On Process Rate Semantics

Luca Cardelli

Microsoft Research
UPenn 2007-05-30
http://LucaCardelli.name

Semantics of Collective Behavior

"Micromodels": Continuous Time Markov Chains

- The underlying semantics of stochastic process algebras.
- Transition graphs with rates (not probabilities) on transitions.
- The molecular-level semantics of chemistry.
- Executable: Gillespie stochastic simulation algorithm.
- But do not give a good sense of "collective" properties.
- Yes it is "mechanistic".
- Yes it supports classical Markov (e.g. steady-state) analysis.
- Yes one can do simulation.
- Yes one can do some program analysis/modelchecking.
- But somewhat lacking in "predictive power" for collective dynamics, particularly for process algebras.

"Macromodels": Ordinary Differential Equations

- The classical semantics of collective behavior.
- E.g. kinetic theory of gasses.
- Not standard for studying process algebras.
- They always ask: "How is you process model related to the ODE models in the literature?"
- Going from processes algebras to ODEs directly:
- In principle: just write down the Rate Equation: [Calder, Hillston]
- Let [S] be the "number of processes in state S " as a function of time.
- Define for each state S:
[S] ${ }^{\circ}$ = (rate of change of the number of processes in state S)
Cumulative rate of transitions from any state S^{\prime} to state S, times [S^{\prime}], minus cumulative rate of transitions from S to any state $S^{\prime \prime}$, times [S].
- I.e. rate $=$ inflow minus outflow.
- Another way: going to ODEs indirectly through chemistry
- If we first convert processes to chemical reactions, then we can pass to ODEs by standard means!
- This can be done "by hand".

Outline

Stochastic Processes \& Discrete Chemistry

Chemical Reactions

$$
\begin{array}{lll}
A & \rightarrow^{r} & B_{1}+\ldots+B_{n} \quad(n \geq 0) \\
A_{1}+A_{2} & \rightarrow^{r} & B_{1}+\ldots+B_{n} \quad(n \geq 0) \\
A+A & \rightarrow^{r} & B_{1}+\ldots+B_{n} \quad(n \geq 0)
\end{array}
$$

Unary Reaction $\quad[A]^{\circ}=-r[A]$
Hetero Reaction $\left[A_{i}\right]^{\circ}=-r\left[A_{1}\right]\left[A_{2}\right]$
Mass Action Law
Homeo Reaction $[A]^{\circ}=-2 r[A]^{2}$
Mass Action Law
(assuming $A \neq B_{i} \neq A_{j}$ for all i, j)

No other reactions!

JOURNAL OF CHEMICAL PHYSICS
 VOLUME 113, NUMBER 1

The chemical Langevin equation

Daniel T. Gillespie ${ }^{\text {a) }}$
Research Department, Code 4T4100D, Naval Air Warfare Center, China Lake, California 93555

Genuinely trimolecular reactions do not physically occur in dilute fluids with any appreciable frequency. Apparently trimolecular reactions in a fluid are usually the combined result of two bimolecular reactions and one monomolecular reaction, and involve an additional short-lived species.

Chapter IV: Chemical Kinetics
 [David A. Reckhow , CEE 572 Course]

... reactions may be either elementary or nonelementary. Elementary reactions are those reactions that occur exactly as they are written, without any intermediate steps. These reactions almost always involve just one or two reactants. ... Non-elementary reactions involve a series of two or more elementary reactions. Many complex environmental reactions are non-elementary. In general, reactions with an overall reaction order greater than two, or reactions with some non-integer reaction order are non-elementary.

THE COLLISION THEORY OF REACTION RATES
 www.chemguide.co.uk

The chances of all this happening if your reaction needed a collision involving more than 2 particles are remote. All three (or more) particles would have to arrive at exactly the same point in space at the same time, with everything lined up exactly right, and having enough energy to react. That's not likely to happen very often!

Reactions have rates. Molecules do not have rates.

Enzymatic reactions:

$$
S \xrightarrow{E} P
$$

the " r " is given by Michaelis-Menten

 (approximated steady-state) laws:$$
E+S \leftrightarrow E S
$$

$$
E S . \rightarrow+E
$$

Chemical Ground Form (CGF)

$$
\begin{array}{llr}
E::=0 \vdots X=M, E & \text { Reagents } & \begin{array}{r}
\text { A stochastic } \\
\text { subset of } C C \\
\text { (no values, no restricti }
\end{array} \\
M::=0 \vdots \pi: P \oplus M & \text { Molecules } & \\
P::=0 \vdots X \mid P & \text { Solutions } & \text { Interacting Autom } \\
\pi::=\tau_{(r)} \vdots ? a_{(r)} \vdots!a_{(r)} & \text { Interactions (delay, input, output) } & \text { + dynamic forking } \\
C G F::=E, P & &
\end{array}
$$

A stochastic subset of CCS
 (no values, no restriction)

Interacting Automata

+ dynamic forking
\oplus is stochastic choice (vs. + for chemical reactions)
0 is the null solution ($P|0=0| P=P$)
and null molecule ($M \oplus 0=0 \oplus M=M$)
Each X in E is a distinct species
Each name a is assigned a fixed rate $r: a_{(r)}$

Ex: Interacting Automata
(= finite-control CGFs: they use "|" only in initial conditions):

From Reagents to Reactions (by example)

Interacting Automata	Discrete Chemistry
initial states $\mathrm{A}\|\mathrm{~A}\| \ldots \mid \mathrm{A}$	initial quantities $\# \mathrm{~A}_{0}$
(A) @r $^{\text {r }}$	$\mathrm{A} \rightarrow \mathrm{m}^{\prime} \mathrm{A}^{\prime}$
	$\mathrm{A}+\mathrm{B} \rightarrow{ }^{\text {r }} \mathrm{A}^{\prime}+\mathrm{B}^{\prime}$
	$\mathrm{A}+\mathrm{A} \cdots{ }^{2 r} \mathrm{~A}^{\prime}+\mathrm{A}^{\prime \prime}$
	$\frac{\downarrow}{\mathrm{CTMC}}$

From Reagents to Reactions: $\mathrm{Ch}(\mathrm{E})$

$$
\begin{array}{lll}
E::=0 \vdots X=M, E & \text { Reagents } \\
M::=0 & \vdots ; P \oplus M & \text { Molecules } \\
P::=0 \vdots X \mid P & \text { Solutions } \\
\pi::=\tau_{(r)} & \vdots a_{(r)} & \vdots a_{(r)}
\end{array} \text { Interactions (delay, input, output) }
$$

E.X.i $\stackrel{\text { def }}{=}$ the $i-t h$ \oplus-summand of the molecule M associated with the X reagent of E

Chemical reactions for E,P: (N.B.: <...> are reaction tags to obtain multiplicity of reactions, and P is P with all the \mid changed to +)

$$
\begin{aligned}
& C h(E):= \\
& \left\{\left(\langle X . i>: X \rightarrow r P) \text { s.t. } E . X . i=\tau_{(r)} ; P\right\} \cup\right. \\
& \left\{\left(\langle X . i, Y . j>: X+Y \rightarrow r+Q) \text { s.t. } X \neq Y, E . X . i=? a_{(r)} ; P, E . Y . j=!a_{(r)} ; Q\right\} \cup\right. \\
& \left.\left\{\left(\left\langle X . i, X . j>X+X \rightarrow{ }^{2 r} P+Q\right) \text { s.t. } E . X . i=? a_{(r)}: P, E . X . j=!a_{(r)} ; Q\right)\right\rangle \in E\right\}
\end{aligned}
$$

Initial conditions for P :

$$
\operatorname{Ch}(P):=P
$$

Entangled vs Detangled

$\mathrm{a}: \mathrm{A}+\mathrm{B} \rightarrow{ }^{\mathrm{r}} \mathrm{A}+\mathrm{B}^{\prime}$
$\mathrm{a}: \mathrm{A}+\mathrm{C} \rightarrow{ }^{\mathrm{r}} \mathrm{A}+\mathrm{C}^{\prime}$

Two reactions on one channel

b: $\mathrm{A}+\mathrm{B} \rightarrow{ }^{\mathrm{r}} \mathrm{A}+\mathrm{B}^{\prime}$
c: $\mathrm{A}+\mathrm{C} \rightarrow{ }^{\mathrm{r}} \mathrm{A}+\mathrm{C}^{\prime}$

$$
\begin{aligned}
& \mathrm{A}=!\mathrm{b} ; \mathrm{A} \oplus!\mathrm{c} ; \mathrm{A} \\
& \mathrm{~B}=? \mathrm{~b} ; \mathrm{B}^{\prime} \\
& \mathrm{C}=? \mathrm{c} ; \mathrm{C}^{\prime} \\
& \mathrm{B}^{\prime}=0 \\
& \mathrm{C}^{\prime}=0
\end{aligned}
$$

Two reactions on two
separate channels

Detangled processes are in simple correspondence with chemistry.

Same Semantics

From Reactions to Reagents (by example)

From Reactions to Reagents: Pi(C)

$$
\begin{array}{llll}
v: & x^{r} y_{1}+\ldots+y_{n}+0 & \text { Unary Reaction } \\
v: & x_{1}+x_{2} \rightarrow y_{1}+\ldots+y_{n}+0 & \text { Binary Reaction }
\end{array}
$$

From uniquely-labeled (v:) chemical reactions C to a $C G F \operatorname{Pi}(C)$:

$$
\begin{aligned}
\operatorname{Pi}(C)=\{(X= & \oplus\left(\left(v: X \rightarrow^{k} P\right) \in C\right) \text { of }\left(\tau_{(k)}: P\right) \\
& \oplus\left(\left(v: X+Y \rightarrow^{k} P\right) \in C \text { and } Y \neq X\right) \text { of }\left(? v_{(k)} ; P\right) \\
& \oplus\left(\left(v: Y+X \rightarrow^{k} P\right) \in C \text { and } Y \neq X\right) \text { of }\left(!v_{(k)} ; 0\right) \\
& \oplus\left(\left(v: X+X \rightarrow^{k} P\right) \in C\right) \text { of }\left(? v_{(k / 2)} ; P \oplus!v_{(k / 2)} ; 0\right)
\end{aligned}
$$

s.t. X is a species in $C\}$

Some Syntactic Properties

- $\quad C$ and $\operatorname{Ch}(\operatorname{Pi}(C))$ have the same reactions
- (and their reaction labels are in bijection)
- Def: E is detangled if each channel appears once as ?a and once as !a.
- If C is a system of chemical reactions then $\mathrm{Pi}(C)$ is detangled.
- (hence chemical reactions embed into a subclass of CGFs)
- Hence for any E, we have that $\operatorname{Pi}(\operatorname{Ch}(E))$ is detangled.
- (E and $\mathrm{Pi}(C h(E)$) are "equivalent" CGFs, but that has to be shown later)
- Def: E,P is automata form if "|" occurs only (other than " $\mid 0$ ") in P.
- Def: Detangle (E) is defined from $\mathrm{Pi}(\mathrm{Ch}(\mathrm{E}))$ by replacing any occurrence pairs $? \mathrm{a}_{(r)}:(\mathrm{X}|\mathrm{Y}| \mathrm{O})$ and $!a_{(r)} ; 0$ with $\left.? \mathrm{a}_{(r)}\right):(\mathrm{X} \mid \mathrm{O})$ and $!a_{(r)}:(\mathrm{Y} \mid \mathrm{O})$.
- If E is in automata form then Detangle (E) is (detangled and) in automata form
- (but $\mathrm{Pi}(\mathrm{Ch}(E))$ may not be)

Discrete-State Semantics

CTMC Semantics

Discrete Semantics of Reactions

Discrete Semantics of Reagents

Discrete State Equivalence

- Def: m is equivalent CTMC's (isomorphic graphs with same rates).
- Thm: E m $\operatorname{Ch}(E)$
- Thm: C m $\mathrm{Pi}(C)$

- For each E there is an E^{\prime} in E that is detangled $\left(E^{\prime}=\operatorname{Pi}(C h(E))\right)$
- For each E in automata form there is an an E^{\prime} m E that is detangled and in automata form ($E^{\prime}=\operatorname{Detangle}(E)$).

Continuous-State Semantics

The "Type System" of Chemistry

The International System of Units (SI) defines the following physical units, with related derived units and constants; note that amount of substance is a base unit in SI, like length and time:

$m o l$	(a base unit)	mole, unit of amount of substance
m	(a base unit)	meter, unit of length
s	(a base unit)	second, unit of time
$L=0.001 \cdot m^{3}$	liter (volume)	
$M=m o l-L^{-1}$	molarity (concentration of substance)	
$\mathrm{N}_{\mathrm{A}}: m o l^{-1} \cong 6.022 \times 10^{23}$	Avogadro's number (number of particles per amount of substance)	

For a substance $X: m o l$, we write $[X]: M$ for the concentration of X, and $[X]^{*}: M \cdot s^{-1}$ for the time derivative of the concentration.

A continuous chemical system (C, V) is a system of chemical reactions C plus a vector of initial concentrations V_{X} : M, one for each species X.

The rates of unary reactions have dimension s^{-1}.
The rates of binary reactions have dimension $\mathrm{M}^{-1} \mathrm{~s}^{-1}$.
(because in both cases the rhs of an ODE should have dimension $M \cdot s^{-1}$).
For a given volume of solution V , the volumetric factor γ of dimension M^{-1} is:

$$
\gamma: M^{-1}=N_{A} V \quad \text { where } N_{A}: \mathrm{mol}^{-1} \text { and } V: L
$$

$\gamma[\mathrm{X}]: 1=$ total number of X molecules (rounded to an integer).
\#X $/ \gamma: M=$ concentration of X molecules

The Gillespie ${ }^{(?)}$ Conversion

Discrete Chemistry	Continuous Chemistry	$\gamma=\mathrm{N}_{\mathrm{A}} \mathrm{V}$: M^{-1}
initial quantities $\# \mathrm{~A}_{0}$	initial concentrations $[\mathrm{A}]_{0} \quad$ with $[\mathrm{A}]_{0}=\# \mathrm{~A}_{0} / \gamma$		
$A \rightarrow{ }^{\prime}{ }^{\prime}$	$\mathrm{A} \rightarrow^{\mathrm{k}} \mathrm{A}^{\prime}$	with $\mathrm{k}=\mathrm{r}$: s^{-1}
$\mathrm{A}+\mathrm{B} \rightarrow \mathrm{A}^{\prime}+\mathrm{B}^{\prime}$	$\mathrm{A}+\mathrm{B} \rightarrow{ }^{\mathrm{k}} \mathrm{A}^{\prime}+\mathrm{B}^{\prime}$	with $\mathrm{k}=\mathrm{r} \gamma$	$: \mathrm{M}^{-1} \mathrm{~s}^{-1}$
$\mathrm{A}+\mathrm{A} \rightarrow \mathrm{r} \mathrm{A}^{\prime}+\mathrm{A}^{\prime \prime}$	$\mathrm{A}+\mathrm{A} \rightarrow{ }^{\mathrm{k}} \mathrm{A}^{\prime}+\mathrm{A}^{\prime \prime}$	with $\mathrm{k}=\mathrm{r} \gamma / 2$	$: \mathrm{M}^{-1} \mathrm{~s}^{-1}$

$\mathrm{V}=$ interaction volume
$\mathrm{N}_{\mathrm{A}}=$ Avogadro's number
Think $\gamma=1$ i.e. $\mathrm{V}=1 / \mathrm{N}_{\mathrm{A}}$

Cont $_{\gamma}$ and Disc ${ }_{\gamma}$

4.2-3 Definition: Cont $_{7}$ and Disc $_{\gamma}$

For a volumetric factor $\gamma: M^{-1}$, we define a translation Cont. from a discrete chemical systems (C,P), with species X and initial molecule count $\# X_{0}=\# X(P)$, to a continuous chemical systems (C, V) with initial concentration $[\mathrm{X}]_{0}=\mathrm{V}_{\mathrm{X}}$. The translation Disc, is its inverse, up to a rounding error $\left\lceil\gamma[\mathrm{X}]_{0}\right\rceil$ in converting concentrations to molecule counts. Since γ is a global conversion constant, we later usually omit it as a subscript.

$\operatorname{Cont}_{7}\left(\mathrm{X} \rightarrow{ }^{\mathrm{r}} \mathrm{P}\right)$	$=\mathrm{X} \rightarrow{ }^{\mathrm{k}} \mathrm{P}$	with $\mathrm{k}=\mathrm{r}$,	$\mathrm{r}: \mathrm{s}^{-1}$	$\mathrm{k}: \mathrm{s}^{-1}$
Contr $_{(}\left(\mathrm{X}+\mathrm{Y} \rightarrow{ }^{\mathrm{r}} \mathrm{P}\right)$	$=\mathrm{X}+\mathrm{Y} \rightarrow{ }^{\mathrm{k}} \mathrm{P}$	with $\mathrm{k}=\mathrm{r} \gamma$	$\mathrm{r}: \mathrm{s}^{-1}$	$\mathrm{k}: \mathrm{M}^{-1} s^{-1}$
$\operatorname{Cont}_{.}\left(\mathrm{X}+\mathrm{X} \rightarrow{ }^{\mathrm{r}} \mathrm{P}\right)$	$=\mathrm{X}+\mathrm{X} \rightarrow{ }^{\mathrm{k}} \mathrm{P}$	with $\mathrm{k}=\mathrm{r} \gamma / 2$	$\mathrm{r}: \mathrm{s}^{-1}$	$\mathrm{k}: M^{-1} s^{-1}$
$\mathrm{Cont}_{7}\left(\# \mathrm{X}_{0}\right)$	$=[X]_{0}$	with $[\mathrm{X}]_{0}=\# \mathrm{X}_{0} / \gamma$	$\mathrm{X}_{0} \mathrm{~mol}$	$[\mathrm{X}]_{0}: M$
$\operatorname{Disc}_{7}\left(\mathrm{X} \rightarrow{ }^{\mathrm{k}} \mathrm{P}\right)$	$=\mathrm{X} \rightarrow{ }^{\mathrm{r}} \mathrm{P}$	with $\mathrm{r}=\mathrm{k}$,	$\mathrm{k}: \mathrm{s}^{-1}$	$\mathrm{r}: \mathrm{s}^{-1}$
Disc. $\left(\mathrm{X}+\mathrm{Y} \rightarrow{ }^{\mathrm{k}} \mathrm{P}\right)$	$=\mathrm{X}+\mathrm{Y} \rightarrow{ }^{\mathrm{r}} \mathrm{P}$	with $\mathrm{r}=\mathrm{k} / \gamma$	$\mathrm{k}: M^{-1} s^{-1}$	$\mathrm{r}: \mathrm{s}^{-1}$
Disc $r_{r}\left(\mathrm{X}+\mathrm{X} \rightarrow{ }^{\mathrm{k}} \mathrm{P}\right)$	$=\mathrm{X}+\mathrm{X} \rightarrow{ }^{\mathrm{r}} \mathrm{P}$	with $\mathrm{r}=2 \mathrm{k} / \gamma$	$\mathrm{k}: M^{-1} s^{-1}$	$\mathrm{r}: \mathrm{s}^{-1}$
$\operatorname{Disc}_{7}\left([X]_{0}\right)$	$=\# \mathrm{X}_{0}$	with \# $\mathrm{X}_{0}=\left\lceil\gamma[\mathrm{X}]_{0}\right\rceil$	$[\mathrm{X}]_{0}: M$	$\mathrm{X}_{0}: \mathrm{mol}$

From Reactions to ODEs

From Processes to ODEs via Chemistry!

directive sample 0.031000
directive plot $A() ; B() ; C()$
new a@1.0:chan new b@1.0:chan new c@1.0:chan
let $A()=$ do !a; $A()$ or ? $b ; B()$
and $B()=d o!b ; B()$ or ?c; $C()$
and $C()=$ do ! $c ; C()$ or ? $a ; A()$
run (900 of $A() \mid 500$ of $B() \mid 100$ of $C())$

$$
\begin{aligned}
& A=!a_{(s)} ; A \oplus ? b_{(s)} ; B \\
& B=!b_{(s)} ; B \oplus ? c_{(s)}: C \\
& C=!c_{(s)} ; C \oplus ? a_{(s)}: A \\
& A+B \rightarrow s B+B \\
& B+C \rightarrow^{s} C+C \\
& C+A \rightarrow^{s} A+A
\end{aligned} \begin{aligned}
& {[A]^{\circ}=-s[A][B]+s[C][A]} \\
& {[B]^{\circ}=-s[B][C]+s[A][B]} \\
& {[C]^{\circ}=-s[C][A]+s[B][C]}
\end{aligned}
$$

From Processes to ODEs via Chemistry!

$\tau: \mathrm{B} \rightarrow^{\mathrm{t}} \mathrm{A}$
$\mathrm{a}: \mathrm{A}+\mathrm{B} \rightarrow^{\mathrm{r}} \mathrm{A}+\mathrm{A}$
$\mathrm{b}: \mathrm{A}+\mathrm{A} \rightarrow^{2 \mathrm{r}} \mathrm{A}+\mathrm{B}$
(discrete reactions)
$\mathrm{B} \rightarrow{ }^{\mathrm{s}} \mathrm{A}$

$$
[B]^{\bullet}=-+[B]-r \gamma[A][B]+r \gamma[A]^{2}
$$

$\mathrm{A}+\mathrm{B} \rightarrow{ }^{\mathrm{ry}} \mathrm{A}+\mathrm{A}$
$\mathrm{A}+\mathrm{A} \rightarrow{ }^{\mathrm{ry}} \mathrm{A}+\mathrm{B}$
(continuous reactions)

$$
[A]^{\bullet}=+[B]+r \gamma[A][B]-r \gamma[A]^{2}
$$

Different chemistry
 but same ODEs, hence equivalent automata

$$
\begin{aligned}
& {[A]^{\circ}=+[B]+r \gamma[A][B]-r \gamma[A]^{2}} \\
& {[B]^{\circ}=-+[B]-r \gamma[A][B]+r \gamma[A]^{2}}
\end{aligned}
$$

Processes Rate Equation

Process Rate Equation for Reagents E

```
[X]*}=(\Sigma(Y\inE)\mp@subsup{\operatorname{Accr}}{E}{}(Y,X)\cdot[Y])-\mp@subsup{\operatorname{Depl}}{E}{}(X)\cdot[X]\quad\mathrm{ for all }X\in
Deple
    \Sigma(i: E.X.i=\tau(r);P)r+
    \Sigma(i: E.X.i=?a(r);P) ry.OutsOnE(a)+
    \Sigma(i: E.X.i=!a(r);P) rr.InsOn (a)
```


$\operatorname{Accr}_{E}(Y, X)=$
$\Sigma\left(i: E . Y . i=\tau_{(r)} ; P\right) \# X(P) \cdot r+$
$\Sigma\left(i: E . Y . i=? a_{(r)} ;\right.$ P) \#X(P).rr.OutsOn $n_{E}(a)+$

$$
\begin{aligned}
X=\tau_{(r)} ; 0 & \rightarrow[X]^{\bullet}=-r[X] \\
X & =? a_{(r)} ; 0 \\
Y & =!a_{(r)} ; 0
\end{aligned} \rightarrow\left[\begin{array}{l}
{[X]^{\bullet}=-r \gamma[X][Y]} \\
{[Y]^{\bullet}=-r \gamma[X][Y]}
\end{array} \begin{array}{rl}
X & =? a_{(r)} ; 0 \rightarrow[X]^{\bullet}=-2 r \gamma[X]^{2} \\
& \oplus!a_{(r)} ; 0
\end{array}\right.
$$

Continuous State Equivalence

- Def: \approx is equivalence of polynomials over the field of reals.

- For each E there is an $E^{\prime} \approx E$ that is detangled $\left(E^{\prime}=\operatorname{Pi}(C h(E))\right)$
- For each E in automata form there is an an $E^{\prime} \approx E$ that is detangled and in automata form ($E^{\prime}=\operatorname{Detangle}(E)$).

Basic Examples: Unary Reactions

$\bigcirc \cdots \cdots$ Unary Reaction

Basic Examples: Binary Reactions

$$
\begin{aligned}
& {[\mathrm{A}]^{\circ}=[\mathrm{B}]^{\bullet}=-\mathrm{k}[\mathrm{~A}][\mathrm{B}]=[\mathrm{A}]^{\cdot}=[\mathrm{B}]^{\cdot}=-\mathrm{r} \gamma[\mathrm{~A}][\mathrm{B}]}
\end{aligned}
$$

2. Homeo Reaction

Model Compactness

Entangled vs detangled

n^{2} Scaling Problems

- E_{n} has $2 n$ variables (nodes) and $2 n$ terms (arcs).
- $\mathrm{Ch}\left(\mathrm{E}_{n}\right)$ has 2 n species and n^{2} reactions.
- The stoichiometric matrix has size $2 n \cdot n^{2}=2 n^{3}$.
- The ODEs have $2 n$ variables and $2 n(n+n)=4 n^{2}$ terms (number of variables times number of accretions plus depletions when sums are distributed)
E_{3}
$X_{0}=? a_{(r)} ; X_{1}$
$X_{1}=? a_{(r)} ; X_{2}$
$X_{2}=? a_{(r)} ; X_{0}$
$Y_{0}=!a_{(r)} \div Y_{1}$
$y_{1}=!a_{(r)} ; Y_{2}$
$y_{2}=!a_{(r)} \div Y_{0}$

$$
\begin{aligned}
& \operatorname{Ch}\left(E_{3}\right) \\
& a_{00}: X_{0}+Y_{0} \rightarrow^{r} X_{1}+Y_{1} \\
& a_{01}: X_{0}+Y_{1} \rightarrow^{r} X_{1}+Y_{2} \\
& a_{02}: X_{0}+Y_{2} \rightarrow^{r} X_{1}+Y_{0} \\
& a_{10}: X_{1}+Y_{0} \rightarrow^{r} X_{2}+Y_{1} \\
& a_{11}: X_{1}+Y_{1} \rightarrow^{r} X_{2}+Y_{2} \\
& a_{12}: X_{1}+Y_{2} \rightarrow{ }^{r} X_{2}+Y_{0} \\
& a_{20}: X_{2}+Y_{0} \rightarrow^{r} X_{0}+Y_{1} \\
& a_{21}: X_{2}+Y_{1} \rightarrow^{r} X_{0}+Y_{2} \\
& a_{22}: X_{2}+Y_{2} \rightarrow \rightarrow^{r} X_{0}+Y_{0}
\end{aligned}
$$

StoichiometricMatrix $\left(\operatorname{Ch}\left(E_{3}\right)\right)$

	a_{00}	a_{01}	a_{02}	a_{10}	a_{11}	a_{12}	a_{20}	a_{21}	a_{22}
X_{0}	-1	-1	-1				+1	+1	+1
X_{1}	+1	+1	+1	-1	-1	-1			
X_{2}				+1	+1	+1	-1	-1	-1
Y_{0}	-1		+1	-1		+1	-1		+1
Y_{1}	+1	-1		+1	-1		+1	-1	
Y_{2}		+1	-1		+1	-1		+1	-1

$$
\begin{aligned}
& \operatorname{ODE}\left(E_{3}\right) \\
& {\left[X_{0}\right]^{\circ}=-r\left[X_{0}\right]\left[Y_{0}\right]-r\left[X_{0}\right]\left[Y_{1}\right]-r\left[X_{0}\right]\left[Y_{2}\right]+r\left[X_{2}\right]\left[Y_{0}\right]+r\left[X_{2}\right]\left[Y_{1}\right]+r\left[X_{2}\right]\left[Y_{2}\right]} \\
& {\left[X_{1}\right]^{\circ}=-r\left[X_{1}\right]\left[Y_{0}\right]-r\left[X_{1}\right]\left[Y_{1}\right]-r\left[X_{1}\right]\left[Y_{2}\right]+r\left[X_{0}\right]\left[Y_{0}\right]+r\left[X_{0}\right]\left[Y_{1}\right]+r\left[X_{0}\right]\left[Y_{2}\right]} \\
& {\left[X_{2}\right]^{\circ}=-r\left[X_{1}\right]\left[Y_{0}\right]-r\left[X_{2}\right]\left[Y_{1}\right]-r\left[X_{2}\right]\left[Y_{2}\right]+r\left[X_{1}\right]\left[Y_{0}\right]+r\left[X_{1}\right]\left[Y_{1}\right]+r\left[X_{1}\right]\left[Y_{2}\right]} \\
& {\left[Y_{0}\right]^{\circ}=-r\left[X_{0}\right]\left[Y_{0}\right]-r\left[X_{1}\right]\left[Y_{0}\right]-r\left[X_{2}\right]\left[Y_{0}\right]+r\left[X_{0}\right]\left[Y_{2}\right]+r\left[X_{1}\right]\left[Y_{2}\right]+r\left[X_{2}\right]\left[Y_{2}\right]} \\
& {\left[Y_{1}\right]^{\circ}=-r\left[X_{0}\right]\left[Y_{1}\right]-r\left[X_{1}\right]\left[Y_{1}\right]-r\left[X_{2}\right]\left[Y_{1}\right]+r\left[X_{0}\right]\left[Y_{0}\right]+r\left[X_{1}\right]\left[Y_{0}\right]+r\left[X_{2}\right]\left[Y_{0}\right]} \\
& {\left[Y_{2}\right]^{\circ}=-r\left[X_{0}\right]\left[Y_{2}\right]-r\left[X_{1}\right]\left[Y_{2}\right]-r\left[X_{2}\right]\left[Y_{2}\right]+r\left[X_{0}\right]\left[Y_{1}\right]+r\left[X_{1}\right]\left[Y_{1}\right]+r\left[X_{2}\right]\left[Y_{1}\right]}
\end{aligned}
$$

Laws by ODEs

Choice Law by ODEs

Idle Delay Law by ODEs

Stochastic Interleaving

$$
\tau_{\mu} ; B \mid \tau_{\mu} ; D=\tau_{\lambda} ;\left(B \mid \tau_{\mu} ; D\right) \oplus \tau_{\mu} ;\left(\tau_{\mu} ; B \mid D\right)
$$

Ex: $\Lambda=1.0, \mu=2.0$


```
directive sample 4.010000
directive plot A(); B();C();D()
let }A()=\mathrm{ delay@1.0; }B(
and }B()=(
let C() = delay@2.0; D()
and D()=()
run 1000 of (A()|C())
```

directive sample 4.010000
directive plot
? YA; $B() ; ? Y C ; D() ; Y() ; A() ; C()$
new YA@1.0:chan new YC@1.0:chan
let $A()=$ do delay@1.0; $B()$ or ?Y A
and $B()=()$
let $C()=$ do delay@2.0; $D()$ or ?YC
and $D()=()$
let $Y()=$
do delay@1.0; $(B() \mid C())$
or delay@2.0; $(A() \mid D())$
or ?YA or ?YC
Amazingly, the B's and the D's from the two branches sum up to exponential distributions

Stochastic Interleaving Law by ODEs

$$
\begin{aligned}
& \tau_{\lambda} ; B \mid \tau_{\mu} ; D=\tau_{\lambda} ;\left(B \mid \tau_{\mu} ; D\right) \oplus \tau_{\mu} ;\left(\tau_{\lambda} ; B \mid D\right) \\
& \begin{array}{l}
A_{1}=\tau_{n} ; B \\
C_{1}=\tau_{\mu} ; D \\
n \times A_{1} \mid n \times C_{1}
\end{array} \\
& \begin{array}{l}
y=\tau_{\mu^{\prime}}\left(B \mid C_{2}\right) \oplus \tau_{\mu} ;\left(A_{2} \mid D\right) \\
C_{2}=\tau_{\mu} D \\
A_{2}=\tau_{\mu_{1}} B \\
n \times Y
\end{array} \\
& \text { Want to show that B and D } \\
& \text { on both sides have the } \\
& \text { "same behavior" (equal } \\
& \text { quantities of } B \text { and } D \\
& \text { produced at all times) } \\
& \begin{array}{l}
Y \rightarrow{ }^{\wedge} B+C_{2} \\
Y \rightarrow A^{\mu} A_{2}+D \\
C_{2} \rightarrow{ }^{\mu} D \\
A_{2} \rightarrow^{\wedge} B \\
{[Y]_{0}=n / \gamma}
\end{array} \rightarrow \begin{array}{l}
{[Y]^{\circ}=-\Lambda[Y]-\mu[Y]} \\
{\left[A_{2}\right]^{\circ}=\mu[Y]-\Lambda\left[A_{2}\right]} \\
{[B]^{\circ}=\Lambda[Y]+\Lambda\left[A_{2}\right]} \\
{\left[C_{2}\right]^{\circ}=\Lambda[Y]-\mu\left[C_{2}\right]} \\
{[D]^{\circ}=\mu[Y]+\mu\left[C_{2}\right]}
\end{array}
\end{aligned}
$$

$[B]$ and $[D]$ have equal time evolutions on the two sides provided that $\left[A_{1}\right]=\left[Y+A_{2}\right]$ and $\left[C_{1}\right]=\left[Y+C_{2}\right]$.
Moreover $\left[A_{1}\right]_{0}=\left[C_{1}\right]_{0}=[Y]_{0}=n / \gamma$, and the initial conditions of the right hand system specify that $\left[A_{2}\right]_{0}=\left[C_{2}\right]_{0}=0$ (since only Y is present), hence $\left[\mathrm{A}_{1}\right]_{0}=\left[\mathrm{Y}+\mathrm{A}_{2}\right]_{0}$ and $\left[\mathrm{C}_{1}\right]_{0}=\left[\mathrm{Y}+\mathrm{C}_{2}\right]_{0}$. Similarly $[\mathrm{B}]_{0}=[\mathrm{D}]_{0}=0$. Therefore the final ODEs have the same initial conditions for all variables, and hence have the same time evolution.

So, for example, if we run a stochastic simulation of the left hand side with $n=1000$ and with initially $1000 \times A 1$ and $1000 \times C 1$, we obtain the same curves for B and D than a stochastic simulation of the right hand side with initially $1000 \times$ Y.

Parametric Processes

Chemical Parametric Form (CPF)

$$
\begin{array}{ll}
E & ::=X_{1}\left(p_{1}\right)=M_{1}, \ldots, X_{n}\left(p_{n}\right)=M_{n} \\
M & ::=\pi_{1} ; P_{1} \oplus \ldots \oplus \pi_{n} ; P_{n} \\
P & ::=X_{1}\left(p_{1}\right)|\ldots| X_{n}\left(p_{n}\right) \\
\pi & ::=\tau_{r} \quad ? n(p) \quad!n(p) \\
C P F & ::=E, P
\end{array}
$$

Reagents	$(n \geq 0)$
Molecules	$(n \geq 0)$
Solutions	$(n \geq 0)$

Interactions
with initial conditions

Not bounded-state systems.
Not finite-control systems.
But still finite-species systems.
\oplus is stochastic choice (vs. + for chemical reactions)
0 is the null solution ($P|O=O| P=P$) and null molecule $(M \oplus 0=0 \oplus M=M)\left(\tau_{0} ; P=0\right)$
X_{i} are distinct in E, p are vectors of names
p are vectors of distinct names when in binding position
Each free name n in E is assigned a fixed rate r :
written either $n_{(r)}$, or $\rho_{\text {CPF }}(n)=r$.

A translation from CPF to CGF exists (expanding all possible instantiation of parameters from the initial conditions)

An incremental translation algorithm exists (expanding on demand from initial conditions)

And Yet It Moves

The Repressilator荡

A fine stochastic oscillator over a wide range of parameters.

Simulation: Time $=53810.179900(1070$ points at 34439 simTime/sysTime and halted)

Parametric representation

```
\(\operatorname{Neg}(a, b)=? a ; \operatorname{Inh}(a, b) \oplus \tau_{\varepsilon^{\prime}}(\operatorname{Tr}(b) \mid \operatorname{Neg}(a, b))\)
    \(\operatorname{Inh}(a, b)=\tau_{\eta} ; \operatorname{Neg}(a, b)\)
    \(\operatorname{Tr}(b)=!b ; \operatorname{Tr}(b) \oplus \tau_{\gamma^{\prime}} 0\)
    \(\operatorname{Neg}\left(x_{(r)}, y_{(r)}\right)\left|\operatorname{Neg}\left(y_{(r)}, z_{(r)}\right)\right| \operatorname{Neg}\left(z_{(r)}, x_{(r)}\right)\)
```

Neg/x,y $\rightarrow^{\varepsilon} \operatorname{Tr} / y+$ Neg/x,y
Neg/y,z $\rightarrow^{\varepsilon} \operatorname{Tr} / z+$ Neg/y,z
Neg/z, $x \rightarrow^{\varepsilon} \operatorname{Tr} / x+\operatorname{Neg} / z, x$
$\operatorname{Tr} / x+\operatorname{Neg} / x, y \rightarrow{ }^{r} \operatorname{Tr} / x+\operatorname{Inh} / x, y$
Tr/y + Neg/y,z $\rightarrow^{r} \operatorname{Tr} / y+\operatorname{Inh} / y, z$
$\operatorname{Tr} / z+\operatorname{Neg} / z, x \rightarrow{ }^{r} \operatorname{Tr} / z+\operatorname{Inh} / z, x$
Inh/x,y $\rightarrow{ }^{n}$ Neg/x,y
Inh/y,z $\rightarrow{ }^{\eta}$ Neg/y,z
$\operatorname{Inh} / z, x \rightarrow{ }^{\eta} \mathrm{Neg} / z, x$
$\operatorname{Tr} / x \rightarrow \gamma 0$
$\operatorname{Tr} / y \rightarrow r 0$
$\mathrm{Tr} / \mathrm{z} \rightarrow \mathrm{r}^{\mathrm{O}}$
Neg/x,y + Neg/y,z + Neg/z,x
$[\text { Neg } / x, y]^{0}=-r[T r / x][$ Neg $/ x, y]+\eta[\text { Inh } / x, y]^{*}$
$[$ Neg/y,z] $=-r[T r / y][$ Neg $/ y, z]+\eta[I n h / y, z]$.
$[\mathrm{Neg} / \mathrm{z}, \mathrm{x}]^{\circ}=-\mathrm{r}[\mathrm{Tr} / \mathrm{z}][\mathrm{Neg} / z, x]+\eta[\operatorname{Inh} / z, x]^{\mathrm{m}} \mathrm{m}$
$[\operatorname{Inh} / x, y]^{0}=r[\operatorname{Tr} / x][$ Neg $/ x, y]-\eta[$ Inh $/ x, y]=$
$[\operatorname{Inh} / y, z]^{\circ}=r[\operatorname{Tr} / y][$ Neg/y,z] - $\eta[\operatorname{Inh} / y, z]$
$[\operatorname{Inh} / z, x]^{\bullet}=r[\operatorname{Tr} / z][$ Neg $/ z, x]-\eta[\operatorname{Inh} / z, x]$
$[\operatorname{Tr} / x]^{0}=\varepsilon[$ Neg $/ z, x]-\gamma[\operatorname{Tr} / x]$
$[\operatorname{Tr} / y]^{\circ}=\varepsilon[\mathrm{Neg} / \mathrm{x}, \mathrm{y}]-\gamma[\mathrm{Tr} / \mathrm{y}]$
$[\operatorname{Tr} / z]^{\circ}=\varepsilon[$ Neg $/ y, z]-\gamma[\operatorname{Tr} / z]$
simplifying (N is the quantity of each of the 3 gates)
$[\text { Neg } / x, y]^{\bullet}=\eta N-(\eta+r[\operatorname{Tr} / x])[$ Neg $/ x, y]$ [Neg/y,z] $=\eta N-(\eta+r[T r / y])[N e g / y, z]$ $[\mathrm{Neg} / \mathrm{z}, \mathrm{x}]^{\bullet}=\eta \mathrm{N}-(\eta+r[\mathrm{Tr} / \mathrm{z}])[\mathrm{Neg} / \mathrm{z}, \mathrm{x}]$
$[\operatorname{Tr} / x]^{0}=\varepsilon[\operatorname{Neg} / z, x]-\gamma[\operatorname{Tr} / x]$
$[\operatorname{Tr} / y]^{\circ}=\varepsilon[$ Neg $/ x, y]-\gamma[\operatorname{Tr} / y]$
$[\mathrm{Tr} / \mathrm{z}]^{\circ}=\varepsilon[\mathrm{Neg} / \mathrm{y}, \mathrm{z}]-\gamma[\mathrm{Tr} / \mathrm{z}]$

Analytically not an oscillator!
Blossey-Cardelli-Phillips.

Matlab

Conclusions

Quantitative Process Semantics

Some Consequences

- Process algebras are faithful to chemical semantics.
- And hence can be used for biochemical modeling

$$
\begin{array}{ll}
\operatorname{Pi}(\operatorname{Ch}(\mathrm{E})) m \mathrm{~m} & \operatorname{Pi}(\operatorname{Ch}(\mathrm{E})) \approx \mathrm{E} \\
\mathrm{Ch}(\mathrm{Pi}(C)) \approx m \mathrm{~m} & \operatorname{Cont}(\operatorname{Ch}(\operatorname{Pi}(C))) \approx \operatorname{Cont}(C)
\end{array}
$$

- (N.B. although CTMC graphs were sufficient for our purposes, there is still the issue of when two CTMC graphs are stochastically equivalent. The "true" stochastic semantics is given by the Chapman-Kolmogorov equation for Markov processes, a.k.a. the Chemical Master Equation. Such equation can be extracted directly from process algebra as well, but it is notoriously difficult to use.)
- Process algebras lead to more compact models (representations), which in addition are compositional.
- This is relevant to the current efforts in "scaling up" biological modeling.
- We also obtain a bulk (ODE) semantics for process algebras
- Opens up the possibility of studying "bulk laws" of processes; classical analytical tools can be used.
- One has to be careful (as in chemistry) about stochastic effects.

