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50 Years of Molecular Cell Biology

SOLVING THE NEUTRINO MYSTERY = RECOGNIZING ANCIENT LIFE

e The genome (3.2 GBases) SC'ENT'F'C it Mo

is made of DNA
- Stores digital information as sequences of 4 AMERICAN

different nucleotides
- Directs protein assembly through RNA and the BN Yo Rt

Genetic Code DOUBLE

J\I'.‘ . ‘

e Proteins (1M coded from 25K genes)
are made of amino acids

- Catalyze all biochemical reactions
- Control metabolism (energy & materials)
- Process signals, activate genes

e Bootstrapping still a mystery

- DNA, RNA, proteins, membranes are today
interdependent. Not clear who came first

- Not understood, not essential for us



Towards Systems Biology

To reverse-engineer nature
- You cannot do it one molecule at a time (quickly running out of biologists)
- You cannot do it one component at a time (without understanding their interactions)

Understanding how "the systems” works
- Behavior comes from complex patterns of interactions between components

- Components themselves often irrelevant (analogous function across
subsystem/species)

New(ish) approach (as proposed by biologists)
- Experimentally: massive data gathering and data mining (e.g. Genome projects)
- Conceptually: modeling and analyzing large networks (i.e. interactions) of components

Active research
- Chemical origin of life and evolutionary processes
- Systematic mapping of any system of interest
- Medical control of biological system (no magic bullets)



Reverse-Engineer Thisl!
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..While Modeling It

e Even if we understood it, how would we model it?
- Millions of differential equations? Hmmm...
- Highly, Aighly, concurrent and asynchronous
- Stochastic (nondeterministic and discontinuous)

e And we will have to model it in order to understand it.
- Simulation and analysis are key to understanding interactions

e What's peculiar about these systems?

They are huge and complicated

They are concurrent and unpredictable

There is no documentation

You understand them by looking at traces and dumps
Doesn't that sound familiar?



Stochastic Collectives



Stochastic Collectives

e "Collective":

- A large set of interacting finite state automata:
e Not quite language automata (“large set")
e Not quite cellular automata ("interacting” but not on a grid)
e Not quite process algebra ("collective behavior")
o Cf. multi-agent systems and swarm intelligence

e "Stochastic":

- Interactions have rates
e Not quite discrete (hundreds or thousands of components)
e Not quite continuous (non-trivial stochastic effects)
e Not quite hybrid (no "switching” between regimes)

e Very much like biochemistry
- Which is a large set of stochastically interacting molecules/proteins
- Are proteins finite state and subject to automata-like transitions?

e Let's say they are, at least because:

e Much of the knowledge being accumulated in Systems Biology
is described as state transition diagrams [Kitano].



State Transitions
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Interacting Automata

hew a@r,
Communication
% @r; la new b@r'z channels
I VAN new c@r,
T@A5E A1 = 70; A2 \
: A, =lc; Ag
» A3 = T@A5; A1
Bl - T@AZ: BZ + !Cl; B §
@ current State BZ = T@Al: Bl > g
=== P> Delay Wl | o
=== Transition B3 H Db, BZ °
=== P Tnteraction
il o0 QP HE ol 0
Communicating automata: a graphical FSA-like 1 Il 2. 3
notation for “finite state restriction-free n- C2 M T@A3' Cl
calculus processes”. Interacting automata do not C3 = T@A 4 C2 y.
even exchange values on communication.
The stochastic version has rates on A 1 | B ! | C ) } The system and
initial state

communications, and delays.

"Finite state" means: no composition or restriction inside recursion.
Analyzable by standard Markovian techniques, by first computing
the "product automaton” to obtain the underlying finite Markov
transition system. [Buchholz]



Interacting Automata Transition Rules

. Current State
D€|Cly === Delay

. . == Transition
: t@r * : @r
u r| u

r

Q: What kind of mass behavior can this produce?

(We need to understand that if want to understand biochemical systems.)



Interactions in a Population

Suppose this is the () ()
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Interactions in a Population
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Interactions in a Population
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Interactions in a Population (2)
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Interactions in a Population (2)
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A stochastic collective of celebrities:

Groupies and Celebrities

Celebrity

(does not want to be like somebody else)

directive sample 0.1 200 0@10
directive plot A(); B() b@1.0
new a@1.0:chan()
new b@1.0:chan()

let A() = do la; A() or ?a; B()
and B() = do |b; B() or ?b; A()

run 100 of (AQ) | B())

—A() —B0

180
160 1
140

W

/{ equilibrium

120 | /
180
80 - 0|
140 4
60 B 120
100
40 AN
60
20 4 #A
0 T T T T 0 T T T v
0 50 100 150
0 002 004 006 008 0.1

Stable because as soon as a A finds itself in the majority, it is more likely to
find somebody in the same state, and hence change, so the majority is weakened.

200

V N
Ib

Groupie
(wants to be like somebody different)
directive sample 0.1 200 a@1.0
directive plot A(); B() b@1.0

? b new a@1.0:chan()

new b@1.0:chan()

let A() = do la; A() or ?b; B()
and B() = do Ib; B() or ?a; A()

run 100 of (AQ) | B())

A stochastic collective of groupies:

—A) —B0

180 |
160 |
140 |
120 |
100
80 -
60 -
40 |
20 -

0

always
eventually
deadlock

— B0
200 4

180 4
160 4
140 4
120 4
100 4
80
60
40
20 4

0

0.5

T T 0

0 ;0 1(;0 11’10 2(;0
1 15 2 .

Unstable because within an A majority, an A has difficulty finding a B o
emulate, but the few B's have plenty of A’'s to emulate, so the majority may
switch to B. Leads to deadlock when everybody is in the same state and there is
nobody different to emulate.



Both Together

A way to break the deadlocks: Groupies with just a few Celebrities

la

directive sample 10.0
directive plot Ag(): Bg(): Ac(); Bc()

new a@1.0:chan()
new b@1.0:chan()
Many N A fe.w. let Ac() = do la: Ac() or 2a: Be()
Gr'oupies ‘4 cCelebrities and Bc() = do Ib; Bc() or ?b; Ac()
let Ag() = do la; Ag() or ?b; Bg()
and Bg() = do Ib; Bg() or ?a; Ag()
run 1 of Ac()
run 100 of (Ag() | Bg())
never
deadlock
200 SPibg
gl
Bgl)
150 el
100 .II{' | jp
50
I:I } L



Hysteric Groupies

We can get more regular behavior from groupies if they "need more
convincing”, or “hysteresis” (history-dependence), to switch states.

!Cl 200 — Ga() —— Gb()  — directive sample 10.0 1000
=1 a'solid threshold” to observe switching | : Sirectiveplot-Ga-6bi)
o | : new a@1.0:chan()
20 R new b@1.0:chan()
?a 100 o JSample orbiy| et 6a0 = do la Gal) or 2b; 2b; Gb()
80 120 Gavs. Gb and Gb() = do |b; 6b() or ?a; ?a; Ga()
?a izkllllllll EEE EEjEEE EEEEEEEEEERpEEgQEER mm 1:: ICTDO()Z!G}DO()
20 4 & and Db() = Ib; Db()
0 AAA h.f\\ ANN A / W) . af A. : y M { .u] “
1 2 3 4 5 6 7

run 100 of (Ga() | Gb())

0 8 o 10 o - X —  run 1of (Da() | Db))
I
'b la b (With doping to
break deadlocks)
N.B.: It will not oscillate
without doping (noise)

200 G —— G / » directive sample 10.0 1000
180 4 - directive plot Ga(); Gb()
ijz i ° new a@1.0:chan()
i . new b@1.0:chan()
120 |
100 | 1 sample orbit let Ga() = do la; Ga() or ?b; ?b; ?b; 6b()
80 | Ga vs. Gb and 6b() = do Ib; Gb() or ?a; ?a; ?a; Ga()
60 - let Da() = la; Da()
407.... EEEEN EEEEEEN EEER EEn EEn EEEER EEEEEEN HEEBN andDb():lb;Db()
20 |

run 100 of (Ga() | 6b()) .
run 1of (Da() | Db())




Hysteric 3-Way 6Groupies

directive sample 3.0 1000
directive plot A(); B(); €()

new a@1.0:chan()
new b@1.0:chan()
new c@1.0:chan()

la b let AQ) = do la; AQ) or 2¢: 2¢; C()
and B() = do |b; B() or ?a; ?a; A()
‘@ @ and €() = do Ic; C() or ?b; 2b; B()
. . . let Da() = la; Da()
(Still with doping) and Db() = Ib; Db()
Ic D —e0e0

run 100 of (A(Q) | BO) | €())
run 1 of (Da() | Db() | Dc())

N.B.: It will not oscillate
without doping (noise)

A0 B() C0

——B() —¢C0

300

222\ N \ W

150

0 50 100 150 200 250 300

100 0 ] 1 sample orbit

ML

0 50 100 150 200 250 300
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“"Micromodels”: Continuous Time Markov Chains

The underlying semantics of stochastic n-calculus (and stochastic
interacting automata). Well established in many ways.

- Automata with rates on transitions.

“The" correct semantics for chemistry, executable.
- Gillespie stochastic simulation algorithm

Lots of advantages
- Compositional, compact, mechanistic, etc.

But do not give a good sense of “collective” properties.
- Yes one can do simulation.
- Yes one can do program analysis.
- Yes one can do modelchecking.
- But somewhat lacking in "analytical properties” and "predictive power".



"Macromodels”: Ordinary Differential Equations

e The classical semantics of collective behavior.
- E.g. kinetic theory of gasses.

- They always ask: "How does you automata model relate to the 75 ODE models in the
literature?”

e Going from processes/automata to ODEs directly:

- Inprinciple. just write down the Rate Equation: [Calder, Hillston]
- Let [S] be the "number of processes in state S" as a function of time.
- Define for each state S:
[S]° = (rate of change of the number of processes in state S)

Cumulative rate of transitions from any state S' to state S, times [S'],
minus cumulative rate of transitions from S to any state S”, times [S].

- Intuitive (rate = inflow minus outflow), but clumsy to write down precisely.

e (Going to ODEs indirectly through chemistry
- If we first convert processes to chemical reactions,

then we can convert to ODEs by standard means!




From Chemistry to ODEs



Chemical Reactions

A —"B;+ ..+ B,
A+ A, o"B;+ ..+ B,

A+A "B+ . +B,  Symmetric Collision

No other reactions!

Degradation

Asymmetric Collision

[A] = -r[A]

[Ail* = -r[A1][A]
[A]" = -r[A]([A]-1)

Exponential Decay
Mass Action Law

Mass Action Law

(assuming AzBzA, for all i,j)

JOURNAL OF CHEMICAL PHYSICS VOLUME 113, NUMBER 1

The chemical Langevin equation

Daniel T. Gillespie®
Research Department, Code 4T4100D, Naval Air Warfare Center, China Lake, California 93555

Genuinely rimolecular reactions do not physically occur
in dilute fluids with any appreciable frequency. Apparently
trimolecular reactions in a fluid are usually the combined
result of two bimolecular reactions and one monomolecular
reaction. and involve an additional short-lived species.

Chapter 1V: Chemical Kinetics
[David A. Reckhow , CEE 572 Course]

.. reactions may be either elementary or non-
elementary. Elementary reactions are those reactions
that occur exactly as they are written, without any
intermediate steps. These reactions almost always
involve just one or two reactants. ... Non-elementary
reactions involve a series of two or more elementary
reactions. Many complex environmental reactions are
non-elementary. In general, reactions with an overall
reaction order greater than two, or reactions with
some non-integer reaction order are non-elementary.

THE COLLISION THEORY OF
REACTION RATES
www.chemguide.co.uk

The chances of all this happening if your
reaction needed a collision involving more
than 2 particles are remote. All three (or
more) particles would have to arrive at
exactly the same point in space at the same
time, with everything lined up exactly right,
and having enough energy to react. That's
not likely to happen very often!

Trimolecular reactions:
A+B+C->"D

aggregate of e.g.:
A+Bo AB
AB+C—> D

0000000000000 0000000000000000000000000000000000

the measured "r" is an (imperfect)

00 0000000000000 00000000000000000000000000000000

S Ey P

E+SoES
ES>P+E

0000000000000 O0COCOCOOOIOONONOIO
0000000000000 0000000000

00 0000000000000 0000000000000000

Enzymatic reactions:

the "r" is given by Michaelis—MenTen§
(approximated steady-state) laws:

00 0000000000000 0000000000000000000000000000000




From Reactions to ODEs

vy A+B —>k, C+C

K
v A+C =k, D Write the coefficients A i C
vi: C —k, E+F by columns o . K
FuF B . Stoichiometric 1
va FHE =k reactions Matrix
N v, |Vvo]|Vs]|Vy
Quantity Al-1]-1 B C
changes ‘§ B|-1 1 ‘k\ l k3
Stoichiometric o|C|2]-1]-1 4 F E
matrix 8_ D 1
%)
L Rate laws E CAVEAT: A deterministic
F -2 approximation of a stochastic
[X]' = N X system (i.e. possibly mis/eading)
L ‘/Red the concentration Set a rate law for each reaction
[A]° = ‘Il - I2 d concentratio (Degradation/Asymmetric/Symmetric)
. changes from the rows
[B] - "|1 + I4 - | X: chemical species
o — _ _ [-]: quantity of molecules
[C] 2ll IZ l3 |1 kl[A][B] I: rate laws
[D]. = lz E.g. [A] = l2 kZ[A][C] k: kinetic parameters
° = -k [A][B] - k,[A][C] N: stoichiometric matrix
[FI=1,-2l, |, | k4[FI([F]-1)/2
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Chemical 6round Form (CGF)

E = Xi=My, .., X,=M,  Definitions (n20)
M:=mP,® . ®n,.P, Molecules (n20)

il LA D Solutions  (n:0)
m S T PNy Ingy Interactions (delay, input, output)
CGF ::=EP Definitions with Initial Conditions

@ is stochastic choice (vs. + for chemical reactions)
0 is the null solution (P|0 = O|P = P)
and null molecule (M@0 = 0®M = M) (t,.P = 0)
X. are distinct in E
Each name n is assigned a fixed rate r: n,

(To translate chemistry back to
processes we need a bit more than simple
automata: we may have “+" on the right
of —, that is we may need "|" after r.)

I . .
4 Ex: interacting automata
a (which are finite-control CGFs: use “|" only in initial conditions):
5q 5h A= !G,‘A o Qb,B /—| Automaton in state A
B=I1bB®2aA I Automaton in state B

g A|A|B|B | Initial
' conditions:
Ib

2A and 2B



Automata (or CGF) to Chemistry




Process Rate Semantics



Same Chemistry

directive sample 0.002 10000
directive plot A(); B()

new a@1.0:chan()
new b@1.0:chan()

let A() =do !a; A() or !b; A() or ?b; B()
and B() = do delay@1.0; A() or ?a; A()

run 10000 of B()

B A Same chemistry, hence
AB=TATA o ouivalent automata
A+A -2 A+B I

directive sample 0.002 10000
directive plot A(); B()

new a@1.0:chan()

let A() =do !a; A() or ?a; B()
and B() = do delay@1.0; A() or ?a; A()

run 10000 of B()

4aaa

87491

T498.3

62494

4999.5

37496

2499.8

1248.9

o

9999

87491

74983

6249.4

49995

37496

2499.8

12499

SPiM

Al
8g

0.0oz2

Al
BQ

0.002



Same ODEs

directive sample 0.002 10000 10000 iRk

T B _)t A directive pl ; 8750
plot A(); B()

. + r + 7500
a: A+B —F A+A new a@1.0:chan() -
b: A+A —?r A+B new b@1.0:chan() ot
let A() =do !a; A() or !b; A() or ?b; B() 350
and B() = do delay@1.0; A() or ?a; A() 2500
run 10000 of B() 0

0 0.002

[A] = 1[B] + r[A][B] - r[AY([A]-1) ) )
[B] = -t[B] -r[A][B] + r[A]([A]-1) Different chemistry

but same ODEs, hence
equivalent automata

directive sample 0.002 10000

10000

directive plot A(); B()
B> A E -
a: A+B - A+A new a@1.0:chan() sae
b: A+A —t B+B new b@0.5:chan() w00
let A() =do !a; A() or !b; B() or ?b; B() 2500
and B() = do delay@1.0; A() or ?a; A() 1250

1} 0.002

run 10000 of B()

[A]" = t[B] + r[A][B] - r[A)([A]-1)
[BI" = -t[B] -r[A][B] + r[A]([A]-1)



Semantic Relationships

Processes 4— Chem1stry

Effect] T,
‘Reptlve Rate Equation Law of *,
ate Mass Action .

" OpSem ~ ODEs ~ ODEs ~
H PRSIt Ly
ermanns > CTMCs * G1llesp1e



Epidemics

Kermack, W. O. and McKendrick, A. G. "A Contribution to the
Mathematical Theory of Epidemics." Proc. Roy. Soc. Lond. A
115, 700-721, 1927.

http://mathworld.wolfram.com/Kermack-McKendrickModel.html



Epidemics

directive sample 500.0 1000
directive plot Recovered(); Susceptible(); Infected()

!infeCT ?ianCT new infect @0.001:chan()

val recover = 0.03

. let Recovered() =
SUSCCP'h ble ‘ ; 5 infecf Infec.l.ed ?infect; Recovered()

and Susceptible() =
@recover sinfect; Infected()

and Infected() =
Recovered do linfect; Infected()
or ?infect; Infected()
. or delay@recover; Recovered()
?infect

run (200 of Susceptible() | 2 of Infected())

25| — Recovered() —— Susceptible() Infected()
Developing the Use of Process Algebra in the
Derivation and Analysis of Mathematical Models 200 |
of Infectious Disease
150
R. Norman and C. Shankland
Department of Computing Science and Mathematics, University of Stirling, UK.
{ces,ran}@cs.stir.ac.uk 100
e . - . \ 50
Abstract. We introduce a series of descriptions of disease spread using
the process algebra WSCCS and compare the derived mean field equa-
tions with the traditional ordinary differential equation model. Even the
preliminary work presented here brings to light interesting theoretical 0 T T T

questions about the “best” way to defined the model.

0 50 100 150 200



Differentiating

Processes!

. .
S = iy I

\

\R - ?l(f);R /
(6+T >t T+1)
T+ >tV I+T 7‘ “useless”
T 'R ) reactions
\R + T —T R + I/
[S]* = -t[S][I]
[L] = t[S][T]-r[I]
[R]* = r[I]
Automata %Z —ols
produce the = oIS =¥
standard ODEs! % .y

{the Eermack-McEendnck, or SIE model)|

ODE

25— Recovered() —— Susceptible() —— Infected()

200 -

150

100

50 4

SPiM

0 50

250

T T
100 150 200

Cell

ODE Solver outf
S+I ot
I >R

with + =0.001 r

Designer

ut for reactions:
I+I

- 0.03 [5]=200 [I]=2

ODé Solver 6u‘rpu’r fc;r

Matlab




Simplified Model

| not useless! /S _ 7i(f)'I I
linfect T
R
N\

Il(.r) Io® Tn R
Susceptible O ‘)lnfec-r% Infected

useless

0 J

Not totally obvious e

that one coul/d have S + I _)T I + I
simplified the
automata model. \I —" R

([ST = -t[S][T]

directive sample 500.0 1000 ° — _
directive plot Recovered(); Susceptible(); Infected() [I] - T[S][I] r‘[I]
new infect @0.001:chan() 25 — Recovered() —— Susceptible() Infected() [R ]0 - rt [I]
val recover = 0.03 200 . | -
'e(*) Recovered() = . Same ODE, hence
. equivalent

and Susceptible() =

?infect; Infected() 1001 automata mOdCIS.
and Infected() = 50 -

do linfect; Infected()
or delay@recover; Recovered()

O T T T
run (200 of Susceptible() | 2 of Infected()) 0 50 100 150 200
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Predator-Prey

Herbivor & i ;- @breeding

?cull

lcull

Carnivor

Tag, .‘o
@mortality

785
628
471
314
167

0
00070479 0.24341
Simulation: Halted, Time = 0.343410 {317 points at 0.0068489 simTimefsysTime)

Carnivor()
Herbivor

Flotting: Live

directive sample 1.0 1000
directive plot Carnivor(); Herbivor()

val mortality = 100.0

val breeding = 300.0

val predation = 1.0

new cull @predation:chan()

let Herbivor() =
do delay@breeding; (Herbivor() | Herbivor())
or 2cull; ()

and Carnivor() =

do delay@mortality; ()
or leull; (Carnivor() | Carnivor())

run 100 of Herbivor()
run 100 of Carnivor()

An unbounded
state system!



(
.

= ’Eb,' (HlH) @ ?C(p):O

H
C = 1,0 ® I, (C[C)
p

HobH+H
C ->m0
\H+C—>P C+C

[H]
[cr

b[H]-p[H]LC]
-m[C]+p[H][C]

ODE

Lotka-Volterra Equations

mathwarld |

COMMENT Fa| DOWNLOAD
on this Page 71 mMathematica Notebook

The Lotka-volterra equations describe an ecological predator-prey (or parasite-host) model which assumes
that, for a set of fixed positive constants A (the growth rate of prey), B (the rate at which predators destroy

prey]), O (the death rate of predators), and 2 (the rate at which predators increase by consuming prey), the
following conditions hold,

1. & prey population x increases at arate dx = A x & ¢ (proportional to the number of prey) but is

simultaneously destroyed by predators at arate d x = -8 x pd ¢ (proportional to the product of the numbers
of prey and predataors),

2. A predator population p decreases at arate d y = —C yp d ¢ (proportional to the number of predators), but
increases at arate dy =D x p & ¢ (again proportional to the product of the numbers of prey and predatars).

), vk =15, F=1,C=3,D=1 i yila =1, =1, C=1, D=1
12

This gives the coupled differential equations

ax Ax-B (1)
S = X—=—0X

2z B

ey Cy+D (2
e = = +LxW7

= y+Dxy

Automata produce the Lotka-
Volterra model (with B=D)
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Choice Law by ODEs

[A =1.B® TH;B]

|

AN B
A—-H B

[Al" = -A[A] - u[A
[BI* = A[A] + p[A]

]]

[A]" = -(A+p)[A]
[B]* = (A+u)[A]




Idle Interaction Law by ODEs

Ic
?2c

A=?cB
C=lcC
}

[A+C—»PB+C]

}

[Al] = -r[A]lC]
[B] = r[A][C]
[C] =

directive sample 6.0 1000
directive plot A()

new c@1.0:chan
let AQ) = 2¢; B()
and BO) = ()

and C() = Ic; €()

run (C() | 1000 of A())

00000

0000000

A ?2C.A @ ?2¢c.B
kC

A+C - A+C
A+C - B+C

It may seem like A should
decrease half as fast,
but NO! Two ways to explain:

-State A is memoryless
of any past idling.
- Activity on c is double

directive sample 6.0 1000
directive plot A()

new c@1.0:chan

let A() = do ?c; B() or ?c; A()
and B() = ()

and C() = lc; €()

run (C() | 1000 of A())

—A0

“““““
0000000




Hermanns: Interactive

Stochastic Interleaving Markoy Chains. Sec 4.12

b b et b e Hllbd i st et H

. - - directive sample 4.0 10000
EX- A— 1.0, “_ 2 O @1 O - S directive plo’rpA(),‘ B(): €O: DO
let AQ) = delay@1.0; B()
730 and BO = ()
[A1],=1000 500 let C() = delay@2.0; D()
@2.0 250 and D() = ()

run 1000 of (A() | €())

[Cl]O: 1000

directive sample 4.0 10000
directive plot

=1=1% ?YA: B(): ?YC: D(): Y(): AQ: €0
@10 @10 10007 new YA@1.0:chan new YC@1.0:chan
@ ?50' let AQ) = do delay@1.0; B() or >vA

5007 £ 3 and B() = ()
_ 250 ' let €() = do delay@2.0; D() or 2vc
[y]o—loo@g2 5 @2.0 N @ @ | and D() = ()
) 0 4

let Y() =
do delay@1.0; (B() | €())

or delay@2.0; (A() | D())
or ?YA or ?YC

Amazingly, the B's and the D's from the two run 1000 of Y0

branches sum up to exponential distributions



Stochastic Interleaving Law by ODEs

Rt Al e el R

(Al =1.B )
Ci =1,

A6 J

(Al NV
C,—>*D

1 * G J

[A]° = -A[A,]
[B]* = A[A]
[Ci]° = -u[C]
[D]° = ulC]

Want to show that B and D
on both sides have the
"same behavior” (equal

C,=1.D
A,=1,.B
Y

(V=18 | C,) ®,(A, | D)

quantities of Band D
produced at all times)

/\/—>AB+C2\
YoHA,+D
C, D
A, >'B

\Y Y,

Y] = -ALYIuY] )
[A,]" = u[YI-ALA,]
[BI* = ALY +A[A,]
[C,]° = ALY J-uIC,]

\[DI" = ulY+ulC,]

[BI* = A[Y+A,]

[D]" = u[Y+C,]

[Y+C,I* = -ulY+C,]

(IY+A,1° = -ALY+A,] / [Y+A2] - [y1 +[A,T°

-AY J-ulY JFULY I-A[A,]
: = -AlY]-A[A,] :
25 TAYHALL | DYeA,) decays exponentially! &

[B] and [D] have equal time evolutions on the two sides provided that [A;]=[Y+A,] and [C,]=[Y+C,].
This imposes the constraint, in particular, that [A;]p=[Y+A,], and [C;]o=[Y+C,], (at time zero).

The initial conditions of the right hand system specify that [A,],=[C,]o=0 (since only Y is present).
Therefore, we obtain that [A;]o=[C11o=[Y o.

So, for example, if we run a stochastic simulation of the lef+ hand side with 1000*A1
and 1000*C1, we obtain the same curves for B and D than a stochastic simulation of
the right hand side with 1000*Y.
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Bidirectional

2 28 — Polymerization

Polymerization is
new c@u new stop@1.0 . Monomer torated
I Automaton complexation.

free ~
IC('rht,); Apgps(rht)) + >c(l) c(°r)
2c(IfT); Ablff(lfT) Bound Bound Polyau‘roma‘ta
A (|f1-) L left rlghT Bound output lc(*r) and input 2¢(l)
bIft on automata transitions
lc("rht,); Apoung(Ift,rht)) to model complexation
Ay s(rht) = Bound
?C(IfT); Abound(lf.l.’r.h.‘.) bOTh Free Free

Apound(Ift,rht) = 2stop

PLPL




Bidirectional Polymerization

Circular Polymer Lengths

Scanning and counting the size of the circular polymers (by a cheap trick). e

Polymer formation is complete within 10t; then a different polymer is scanned every 100t.

directive plot Abound(): ?count

type Link = chan(chan)

120 —— —— Abound() ?count 120 —— Abound() ?count 120 —— Abound() 2count — type Barb = chan
1 | 1 val lam = 1000.0 (* set high for better counting *)
100 I — 100 100 Va0
new c@mu:chan(Link)
80 1 80 4 80 1 new enter@lam:chan(Barb)
60 60 60 new count@lam:Barb
:|: let Afree() =
40 40 4 40 (hew rht@lam:Link run
do lc(rht); Abrht(rht)
20 - 20 20 or 2¢c(Ift); Ablft(Ift))
0 L— 0 0 and Ablft(Ift:Link) =
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ (hew rht@lam:Link run
0 200 400 600 800 101 0 200 400 600 800 100 0 200 400 600 800 1000 le(rht); Abound(Ift,rht))
and Abrht(rht:Link) =
2c(Ift): d(Ift,rh
120 —— —— Abound() 2count 120 —— Abound() 2count —— 120 —— —— Abound() 2count —— ZE P AR
and Abound(Ift:Link, rht:Link) =
100 100 - 100 +— do ?enter(barb); (?barb | Irht(barb))
- N or 2If+(barbY; (?barb | Irht(barb))
80 80 - 80 (* each Abound waits for a barb, exhibits it, and passes it to
the right so we can plot number of Abound in a ring *)
60 60 - 60 let clock(t:float, tick:chan) = (* sends a tick every t time *)
40 40 40 (val ti = t/1000.0 val d = 1.0/ti
let step(n:int) =
if n<=0 then ltick; clock(t,tick) else delay@d; step(n-1)
20 —I_‘—|_I_ 20 | 20 N run step(1000))
0 I_‘ T T T 0 I_‘_l_:_‘ T T 0 ; T T T new tickichan
let Scan() = ?tick; lenter(count); Scan()
0 200 400 600 800  100( 0 200 400 600 800 100 0 200 400 600 800 1000
run 100 of Afree()
run (clock(100.0, tick) | Scan())
120 —— —— Abound() 2count 120 —— Abound() 2count —— 120 —— —— Abound() 2count ——
0+~ 04— e IOOXAfree, initially.
8 80 80 - The height of each rising
60 60 { — 60 step is the size of a
40 w{ 2 - separate circular polymer.
20 20 20 - (Unblased sample of nine
ol e | 0 . | ol L | consecutive runs.)
0 200 400 600 800 100C 0 200 400 600 800 100 0 200 400 600 800 1000



PR T &
20 > e

hew c@p

Afree i
le(VIFT)); Apies(IFT)) +
2c(rht); A, n(rht)

Ablﬁ(lff) =
Ift; Afree M

2c(rht); Apyung(Ift.rht)

Abrh‘r(rh-r) n
)r'hT, Afr‘ee

Abound(lff,rhf) =
I£4; Agpi(Pht)

Free

Bound
left

?c(r)

Bound
both

Actin-like

Poly/Depolymerization

Monomer Free
Automaton
Bound
left

Bound
both

Free

Bound Bound
right left ?C(r\)

Bound
both

N

lllllll r‘igh.'_

Bound
right

1000

750

500

250

0+
o 34.735

1000 monomers settle to
~100 polymers of size ~10




Parametric Processes



Chemical Parametric Form (CPF)

E = Xi(p)=My, ... X (p)=M, Definitions (n:>0)
et bt e ANt Lt Molecules (n>0)
1ttt e L e Solutions (n>0)
=1, ?n(p) In(p) Interactions

CPF::=EP with initial conditions

® is stochastic choice (vs. + for chemical reactions)
0 is the null solution (P|0 = O|P = P)
and null molecule (M®0 = 0®M = M) (z,:P = 0)
Not bounded-state systems. X; are distinct in E, p are vectors of names
Not finite-control systems p are vectors of distinct names when in binding position
' Each free name n in E is assigned a fixed rate r:
But still finite-species systems. written either ng,, or pgr(n)=r.

A translation from CPF to CGF exists
(expanding all possible instantiation of parameters from the initial conditions)

An incremental translation algorithm exists
(expanding on demand from initial conditions)



And Yet It Moves

A fine stochastic oscillator over

The Repressilator

1 L]

X Neg Z

1 [yl
Neg Neg

Parameftric representation

123

615

0
53.947 40054
Simulation: Tirme = 53810.179900 (1070 points at 34439 simTime/sysTime and halted)

a wide range of parameters.,

Neg(a,b) = ?a; Inh(a,b) ® t_; (Tr(b) | Neg(a,b))

Inh(a,b) = t,; Neg(a,b)
Tr(b) =b; Tr(b) ®1.: O

Neg(X().¥()) | Neg(y(y.zi) | Neg(z() X)) [Tr/x]"

ﬂeg/x,y —¢ Tr/y + Neg/x.y
Neg/y,z —>¢ Tr/z + Neg/y,z
Neg/z,x —¢ Tr/x + Neg/z,x
Tr/x + Neg/x,y —»" Tr/x + Inh/xy
Tr/y + Neg/y,z »" Tr/y + Inh/y,z
Tr/z + Neg/z,x —" Tr/z + Inh/z x
Inh/xy -" Neg/xy
Inh/y,z -1 Neg/y,z
Inh/z,x —" Neg/z x
Tr/x —>10
Tr/y >0

[Tr/y]

/ K[Neg/x,y]' = -r[Tr/x][Neg/x y] + n[Inh/x,y]\
[Neg/y,z]* = -r[Tr/y][Neg/y,z] + n[Inh/y,z]
[Neg/z,x] = -r[Tr/z][Neg/z x] + n[Inh/z x]
[Inh/xy]° = r[Tr/x][Neg/x,y] - n[Inh/xy]
[Inh/y,z]° = r[Tr/y][Neg/y,z] - n[Inh/y,z]
[Inh/z,x] = r[Tr/z][Neg/z,x] - n[Inh/z x]
¢[Neg/z,x] - y[Tr/x]
e[Neg/xy] - v[Tr/y]
\[Tr/z]‘ = ¢[Neg/y,z] - y[Tr/z]

J

simplifying (N is the quantity
of each of the 3 gates)

/[Neg/x,y]' =nN - (n+r'[Tr/x])[Neg/x,y]\

[Neg/y,z]* = nN - (n+r[Tr/y])[Neg/y,z]
[Neg/z,x]* = nN - (n+r[Tr/z])[Neg/z x]
[Tr/x]" = e[Neg/z,x] - y[Tr/x]
[Tr/y]" = e[Neg/x,y] - y[Tr/y]

Tr/z >0
kNeg/x,y + Neg/y,z + Neg/z,x /

\[Tr'/z]' = ¢[Neg/y,z] - y[Tr/z] )

A'naly‘rically not j

an oscillator!

Blossey-Cardelli-Phillips. |

'4

continuous_sys_generator |

a

interval/step
(Neg/xy)
(Neg/xy)
(Neg/xy)
(Tr/x)
(Tr/y)
(Tr/z)

500

000]
dx1/dt
dx2/dt
dx3/dt
dx4/dt
dx5/dt
dxé/dt

1000 1500 2000

N=1, r=1.0, £=0.1, n=0.001, y=0.001

= 0,001 - (0.001 + x4)*x1

= 0,001 - (0.001 + x5)*x2
=0001- (0.001+x6)*x3
= 0.1%x3 - 0.001*x4

= 0.1%x1 - 0.001*x5

= 0.1*x2 - 0.001*x6

1.0
1.0
1.0
100.0

2500
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Conclusions

e Compositional Models
- Accurate (at the "appropriate” abstraction level).
- Manageable (so we can scale them up by composition).

e Interacting Automata
- Complex global behavior from simple components.
- Bridging individual and collective behavior.

- Connections to classical Markov theory,
chemical Master Equation, and Rate Equation.

e Mapping out "the whole system”

- Through an “artificial biochemistry”
(a scalable mathematical and computational modeling framework)
to investigate "real biochemistry” on a large scale.

http://LucaCardelli.name



