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Intro

e Understanding how cells compute
- How do signaling networks work?
- Much is understood, and much is not.

e An unusual computational paradigm
- By protein interactions (mostly)

- Is it related to:
e Electronic circuits?
e Automata?
e Process Algebra?

e Why study signaling networks?

Ultrasensitivity in the mitogen-activated protein cascade, Chi-Ying F. Huang
and James E. Ferrell, Jr., 1996, Proc. Natl._ Acad. Sci. USA, 93, 10078-10083.
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- Tt's "just chemistry”, we should be able

to cope with it.

e Simpler than gene networks, neural
networks, ants, and bees!

- Yet non-trivial; general principles and
algorithms may apply.



Stochastic Collectives



Computing by Stochastic Collectives

e "Collective":

- A large set of interacting finite state automata:
e Not quite language automata (“large set")
e Not quite cellular automata (“interacting” but not on a grid)
e Not quite process algebra (“collective behavior")
e Cf. multi-agent systems and swarm intelligence

e "Stochastic”:

- Interactions have rates
e Not quite discrete (hundreds or thousands of components)
e Not quite continuous (non-trivial stochastic effects)
e Not quite hybrid (no "switching” between regimes)

e Very much like biochemistry
- Which is a large set of stochastically interacting molecules/proteins
- Are proteins finite state and subject to automata-like transitions?

e Let's say they are, at least because:

e Much of the knowledge being accumulated in Systems Biology
is described as state transition diagrams [Kitano].



State Transitions
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Interacting Automata

Communicating automata: a graphical FSA-like
notation for “finite state restriction-free n-

calculus processes”.
Interacting automata do not even exchange

values on communication.
The stochastic version has rates on
communications, and delays.

T@A5

"Finite state" means: no composition or

e <p Delay restriction inside recursion.

== Transition Analyzable by standard Markovian techniques, by

“= =P Inferaction first computing the “product automaton” to
obtain the underlying finite Markov ftransition

system. [Buchholz]

‘ Current State



Interactions in a Population

Suppose this is the ) ()

hext interaction e e
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One lonely automaton
cannot interact



Interactions in a Population
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Interactions in a Population
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Interactions in a Population (2)

next interaction

’ Suppose this is the
@ PP
»



Interactions in a Population (2)

S .
. »
Ib Ib

All-B stable

)
(A
5g ’ population
(8)
¥
b

Nondeterministic
population behavior

(“multistability")



Groupies and Celebrities

Celebrity Groupie
(does not want to be like somebody else) (wants to be like somebody different)
directive sample 0.1 200 a@1.0 directive sample 0.1 200 a@10
directive plot A(); B() b@1.0 directive plot A(); B() b@1.0
new a@1.0:chan() new a@1.0:chan()

new b@1.0:chan() new b@1.0:chan()

let A() = do la; A() or ?a; B()
and B() = do |b; B() or ?b; A()

run 100 of (A() | BO)

let A() = do la; A() or ?b; B()
and B() = do Ib; B() or ?a; A()

run 100 of (A() | BQ)

Ib

A stochastic collective of celebrities: A stochastic collective of groupies:
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Unstable because within an A majority, an A has difficulty finding a B to
emulate, but the few B's have plenty of A's to emulate, so the majority may
Stable because as soon as a A finds itself in the majority, it is more likely to switch to B. Leads to deadlock when everybody is in the same state and there is
find somebody in the same state, and hence change, so the majority is weakened. nobody different to emulate.



Both Together

A way Yo break the deadlocks: Groupies with just a few Celebrities

directive sample 10.0
directive plot Ag(); Bg(): Ac(). Bc()

new a@1.0:chan()
new b@1.0:chan()

ManY A fe_W. let Ac() = do la; Ac() or ?a; Bc()
Gr'ouples Celebrities and Bc() = do Ib; Bc() or ?b; Ac()
let Ag() = do la; Ag() or ?b; Bg()
and Bg() = do Ib; Bg() or ?a; Ag()
run 1 of Ac()
run 100 of (Ag() | Bg())
never
deadlock
500 SFikd
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Hysteric Groupies

We can get more regular behavior from groupies if they "need more

convincing”, or “hysteresis” (history-dependence), to switch states.

— Ga() ——Gb()

a "solid threshold"” to observe switching

(With doping to

la Ib
break deadlocks)
N.B.: It will not oscillate

without doping (noise)

——Ga) ——Gh0) 7

0 1 2 3 4 5 6 7 8 9

1 sample orbit
Gavs. Gb

0 50 100 150

1 sample orbit
Gavs. Gb

directive sample 10.0 1000
directive plot Ga(); Gb()

new a@1.0:chan()
new b@1.0:chan()

let Ga() = do la; Ga() or ?b; ?b; Gb()
and 6b() = do !b; Gb() or ?a; ?a; Ga()

let Da() = la; Da()
and Db() = |b; Db()

run 100 of (Ga() | Gb())
run 1of (Da() | Db())

directive sample 10.0 1000
directive plot Ga(); 6b()

new a@1.0:chan()
new b@1.0:chan()

let Ga() = do la; Ga() or ?b; ?b; ?b; Gb()
and 6b() = do |b; Gb() or ?a; ?a; ?a; Ga()

let Da() = la; Da()
and Db() = |b; Db()

run 100 of (Ga() | 6b()) .
run 1of (Da() | Db())
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The Two Faces of Chemistry

Continuous-state Semantics

(Generalized Mass Action)

ODE

t

Continuous
Chemistry

'

Discrete
Chemistry

v

CTMC

ODE

Process
Algebra

l

CTMC

Discrete-state Semantics

(Chemical Master Equation)

Nondeterministic
Semantics

Stochastic
Semantics

These diagrams commute via appropriate maps.

L. Cardelli: "On Process Rate Semantics”



From Automata to Chemistry

Discrete Continuous
Automata : — : =
Chemistry Chemistry 7 NaV
initial states initial quantities initial concentrations
ATAL. 1A A [Alg with [A]y=#Ae/Y
A A A ok A withk=r
A+B " A’+B’ A+B 5K A'+B” withk=ry

A+A -2 A+A”

!

CTMC

A+A 5 A+A” with k=1y/2

!

ODE

Think y=1
ie.V=1/N,

ODE

t

Continuous
Chemistry

ODE

|

'

Discrete
Chemistry

Process
Algebra

v

CTMC

l

CTMC




Quantitative Process Semantics

ContiHUOUS'State SemantiCS Pr‘o cess Ra're Eq ua-hon
(Generalized Mass Action)

[X] = (Z(YeE) Accre(Y X)-[Y]) - Deple(X)-[X]  forall X<E

ODE ODV
1 Accretion Depletion

Continuous
Chemistry
1 T Process Nondeterministic
. Algebra Semantics Defined over the
Discrete syntax of processes
Chemistry .
‘ Stochastic
CTMC _! CTMC Semantics

Intepactions Propensity

Discrete-state Semantics
(Chemical Master Equation) apr(p,’r)/a‘r =) (2L al(p—vl)-pr'(p—vl,‘r) - al(p)-pr'(p,‘r) for all pe States(E)

Process Master Equation
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Second-order

1000 5P
575 S0
Fi)
7E0 E|:|
X !a 625
@1.01 500
| ?a
375
125
0
0 7
1000xS, 1XE
1000 SFit
@L.0 N
EEEEEER
750
. S0
| !a 625 F
@1.0 : 500 EQ
: ?a 375
M 250
125
% 1000
1000xS, 1XE

E+S —t E+P
directive sample 1000.0
directive plot S(); P(); EQ)
new a@1.0:chan()
let E() = la; E()
and S() = ?a; P()

and P()= ()

run (1 of E() | 1000 of S())

E+S —r ES+P
ES —s E

directive sample 1000.0
directive plot S(); P(): EQ)

new a@1.0:chan()

let E() = la; delay@1.0; E()
and S() = ?a; P()

and P()= ()

run (1 of E() | 1000 of 5())

and Zero-order Regime

Second-Order Regime

[ST = -r[E][S]

Zero-Order Regime
[S]° = -1

e v, Ys) .
@) Notation

!a(r)

(by assuming [ES]* =0)



Ultrasensitivit

directive sample 215.0

E+S RN ES+P directive plot S(); P(): EQ: ESQ: FO: FP()

F +P N FP +S new a@1.0:chan() new b@1.0:chan() .
ES > E =l Zero-Order Regime

FP — P A small E-F inbalance causes
| === a much larger S-P switch.

let clock(t:float, tickichan) = (* sends a tick every t time *)
(val i = 1/100.0 val d = 10/4i  (* by 100-step erlang timers *)
let step(niint) = if n<=0 then Ifick: clock(t,tick) else delay@d; step(n-1)
run step(100))
let Sig(piproc(), tickichan) = (p() | ?tick: Sig(p,tick))
let raising(p:proc(), :float) =
(new tickichan run (clock(t tick) | Sig(p.tick)))

run 100 of F()
run raising(E 1.0)

: directi le 215.0 1000
E+S — E+P drectie :T;:psj), PO EO: FO
| a F+P — F+S new a@1 O:chan() new b@1.0:chan()

Second-Order Regime

: let S() = 2a; P()
@1.01 2 and P() = 2; S0

: let EQ = la: EQ
1000 SFiM : and F() = Ib; F()

800 =1
?b :@1_0 800 = let clack(t:float, tickichan) = (* sends a tick every 1 fime *)

(val ti = 1/100.0 val d = 10/ti  (* by 100-step erlang timers *)

run 1000 of S()

F : let step(niint) = if n<=0 then Itick; clock(t,tick) else delay@d; step(n-1)
400 ':' : run step(100))
|b : let Sig(piproc(), tickichan) = (p() | ?tick: Sig(p,tick))
. 200 : let raising(p:proc(), t:float) =
(new tick:chan run (clock(t,tick) | Sig(p,tick)))
% 215 : run 100 of F()

100xEF, 0..200xE : run raising(E 1.0)




Cascades

Second-Oder Regime cascade:
a signal amplifier (MAPK)

directive plot la; Ib; lc

625 aH i > O f— C H i = max new a@1.0:chan new b@1.0:chan new c@1.0:chan

let Amp_hi(aichan, bichan) =
500

I3 do Ib: Amp_hi(a,b) or delay@1.0; Amp_lo(a,b)
: and Amp_lo(a:chan, bchan) =
375 Ik 2a; 2a; Amp_hi(ab)
s I run 1000 of (Amp_lo(a,b) | Amp_lo(b.c))
let AQ) = la; AQ)
125 run 100 of A()

a
a 0.0z
100xaHi, 1000xbLo, 1000xcLo, rates=1.0

Zero-Oder Regime cascade:
: a signal divider!

1250 I aHi = max f— CHi = 1/3 max directive sample 0.03

directive plot la; Ib; lc

1000 new a@1.0:chan new b@1.0:chan new c@1.0:chan

750 let Amp_hi(a:chan, b:chan) =
do Ib; delay@1.0; Amp_hi(a,b) or delay@1.0; Amp_lo(a,b)

800 and Amp_lo(a:chan, b:chan) =
2a; 7a; Amp_hi(a,b)

250 run 1000 of (Amp_lo(a,b) | Amp_lo(b,c))

a =la; .0;
0 0.03 let AQ) = la; delay@1.0; A()

run 2000 of A()

2000xaHi, 1000xbLo, 1000xcLo, rates=1.0
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Nonlinear Transition (NLT)

lc

A = ?C(S);B
B = !C(s);B

\

:A+B —s B+B ]

\

([A] =
[B]' -

-s[A][B]
s[A][B]

999 Eg
GBE
333

SPiM

0
0.0015957 0014324

directive sample 0.02 1000

directive plot B(): A() .

e N.B.: needs at
new c@s:chan IZGST 1 B 1'0

let A() = 2c; B() w n

and B() = 1c:B() 961’ started”.

run (1000 of A() | 1 of B())

Paused

Simulation: Time = 0.013448 (3939 points at 0.0085215 simTime/sysTime and halted)

1200

1000

8OO0

600

400 -

200 -

Matlab

0 L . . . —
0 10 20 30 40 a0 &0 ?dﬁ_a

interval/step [0:0.001:0.0]
(A)  dx1/dt= - x1*x2 1000.0
(B) dx2/dt = x1*x2 10

a0



Two NLTs: Bell Shape

Ib Ic

[B] = [BI([A]-[C])

directive sample 0.0025 1000
directive plot B(); A(): €()

new b@1.0:chan new c@1.0:chan

let A() = ?b; B()
and B() = do Ib;B() or ?c; C()
and C() = 1c;C()

run ((10000 of A()) | B() | €())

4 N\
A = ?b(l); B

B = Ib(l),B @® QC(I),C

(A+B —!B+B
| B+C 51C+C

[A]* = -[A][B]
[B]* = [A][B]-[B][C]
[C] = [B][C]

99999

99999

99999

]
00000000

0000000
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SSS

500 1000 1500 2000 2500

3000



NLT in a Cycle: Oscillator

directive plot A(); 'B() ;;;;

o . D)
A = !G(s),A @® ?b(s),B

B=lbB®?cyC

\C = !C(S);C @® ?G(S);A)

(A+B —5s B+B
B+C —s C+C

C+A —S A+A

([A]" = -S[A][B}+s[C][A]
[B]* = -s[B][C]+s[A][B]
[C]" = -s[C][A]+s[B][C]
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Epidemics

directive sample 500.0 1000
directive plot Recovered(): Susceptible(); Infected()

!infGCT ?ianCT hew infect @0.001:chan()

val recover = 0.03
. ( ) let Recovered() =
SUSCCPlele ’>infec1'%nfed'ed ?infect; Recovered()

and Susceptible() =
@ recover ?infect; Infected()

and Infected() =
Recovered do linfect; Infected()
or ?infect; Infected()
. or delay@recover; Recovered()
?infect

run (200 of Susceptible() | 2 of Infected())

251 Recovered() —— Susceptible() Infected()
Developing the Use of Process Algebra in the
Derivation and Analysis of Mathematical Models 200 -
of Infectious Disease
150 -
R. Norman and C. Shankland
Department of Computing Science and Mathematics, University of Stirling, UK.
{ces,ran}@cs.stir.ac.uk 100
Abstract. We introduce a series of descriptions of disease spread using 50
the process algebra WSCCS and compare the derived mean field equa-
tions with the traditional ordinary differential equation model. Even the
preliminary work presented here brings to light interesting theoretical 0 T T T

questions about the “best” way to defined the model.

0 50 100 150 200



Differentiating

Processes!

N
S = ?l(.l.),I

~

J

(S+T SWI+T)

T+T >WT +T - “useless”

I >R ) reactions
\R + T 5TR + ]:/

[S]° = -ty[S][I]

[I]° = ty[S][I]-r[I]

[R]* = r[I]

Automata % =0l

produce the = IS

standard ODEs! % =47

{the Kermack-McEendrick, or SIE model)|

ODE

2601

200+

1601

100

50 1

Infected? SPIM
Suzceptible

Recovered()

S="yyl

£=0.001 r=0.03
5,=200 [,=2

0 200

) Cell Designer
= D Sign
v=1.0
S+I->Y1+1
I->rR
t=0.001 r=0.03
280

200

180+

100+

a0

L . L
0 a0 100 150 200

S*=-tySI
I* = tySI-1l
R*=r1l
t=0.001 r=0.03
S,=200/y
I=2/y
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Conclusions

e Compositional Models
- Accurate (at the "appropriate” abstraction level).
- Manageable (so we can scale them up by composition).

e Interacting Automata
- Complex global behavior from simple components.
- Bridging individual and collective behavior.

- Connections to classical Markov theory,
chemical Master Equation, and Rate Equation.

e An‘artificial biochemistry”
- A scalable mathematical and computational modeling framework.
- To investigate "real biochemistry” on a large scale.
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