactions

– Control metabolism (energy & materials)

– Process signals, activate genes

● Bootstrapping still a mystery
– DNA, RNA, proteins, membranes are today 

interdependent. Not clear who came first

– Not understood, not essential for us
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Cells Compute

● No life without computation!
– Finding food

– Avoiding predators

● How do they compute?
– Unusual computational paradigms.

– Proteins: do they work like electronic circuits? 
or process algebra?

– Genes: what kind of software is that?

● Signaling networks
– Clearly “information processing”

– They are “just chemistry”: molecule interactions

– But what are their principles and algorithms?

● Complex, higher-order interactions
– MAPKKK = MAP Kinase Kinase Kinase: 

that which operates on that which operates on that 
which operates on protein.
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Ultrasensitivity in the mitogen-activated protein cascade, 
Chi-Ying F. Huang and James E. Ferrell, Jr., 1996, Proc. 
Natl. Acad. Sci. USA, 93, 10078-10083.

http://www.pnas.org/cgi/content/abstract/93/19/10078
http://www.pnas.org/cgi/content/abstract/93/19/10078
http://www.pnas.org/cgi/content/abstract/93/19/10078
http://www.pnas.org/cgi/content/abstract/93/19/10078
http://www.pnas.org/
http://www.pnas.org/
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Stochastic Collectives
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Stochastic Collectives

● “Collective”:
– A large set of interacting finite state automata:

●Not quite language automata (“large set”)
●Not quite cellular automata (“interacting” but not on a grid)
●Not quite process algebra (“collective behavior”)
●Cf. multi-agent systems and swarm intelligence

● “Stochastic”:
– Interactions have rates

●Not quite discrete (hundreds or thousands of components)
●Not quite continuous (non-trivial stochastic effects)
●Not quite hybrid (no “switching” between regimes)

● Very much like biochemistry 
– Which is a large set of stochastically interacting molecules/proteins
– Are proteins finite state and subject to automata-like transitions?

●Let’s say they are, at least because:
●Much of the knowledge being accumulated in Systems Biology 

is described as state transition diagrams [Kitano].
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State Transitions
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Compositionality (NOT!)

http://www.expasy.ch/cgi-bin/show_thumbnails.pl

http://www.expasy.ch/cgi-bin/show_thumbnails.pl
http://www.expasy.ch/cgi-bin/show_thumbnails.pl
http://www.expasy.ch/cgi-bin/show_thumbnails.pl
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Interacting Automata

Communicating automata: a graphical FSA-like 
notation for “finite state restriction-free -
calculus processes”. Interacting automata do not 
even exchange values on communication.

The stochastic version has rates on 
communications, and delays.

@λ1
@λ2

@λ3

@λ4

@λ5

@r1

@r2

@r3

?a
!a

?b

!b!c

?c

A1

A2

A3

B1

B2B3

C1 C2

C3

new a@r1

new b@r2

new c@r3

A1 = ?a; A2

A2 = !c; A3

A3 = @λ5; A1

B1 = @λ2; B2 + !a; B3

B2 = @λ1; B1

B3 = ?b; B2

C1 = !b; C2 + ?c; C3

C2 = @λ3; C1

C3 = @λ4; C2

A1 | B1 | C1

Communication 
channels

A
utom

ata

The system and 
initial state

“Finite state” means: no composition or restriction inside recursion.

Analyzable by standard Markovian techniques, by first computing 
the “product automaton” to obtain the underlying finite Markov 
transition system. [Buchholz]

Current State

Interaction

Transition
Delay

Interactions have 
rates. Actions DO 
NOT have rates.
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Interactions in a Population

A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b

Suppose this is the 
next interaction

(stochastically chosen)

A

B

!a

?a ?b

!b

One lonely automaton

cannot interact
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A

B

!a

?a ?b

!b

Interactions in a Population

A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b
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A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b

Interactions in a Population

A

B

!a

?a ?b

!b

All-A stable 
population
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Interactions in a Population (2)

A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b

Suppose this is the 
next interaction
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A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b

Interactions in a Population (2)

A

B

!a

?a ?b

!b

All-B stable 
population

Nondeterministic 
population behavior

(“multistability”)
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CTMC Semantics
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A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b

{2A,1B}
{3A}

{1A,2B}
{3B}

2ra

2rb

2ra

2rb

CTMC

BA

r
CTMC
(homogeneous) Continuous Time 
Markov Chain
- directed graph with no self loops
- nodes are system states 
- arcs have transition rates

Probability of holding in state A:

Pr(HA>t) = e-rt

in general, Pr(HA>t) = e-Rt where R is 
the sum of all the exit rates from A
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Groupies and Celebrities

Groupie
(wants to be like somebody different)

Celebrity
(does not want to be like somebody else)
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0 0.5 1 1.5 2

A() B()

always 
eventually 
deadlock

directive sample 0.1 200

directive plot A(); B()

new a@1.0:chan()

new b@1.0:chan()

let A() = do !a; A() or ?b; B()

and B() = do !b; B() or ?a; A()

run 100 of (A() | B())

directive sample 0.1 200

directive plot A(); B()

new a@1.0:chan()

new b@1.0:chan()

let A() = do !a; A() or ?a; B()

and B() = do !b; B() or ?b; A()

run 100 of (A() | B())

Unstable because within an A majority, an A has difficulty finding a B to 
emulate, but the few B’s have plenty of A’s to emulate, so the majority may 
switch to B. Leads to deadlock when everybody is in the same state and there is 
nobody different to emulate.

Stable because as soon as a A finds itself in the majority, it is more likely to 
find somebody in the same state, and hence change, so the majority is weakened.

A

B

!a

?b

!b

?a

A

B

!a

?a ?b

!b

A stochastic collective of celebrities: A stochastic collective of groupies:
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time

#

#A

#
B

a@1.0

b@1.0

a@1.0

b@1.0
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directive sample 10.0

directive plot Ag(); Bg(); Ac(); Bc()

new a@1.0:chan()

new b@1.0:chan()

let Ac() = do !a; Ac() or ?a; Bc()

and Bc() = do !b; Bc() or ?b; Ac()

let Ag() = do !a; Ag() or ?b; Bg()

and Bg() = do !b; Bg() or ?a; Ag()

run 1 of Ac() 

run 100 of (Ag() | Bg())
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200

0 1 2 3 4 5 6 7 8 9 10

Ga() Gb() Ca() Cb()

Both Together

A way to break the deadlocks: Groupies with just a few Celebrities 

A few
Celebrities

Many
Groupies

A tiny bit of 
“noise” can make a 
huge difference

?a

!a

?b

!b

!a

?a ?b

!b

Ac

Bc

Ag

Bg

never
deadlock
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Ga() Gb()

Hysteric Groupies

directive sample 10.0 1000

directive plot Ga(); Gb()

new a@1.0:chan()

new b@1.0:chan()

let Ga() = do !a; Ga() or ?b; ?b; Gb()

and Gb() = do !b; Gb() or ?a; ?a; Ga()

let Da() = !a; Da()

and Db() = !b; Db()

run 100 of (Ga() | Gb())

run   1 of (Da() | Db())

We can get more regular behavior from groupies if they “need more 
convincing”, or “hysteresis” (history-dependence), to switch states. 

(With doping to 
break deadlocks)
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a “solid threshold” to observe switching
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Gb()

directive sample 10.0 1000

directive plot Ga(); Gb()

new a@1.0:chan()

new b@1.0:chan()

let Ga() = do !a; Ga() or ?b; ?b; ?b; Gb()

and Gb() = do !b; Gb() or ?a; ?a; ?a; Ga()

let Da() = !a; Da()

and Db() = !b; Db()

run 100 of (Ga() | Gb())

run   1 of (Da() | Db())
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Gb()

N.B.: It will not oscillate 
without doping (noise)

Regularity can 
arise not far 
from chaos

“regular” 
oscillation
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Semantics of 
Collective Behavior 



L
u
c
a
 C

a
rd

e
lli

2007-06-29 19

The Two Semantic Faces of Chemistry

=

=

Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

CTMC

ODE ODE

CTMC

Continuous-state Semantics 
(Generalized Mass Action)

Discrete-state Semantics

(Chemical Master Equation)

Nondeterministic 

Semantics

Stochastic

Semantics

These diagrams commute via appropriate maps.

L. Cardelli: “On Process Rate Semantics”
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From Processes 
to Chemistry
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Chemical Ground Form (CGF)

E ::= 0  ⋮ X=M, E    Reagents

M ::= 0  ⋮ ;P M   Molecules

P ::= 0  ⋮ X | P       Solutions

::= (r) ⋮ ?a(r) ⋮ !a(r) Interactions (delay, input, output) 

CGF ::= E,P Reagents plus Initial Conditions

A

B

!a

?a ?b

!b

A = !a;A ?b;B

B = !b;B ?a;A

A|A|B|B

Ex: Interacting Automata 
(= finite-control CGFs: they use “|” only in initial conditions):

Initial 
conditions: 
2A and 2B

Automaton in state A

Automaton in state B

is stochastic choice (vs. + for chemical reactions)
0 is the null solution (P|0 = 0|P = P) 

and null molecule (M 0 = 0 M = M)
Each X in E is a distinct species
Each name a is assigned a fixed rate r: a(r)

(To translate chemistry to processes we 
need a bit more than interacting 
automata: we may have “+” on the right 
of , that is we may need “|” after .)

Interacting Automata  
+ dynamic forking

A stochastic 
subset of CCS 

(no values, no restriction)
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Processes to Chemistry

Automata Discrete 
Chemistry

Continuous
Chemistry

A  4 r A’A’A
@r

A  k A’ with k = r

?a
A

B

A’

B’
!a A+B 4 r A’+B’@r A+B k A’+B’ with k = r

= NAV

?a
A

A’ A”

!a
A+A 4 2r A’+A”

@r
A+A 2k A’+A” with k = r /2

=

=

Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

CTMC

ODE ODE

CTMC

CTMC ODE

#A0 [A]0 with [A]0 = #A0/A | A | ... | A

initial states initial quantities initial concentrations

Think = 1
i.e. V = 1/NA

V = interaction volume

NA = Avogadro’s number
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Quantitative Process Semantics

=

=

Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

CTMC

ODE ODE

CTMC

Continuous-state Semantics 
(Generalized Mass Action)

Discrete-state Semantics

(Chemical Master Equation)

Nondeterministic 

Semantics

Stochastic

Semantics

[X] = ( (Y E) AccrE(Y,X) [Y]) - DeplE(X) [X] for all X E

Process Rate Equation

pr(p,t)/ t   =   a (p-v ) pr(p-v ,t) - a (p) pr(p,t) for all p States(E)

Process Master Equation

Defined over the 
syntax of processes

Interactions Propensity

Accretion Depletion
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Lotka-Volterra

Beyond Automata
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Predator-Prey
directive sample 1.0 1000

directive plot Carnivor(); Herbivor() 

val mortality = 100.0

val breeding = 300.0

val predation = 1.0

new cull @predation:chan()

let Herbivor() =

do delay@breeding; (Herbivor() | Herbivor())

or ?cull; ()

and Carnivor() = 

do delay@mortality; ()

or !cull; (Carnivor() | Carnivor())

run 100 of Herbivor()

run 100 of Carnivor()

An unbounded 
state system!

@breedingHerbivor

Carnivor

@mortality

?cull

!cull

@predation
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Lotka-Volterra in Matlab

H = b; (H|H) ?c(p);0

C = m;0 !c(p);(C|C) 

#H0, #C0

H b H + H
C m 0
H + C p C + C
[H]0 = #H0/
[C]0 = #C0/

[H] = b[H]-p [H][C]
[C] = -m[C]+p [H][C]
[H]0 = #H0/
[C]0 = #C0/

m=100.0
b=300.0
p=1.0
=1.0

#H0 = 100
#C0 = 100

directive sample 0.35 1000

directive plot Carnivor(); Herbivor() 

val mortality = 100.0

val breeding = 300.0

val predation = 1.0

new cull @predation:chan()

let Herbivor() =

do delay@breeding; (Herbivor() | Herbivor())

or ?cull; ()

and Carnivor() = 

do delay@mortality; ()

or !cull; (Carnivor() | Carnivor())

run 100 of Herbivor()

run 100 of Carnivor()

Matlab
continuous_sys_generator

Extinction No extinction

Which one is “right”?
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GMA ≠ CME

=

=

Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

CTMC

ODE ODE

CTMC



L
u
c
a
 C

a
rd

e
lli

2007-06-29 28

A+A 2r A      =? A+A r 0

k = r /2 A+A k 0
[A]0=2/

A+A r 0
A+A

[A] = -2k[A]2

k = r /2 

A+A 0

r

A+A 2k A
[A]0=2/

A+A 2r A
A+A

[A] = -2k[A]2

A+A A

2r
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... as Automata

[A] = -2r [A]2

k = r /2 A+A 2k 0
[A]0=2/

A+A 2r 0
A+A

A = ?a(r);0 !a(r);0
A|A

[A] = -4k[A]2 [A] = -2r [A]2

k = r /2 

A+A 0

2r

A|A 0

2r

?a
A

!a

(a@r)

A

?a

!a

(a@2r)

A+A 4k A
[A]0=2/

A+A 4r A
A+A

[A] = -4k[A]2

A+A A

4r

A|A A

4r

A = ?a(2r);0 !a(2r);A
A|A
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Conclusions
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Conclusions

● Devising Compositional Models
– Accurate (at the “appropriate” abstraction level).

– Manageable (so we can scale them up by composition).

● Interacting Automata
– Complex global behavior from simple components.

– Bridging individual and collective behavior.

– Connections to classical Markov theory, 
chemical Master Equation, and Rate Equation.

● Parametric Processes (not shown)
– An standard extension for the modular description of components.

● PolyAutomata (not shown)
– Artificial Bio-Chemistry: complexation and polymerization.

● An “artificial biochemistry”
– A scalable mathematical and computational modeling framework.

– To investigate “real biochemistry” on a large scale.

http://LucaCardelli.name


