Artificial Biochemistry

Luca Cardelli

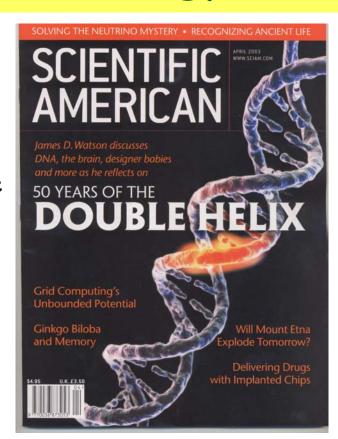
Microsoft Research

LIX Colloquium on Emerging Trends in Concurrency Theory Paris 2006-11-15

http://LucaCardelli.name

50 Years of Molecular Cell Biology

- The genome (3.2 GBases)
 is made of DNA
 - Stores digital information as sequences of 4 different nucleotides
 - Directs protein assembly through RNA and the Genetic Code
- Proteins (1M coded from 25K genes)
 are made of amino acids
 - Catalyze all biochemical reactions
 - Control metabolism (energy & materials)
 - Process signals, activate genes
- Bootstrapping still a mystery
 - DNA, RNA, proteins, membranes are today interdependent. Not clear who came first
 - Not understood, not essential for us



Towards Systems Biology

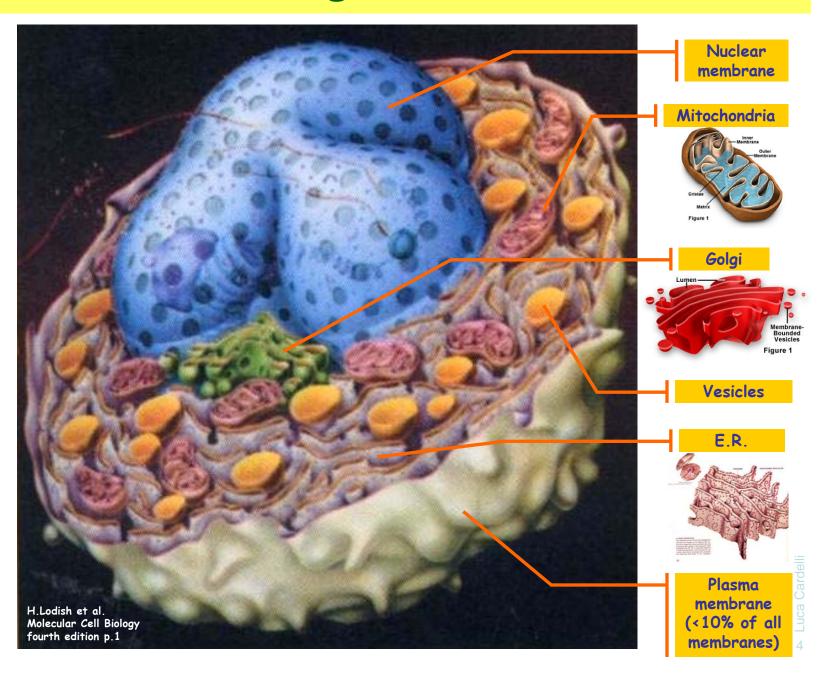
- To reverse-engineer nature
 - You cannot do it one molecule at a time (quickly running out of biologists)
 - You cannot do it one component at a time (without understanding their interactions)
- Understanding how "the systems" works
 - Behavior comes from complex patterns of interactions between components
 - Components themselves often irrelevant (analogous function across subsystem/species)
- New(ish) approach (as proposed by biologists)
 - Experimentally: massive data gathering and data mining (e.g. Genome projects)
 - Conceptually: modeling and analyzing large networks (i.e. interactions) of components
- Active research
 - Chemical origin of life and evolutionary processes
 - Systematic mapping of any system of interest
 - Medical control of biological system (no magic bullets)

Reverse-Engineer This!

Eukaryotic Cell

(10~100 trillion in human body)

Membranes everywhere



...While Modeling It

- Even if we understood it, how would we model it?
 - Millions of differential equations? Hmmm...
 - Highly, highly, concurrent and asynchronous
 - Stochastic (nondeterministic and discontinuous)
- And we will have to model it in order to understand it.
 - Simulation and analysis are key to understanding interactions
- What's peculiar about these systems?
 - They are huge and complicated
 - They are concurrent and unpredictable
 - There is no documentation
 - You understand them by looking at traces and dumps
 - Doesn't that sound familiar?

Stochastic Collectives

Stochastic Collectives

• "Collective":

- A large set of interacting finite state automata:
 - Not quite language automata ("large set")
 - Not quite cellular automata ("interacting" but not on a grid)
 - Not quite process algebra ("collective behavior")
 - Cf. multi-agent systems and swarm intelligence

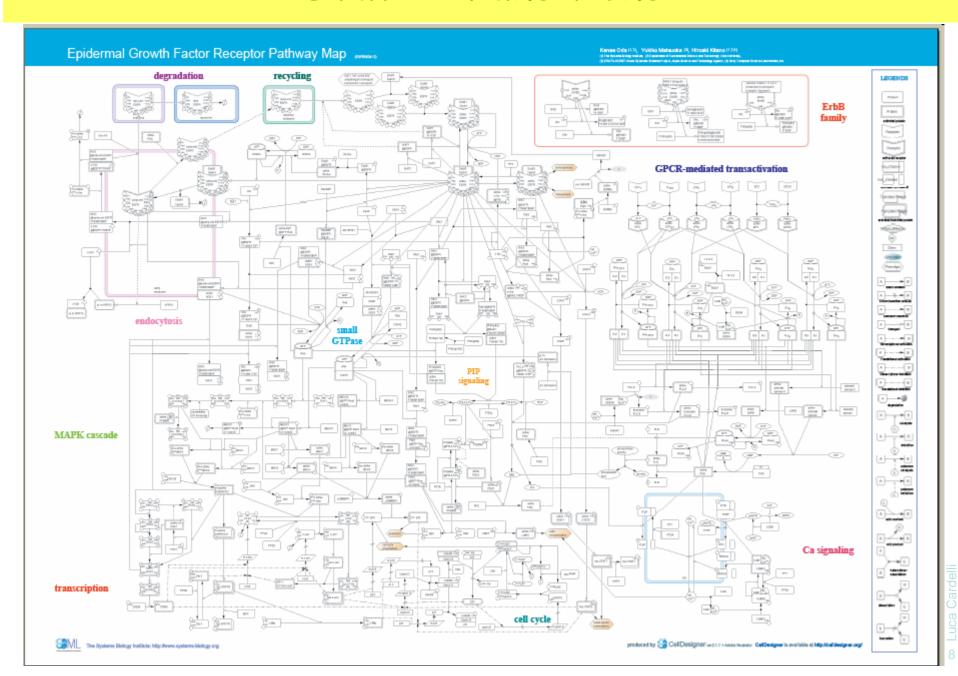
"Stochastic":

- Interactions have rates
 - Not quite discrete (hundreds or thousands of components)
 - Not quite continuous (non-trivial stochastic effects)
 - Not quite hybrid (no "switching" between regimes)

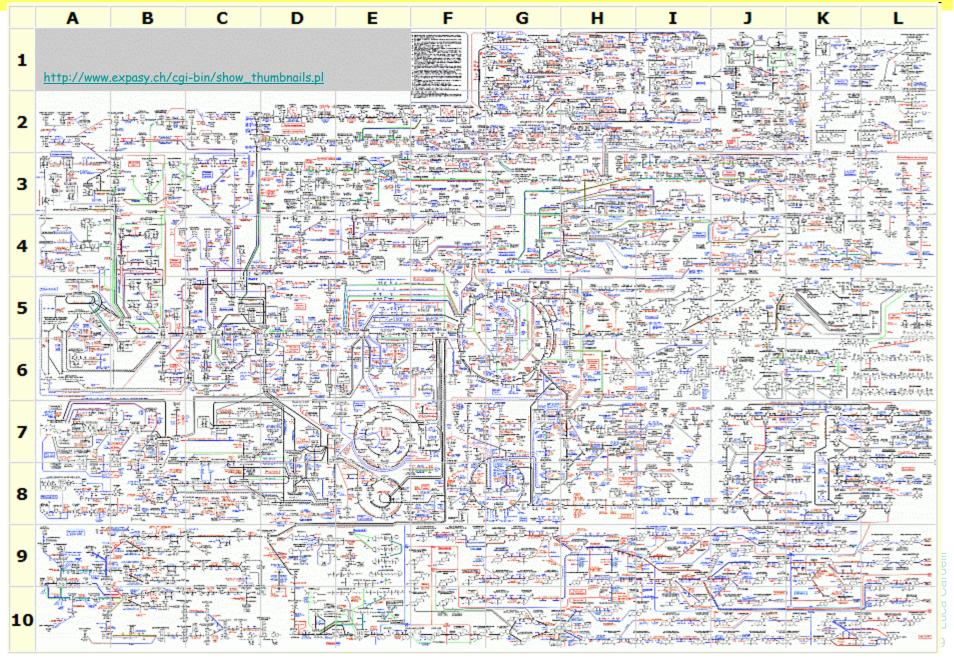
Very much like biochemistry

- Which is a large set of stochastically interacting molecules/proteins
- Are proteins finite state and subject to automata-like transitions?
 - Let's say they are, at least because:
 - Much of the knowledge being accumulated in Systems Biology is described as state transition diagrams [Kitano].

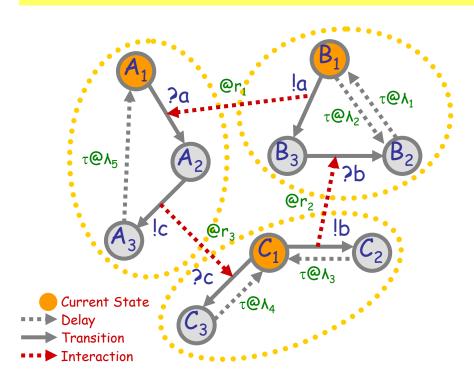
State Transitions



Compositionality (NOT!)

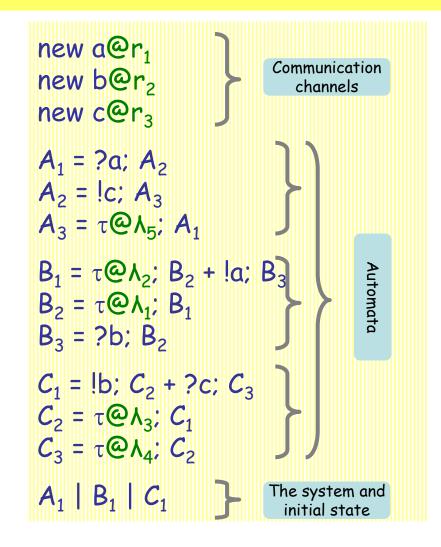


Interacting Automata



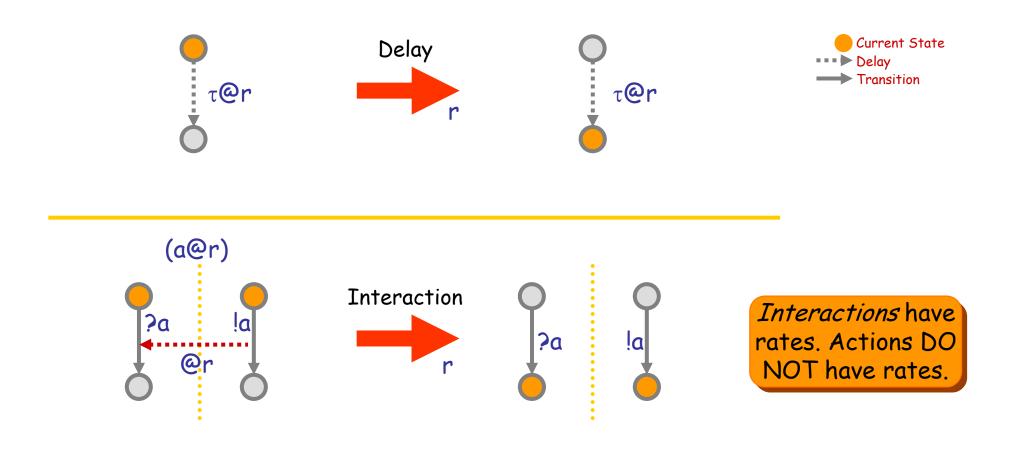
Communicating automata: a graphical FSA-like notation for "finite state restriction-free π -calculus processes". Interacting automata do not even exchange values on communication.

The stochastic version has *rates* on communications, and delays.



"Finite state" means: no composition or restriction inside recursion. Analyzable by standard Markovian techniques, by first computing the "product automaton" to obtain the underlying finite Markov transition system. [Buchholz]

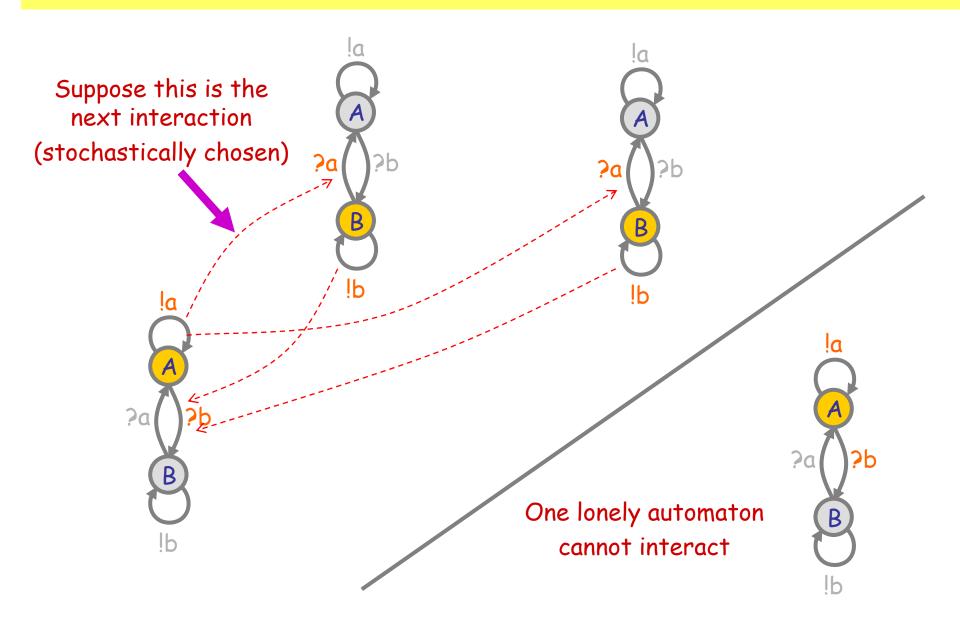
Interacting Automata Transition Rules



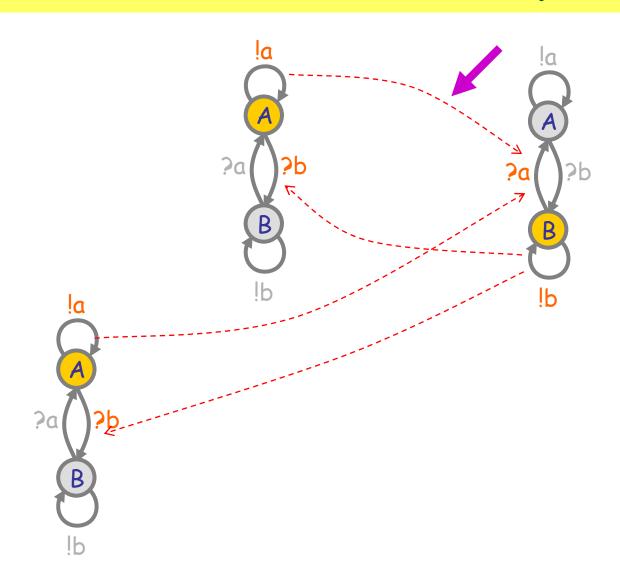
Q: What kind of mass behavior can this produce?

(We need to understand that if want to understand biochemical systems.)

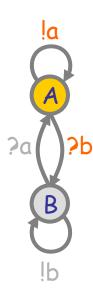
Interactions in a Population



Interactions in a Population

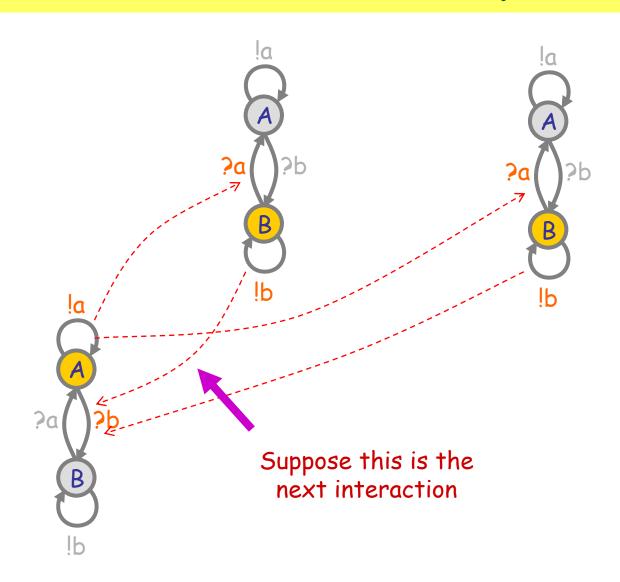


Interactions in a Population



All-A stable population

Interactions in a Population (2)

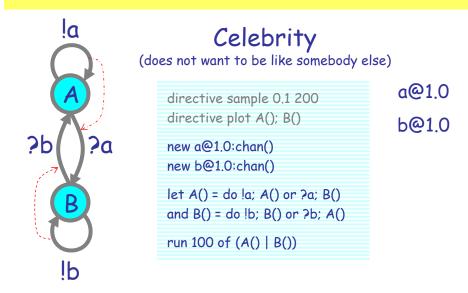


Interactions in a Population (2)

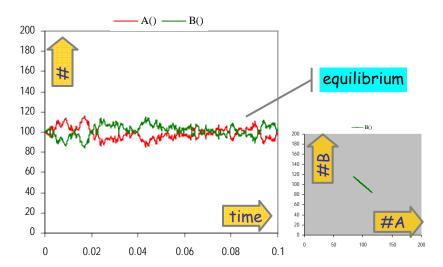
All-B stable population

Nondeterministic population behavior ("multistability")

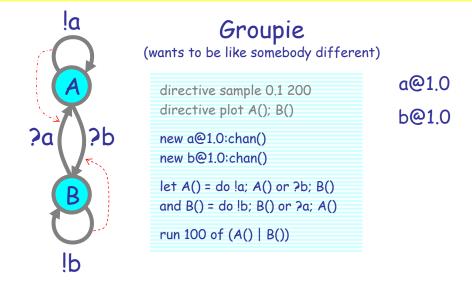
Groupies and Celebrities



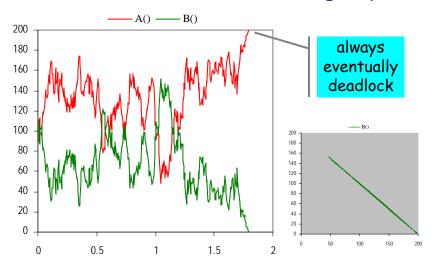
A stochastic collective of celebrities:



Stable because as soon as a A finds itself in the majority, it is more likely to find somebody in the same state, and hence change, so the majority is weakened.



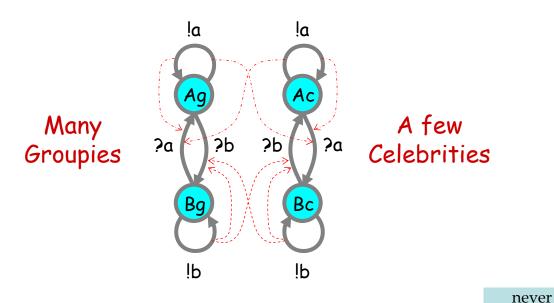
A stochastic collective of groupies:



Unstable because within an A majority, an A has difficulty finding a B to emulate, but the few B's have plenty of A's to emulate, so the majority may switch to B. Leads to deadlock when everybody is in the same state and there is nobody different to emulate.

Both Together

A way to break the deadlocks: Groupies with just a few Celebrities



directive sample 10.0
directive plot Ag(); Bg(); Ac(); Bc()

new a@1.0:chan()

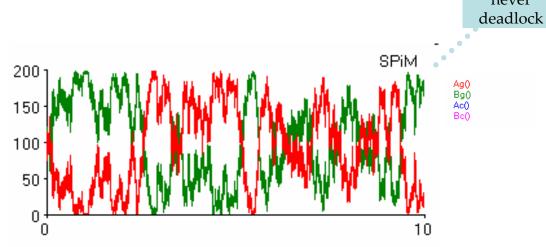
new b@1.0:chan()

let Ac() = do !a; Ac() or ?a; Bc()

and Bc() = do !b; Bc() or ?b; Ac()

let Ag() = do !a; Ag() or ?b; Bg()

and Bg() = do !b; Bg() or ?a; Ag()



A tiny bit of "noise" can make a huge difference

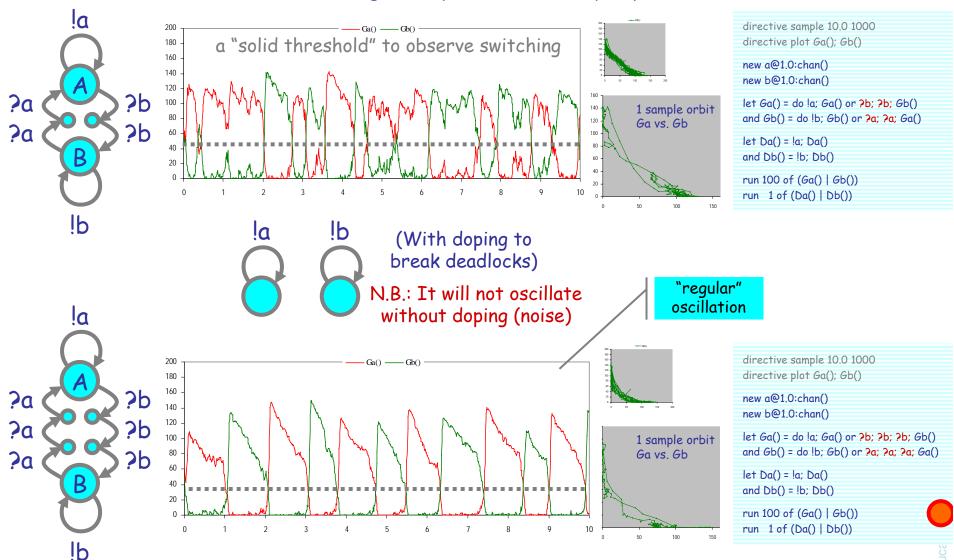
run 1 of Ac()

run 100 of (Ag() | Bg())

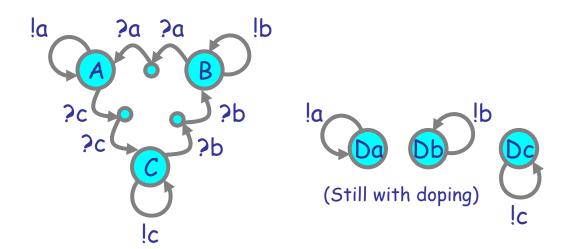
Regularity can arise not far from chaos

Hysteric Groupies

We can get more regular behavior from groupies if they "need more convincing", or "hysteresis" (history-dependence), to switch states.



Hysteric 3-Way Groupies



directive plot A(); B(); C() new a@1.0:chan()

directive sample 3.0 1000

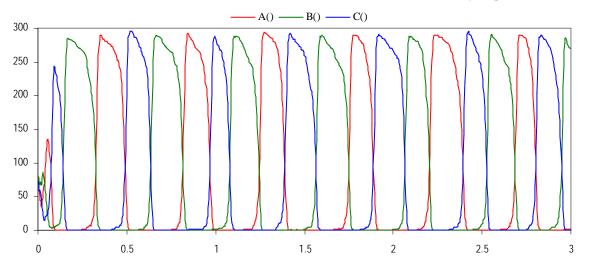
new b@1.0:chan() new c@1.0:chan()

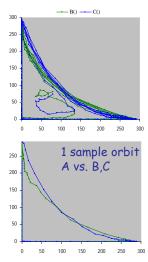
let A() = do !a; A() or ?c; ?c; C() and B() = do!b; B() or ?a; ?a; A()and C() = do!c; C() or?b;?b; B()

let Da() = !a; Da() and Db() = !b; Db() and Dc() = !c; Dc()

run 100 of (A() | B() | C()) run 1 of (Da() | Db() | Dc())

N.B.: It will not oscillate without doping (noise)





Semantics of Collective Behavior

"Micromodels": Continuous Time Markov Chains

- The underlying semantics of stochastic π -calculus (and stochastic interacting automata). Well established in many ways.
 - Automata with rates on transitions.
- "The" correct semantics for chemistry, executable.
 - Gillespie stochastic simulation algorithm
- Lots of advantages
 - Compositional, compact, mechanistic, etc.
- But do not give a good sense of "collective" properties.
 - Yes one can do simulation.
 - Yes one can do program analysis.
 - Yes one can do modelchecking.
 - But somewhat lacking in "analytical properties" and "predictive power".

"Macromodels": Ordinary Differential Equations

- The classical semantics of collective behavior.
 - E.g. kinetic theory of gasses.
 - They always ask: "How does you automata model relate to the 75 ODE models in the literature?"
- Going from processes/automata to ODEs directly:
 - In principle: just write down the Rate Equation: [Calder, Hillston]
 - Let [S] be the "number of processes in state S" as a function of time.
 - Define for each state S:

```
[S] = (rate of change of the number of processes in state S)

Cumulative rate of transitions from any state S' to state S, times [S'],

minus cumulative rate of transitions from S to any state S", times [S].
```

- Intuitive (rate = inflow minus outflow), but clumsy to write down precisely.
- Going to ODEs indirectly through chemistry
 - If we first convert processes to chemical reactions, then we can convert to ODEs by standard means!

From Chemistry to ODEs

Chemical Reactions

$$A \rightarrow^{r} B_{1} + ... + B_{n}$$

$$A_{1} + A_{2} \rightarrow^{r} B_{1} + ... + B_{n}$$

$$A + A \rightarrow^{r} B_{1} + ... + B_{n}$$

Degradation

Asymmetric Collision

Symmetric Collision $[A]^{\bullet} = -r[A]([A]-1)$

$$[A]^{\bullet} = -r[A]$$

Exponential Decay

$$[A_i]^{\bullet} = -r[A_1][A_2]$$

Mass Action Law

$$[A]^{\bullet} = -r[A]([A]-1)$$

Mass Action Law

(assuming $A \neq B_i \neq A_j$ for all i,j)

No other reactions!

JOURNAL OF CHEMICAL PHYSICS

VOLUME 113. NUMBER 1

The chemical Langevin equation

Daniel T. Gillespiea) Research Department, Code 4T4100D, Naval Air Warfare Center, China Lake, California 93555

Genuinely trimolecular reactions do not physically occur in dilute fluids with any appreciable frequency. Apparently trimolecular reactions in a fluid are usually the combined result of two bimolecular reactions and one monomolecular reaction, and involve an additional short-lived species.

Chapter IV: Chemical Kinetics

[David A. Reckhow, CEE 572 Course]

... reactions may be either elementary or nonelementary. <u>Elementary reactions</u> are those reactions that occur exactly as they are written, without any intermediate steps. These reactions almost always involve just one or two reactants. ... Non-elementary reactions involve a series of two or more elementary reactions. Many complex environmental reactions are non-elementary. In general, reactions with an overall reaction order greater than two, or reactions with some non-integer reaction order are non-elementary.

THE COLLISION THEORY OF **REACTION RATES**

www.chemguide.co.uk

The chances of all this happening if your reaction needed a collision involving more than 2 particles are remote. All three (or more) particles would have to arrive at exactly the same point in space at the same time, with everything lined up exactly right, and having enough energy to react. That's not likely to happen very often!

Trimolecular reactions:

$$A + B + C \rightarrow^{r} D$$

the measured "r" is an (imperfect) aggregate of e.g.:

$$A + B \leftrightarrow AB$$

$$AB + C \rightarrow D$$

Enzymatic reactions:

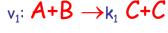
the "r" is given by Michaelis-Menten (approximated steady-state) laws:

$$E + S \leftrightarrow ES$$

$$FS \rightarrow P + F$$

Reactions have rates. Molecules do not have rates.

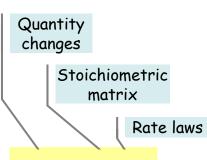
From Reactions to ODEs



$$v_2: A+C \rightarrow k_2 D$$

$$v_3: C \rightarrow k_3 E+F$$

$$v_4$$
: $F+F \rightarrow k_4$ B



$$[X]^{\bullet} = N \cdot I$$

$$[B]^{\bullet} = -I_1 + I_4$$

$$[C]^{\bullet} = 2|_{1} - |_{2} - |_{3}$$

$$[D] = |_{2}$$

$$[E]^{\bullet} = I_3$$

$$[F]^{\bullet} = I_3 - 2I_4$$

Write the coefficients by columns

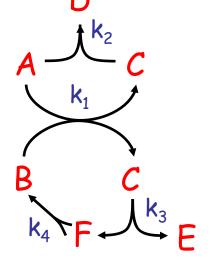
reactions

	2	V_1	V ₂	V ₃	V_4
	A	-1	-1		
	В	-1			1
	С	2	-1	-1	
	D		1		
	E			1	
	F			1	-2
•	V			_	

Read the concentration changes from the rows

E.g.
$$[A]^{\bullet} = -k_1[A][B] - k_2[A][C]$$

Stoichiometric Matrix



CAVEAT: A deterministic approximation of a stochastic system (i.e. possibly misleading)

Set a rate law for each reaction (Degradation/Asymmetric/Symmetric)

X: chemical species

[-]: quantity of molecules

I: rate laws

k: kinetic parameters

N: stoichiometric matrix

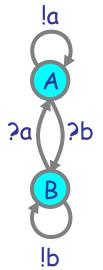
From Processes to Chemistry

Chemical Ground Form (CGF)

$$\begin{array}{lll} E::=X_1=M_1, ..., X_n=M_n & \text{Definitions } (n \geq 0) \\ M::=\pi_1; P_1 \oplus ... \oplus \pi_n; P_n & \text{Molecules } (n \geq 0) \\ P::=X_1 \mid ... \mid X_n & \text{Solutions } (n \geq 0) \\ \pi::=\tau_r \cdot ?n_{(r)} \cdot !n_{(r)} & \text{Interactions } (\text{delay, input, output)} \\ \textit{CGF}::=E,P & \text{Definitions with Initial Conditions} \end{array}$$

(To translate chemistry back to processes we need a bit more than simple automata: we may have "+" on the right of \rightarrow , that is we may need "|" after π .)

 \oplus is stochastic choice (vs. + for chemical reactions) 0 is the null solution (P|0 = 0|P = P) and null molecule (M \oplus 0 = 0 \oplus M = M) (τ_0 ;P = 0) X_i are distinct in E Each name n is assigned a fixed rate r: $n_{(r)}$



Ex: interacting automata (which are finite-control CGFs: use "|" only in initial conditions):

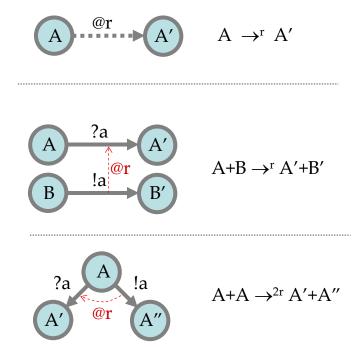
$$A = !a; A \oplus ?b; B$$
 $B = !b; B \oplus ?a; A$

Automaton in state B

A|A|B|B

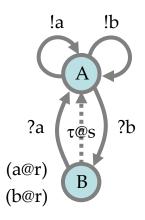
Initial conditions: 2A and 2B

Automata (or CGF) to Chemistry



Process Rate Semantics

Same Chemistry

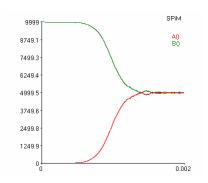


directive sample 0.002 10000 directive plot A(); B()

new a@1.0:chan()
new b@1.0:chan()

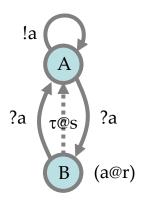
let A() = do !a; A() or !b; A() or ?b; B() and B() = do delay@1.0; A() or ?a; A()

run 10000 of B()



 $B \rightarrow^{s} A$ $A+B \rightarrow^{r} A+A$ $A+A \rightarrow^{2r} A+B$

Same chemistry, hence equivalent automata

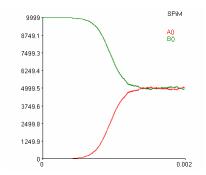


directive sample 0.002 10000 directive plot A(); B()

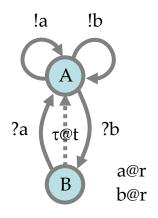
new a@1.0:chan()

let A() = do !a; A() or ?a; B() and B() = do delay@1.0; A() or ?a; A()

run 10000 of B()



Same ODEs



 $\tau{:}\; B \to^t \; A$

a: $A+B \rightarrow^r A+A$

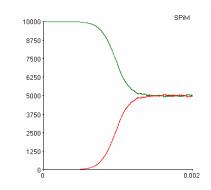
b: $A+A \rightarrow^{2r} A+B$

directive sample 0.002 10000 directive plot A(); B()

new a@1.0:chan() new b@1.0:chan()

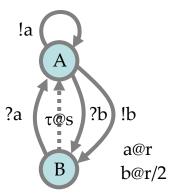
let A() = do !a; A() or !b; A() or ?b; B() and B() = do delay@1.0; A() or ?a; A()

run 10000 of B()



 $[A]^{\bullet} = t[B] + r[A][B] - r[A]([A]-1)$ $[B]^{\bullet} = -t[B] - r[A][B] + r[A]([A]-1)$

Different chemistry but same ODEs, hence equivalent automata



 $[A]^{\circ} = t[B] + r[A][B] - r[A]([A]-1)$ $[B]^{\circ} = -t[B] - r[A][B] + r[A]([A]-1)$

 $\tau: B \to^s A$

a: $A+B \rightarrow^r A+A$

b: $A+A \rightarrow^r B+B$

let A() = do !a; A() or !b; B() or ?b; B() and B() = do delay@1.0; A() or ?a; A()

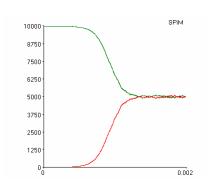
directive sample 0.002 10000

directive plot A(); B()

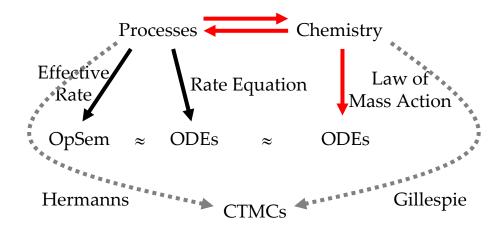
new a@1.0:chan()

new b@0.5:chan()

run 10000 of B()



Semantic Relationships

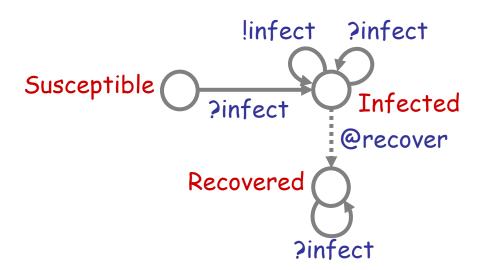


Epidemics

Kermack, W. O. and McKendrick, A. G. "A Contribution to the Mathematical Theory of Epidemics." *Proc. Roy. Soc. Lond. A* 115, 700-721, 1927.

http://mathworld.wolfram.com/Kermack-McKendrickModel.html

Epidemics



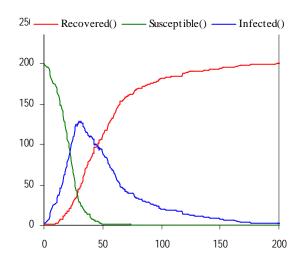
Developing the Use of Process Algebra in the Derivation and Analysis of Mathematical Models of Infectious Disease

R. Norman and C. Shankland

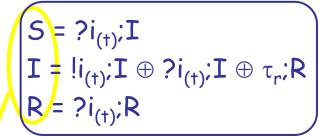
Department of Computing Science and Mathematics, University of Stirling, UK. {ces,ran}@cs.stir.ac.uk

Abstract. We introduce a series of descriptions of disease spread using the process algebra WSCCS and compare the derived mean field equations with the traditional ordinary differential equation model. Even the preliminary work presented here brings to light interesting theoretical questions about the "best" way to defined the model.

directive sample 500.0 1000 directive plot Recovered(); Susceptible(); Infected() new infect @0.001:chan() val recover = 0.03 let Recovered() = ?infect; Recovered() and Susceptible() = ?infect; Infected() and Infected() = do !infect; Infected() or ?infect: Infected() or delay@recover; Recovered() run (200 of Susceptible() | 2 of Infected())



ODE



$$S + I \rightarrow^{\dagger} I + I$$

$$I + I \rightarrow^{\dagger} I + I$$

$$I \rightarrow^{r} R$$

$$R + I \rightarrow^{\dagger} R + I$$

Differentiating

"useless" reactions

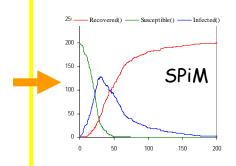
Automata produce the standard ODEs!

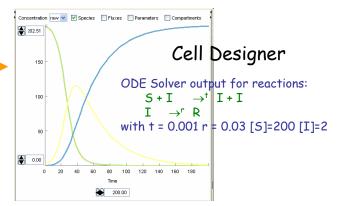
$$\frac{dS}{dt} = -aIS$$

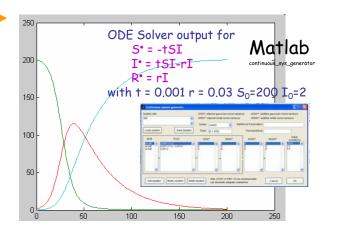
$$\frac{dI}{dt} = aIS - bI$$

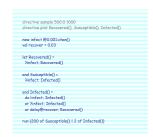
$$\frac{dR}{dt} = bI$$

(the Kermack-McKendrick, or SIR model)!

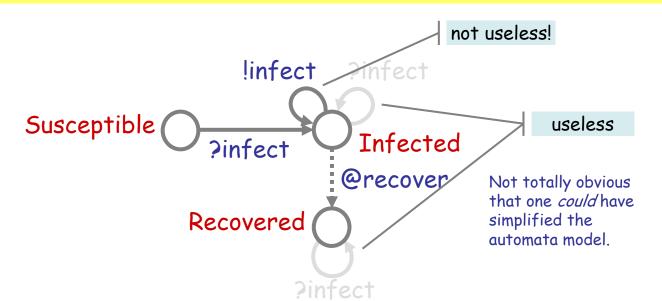


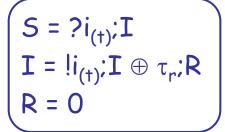




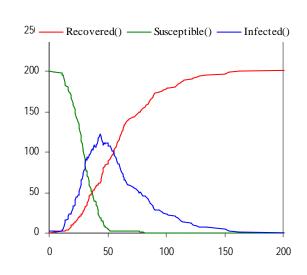


Simplified Model





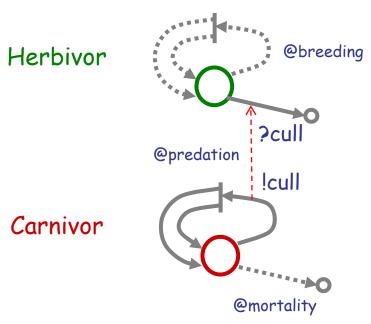

```
directive sample 500.0 1000
directive plot Recovered(); Susceptible(); Infected()
new infect @0.001:chan()
val recover = 0.03
let Recovered() =
 ()
and Susceptible() =
 ?infect; Infected()
and Infected() =
 do !infect; Infected()
 or delay@recover; Recovered()
run (200 of Susceptible() | 2 of Infected())
```

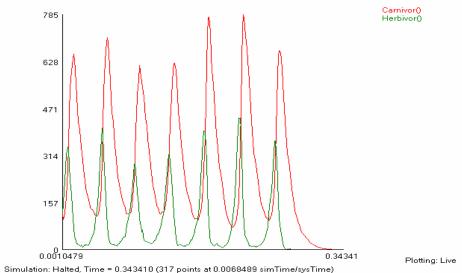


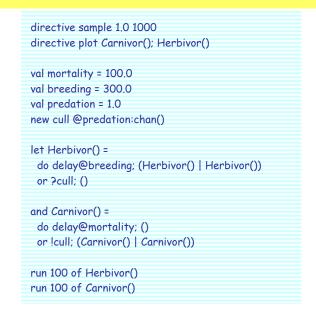
Same ODE, hence equivalent automata models.

Lotka-Volterra

Predator-Prey







An unbounded state system!

ODE

$$H = \tau_b; (H|H) \oplus ?c_{(p)}; 0$$

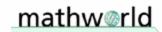
$$C = \tau_m; 0 \oplus !c_{(p)}; (C|C)$$

$$\begin{array}{ccc}
H \rightarrow^{b} H + H \\
C \rightarrow^{m} 0 \\
H + C \rightarrow^{p} C + C
\end{array}$$

$$[H]^{\bullet} = b[H]-p[H][C]$$

 $[C]^{\bullet} = -m[C]+p[H][C]$

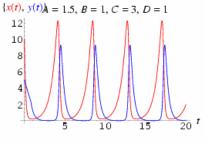
Lotka-Volterra Equations

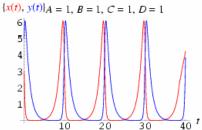


COMMENT On this Page

The Lotka-Volterra equations describe an ecological predator-prey (or parasite-host) model which assumes that, for a set of fixed positive constants A (the growth rate of prey), B (the rate at which predators destroy prey), C (the death rate of predators), and D (the rate at which predators increase by consuming prey), the following conditions hold.

- 1. A prey population x increases at a rate dx = Ax dt (proportional to the number of prey) but is simultaneously destroyed by predators at a rate dx = -Bxy dt (proportional to the product of the numbers of prey and predators).
- 2. A predator population y decreases at a rate dy = -Cydt (proportional to the number of predators), but increases at a rate $dy = D \times y dt$ (again proportional to the product of the numbers of prey and predators).





This gives the coupled differential equations

$$\frac{dx}{dt} = Ax - Bxy \tag{1}$$

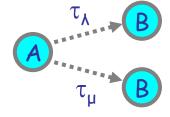
$$\frac{dy}{dx} = -Cy + Dxy, \tag{2}$$

Automata produce the Lotka-Volterra model (with B=D)

Laws by ODEs

Choice Law by ODEs

$$τ_{\lambda}$$
; B $⊕$ $τ_{\mu}$; B = $τ_{\lambda+\mu}$; B



$$A = \tau_{A}; B \oplus \tau_{\mu}; B$$

$$\begin{pmatrix}
A \to^{\Lambda} & B \\
A \to^{\mu} & B
\end{pmatrix}$$

$$[A]^{\bullet} = -\lambda[A] - \mu[A]$$

 $[B]^{\bullet} = \lambda[A] + \mu[A]$

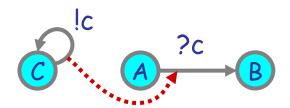
$$A = \tau_{\lambda + \mu}; B$$

$$A \rightarrow^{h+\mu} B$$

$$[A]^{\bullet} = -(\lambda + \mu)[A]^{\bullet}$$

 $[B]^{\bullet} = (\lambda + \mu)[A]$

Idle Interaction Law by ODEs

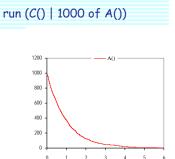


$$A = ?c;B$$

$$C = !c;C$$

$$\downarrow$$

$$A+C \rightarrow^r B+C$$



directive sample 6.0 1000

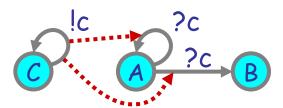
directive plot A()

new c@1.0:chan

let A() = ?c; B()

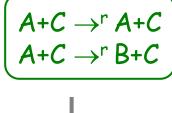
and C() = !c; C()

and B() = ()



$$A = ?c; A \oplus ?c; B$$

$$C = !c; C$$



It may seem like A should decrease half as fast, but NO! Two ways to explain:

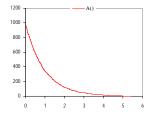
- -State A is memoryless of any past idling.
- Activity on c is double

directive sample 6.0 1000 directive plot A()

new c@1.0:chan

let A() = do ?c; B() or ?c; A() and B() = () and C() = !c; C()

run (C() | 1000 of A())

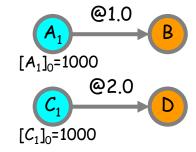


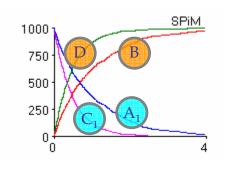
Hermanns: Interactive Markov Chains, Sec 4.1.2

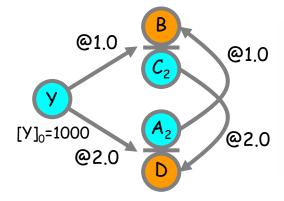
Stochastic Interleaving

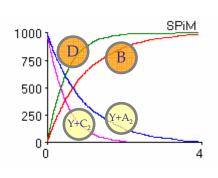
 τ_{λ} ; B | τ_{μ} ; D = τ_{λ} ; (B | τ_{μ} ; D) $\oplus \tau_{\mu}$; (τ_{λ} ; B | D)

Ex: h=1.0, $\mu=2.0$









Amazingly, the B's and the D's from the two branches sum up to exponential distributions

directive sample 4.0 10000 directive plot A(); B(); C(); D() let A() = delay@1.0; B() and B() = () let C() = delay@2.0; D() and D() = ()

run 1000 of (A() | C())

Stochastic Interleaving Law by ODEs

$$\tau_{\lambda}$$
; B | τ_{μ} ; D = τ_{λ} ; (B | τ_{μ} ; D) $\oplus \tau_{\mu}$; (τ_{λ} ; B | D)

$$\begin{pmatrix}
A_1 = \tau_{h}; B \\
C_1 = \tau_{\mu}; D \\
A_1 \mid C_1
\end{pmatrix}$$

$$\begin{array}{c}
A_1 \to^{\wedge} B \\
C_1 \to^{\mu} D \\
A_1 + C_1
\end{array}$$

$$\begin{bmatrix}
[A_1]^{\bullet} = -\lambda[A_1] \\
[B]^{\bullet} = \lambda[A_1] \\
[C_1]^{\bullet} = -\mu[C_1] \\
[D]^{\bullet} = \mu[C_1]$$

$$\begin{pmatrix}
Y = \tau_{\Lambda}; (B \mid C_2) \oplus \tau_{\mu}; (A_2 \mid D) \\
C_2 = \tau_{\mu}; D \\
A_2 = \tau_{\Lambda}; B \\
Y
\end{pmatrix}$$

$$\begin{bmatrix} [Y+A_2]^{\bullet} = -\lambda[Y+A_2] \\ [B]^{\bullet} = \lambda[Y+A_2] \\ [Y+C_2]^{\bullet} = -\mu[Y+C_2] \\ [D]^{\bullet} = \mu[Y+C_2]$$

Want to show that B and D on both sides have the "same behavior" (equal quantities of B and D produced at all times)

$$[Y+A_2]^{\bullet} = [Y]^{\bullet}+[A_2]^{\bullet}$$

$$= -\lambda[Y]-\mu[Y]+\mu[Y]-\lambda[A_2]$$

$$= -\lambda[Y]-\lambda[A_2]$$

$$= -\lambda[Y+A_2] \qquad [Y+A_2] \text{ decays exponentially!}$$

[B] and [D] have equal time evolutions on the two sides provided that $[A_1]=[Y+A_2]$ and $[C_1]=[Y+C_2]$. This imposes the constraint, in particular, that $[A_1]_0=[Y+A_2]_0$ and $[C_1]_0=[Y+C_2]_0$ (at time zero). The initial conditions of the right hand system specify that $[A_2]_0=[C_2]_0=0$ (since only Y is present). Therefore, we obtain that $[A_1]_0=[C_1]_0=[Y]_0$.

So, for example, if we run a stochastic simulation of the left hand side with 1000*A1 and 1000*C1, we obtain the same curves for B and D than a stochastic simulation of the right hand side with 1000*Y.

Biochemistry

Interaction+Complexation

Bidirectional

Polymerization

new c@µ new stop@1.0

 A_{free} = !c(${}^{\vee}$ rht_{Λ}); A_{brht} (rht)) + ?c(Ift); A_{blft} (Ift)

 $A_{blft}(lft) = !c(^vrht_{\lambda}); A_{bound}(lft,rht))$

 $A_{brht}(rht) =$?c(Ift); $A_{bound}(Ift,rht)$

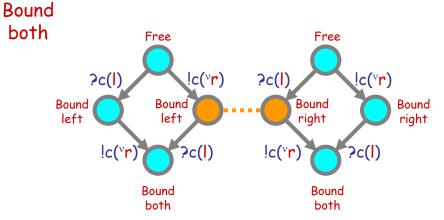
A_{bound}(Ift,rht) = ?stop

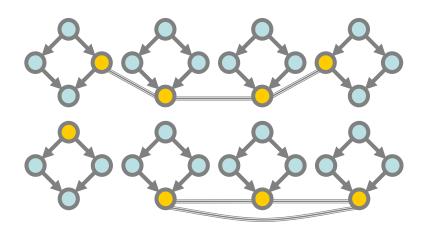


Polymerization is iterated complexation.

Polyautomata

Bound output !c('r) and input ?c(l) on automata transitions to model complexation





Bidirectional Polymerization

Circular Polymer Lengths

Scanning and counting the size of the circular polymers (by a cheap trick). Polymer formation is complete within 10t; then a different polymer is scanned every 100t.



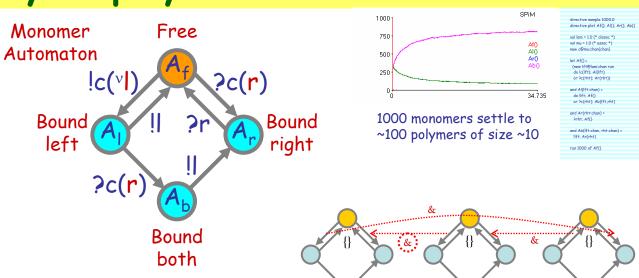
directive sample 1000.0 directive plot Abound(); ?count type Link = chan(chan) type Barb = chan val lam = 1000.0 (* set high for better counting *) val mu = 1.0 new c@mu:chan(Link) new enter@lam:chan(Barb) new count@lam:Barb let Afree() = (new rht@lam:Link run do !c(rht); Abrht(rht) or ?c(lft); Ablft(lft)) and Ablft(lft:Link) = (new rht@lam:Link run !c(rht); Abound(lft,rht)) and Abrht(rht:Link) = ?c(Ift); Abound(Ift,rht) and Abound(Ift:Link, rht:Link) = do ?enter(barb); (?barb | !rht(barb)) or 2|ft(barb); (2barb | !rht(barb)) (* each Abound waits for a barb, exhibits it, and passes it to the right so we can plot number of Abound in a ring *) let clock(t:float, tick:chan) = (* sends a tick every t time *) (val ti = t/1000.0 val d = 1.0/tilet step(n:int) = if n<=0 then !tick; clock(t,tick) else delay@d; step(n-1) run step(1000)) new tick:chan let Scan() = ?tick; !enter(count); Scan() run 100 of Afree() run (clock(100.0, tick) | Scan())

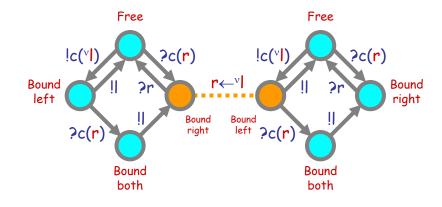
 $100xA_{free}$, initially. The height of each rising step is the size of a separate circular polymer. (Unbiased sample of nine consecutive runs.)

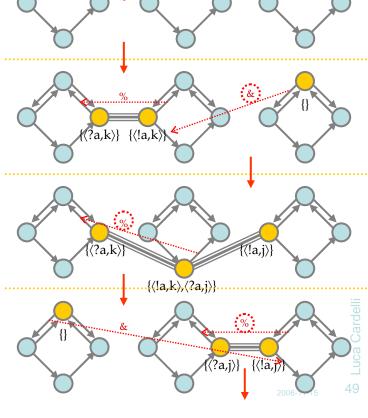
$\begin{array}{c|c} p & A & \hline p & A \\ \hline A & p & A & \hline \end{array}$

Actin-like Poly/Depolymerization

new c@ μ $A_{free} = \frac{!c(v|ft_{A}); A_{b|ft}(|ft|) + 2c(rht); A_{brht}(rht)}{2c(rht); A_{brht}(rht)}$ $A_{b|ft}(|ft|) = \frac{!lft; A_{free} + 2c(rht); A_{bound}(|ft|, rht)}{2c(rht); A_{bound}(|ft|, rht)}$ $A_{brht}(rht) = 2rht; A_{free}$ $A_{bound}(|ft|, rht) = 2rht; A_{brht}(rht)$







Parametric Processes

Chemical Parametric Form (CPF)

$$\begin{array}{lll} E & ::= X_1(\textbf{p}_1) = M_1, \, ..., \, X_n(\textbf{p}_n) = M_n & \text{Definitions} & (n \ge 0) \\ M & ::= \pi_1; P_1 \oplus ... \oplus \pi_n; P_n & \text{Molecules} & (n \ge 0) \\ P & ::= X_1(\textbf{p}_1) \mid ... \mid X_n(\textbf{p}_n) & \text{Solutions} & (n \ge 0) \\ \pi & ::= \tau_r & ?n(\textbf{p}) & !n(\textbf{p}) & \text{Interactions} \\ \text{$CPF::= E,P$} & \text{with initial conditions} \end{array}$$

Not bounded-state systems.

Not finite-control systems.

But still finite-species systems.

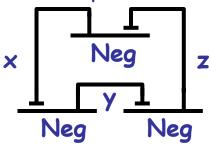
 \oplus is stochastic choice (vs. + for chemical reactions) 0 is the null solution (P|0 = 0|P = P) and null molecule (M \oplus 0 = 0 \oplus M = M) (τ_0 ;P = 0) X_i are distinct in E, **p** are vectors of names **p** are vectors of distinct names when in binding position Each free name n in E is assigned a fixed rate r: written either $n_{(r)}$, or $\rho_{CPF}(n)$ =r.

A translation from CPF to CGF exists (expanding all possible instantiation of parameters from the initial conditions)

An incremental translation algorithm exists (expanding on demand from initial conditions)

And Yet It Moves

The Repressilator



A fine stochastic oscillator over

Parametric representation

```
Neg(a,b) = ?a; Inh(a,b) \oplus \tau_{\varepsilon}; (Tr(b) | Neg(a,b))
Inh(a,b) = \tau_n; Neg(a,b)
Tr(b) = !b; Tr(b) \oplus \tau_{v}; 0
\mathsf{Neg}(\mathsf{x}_{(r)},\!\mathsf{y}_{(r)}) \mid \mathsf{Neg}(\mathsf{y}_{(r)},\!\mathsf{z}_{(r)}) \mid \mathsf{Neg}(\mathsf{z}_{(r)},\!\mathsf{x}_{(r)})
```

[Neg/x,y] $^{\bullet}$ = -r[Tr/x][Neg/x,y] + η [Inh/x,y] $[Neg/y,z]^{\bullet} = -r[Tr/y][Neg/y,z] + \eta[Inh/y,z]$ $[Neg/z,x]^{\bullet} = -r[Tr/z][Neg/z,x] + \eta[Inh/z,x]$ $[Inh/x,y]^{\bullet} = r[Tr/x][Neg/x,y] - \eta[Inh/x,y]$ $[Inh/y,z]^{\bullet} = r[Tr/y][Neg/y,z] - \eta[Inh/y,z]$ $[Inh/z,x]^{\bullet} = r[Tr/z][Neg/z,x] - \eta[Inh/z,x]$ $[Tr/x]^{\bullet} = \varepsilon[Neg/z,x] - \gamma[Tr/x]$ $[Tr/y]^{\bullet} = \varepsilon[Neg/x,y] - \gamma[Tr/y]$ $[Tr/z]^{\bullet} = \varepsilon[Neg/y,z] - \gamma[Tr/z]$

$Neg/x,y \rightarrow \varepsilon Tr/y + Neg/x,y$

Neg/y,z
$$\rightarrow \epsilon$$
 Tr/z + Neg/y,z

$$Neg/z,x \rightarrow \epsilon Tr/x + Neg/z,x$$

$$Tr/x + Neg/x,y \rightarrow^r Tr/x + Inh/x,y$$

$$Tr/y + Neg/y,z \rightarrow^r Tr/y + Inh/y,z$$

$$Tr/z + Neg/z, x \rightarrow^r Tr/z + Inh/z, x$$

Inh/x,y
$$\rightarrow^{\eta}$$
 Neg/x,y

Inh/y,z
$$\rightarrow^{\eta}$$
 Neg/y,z

Inh/z,
$$x \rightarrow^{\eta} \text{Neg/z},x$$

$$Tr/x \rightarrow^{\gamma} 0$$

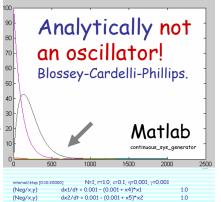
$$Tr/y \rightarrow^{\gamma} 0$$

$$Tr/z \rightarrow^{\gamma} 0$$

$$Neg/x,y + Neg/y,z + Neg/z,x$$

simplifying (N is the quantity of each of the 3 gates)

```
[Neg/x,y]^{\bullet} = \eta N - (\eta + r[Tr/x])[Neg/x,y]
[Neg/y,z]^{\bullet} = \eta N - (\eta + r[Tr/y])[Neg/y,z]
[Neq/z,x]^{\bullet} = \eta N - (\eta + r[Tr/z])[Neg/z,x]
[Tr/x]^{\bullet} = \varepsilon[Neg/z,x] - \gamma[Tr/x]
[Tr/y]^{\bullet} = \varepsilon[Neg/x,y] - \gamma[Tr/y]
[Tr/z]^{\bullet} = \varepsilon[Neg/y,z] - \gamma[Tr/z]
```



interval/step [0:10:20000] N=1, r=1,0, ε=0,1, η=0,001, γ=0,001		
(Neg/x,y)	dx1/dt = 0.001 - (0.001 + x4)*x1	1.0
(Neg/x,y)	dx2/dt = 0.001 - (0.001 + x5)*x2	1.0
(Neg/x,y)	dx3/dt = 0.001 - (0.001 + x6)*x3	1.0
(Tr/x)	dx4/dt = 0.1*x3 - 0.001*x4	100.0
(Tr/y)	dx5/dt = 0.1*x1 - 0.001*x5	0
(Tr/z)	dx6/dt = 0.1*x2 - 0.001*x6	0

Conclusions

Conclusions

Compositional Models

- Accurate (at the "appropriate" abstraction level).
- Manageable (so we can scale them up by composition).

Interacting Automata

- Complex global behavior from simple components.
- Bridging individual and collective behavior.
- Connections to classical Markov theory, chemical Master Equation, and Rate Equation.

Mapping out "the whole system"

- Through an "artificial biochemistry" (a scalable mathematical and computational modeling framework) to investigate "real biochemistry" on a large scale.

http://LucaCardelli.name