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50 Years of Molecular Cell Biology

SOLVING THE NEUTRINO MYSTERY = RECOGNIZING ANCIENT LIFE

e (Genes are made of DNA s
- Store digital information as sequences of 4 SCIENTIFIC Gt
different nucleotides AMERICAN MRS o
- Direct protein assembly through RNA and the
Genetic Code

50 YEARS OF THE

DOUBLE(E

e Proteins (>10000) are made of amino acids o
- Process signals | N

Activate genes

Move materials

Catalyze reactions to produce substances

Control energy production and consumption

e Bootstrapping still a mystery

- DNA, RNA, proteins, membranes are today
interdependent. Not clear who came first

- Separation of tasks happened a long time ago
- Not understood, not essential



Towards Systems Biology

Biologists now understand many of the cellular components
- A whole team of biologists will typically study a single protein for years
- Reductionism: understand the components in order to understand the system

But this has not led to understand how "the system” works
- Behavior comes from complex patterns of interactions between components
- Predictive biology and pharmacology still rare
- Synthetic biology still unreliable

New approach: try to understand "the system”
- Experimentally: massive data gathering and data mining (e.g. Genome projects)
- Conceptually: modeling and analyzing networks (i.e. interactions) of components

What kind of a system?

Just beyond the basic chemistry of energy and materials processing...
Built right out of digital information (DNA)

Based on information processing for both survival and evolution
Highly concurrent

Can we fix it when it breaks?
- Really becomes: How is information structured and processed?



Reverse-Engineer Thisl!
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..and Model It

e Even if we understood it, how would we model it?
- Millions of differential equations? Hmmm..

e And we will have to model it in order to understand it.

e What's different about modeling these systems?



Abstract Machines of Systems Biology

The "hardware"” (biochemistry) is Regulation T .
fairly well understood. : :

But what is the "software” that

runs on these machines? +** ene Regulatory
. Networks
strings
Functional Architecture
Diverse
- chemical toolkits
- instruction sets
-------------- - P - programming models
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Storing Processes

e Today we represent, store, search, and analyze:
- Gene sequence data
- Protein structure data
- Metabolic network data
- Signaling pathway data

Cellular Abstractions: Cells as Computation
Regev&Shapiro NATURE vol 419, 2002-09-26, 343

e How can we represent, store, and analyze biological processes?

- Scalable, precise, dynamic, highly structured, maintainable representations
for systems biology.

- Not just huge lists of chemical reactions or differential equations.

e In computing...

- There are well-established scalable representations of dynamic reactive
processes.

- They look more or less like little, mathematically based, programming
languages.



Methods

e Model Construction (writing things down precisely)
- Formalizing the notations used in systems biology.
- Formulating description languages.
- Studying their kinetics (semantics).

e Model Validation (using models for postdiction and prediction)

- Simulation from compositional descriptions

e Stochastic: quantitative concurrent semantics.

e Hybrid: discrete transitions between continuously evolving states.
- "Program” Analysis

e Control flow analysis

e Causality analysis
- Modelchecking

e Standard, Quantitative, Probabilistic



Modeling as Mapping

Building a model is like building a map of the fterritory
- It has to be accurate (it shows you where to go)
- and manageable (you can take it with you).
What is the best map?
- 1:10,000,000 very manageable, but can't even see Santa Fe.
- 1:1 very accurate, but can't fold it in your pocket.
- 1:10,000 good for Santa Fe, and unfolds on your lap.
Animating maps
- More than static geography (should include traffic patterns, weather, etc.)

- Perturbation (effects of roadwork) and Prediction (what's the traffic like
tfomorrow morning).

Correlating maps

- Correlating features between maps of different scales, as well as between
maps and the territory. (Needs a theory of correlating models.)

Composing maps (compositionality)
- A single map of the whole earth, at almost any scale, is unmanageable.

- Should have separate maps of different areas (including e.g. their local
traffic patterns), then "compose” them on need when crossing areas.



Stochastic Collectives



Stochastic Collectives

e "Collective":

- A large set of interacting finite state automata:
e Not quite language automata (“large set")
e Not quite cellular automata (“interacting” but not on a grid, and heterogeneous)
e Not quite process algebra ("finite state” and "collective” emphasis)

e "Stochastic":

- Interactions have rates
e Not quite discrete (hundreds or thousands of components)
e Not quite continuous (non-trivial stochastic effects)
e Not quite hybrid (no "switching” between regimes)

e Very much like biochemistry
- Which is a large set of stochastically interacting molecules/proteins
- Are proteins finite state and subject to automata-like transitions?

e Let's say they are, at least because:

e Much of the knowledge being accumulated in Systems Biology
is described as state transition diagrams [Kitano].



State Transitions
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Interacting Automata

new a@r,
Communication
new b@f‘z channels
new c@r,
A, =2a; A, \
A, =lc Ag
A3 = T@A5; A1
Bl i T@Az; BZ +la; B §
BZ = T@Al: Bl > 3
—+
= ?b: e
===» Delay Current States B3 | b' BZ
=== Transition --->  Interaction
o . | alitest i} ol e Aol ot
Communicating automata: a graphical FSA-like Il .
notation for “finite state restriction-free n- Cz i T@A3: C1
calculus processes”. Interacting automata do not C3 = T@A 4 C2 y.
even exchange values on communication.
The stochastic version has rates on A 1 | B ! | C ) } The system and
communications, and delays. initial state

"Finite state" means: no composition or restriction inside recursion.

Analyzable by standard Markovian techniques, by first computing
the "product automaton” to obtain the underlying finite Markov
transition system. [Buchholz]



Interacting Automata Transition Rules

@ current State

=== P Delay ‘ Delay O

=== Transition .
e i 5
O - O

Interaction

@r

Q: What kind of mass behavior can this produce?

(We need to understand that if want to understand biochemical systems.)



Interactions in a Population

() ()
Suppose this one is Q Q

the next interaction



Interactions in a Population



Interactions in a Population

X
?a?b ?a?b
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Interactions in a Population (2)

()
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?a .
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b

Suppose this one is

G the next interaction



Interactions in a Population (2)
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A stochastic collective of celebrities:

200

Ib

Groupies and Celebrities

la

Celebrity

(does not want to be like somebody else)

directive sample 0.1 200
directive plot A(); B(

new a@1.0:chan()
new b@1.0:chan()

let A() = do la; A() or ?a; B()
and B() = do |b; B() or ?b; A()

run 100 of (AQ) | B())

—A() —B0

140
120
100 4

60
40 -
20

180 -
160 |

——B(
200
160

/{ equilibrium

140 4
120 4
100 4
80 4
60 4

:zm:}

0

0 0.02 0.04

Stable because as soon as a A finds itself in the majority, it is more likely to
find somebody in the same state, and hence change, so the majority is weakened.

0.06 0.08 0.1

0 50 100 150

200

Groupie
(wants to be like somebody different)

directive sample 0.1 200
directive plot A(); B()

new a@1.0:chan()
new b@1.0:chan()

let A() = do la; A() or ?b; B()
and B() = do Ib; B() or ?a; A()

run 100 of (AQ) | B())

A stochastic collective of groupies:

—A) —B0
200 =
180 always
160 eventually
140 deadlock
120

— B0
200

180
160
140 4
120 4
100 4
80 -
60 -
40 4
20 4

100
80 -
60 -
40 |
20 -

0

0 ;ﬂ 1(‘]0 1;0 2(‘)0
0 0.5 1 15 2 .

Unstable because within an A majority, an A has difficulty finding a B o
emulate, but the few B's have plenty of A’'s to emulate, so the majority may
switch to B. Leads to deadlock when everybody is in the same state and there is
nobody different to emulate.



Both Together

A way to break the deadlocks: Groupies with just a few Celebrities

directive sample 10.0 1000
directive plot Ga():; Gb(); Ca(); Cb()

new a@1.0:chan()
new b@1.0:chan()
let Ca() = do la; Ca() or ?a; Cb()
Many A few and Cb() = do Ib; Cb() or 2b: Ca()
Groupies Celebrities let Ga() = do la; Ga() or 2b; 6b()

and Gb() = do Ib; Gb() or ?a; Ga()

run 1 of (Ca() | Cb())
run 100 of (Ga() | Gb())

never

e0 2007 deadlock

A
B

150

100

50




Hysteric Groupies

We can get more regular behavior from groupies if they "need more
convincing”, or “hysteresis” (history-dependence), to switch states.

!Cl 200 — Ga() —— Gb()  — directive sample 10.0 1000
=1 a'solid threshold” to observe switching | : Sirectiveplot-Ga-6bi)
o | : new a@1.0:chan()
20 R new b@1.0:chan()
?a 100 o JSample orbiy| et 6a0 = do la Gal) or 2b; 2b; Gb()
80 120 Gavs. Gb and Gb() = do |b; 6b() or ?a; ?a; Ga()
?a izkllllllll EEE EEjEEE EEEEEEEEEERpEEgQEER mm 1:: ICTDO()Z!G}DO()
20 4 & and Db() = Ib; Db()
0 AAA h.f\\ ANN A / W) . af A. : y M { .u] “
1 2 3 4 5 6 7

run 100 of (Ga() | Gb())

0 8 o 10 o - X —  run 1of (Da() | Db))
I
'b la b (With doping to
break deadlocks)
N.B.: It will not oscillate
without doping (noise)

200 G —— G / » directive sample 10.0 1000
180 4 - directive plot Ga(); Gb()
ijz i ° new a@1.0:chan()
i . new b@1.0:chan()
120 |
100 | 1 sample orbit let Ga() = do la; Ga() or ?b; ?b; ?b; 6b()
80 | Ga vs. Gb and 6b() = do Ib; Gb() or ?a; ?a; ?a; Ga()
60 - let Da() = la; Da()
407.... EEEEN EEEEEEN EEER EEn EEn EEEER EEEEEEN HEEBN andDb():lb;Db()
20 |

run 100 of (Ga() | 6b()) .
run 1of (Da() | Db())




Hysteric 3-Way 6Groupies

directive sample 3.0 1000
directive plot A(); B(); €()

new a@1.0:chan()
new b@1.0:chan()
new c@1.0:chan()

la b let AQ) = do la; AQ) or 2¢: 2¢; C()
and B() = do |b; B() or ?a; ?a; A()
‘@ @ and €() = do Ic; C() or ?b; 2b; B()
. . . let Da() = la; Da()
(Still with doping) and Db() = Ib; Db()
Ic D —e0e0

run 100 of (A(Q) | BO) | €())
run 1 of (Da() | Db() | Dc())

N.B.: It will not oscillate
without doping (noise)

A0 B() C0

——B() —¢C0

300

222\ N \ W

150

0 50 100 150 200 250 300

100 0 ] 1 sample orbit

ML

0 50 100 150 200 250 300
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“"Micromodels”: Continuous Time Markov Chains

The underlying semantics of stochastic n-calculus (and stochastic
interacting automata). Well established in many ways.

- Automata with rates on transitions.

“The" correct semantics for chemistry, executable.
- Gillespie stochastic simulation algorithm

Lots of advantages
- Compositional, compact, mechanistic, etc.

But do not give a good sense of “collective” properties.
- Yes one can do simulation.
- Yes one can do program analysis.
- Yes one can do modelchecking.
- But somewhat lacking in "analytical properties” and "predictive power".



"Macromodels”: Ordinary Differential Equations

e They always ask:

- "Yes, but how does you automata model relate to the 75 ODE models in the
literature?”

e Going from processes/automata to ODEs directly:

- In principle: just write down the Rate Equation: [Calder, Hillston]
- Determine the set of all possible states S of each process.
- Determine the rates of the transitions between such states.
- Let [S] be the "number of processes in state S" as a function of time.
- Define for each state S:
[S]° = (rate of change of the number of processes in state S)

Cumulative rate of transitions from any state S' to state S, fimes [S'],
minus cumulative rate of transitions from S to any state S, times [S].

- Intuitive (rate = inflow minus outflow), but often clumsy to write down precisely.

e But why go to the trouble?
- If we first convert processes to chemical reactions,
then we can convert to ODEs by standard means!



From Automata to ODEs



Chemical Reactions

A —"B;+ ..+ B,
A+ A, o"B;+ ..+ B,

A+A "B+ . +B,  Symmetric Collision

No other reactions!

Degradation

Asymmetric Collision

[A] = -r[A]

[Ail* = -r[A1][A]
[A]" = -r[A]([A]-1)

Exponential Decay
Mass Action Law

Mass Action Law

(assuming AzBzA, for all i j)

JOURNAL OF CHEMICAL PHYSICS VOLUME 113, NUMBER 1

The chemical Langevin equation

Daniel T. Gillespie®
Research Department, Code 4T4100D, Naval Air Warfare Center, China Lake, California 93555

Genuinely rimolecular reactions do not physically occur
in dilute fluids with any appreciable frequency. Apparently
trimolecular reactions in a fluid are usually the combined
result of two bimolecular reactions and one monomolecular
reaction. and involve an additional short-lived species.

Chapter 1V: Chemical Kinetics
[David A. Reckhow , CEE 572 Course]

.. reactions may be either elementary or non-
elementary. Elementary reactions are those reactions
that occur exactly as they are written, without any
intermediate steps. These reactions almost always
involve just one or two reactants. ... Non-elementary
reactions involve a series of two or more elementary
reactions. Many complex environmental reactions are
non-elementary. In general, reactions with an overall
reaction order greater than two, or reactions with
some non-integer reaction order are non-elementary.

THE COLLISION THEORY OF
REACTION RATES
www.chemguide.co.uk

The chances of all this happening if your
reaction needed a collision involving more
than 2 particles are remote. All three (or
more) particles would have to arrive at
exactly the same point in space at the same
time, with everything lined up exactly right,
and having enough energy to react. That's
not likely to happen very often!

Trimolecular reactions:
A+B+C->r'D

aggregate of e.g.:
A+Bo AB
AB+C—> D

00 0000000000000 000OCCKCGSIIIY

00000 000000000000000000000000000000000000000000,

the measured "r" is an (imperfect)

00 0000000000000 00000000000000000000000000000000

S Ey P

E+SoES
ES>P+E

0000000000000 O0O0COCOIOIOIONOIOS
0000000000000 0000000000

00 0000000000000 000000000000000000000000000000

Enzymatic reactions:

the "r" is given by Michaelis-Menten
(approximated steady-state) laws:

00 000000000000 OCOCGOCGOGOIOGINOSINOIDS

00 0000000000000 0000000000000000000000000000000




Automata to Chemistry




From Reactions to ODEs

Quantity
changes

Stoichiometric
matrix

L Rate laws

[X]* = N



Same Chemistry

SPiM

directive sample 0.002 10000 REEE

directive plot A(); B() R o
7499.3

new a@1.0:chan() f2a04

new b@l.O:Chan() 45905

37496

let A() =do !a; A() or !b; A() or ?b; B()
and B() = do delay@1.0; A() or ?a; A()

2499.8

1249.9

o

run 10000 of B() a 0002

Bt A
A+B - A+A
A+A -2 A+B

Same chemistry, hence
equivalent automata

aga9 SPird

directive sample 0.002 10000
directive plot A(); B()

AL
87491 Bi)

7499.3

new a@1.0:chan() 82494
4889 5

let A() =do !a; A() or ?a; B() 37496
and B() = do delay@1.0; A() or ?a; A() 24900

12499

run 10000 of B()

1} 0.002




Same ODEs

directive sample 0.002 10000 10000 iRk
B>t A et P .

irective plot A(); B() 8750
: + r + 7500
a: A+B o A+A new a@1.0:chan() -
b: A+A - A+B new b@1.0:chan() -
let A() =do !a; A() or !b; A() or ?b; B() 3750
and B() = do delay@1.0; A() or ?a; A() 2500
run 10000 of B() 0

0 0.002

[A] = 1[B] + r[A][B] - r[AY([A]-1)
[B]" = -t[B] -r[A][B] + r[A]([A]-1)

directive sample 0.002 10000

10000

directive plot A(); B
B>t A pOEAOED G
a: A+B - A+A new a@1.0:chan() Z:z
b: A+A —t B+B new b@0.5:chan() e000
let A() =do !a; A() or !b; B() or ?b; B() 2500
and B() = do delay@1.0; A() or ?a; A() 1250

1} 0.002

run 10000 of B()

[A] = t[B]+ r[A][B] - r[AX([A]-1)
[B]" = -t[B] -r[Al[B] + r[AJ([A]-1)



Relationships

Processes 4— Chem1stry

Effect] T,
‘Reptlve Rate Equation Law of *,
ate Mass Action .

, OpSem ~ ODEs ~ ODEs

. *
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Epidemics

Kermack, W. O. and McKendrick, A. G. "A Contribution to the
Mathematical Theory of Epidemics." Proc. Roy. Soc. Lond. A
115, 700-721, 1927.

http://mathworld.wolfram.com/Kermack-McKendrickModel.html



Epidemics

directive sample 500.0 1000
directive plot Recovered(); Susceptible(); Infected()

!infeCT ?ianCT new infect @0.001:chan()

val recover = 0.03

. let Recovered() =
SUSCCP'h ble ‘ ; 5 infecf Infec.l.ed ?infect; Recovered()

and Susceptible() =
@recover sinfect; Infected()

and Infected() =
Recovered do linfect; Infected()
or ?infect; Infected()
. or delay@recover; Recovered()
?infect

run (200 of Susceptible() | 2 of Infected())

25| — Recovered() —— Susceptible() Infected()
Developing the Use of Process Algebra in the
Derivation and Analysis of Mathematical Models 200 |
of Infectious Disease
150
R. Norman and C. Shankland
Department of Computing Science and Mathematics, University of Stirling, UK.
{ces,ran}@cs.stir.ac.uk 100
e . - . \ 50
Abstract. We introduce a series of descriptions of disease spread using
the process algebra WSCCS and compare the derived mean field equa-
tions with the traditional ordinary differential equation model. Even the
preliminary work presented here brings to light interesting theoretical 0 T T T

questions about the “best” way to defined the model.

0 50 100 150 200



Differentiating

Processes!

( .
S = iy T
I-=

R =

~

J

(6+T 5T IT+T)

T+ >tV I+T 7‘ “useless”

T 5" R ) reactions
\R +I 5T R+ I/

[S]* = -t[S][I]

[L] = t[S][T]-r[I]

[R]* = r[I]

a5

Automata match &~

the standard % = oI5 —b]

ODE modell % 7

{the Eermack-McEendnck, or SIE model)|

ODE

25— Recovered() —— Susceptible() —— Infected()

200 -

150

100

50 4

SPiM

0 50

250

T T
100 150 200

Cell

ODE Solver outy
S+I
I ->"R

with+=0.001r

Designer

ut for reactions:
I+I

- 0.03 [5]=200 [I]=2

ODé Solver 6u‘rpu’r fc;r

Matlab




Simplified Model

| not useless! /S _ 7i(f)'I I
linfect T
R
N\

Il(.r) Io® Tn R
Susceptible O ‘)lnfec-r% Infected

useless

0 J

Not totally obvious e

that one coul/d have S + I _)T I + I
simplified the
automata model. \I —" R

([ST = -t[S][T]

directive sample 500.0 1000 ° — _
directive plot Recovered(); Susceptible(); Infected() [I] - T[S][I] r‘[I]
new infect @0.001:chan() 25 — Recovered() —— Susceptible() Infected() [R ]0 - rt [I]
val recover = 0.03 200 . | -
'e(*) Recovered() = . Same ODE, hence
. equivalent

and Susceptible() =

?infect; Infected() 1001 automata mOdCIS.
and Infected() = 50 -

do linfect; Infected()
or delay@recover; Recovered()

O T T T
run (200 of Susceptible() | 2 of Infected()) 0 50 100 150 200
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28> 28> T 2R8>

new c@u new stop@1.0

Afree i
lc(rht,); Appi(rht)) +
2¢c(If1); Ape(IF1)

Apig(IFT) =
lc(Vrht,); Apoung(Ift.rht))

Abrh‘r(r‘hT) i
2c(If1); Apoung(IfT,rht)

Apound(Ift,rht) = 2stop

Bidirectional

Polymerization
Monomer
Free Automaton

Bound

Polymerization is
iterated
complexation.

Communicating Automata

Bound output lc(*r) and input ?2¢(l)
on automata transitions

to model complexation &lc, &?c




Bidirectional Polymerization

Circular Polymer Lengths

Scanning and counting the size of the circular polymers (by a cheap trick). e

Polymer formation is complete within 10t; then a different polymer is scanned every 100t.

directive plot Abound(): ?count

type Link = chan(chan)

120 —— —— Abound() ?count 120 —— Abound() ?count 120 —— Abound() 2count — type Barb = chan
1 | 1 val lam = 1000.0 (* set high for better counting *)
100 I — 100 100 Va0
new c@mu:chan(Link)
80 1 80 4 80 1 new enter@lam:chan(Barb)
60 60 60 new count@lam:Barb
:|: let Afree() =
40 40 4 40 (hew rht@lam:Link run
do lc(rht); Abrht(rht)
20 - 20 20 or 2¢c(Ift); Ablft(Ift))
0 L— 0 0 and Ablft(Ift:Link) =
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ (hew rht@lam:Link run
0 200 400 600 800 101 0 200 400 600 800 100 0 200 400 600 800 1000 le(rht); Abound(Ift,rht))
and Abrht(rht:Link) =
2c(Ift): d(Ift,rh
120 —— —— Abound() 2count 120 —— Abound() 2count —— 120 —— —— Abound() 2count —— ZE P AR
and Abound(Ift:Link, rht:Link) =
100 100 - 100 +— do ?enter(barb); (?barb | Irht(barb))
- N or 2If+(barbY; (?barb | Irht(barb))
80 80 - 80 (* each Abound waits for a barb, exhibits it, and passes it to
the right so we can plot number of Abound in a ring *)
60 60 - 60 let clock(t:float, tick:chan) = (* sends a tick every t time *)
40 40 40 (val ti = t/1000.0 val d = 1.0/ti
let step(n:int) =
if n<=0 then ltick; clock(t,tick) else delay@d; step(n-1)
20 —I_‘—|_I_ 20 | 20 N run step(1000))
0 I_‘ T T T 0 I_‘_l_:_‘ T T 0 ; T T T new tickichan
let Scan() = ?tick; lenter(count); Scan()
0 200 400 600 800  100( 0 200 400 600 800 100 0 200 400 600 800 1000
run 100 of Afree()
run (clock(100.0, tick) | Scan())
120 —— —— Abound() 2count 120 —— Abound() 2count —— 120 —— —— Abound() 2count ——
0+~ 04— e IOOXAfree, initially.
8 80 80 - The height of each rising
60 60 { — 60 step is the size of a
40 w{ 2 - separate circular polymer.
20 20 20 - (Unblased sample of nine
ol e | 0 . | ol L | consecutive runs.)
0 200 400 600 800 100C 0 200 400 600 800 100 0 200 400 600 800 1000



PR T &
20 > e

hew c@p

Afree it

le(VIFT)); Apies(IFT)) +
2c(rht); A, n(rht)

Ab,ﬁ(lf'l') =
lIft; Afree Il
2c(rht); Apyung(Ift.rht)

Abrhf(rhT) n
Dr'hT, Afree

Abound(IfT,rhT) =
14 A, (rht)

Bound Bound

right left ?C(r\)

Actin-like

Poly/Depolymerization

1000

Free

Monomer
Automaton

Bound
left

Bound
both

Complexation  &lc, &?c
Decomplexation %lc, %?c

750

500

250

0+
o 34.735

1000 monomers settle to
~100 polymers of size ~10
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The Membrane Machine

Molecular transport and
transformation through
dynamic compartment
fusion and fission.
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The Membrane Machine “Instruction Set”
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Modeling "the whole process”
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Conclusions

e Compositional Models
- Accurate (at the "appropriate” abstraction level).
- Manageable (so we can scale them up by composition).

e Interacting Automata
- Complex global behavior from simple components.
- Bridging individual and collective behavior.

- Connections to classical Markov theory,
chemical Master Equation, and Rate Equation.

e Mapping out “the whole system”
- A bit at a time, and simultaneously at different levels.
- For prediction and prevention.

- Through an "artificial biochemistry” (a scalable mathematical and
computational modeling framework) to investigate "real biochemistry” on a
large scale.



