Artificial Biochemistry

Luca Cardelli

Microsoft Research

Longo Symposium
Paris, 2007-06-29

http://LucaCardelli.name

50 Years of Molecular Cell Biology

- The genome (human: 3 GBases $=750 \mathrm{MB}$) is made of DNA
- Stores digital information as sequences of 4 different nucleotides
- Directs protein assembly through RNA and the Genetic Code
- Proteins (1 M coded from ~30K genes) are made of amino acids strings
- Catalyze all biochemical reactions
- Control metabolism (energy \& materials)
- Process signals, activate genes

- Bootstrapping still a mystery
- DNA, RNA, proteins, membranes are today interdependent. Not clear who came firs \dagger
- Not understood, not essential for us

Cells Compute

- No life without computation!
- Finding food
- Avoiding predators
- How do they compute?
- Unusual computational paradigms.
- Proteins: do they work like electronic circuits? or process algebra?
- Genes: what kind of software is that?
- Signaling networks
- Clearly "information processing"
- They are "just chemistry": molecule interactions
- But what are their principles and algorithms?
- Complex, higher-order interactions
- MAPKKK = MAP Kinase Kinase Kinase: that which operates on that which operates on that which operates on protein.

Ultrasensitivity in the mitogen-activated protein cascade,

Stochastic Collectives

Stochastic Collectives

- "Collective":
- A large set of interacting finite state automata:
- Not quite language automata ("large set")
- Not quite cellular automata ("interacting" but not on a grid)
- Not quite process algebra ("collective behavior")
- Cf. multi-agent systems and swarm intelligence
- "Stochastic":
- Interactions have rates
- Not quite discrete (hundreds or thousands of components)

- Not quite continuous (non-trivial stochastic effects)
- Not quite hybrid (no "switching" between regimes)
- Very much like biochemistry
- Which is a large set of stochastically interacting molecules/proteins
- Are proteins finite state and subject to automata-like transitions?
- Let's say they are, at least because:
- Much of the knowledge being accumulated in Systems Biology is described as state transition diagrams [Kitano].

State Transitions

Compositionality (NOT!)

Interacting Automata

Communicating automata: a graphical FSA-like notation for "finite state restriction-free π calculus processes". Interacting automata do no \dagger even exchange values on communication.
The stochastic version has rates on communications, and delays.

"Finite state" means: no composition or restriction inside recursion. Analyzable by standard Markovian techniques, by first computing the "product automaton" to obtain the underlying finite Markov transition system. [Buchholz]

Interactions have rates. Actions DO NOT have rates.

Interactions in a Population

Interactions in a Population

Interactions in a Population

Interactions in a Population (2)

Interactions in a Population (2)

> All-B stable population

Nondeterministic population behavior ("multistability")

CTMC Semantics

CTMC
(homogeneous) Continuous Time
Markov Chain

CTMC

Groupies and Celebrities

Celebrity

(does not want to be like somebody else)

directive sample 0.1200	a@1.0
directive plot $A() ; B()$	b@1.0
new a@1.0:chan()	
new b@1.0:chan()	
let $A()=$ do !a; $A()$ or ? $a ; B()$	
and $B()=d o!b ; B()$ or ? $b ; A()$	
run 100 of $(A() \mid B())$	

A stochastic collective of celebrities:

Stable because as soon as a A finds itself in the majority, it is more likely to find somebody in the same state, and hence change, so the majority is weakened.

Groupie

(wants to be like somebody different)

```
directive sample 0.1 200
a@1.0
directive plot \(A() ; B()\)
b@1.0
```

new a@1.0:chan()
new b@1.0:chan()
let $A()=$ do !a; $A()$ or ? $b ; B()$ and $B()=d o!b ; B()$ or ?a; $A()$
run 100 of $(A() \mid B())$

A stochastic collective of groupies:

Unstable because within an A majority, an A has difficulty finding a B to emulate, but the few B's have plenty of A's to emulate, so the majority may switch to B. Leads to deadlock when everybody is in the same state and there is nobody different to emulate.

Both Together

A way to break the deadlocks: Groupies with just a few Celebrities

directive plot Ag()$; B g() ; A c() ; B c()$
new b@1.0:chan()
let $A c()=$ do !a; $A C()$ or ? $a ; B C()$
and $B c()=d o!b ; B c()$ or ? $b ; A c()$
let Ag()$=$ do !a; Ag() or ? $\mathrm{b} ; \mathrm{Bg}()$
and Bg()$=\mathrm{do}!\mathrm{b} ; \mathrm{Bg}()$ or ? $\mathrm{a} ; \mathrm{Ag}()$
run 1 of $A C()$
run 100 of $(\mathrm{Ag}() \mid \mathrm{Bg}())$
never deadlock

```
directive sample 10.0
```

```
directive sample 10.0
```

```
new a@1.0:chan()
```

```
new a@1.0:chan()
```

> A tiny bit of "noise" can make a huge difference

Regularity can arise not far from chaos

Hysteric Groupies

We can get more regular behavior from groupies if they "need more convincing", or "hysteresis" (history-dependence), to switch states.

directive sample 10.01000 directive plot $G a() ; G b()$
new a@1.0:chan() new b@1.0:chan()
let $G a()=$ do !a; $G a()$ or ?b; ?b; $G b()$ and $G b()=d o!b ; G b()$ or ? $a ; ? a ; G a()$
let $\operatorname{Da}()=!a ; D a()$ and $\operatorname{Db}()=!b ; D b()$
run 100 of $(G a() \mid G b())$
run 1 of $(\mathrm{Da}() \mid \mathrm{Db}())$

Semantics of Collective Behavior

The Two Semantic Faces of Chemistry

These diagrams commute via appropriate maps.
L. Cardelli: "On Process Rate Semantics"

From Processes to Chemistry

Chemical Ground Form (CGF)

$$
\begin{aligned}
& E::=0 \vdots X=M, E \\
& M::=0 \vdots \pi ; P \oplus M \\
& P::=0 \vdots X \mid P \\
& \pi::=\tau_{(r)} \vdots ? a_{(r)} \vdots!a_{(r)} \\
& C G F::=E, P
\end{aligned}
$$

Reagents
Molecules
Solutions
Interactions (delay, input, output)

A stochastic

subset of CCS

(no values, no restriction)

Interacting Automata + dynamic forking
(To translate chemistry to processes we need a bit more than interacting automata: we may have "+" on the right of \rightarrow, that is we may need "|" after π.)
\oplus is stochastic choice (vs. + for chemical reactions)
0 is the null solution $(P|O=O| P=P)$ and null molecule $(M \oplus 0=0 \oplus M=M)$
Each X in E is a distinct species
Each name a is assigned a fixed rate r : $a_{(r)}$

Ex: Interacting Automata
(= finite-control CGFs: they use "|" only in initial conditions):

Processes to Chemistry

Automata	Discrete Chemistry	Continuous Chemistry $\gamma=\mathrm{N}_{\mathrm{A}} \mathrm{~V}$	$\mathrm{N}_{\mathrm{A}}=\text { Avogadro's number }$ Think $\gamma=1$
initial states $\mathrm{A}\|\mathrm{~A}\| \ldots \mid \mathrm{A}$	initial quantities $\# \mathrm{~A}_{0}$	initial concentrations $[\mathrm{A}]_{0} \quad \text { with }[\mathrm{A}]_{0}=\# \mathrm{~A}_{0} / \gamma$	
(A) @ - ${ }^{\text {a }}$	$A \rightarrow{ }^{\prime}{ }^{\prime}$	$\mathrm{A} \rightarrow{ }^{\mathrm{k}} \mathrm{A}^{\prime} \quad$ with $\mathrm{k}=\mathrm{r}$	
	$A+B \cdots \rightarrow{ }^{\prime}+B^{\prime}$	$\mathrm{A}+\mathrm{B} \rightarrow{ }^{k} \mathrm{~A}^{\prime}+\mathrm{B}^{\prime} \quad$ with $k=r \gamma$	
	$\mathrm{A}+\mathrm{A} \cdots 2 \mathrm{r} \mathrm{~A}^{\prime}+\mathrm{A}^{\prime \prime}$	$\mathrm{A}+\mathrm{A} \rightarrow{ }^{2 \mathrm{k}} \mathrm{~A}^{\prime}+\mathrm{A}^{\prime \prime} \quad \text { with } \mathrm{k}=\mathrm{r} \gamma / 2$	

Quantitative Process Semantics

Lotka-Volterra

Beyond Automata

Predator-Prey

Carnivoro Herbivoro
directive sample 1.01000
directive plot Carnivor(); Herbivor()

```
val mortality = 100.0
val breeding=300.0
val predation = 1.0
new cull @predation:chan()
let Herbivor()=
do delay@breeding; (Herbivor()| Herbivor())
or ?cull; ()
and Carnivor() =
do delay@mortality; ()
or !cull; (Carnivor() | Carnivor())
```

run 100 of Herbivor()
run 100 of Carnivor()

An unbounded state system!

Lotka-Volterra in Matlab

$$
\begin{aligned}
& H=\tau_{b} ;(H \mid H) \oplus ? c_{(p)} ; 0 \\
& C=\tau_{m} ; 0 \oplus!c_{(p)} ;(C \mid C) \\
& \# H_{0}, \# C_{0} \\
& H \rightarrow{ }^{b} H+H \\
& \text { C } \rightarrow^{m} 0 \\
& \mathrm{H}+\mathrm{C} \rightarrow \mathrm{p} \mathrm{\gamma} \mathrm{C}+\mathrm{C} \\
& {[H]_{0}=\# H_{0} / \gamma} \\
& {[C]_{0}=\# C_{0} / \gamma} \\
& {[C]^{*}=-m[C]+p \gamma[H][C]} \\
& {[H]_{0}=\# H_{0} / \gamma} \\
& {[C]_{0}=\# C_{0} / \gamma}
\end{aligned}
$$

$$
\begin{aligned}
& m=100.0 \\
& b=300.0 \\
& p=1.0 \\
& \gamma=1.0 \\
& \# H_{0}=100 \\
& \# C_{0}=100
\end{aligned}
$$

GMA \ddagger CME

$$
\mathrm{A}+\mathrm{A} \rightarrow^{2 \mathrm{r}} \mathrm{~A} \quad=? \quad \mathrm{~A}+\mathrm{A} \rightarrow{ }^{\mathrm{r}} \mathbf{0}
$$

... as Automata

Conclusions

Conclusions

- Devising Compositional Models

http://LucaCardelli.name

- Accurate (at the "appropriate" abstraction level).
- Manageable (so we can scale them up by composition).
- Interacting Automata
- Complex global behavior from simple components.
- Bridging individual and collective behavior.
- Connections to classical Markov theory, chemical Master Equation, and Rate Equation.
- Parametric Processes (not shown)
- An standard extension for the modular description of components.
- PolyAutomata (not shown)
- Artificial Bio-Chemistry: complexation and polymerization.
- An "artificial biochemistry"
- A scalable mathematical and computational modeling framework.
- To investigate "real biochemistry" on a large scale.

