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Stochastic Collectives



Stochastic Collectives

e "Collective":

- A large set of interacting finite state automata:
e Not quite language automata (“large set")
e Not quite cellular automata (“interacting” but not on a grid)
e Not quite process algebra ("finite state" and "collective”)
e Cf. "multi-agent systems” and "swarm intelligence”

e "Stochastic":

- Interactions have rates
e Not quite discrete (hundreds or thousands of components)
e Not quite continuous (non-trivial stochastic effects)
e Not quite hybrid (no "switching” between regimes)

e Very much like biochemistry
- Which is a large set of stochastically interacting molecules/proteins
- Are proteins finite state and subject to automata-like transitions?

e Let's say they are, at least because:

e Much of the knowledge being accumulated in Systems Biology
is described as state transition diagrams [Kitano].



State Transitions
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Even More State Transitions
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http://www.expasy.ch/cqi-bin/show_thumbnails.pl




Interacting Automata

hew a@r,
Communication
new b@f‘z channels
: new c@r,
‘C@A5E A1 = ?Cl} A2 \
: A, = lc; Ag
» A3 = T@A5; A1
Bl = T@AZ; BZ +la; B §
@ current State BZ = T@Al; Bl > §
=== P> Delay Wl | o
=== Transition B3 T 7b, BZ °
€ ® Interaction
C,=1b; C,+?¢c; C
Communicating automata: a graphical FSA-like 1 Il 2. 3
notation for “finite state restriction-free n- C2 M T@A3' Cl
calculus processes”. Interacting automata do not C3 = T@A 4 C2 y.
even exchange values on communication.
The stochastic version has rates on A 1 | B ! | Cl } The system and
initial state

communications, and delays.

"Finite state" means: no composition or restriction inside recursion.
Analyzable by standard Markovian techniques, by first computing
the "product automaton” to obtain the underlying finite Markov
transition system. [Buchholz]



Interacting Automata Transition Rules

@ current State
=== P Delay ‘ Delay

=== Transition : Q
: 1@r * : 1@r
[ ] rl [ ]

a@r a@r

Interaction

r

Q: What kind of mass behavior can this produce?

(We need to understand that if want to understand biochemical systems.)



Groupies and Celebrities

la

Celebrity

(does not want to be like somebody else)
directive sample 0.1 200
directive plot A(); B(

new a@1.0:chan()
new b@1.0:chan()

let A() = do la; A() or ?a; B()
and B() = do |b; B() or ?b; A()

run 100 of (AQ) | B())

Ib

A stochastic collective of celebrities:

200 —AQ —B(

180 |

160 - /i a!vyay_s

o | equilibrium

120 | /

w0 NG =
\

160 4
140 4
120 4

60 -
100 4
40 - & 1

» STy

Groupie
(wants to be like somebody different)

directive sample 0.1 200
directive plot A(); B()

? b new a@1.0:chan()
new b@1.0:chan()

let A() = do la; A() or ?b; B()

and B() = do Ib; B() or ?a; A()
run 100 of (AQ) | B())

-
Ib

A stochastic collective of groupies:

—A() —B0

200

180 always
160 eventually
140 deadlock
120

——B0
200

180 4
160 4
140 4
120 4
100 4

T T T T 0 T 1 0 T T T 0 T T T 1
0 50 100 150 200 0 50 100 150 200
0 0.02 0.04 0.06 0.08 0.1 0 0.5 1 1.5 2 ‘
Unstable because within an A majority, an A has difficulty finding a B to
emulate, but the few B's have plenty of A's to emulate, so the majority may
Stable because as soon as a A finds itself in the majority, it is more likely to switch to B. Leads to deadlock when everybody is in the same state and there is

find somebody in the same state, and hence change, so the majority is weakened. nobody different to emulate.



200

180
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120 -

100

80 -
60 -
40 |
20 -

la

Many  2a( )?b

Both Together

A way to break the deadlocks: Groupies with just a few Celebrities

la

A few (2) ?b[ )?a

Groupies Celebrities

Ca()

Cb()

directive sample 10.0 1000
directive plot Ga():; 6b(); Ca(); Cb()

new a@1.0:chan()
new b@1.0:chan()

let Ca() = do la; Ca() or ?a; Cb()
and Cb() = do |b; €b() or ?b; Ca()

let Ga() = do la; Ga() or ?b; Gb()
and 6b() = do |b; Gb() or ?a; Ga()

run 1of (Ca() | Cb())
run 100 of (Ga() | 6b())

Ry

—— Gb()
200

180 - Ga vs. Gb
160 |
140 |
120 |

60 4

0 50 100 150 200



Hysteric Groupies

We can get more regular behavior from groupies if they "need more
convincing”, or “hysteresis” (history-dependence), fo switch states.

!Cl 20 ——Ga) —— Gh() directive sample 10.0 1000
®1 a"solid threshold” to observe switching | : directiveplot-Gap-6bi)
o | : new a@1.0:chan()
20 | e . new b@1.0:chan()
?a 100 - . JSample arbiy| et 6a0 = do la Gal) or 2b; 2b; Gb()
80 120 Ga vs. Gb and Gb() = do lb; Gb() or ?a; ?a; GG()
?a jzkllllllll NN EEjEEE EEEEEEEEEEpEEgQEER mm 1ZZ IGTDG()Z!G}DG()
20 | & and Db() = Ib; Db()
0 h/‘A h.f\\ i A / Wy . N A. \ : M ‘ _‘J 4
1 2 3 4 5 6 7

run 100 of (Ga() | Gb())

. run 1 of (Da() | Db())

8 9 10,

0 50 100 150

I
'b la b (With doping to
break deadlocks)
N.B.: It will not oscillate

without doping (noise)

200 G — G0 ~ directive sample 10.0 1000
180 - directive plot Ga(); Gb()
JEz new a@1.0:chan()
) new b@1.0:chan()

120
100 1 sample orbit let Ga() = do la; Ga() or ?b; ?b; ?b; Gb()
80 | Ga vs. Gb and 6b() = do Ib; Gb() or ?a; ?a; ?a; Ga()
60 - let Da() = la; Da()

40’llll AR REL REERR RN IR R RERRERRRRRRERRIRRERRINERRRERER andDb()=!b,‘Db()

20 MJ J

0 ‘ ‘ (A BRREY . B ‘ : ‘ ‘ sk run 100 of (Ga() | Gb()) ‘

0 1 2 3 4 5 6 7 8 9 10 run 1of (Da() | Db())




Hysteric 3-Way 6Groupies

directive sample 3.0 1000
directive plot A(); B(); €()

new a@1.0:chan()
new b@1.0:chan()
new c@1.0:chan()

la b let AQ) = do la; AQ) or 2c: 2¢: C0)
and B() = do |b; B() or ?a; ?a; A()
‘@ @ and €() = do Ic: C() or ?b; 2b: B()

I . let Da() = la; Da()
(Still with doping) and Db() = b: Db()

!IC and Dc() = lc; De()

run 100 of (AQ) | BO) | €())
run 1 of (Da() | Db() | Dc())

N.B.: It will not oscillate
without doping (noise)

AQ BO €O

——B) —C0O

300

a AR W\

150

0 50 100 150 200 250 300

100 0] 1 sample orbit

ML

0 50 100 150 200 250 300



Oscillation as Emergence

70

80

90

Just 2 of the hysteric groupies
do not oscillate regularly at all!

100

Nor 16...

Dotted lines indicate cross
sections where one may look
for evidence of alternation.

30

35

40

45

new a@1.0:chan()
new b@1.0:chan()

let A() = do la; A() or ?b; ?b; ?b; B()
Pretty good with 64..  and B() = do Ib; B() or 2a; 2a; ?a; A()

let As() = la; As()
and Bs() = Ib; Bs()

run 64 of (A() | B())
run 1of (As() | Bs()




Distributions can be Programmed

Exercise (hard):

Build a sma// automaton where one state has an occupation distribution like this:

—B0
10000

9000 |
8000 E
7000 |

6000 |

5000 S

4000 s g

3000 |
2000 |

1000 - y
0 |'t|r1\ea >

0 0.0005 0.001 0.0015 0.002 0.0025

Or, more specifically, build a 3-state, A-B-C, automaton such that:

[B] = [BI([A]-[C])
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“"Micromodels”: Continuous Time Markov Chains

The underlying semantics of stochastic n-calculus (and stochastic
interacting automata). Well established in many ways.

- Automata with rates on transitions.

“The" correct semantics for chemistry, executable.
- Gillespie stochastic simulation algorithm

Lots of advantages
- Compositional, compact, mechanistic, etc.

But do not give a good sense of "collective” properties.
- Yes one can do simulation.
- Yes one can do program analysis.
- Yes one can do modelchecking.
- But somewhat lacking in "analytical properties” and "predictive power".



"Macromodels”: Ordinary Differential Equations

e They always ask:

- "Yes, but how does you automata model relate to the 75 ODE models in the
literature?”

e Going from processes/automata to ODEs directly:

- In principle: just write down the Rate Equation: [Calder, Hillston]
- Determine the set of all possible states S of each process.
- Determine the rates of the transitions between such states.
- Let [S] be the "number of processes in state S" as a function of time.
- Define for each state S:
[S]° = (rate of change of the number of processes in state S)

Cumulative rate of fransitions from any state S' to state S, times [S'],
minus cumulative rate of transitions from S to any state S, times [S].

- Intuitive (rate = inflow minus outflow), but often clumsy to write down precisely.

e But why go to the trouble?
- If we first convert processes to chemical reactions,
then we can convert to ODEs by standard means!



Macromodel of Interaction

Law of Mass Interaction

The speed of interaction’ is proportional
to the number of possible interactions.

Decay
1000
A
@. . @ . @ Exponential
Decay law

Rate of change

° ._. ional b
[D] -A [D] ""Z?°JJS'§?§J§JLZ§“S.“
[ET -A[D]

Mass interaction

1200 Interaction
Law generalizes

. e
oo @A Decay Law
.g Ic . Mass
Lescooces, Interaction law
° — , _ Rate of change
[A] A [A] [B] proportional to number
*tececec®’ of possible interactions

[BI"=-A[A][B]
[AB]" = A [A] [B]

T speed of interaction (formally definable)
= number of interactions over time
not proportional to the number of interacting processes!

[P]is the number of processes P (this is informal; it is only
meaningful for a set of processes offering a given action, but
a set of such processes can be counted and plotted)

Chemical Law of Mass Action
http://en.wikipedia.org/wiki/Chemical_kinetics
The speed of a chemical reaction is
proportional to the activity of the
reacting substances.

Activity = concentration, for well-
stirred aqueous medium

oo pa‘ Concentration = number of moles per
*O P liter of solution
F9aY% | Mole = 6.022141x10% particles
DO AlQ A2()
1000 M A0
N SN

400 -

200 -

\| decay

/| Intferaction

0

0.002 0.004 0.006 0.008 0.01

HO\ 10 | B10 | A2()
\ ()\ 4(0) | B40 | A80) | B8()



From Chemistry to ODEs



Chemical Reactions

A —'B;+ ..+ B,

No other reactions!

Degradation
A+ A, 5" B+ ..+ B, Asymmetric Collision
A+A "B+ . +B,  Symmetric Collision

[A]" = -r[A]

[Al" = -r[A1][AZ]
[A]" = -r[A]([A]-1)

Exponential Decay
Mass Action Law

Mass Action Law

(assuming AzBzA, for all i,j)

JOURNAL OF CHEMICAL PHYSICS VOLUME 113, NUMBER 1

The chemical Langevin equation

Daniel T. Gillespie®
Research Department, Code 4T4100D, Naval Air Warfare Center, China Lake, California 93555

Genuinely rimolecular reactions do not physically occur
in dilute fluids with any appreciable frequency. Apparently
trimolecular reactions in a fluid are usually the combined
result of two bimolecular reactions and one monomolecular
reaction. and involve an additional short-lived species.

Chapter IV: Chemical Kinetics
[David A. Reckhow , CEE 572 Course]

.. reactions may be either elementary or non-
elementary. Elementary reactions are those reactions
that occur exactly as they are written, without any
intermediate steps. These reactions almost always
involve just one or two reactants. ... Non-elementary
reactions involve a series of two or more elementary
reactions. Many complex environmental reactions are
non-elementary. In general, reactions with an overall
reaction order greater than two, or reactions with
some non-integer reaction order are non-elementary.

THE COLLISION THEORY OF
REACTION RATES
www.chemguide.co.uk

The chances of all this happening if your
reaction needed a collision involving more
than 2 particles are remote. All three (or
more) particles would have to arrive at
exactly the same point in space at the same
time, with everything lined up exactly right,
and having enough energy to react. That's
not likely to happen very often!

Trimolecular reactions:
A+B+C—-rD

aggregate of e.g.:
A+B« AB
AB+C— D

00 0000000000000 000OCCKCGSIIIY

00000 000000000000000000000000000000000000000000,

the measured "r" is an (imperfect)

00 0000000000000 00000000000000000000000000000000

Enzymatic reactions:
S Er P

E+SoES
ES—>P+E

0000000000000 O0O0COCOIOIOIONOIOS
0000000000000 0000000000

00 0000000000000 000000000000000000000000000000

the "r" is given by Michaelis-Menten:
(approximated steady-state) laws:

e0000c0o0e®

000000 OCGOOODS

00 0000000000000 0000000000000000000000000000000




From Reactions to ODEs

CAVEAT: A deterministic approximation of a

o A*B ok, C+C stochastic system (i.e. possibly mis/eading) Dk
2
vi A+C =k, D Write the coefficients A A C
vi: C =k, E+F by columns o . k
B . Stoichiometric 1
vi F+F —k, reactions Matrix
N v, |Vvo]|Vs]|Vy
Quantity Al-1]-1 B C
changes w|B|-1 1 k
Q 3
Stoichiometric 8 cl2]-1]-1 ‘k4\F 4/A\, E
matrix % D 1
L Rate laws E
F -2
[X]* = NI / X
: Set a rate law for each reaction
[A]° = ‘|1 - l2 Read the concentration (Degradation/Asymmetric/Symmetric)
.. changes from the rows
[B] - "|1 + I4 - | X: chemical species
° — N [-]: quantity of molecules
[C] 2ll l2 l3 |1 kl[A][B] I: rate laws
[D]. = lz E.g. [A] = |2 kz[A][C] k: kinetic parameters
[E]. - |3 -k,[A][B] - k,[A][C] I3 ks[C] N: stoichiometric matrix
[F]. - |3 _ 2|4 l4 k4[F]([F]'1)/2
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Chemical 6Ground Form (CGF)

E = Xi=My, .., X,=M,  Definitions (n20)
M:=mP,®. ®@xw;P, Molecules (n20)

ek QU AN bl Solutions  (n:0)
T =T, PNy Ingy Interactions (delay, input, output)
CGF ::=EP Definitions with Initial Conditions

® is stochastic choice (vs. + for chemical reactions)
0 is the null solution (P|0 = O|P = P)
and null molecule (M®0 = 0®&M = M) (t,.P = 0)
X. are distinct in E
Each name n is assigned a fixed rate r: n,

(To translate chemistry back to
processes we need a bit more than simple
automata: we may have "+" on the right
of —, that is we may need "|" after 1.)

I ) .
< Ex: interacting automata
‘ (which are CGFs using *|" only in initial conditions):
0 T
/—| Automaton in state A
2al \?b A=la,A ®?bB
B = |b,B @ ?G)A I Automaton in state B

@ A|A|B|B | TInitial
' conditions:
Ib

2A and 2B



CGF Semantics

Reduction

E: (Xl l P) et E: (Pl | P) |f E = X1:TP;P1@M1, E'

E, (Xl | Xz I P) —r E, (Pl | PZ | P) lf E — X1=?n(r)$P1@M1, E1 — X2=!n(r)2P2®M2, E2
111t U L el L AL

Structural Congruence

= is an equivalence relation E=E AP=P = EP=FEP

allflatllif E=EAM=M = X=M,E=X=M, E
MeaM=MoeM M=M AP=P = pP®@M=pP &M
PP =P|P P=P = X|P=X|P

E=(A=laA®?bB
B=1b,B ®?qaA)

E.(A[B|B) —»r@ E, (A|A|B) —r® E, (A|B|B) —r® E, (B|B|B)



Automata to Chemistry

la Doping
la Ib
A+B — B+B A+B, — B+B,
B+A — A+A B+A; — A+A, Q Q
?a( )?b
Ib Ib
la Ib Doping
: la Ib lc
A+C — C+C A+C, — C+C,
C+B — B+B C+B, — B+Bj,

B+A — A+A B+Ay > A+A,




Three Main Cases

Unary reactions. These are not finite state systems, but finite species systems are okl

E: C(E):
(X=t:X1X) | [X o>rx+x]

Unbounded state,
but only 1 species.
No problem!

Binary reactions.
The same interaction can occur multiple times and must be taken into account:

E: C(E): That is:
[Az?n:B@?n;BJ [A+Cep(")B+D J (A+Cco20mBLD |

C=InD A+C—PMB+D

Symmetric reactions:

E: C(E):
(X=lgo@2ay | [X+X s2@y |

The rate of a was pre-halved and must be restored.



CGF to Chemistry

E = Xi=M,, .., X,=M,  Definitions (n20)
M:=mn.P®.. ®@wn.P, Molecules (n20)

& =it NN -l Solutions  (n:0)
T =T, PNy gy Interactions (delay, input, output)
CGF ::=EP Definitions with Initial Conditions

Each X in E is seen as a separate species.

Chemical reactions for E: (N.B.: {.}" is a multiset, and P is P with all the | changed to +)

Ch(E):= {X—>rP)st. (X=t.,P® .)e E}m
Um {(X +Y TP+ Q) st X2Y, (X =2n,;P @ )Y =In,Q® .))e EZn
U1y {(X + X —2r P+ Q) s.t. (X = Qn(r‘),P @D .. = ln(r.),Q @ )> i E}m

Initial conditions for P:

Chy(P) := P



From Processes to ODEs



Nonlinear Transitions



Basic Nonlinear Transition

A =7?C,B
B=lc,B
, \ 4
LA+B —S B+B ]
\ 4
([AT = -s[A][B]
[B" = S[A][B]

B0
999 A
directive sample 0.02 1000
directive plot B(); A() N B . needs 01.
GER val s=1.0 s
new c@s:chan leas"' 1 B TO
let AQ) = 2¢: B() ) n
and B() = Ic;B() 961' started”.
333 run (1000 of A() | 1 of B())
SPiM
n
0.0075857 0014324 Paused
Sirnulation: Time = 0013443 (999 points at 0.0085215 simTime/sysTime and halted)
1200
1000
800
B00 +
400 +
200 + B
Matlab
O 10 20 an a0 50 B0 0

interval/step [0:0.001:0.0]
(A) dx1/dt = - x1*x2 1000.0
(B)  dx2/dt = x1*x2 1.0



Bell Exercise

Build a sma// network where one node has a distribution like B():

Ib lc
@-" ' 2 8 (A =7b,,B A

[B] = [BI([A}-[c])  \C=lewC J

( 1 lllllllllllllllllllll (838 points at 7.0447e: -6 simTime/sysTime and halted ]
A+B —!B+B

B+C 1 C+C
\

directive sample 0.0025 1000 s
directive plot B(): AQ): €() [A]o - _[A][B] Em:
new b@1.0:chan new c@1.0:chan [B]o - [A ][B]_[B][C] 000 -
let A() = 2b; B() [CT = [B][C]

and B() = do 1b;B() or 2c; C0)

B0
=]

SPiM

200 Matlab T
and c() = !C;C() 1000 continuous_sys_generator
run ((10000 Of A()) | B() | C()) DD 500 1050 1500 2050 25'00 3000

interval/step [0:0.000001:0.0025]
(A)  dx1/dt = -x1*x2 10000.0
(B) dx2/dt = x1*x2 - x2*x3 10

©) dx3/dt = x2*x3 10



Oscillator

directive sample 0.1 1000
directive plot A1(); A2(); A3()

val r=1.0 val s=1.0

new al@s:chan new a2@s:chan new a3@s:chan

let A1() = do lal;A1() or delay@r;A2() or 2a2; ?a2; A2()
and A2() = do 'a2;A2() or delay@r;A3() or ?2a3; ?a3; A3()

A' = ab(s), B

B' = 7C(5),C

(A= la,A®©1..B® ?b(s);A\

B = Ib(s),B (&) Tr.,'c (&) ?C(S),'Bl

and A3() = do a3;A3() or delay@r:A1() or 2al; ?al; AL() C= lC(s)'C ®1.AD ?0(5)5 c SusTa_in.efi .
run 1000 of A1() \C 70(5) / Deo'l':g:'lrl\;r;l:;:lc
N.B. this does (A" B \ 1000
not deadlock! A+B 5 A+B 2
A'+B —>°B+B :Z
B C ol
B+C —sB'+C el
B""C —3 C+C 400
- %ﬁ C —r A 300 - i
Robust C+A —>°C+A o atlab
Stochastic C+A -5 A+A foor . o e
5988 OSC”IG'HO” o 200 400 GO0 800 1000 1200
(TAT = -r[A}-s[AN[BIrCI+S[CIIA]) o
SPiM [CT = -r[C]-s[C][A]+r[B]+s[B'][C]

1,
0.00037365

022421

Simulation: Time = 0224210 (1945 points at 0.010836 simTime/sysTime and halted)

958

7984

5988

3992

1996

i}
0.0032243

0.72995

A1)
420
A3)

SPiM

Simulation: Time = 0.729952 (8432 points &t 0.010541 simTime/sysTime and halted)

[B']" = -s[B'][C] + s[B][C]

\[C] = -s[C][A] + s[C][A]

[AT = -s[A'][B] + s[A][B] -

J

[B] = -r[B]-s[BI[Cl+r[Al+s[A'][B]
\
|
|
|
\
\

‘" il u
x.u"n"nn mum i

interval/step [0:0.0001:0.1]
dx1/dt = x1- x1*x2 + X3

5




Epidemics

Kermack, W. O. and McKendrick, A. 6. "A Contribution to the
Mathematical Theory of Epidemics." Proc. Roy. Soc. Lond. A
115, 700-721, 1927.

http://mathworld.wolfram.com/Kermack-McKendrickModel.html



Epidemics

directive sample 500.0 1000
directive plot Recovered(); Susceptible(); Infected()

!ianCT ?ianCT new infect @0.001:chan()

val recover = 0.03

. let Recovered() =
SUSCCPTI ble ‘ ; 5 infecf InfCCTed ?infect; Recovered()

and Susceptible() =
@recover sinfect: Infected()

and Infected() =
Recovered do linfect; Infected()
or ?infect; Infected()
. or delay@recover; Recovered()
?infect

run (200 of Susceptible() | 2 of Infected())

251 Recovered() —— Susceptible() Infected()
Developing the Use of Process Algebra in the
Derivation and Analysis of Mathematical Models 200 4
of Infectious Disease
150 -
R. Norman and C. Shankland
Department of Computing Science and Mathematics, University of Stirling, UK.
{ces,ran}@cs.stir.ac.uk 100 ~
- . - . . 50 -
Abstract. We introduce a series of descriptions of disease spread using
the process algebra WSCCS and compare the derived mean field equa-
tions with the traditional ordinary differential equation model. Even the
preliminary work presented here brings to light interesting theoretical 0 T T T

questions about the “best” way to defined the model.

0 50 100 150 200



DS D
S = iy I

I=ligyI®?i;Io1.R
\R = ?l(f);R

J

(6+T 5T IT+T)

I+ " I+T1-
I >R 7‘

“useless”

reactions
\R+I >"R+T)
[S]° = -t[S][I]
[L]° = t[S][T]-r[I]
[R]* = r[I]
a5
Automata match & ="
the standard % = oIS — b7
ODE modell % oy

(the Kermack-MMcEendrick, or STR model)|

ODE

4
H

Concertration Species |:| Fluxes |:| Parameters D Compartiments

cER

180 -

Cell Designer
ODE Solver output for reactions:
o0 F S+I ST I+I

I ->"R
with t = 0.001 r = 0.03 [S]=200 [I]=2

a0 -

1 1 1 1 1 1 ]
0 20 40 &0 i) 100 120 140 160 180
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Simplified Model

not useless! /S _ 5 T T I
linfect I ()
R
\_

Il(.r) Io® T, R
Susceptible O o,mcecf% Infected

useless

0 J

Not totally obvious e

that one coul/d have S + I %T I + I
simplified the
automata model. \I —' R

(Tt -
[S] = -t[S][I]
directive sample 500.0 1000 o —
directive :Ic::pRecover'ed(); Susceptible(); Infected() [I] - T[S][I]_P[I]
25 Recovered() —— Susceptible() Infected() [R ]. = r‘ [I ]
\_

new infect @0.001:chan()
val recover = 0.03

200 -

let Recovered() = Same ODE, hence

0 160 - :
. equivalent
and Susceptible() =

?infect; Infected() 100 1 automata mOdels.

and Infected() = 50
do linfect; Infected()
or delay@recover; Recovered()

run (200 of Susceptible() | 2 of Infected()) 0 50 100 150 200



Lotka-Volterra



Predator-Prey

@breeding O

Herbivor O\’\p
?2cull: O
@predahon.

lcull
Carnivor O//O

@mortality

177 e
1416

An unbounded
52 state system!
708
35.4 /Jl
LTS ' 43025 Live

Simulation: Time = 4302532472 (1082 points at B06%.2 simTime/sysTime and halted)

directive sample 5000.0 1000
directive plot Carnivor(); Herbivor()

val mortality = 0.01
val breeding = 0.01
val predation = 0.01
new cull @predation:chan()

let Herbivor() =
do delay@breeding; (Herbivor() | Herbivor())
or 2cull; ()

and Carnivor() =
do delay@mortality: ()
or leull; (Carnivor() | Carnivor())

run replicate delay@0.01; (Herbivor() | Carnivor())

Since predator and prey drive
each other to exinction
(stochastically), we restart
the popolations periodically.



(
.

= Tb; (HlH) @® ?C(p):O

H
C = ’cm,‘O @® lC(p),(C|C)
-

H-bH+H
C—-m0
\H+C+P C+C

[H]’
[cr

b[H]-p[H][C]
-m[Cl+p[H][C]

ODE

Lotka-Volterra Equations

mathwarld |

COMMENT Fa| DOWNLOAD
on this Page 71 mMathematica Notebook

The Lotka-volterra equations describe an ecological predator-prey (or parasite-host) model which assumes
that, for a set of fixed positive constants A (the growth rate of prey), B (the rate at which predators destroy

prey]), O (the death rate of predators), and 2 (the rate at which predators increase by consuming prey), the
following conditions hold,

1. & prey population x increases at arate dx = A x & ¢ (proportional to the number of prey) but is

simultaneously destroyed by predators at arate d x = -8 x pd ¢ (proportional to the product of the numbers
of prey and predataors),

2. A predator population p decreases at arate d y = —C yp d ¢ (proportional to the number of predators), but
increases at arate dy =D x p & ¢ (again proportional to the product of the numbers of prey and predatars).

), vk =15, F=1,C=3,D=1 i yila =1, =1, C=1, D=1
12

This gives the coupled differential equations

ax Ax-B (1)
S = X—=—0X

2z B

ey Cy+D (2
e = = +LxW7

= y+Dxy

Automata match the Lotka-
Volterra model (with B=D)
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Choice Law by ODEs

T
®'""c}}" @@
[A:tA;B(Jaru;B] [A:TMU,‘B]
} |
[A%AB] [Ae"*“B]
A—H B
| }

[A]* = -A[A] - H[A] _ [A]" = -(A+p)[A]
[B]* = A[A] + u[A] [B]* = (A+u)[A]




Idle Delay Law by ODEs

A=1.A®1.B = A=1.B
®'::'%I' ® :-®
[A ’CAA@’C“,'B] [A 7,.B ]
| |
= e )
} |

[A]" = -u[A] = [A]" = -u[A]
[B]" = W[A] [B]" = W[A]




Idle Interaction Law by ODEs

Ic
?2c

A=?cB
C=lcC
}

[A+C—»PB+C]

}

[A] = -r[A][C]
[B]* = r[A][C]
[C] =

directive sample 6.0 1000
directive plot A()

new c@1.0:chan
let AQ) = 2¢; B()
and B() = ()

and C() = Ic; €()

run (C() | 1000 of A())

0000000

A ?2C.A @ ?2¢.B
kC

A+C > A+C
A+C - B+C

[A] = -r[A][C]
[B]* = r[A][C]
[C]'=0

It may seem like A should
decrease half as fast,
but NO! Two ways to explain:

-State A is memoryless
of any past idling.
- Activity on c is double

directive sample 6.0 1000
directive plot A()

new c@1.0:chan

let A() = do ?c; B() or ?c; A()
and B() = ()

and C() = lc; €()

run (C() | 1000 of A())




Hermanns: Interactive

Asynchronous Interleaving e s

el Hisolb ittt A ettt Golbtizh

[Arlo= A() — B() ——C() ——D() —
1000 1000 1000 directive sample 4.0 10000
@1 directive plot A(); B(); €(); DO
IIIIIII 800 |
let A() = delay@1.0; B()
C o= 600 dB() =
[Sols @2 and 80 = 0
EEEEEE® 007 let C() = delay@ZO, D()
200 c A and D() = ()
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ run 1000 of (AQ) | €0)
0 0.5 1 1.5 2 25 3 35 4

directive sample 4.0 10000
directive plot

?YA; B(): 2YC; DO: Y(); AO: €0)
new YA@1.0:chan new YC@1.0:chan

let AQ) = do delay@1.0; B() or ?vA
and B() = ()

let €() = do delay@2.0; D() or 2vc
and D() = ()

let Y() =
do delay@1.0; (B() | €()

or delay@2.0; (A() | D())
or ?YA or ?YC

run 1000 of Y()

Amazingly, the B's and the D's from the two
branches sum up to exponential distributions



Asynchronous Interleaving Law by ODEs

! Hel A . | Hietit {8 Want to show that B and D
T/\'B | TU’D M T/\’(B I TH’D) i Tu’(TA’B I D) on both sides have the
N - "same behavior” (equal
A1 =1,.B Y=1.B1C)®1.:(A, | D) quantities of B and D
€, =1,D C,=1,:D produced at all times)
A | C ) A,=1,B
Y
(A, "B ) (Y A B+C, ) (VI = -ALYIuIY] )
C, - D Y 4 A, + D [A,]° = UIYT-ALA,]
ArC C,—>*D  |=>|[B]" = ALYI*ALA,]
A, B [C,]° = ALY ]-uIC, ]
l Q’ J DI = ulYIC,] )
AT A [Y+A2] e / [Y+A2]_ [y] +[A2] ...................
[BI=AA] | —o  |[B]= AlY+A,] = -ALY LY LY -ALA, )
[C.]°=-ulC] | = [Y+C,T" = -u[Y+C,] = -A[YI-A[A,] :
(D] = uic,] (BT = uiy+C.] AL Dl decoys exponeialy

[B] and [D] have equal time evolutions on the two sides provided that [A;]=[Y+A,] and [C,]=[Y+C,].
This imposes the constraint, in particular, that [A;]p=[Y+A,], and [C,]o=[Y+C;], (at time zero).

The initial conditions of the right hand system specify that [A,],=[C,]o=0 (since only Y is present).
Therefore, we obtain that [A;]o=[C11o=[Y o.

So, for example, if we run a stochastic simulation of the left hand side with 1000*A1
and 1000*C1, we obtain the same curves for B and D than a stochastic simulation of
the right hand side with 1000*Y.
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Chemical Parametric Form (CPF)

E = Xi(p)=My, ... X (p,)=M, Definitions (n:>0)
ettt s L el Molecules (n>0)
1ttt e L e Solutions (n>0)
. u=1. ?n(p) 'n(p) Interactions

‘eI with initial conditions

® is stochastic choice (vs. + for chemical reactions)
0 is the null solution (P|0 = O|P = P)
and null molecule (M@®0 = 0®&M = M) (t,.P = 0)
X; are distinct in E, p are vectors of names
p are vectors of distinct names when in binding position
Each free name n in E is assigned a fixed rate r:
written either n,, or pge(n)=r.

A translation from CPF to CGF exists
(expanding all possible instantiation of parameters from the initial conditions)

An incremental translation algorithm exists
(expanding on demand from initial conditions)



Repressilator ODEs

Neg(a,b) = ?a; Inh(a,b) ® t.; (Tr(b) | Neg(a,b))

Inh(a,b) = t,; Neg(a,b)
Tr(b)=1b; Tr(b)® 1, O

Neg(X().Y) | Neg(y(.zq) | Neg(z). X))

simplifying (N is the quantity of each of the 3 gates)

/

ﬂag/x,y —¢ Tr/y + Neg/x .y
Neg/y,z —¢ Tr/z + Neg/y,z
Neg/z,x —¢ Tr/x + Neg/z x

Tr/x + Neg/x,y —" Tr/x + Inh/xy
Tr/y + Neg/y,z =" Tr/y + Inh/y,z
Tr/z + Neg/z,x —" Tr/z + Inh/z x
Inh/x)y —" Neg/x.y

Inh/y,z -1 Neg/y,z

Inh/z,x —" Neg/z x

Tr/x —-Y0

Tr/y -Y0

Tr/z >Y0
Qeg/x,y + Neg/y,z + Neg/z,x

\

!

/" [Neg/xyT = -r[Tr/x][Neg/x.y] + n[Inh/xy] \
[Neg/y,z]* = -r[Tr/y][Neg/y,z] + n[Inh/y,z]
[Neg/z x]" = -r[Tr/z][Neg/z x] + n[Inh/z x]
[Inh/x,y]* = r[Tr/x][Neg/x.,y] - n[Inh/x.y]
[Inh/y,z]* = r[Tr/y][Neg/y,z] - n[Inh/y,z]
[Inh/z,x]* = r[Tr/z][Neg/z,x] - n[Inh/z x]

[Tr/x]" = e[Neg/z,x] - y[Tr/x]

[Tr/y]" = e[Neg/xy] - v[Tr/y]
\[Tr/z]‘ = ¢[Neg/y,z] - y[Tr/z]

J

[Neg/x.y]" = NN - (n+r[Tr/x])[Neg/x,y]
[Neg/y,z]* =N - (n+r[Tr/y])[Neg/y,z]
[Neg/z,x]" =N - (n+r[Tr/z])[Neg/z x]
[Tr/x] = ¢[Neg/z,x] - y[Tr/x]
[Tr/y] = e[Neg/xy] - v[Tr/y]

\[Tr'/z]' = e[Neg/y,z] - y[Tr/z]

~

J

™ Matlab -

inuous_sys_generator |

i) —

o 500 1000 1500 2000 2500

interval/step [0:0:20000] N=1, =10, £20.1,1=0.001, ¥=0.001
(Neg/x.y) dx1/dt = 0.001 - (0.001 + x4)*x1 10
(Neg/x.y) dx2/dt = 0.001 - (0.001 + x5)*x2 10
(Neg/x,y) dx3/dt = 0,001 (0.001 + x6)*x3 10
(Tr/%) dx4/dt = 0.1%x3 - 0.001%x4 1000
(Tr/y) dx5/dt = 0.1%x1 - 0.001*x5 0
(Tr/z2) dx6/dt = 0.1%x2 - 0.001*x6 0

123

E15

Pi

No sustained oscillations
(with SPiM parameters).
But see Elowitz&Leibler.

X neg y4

2
run (neg(c.a) | neg(a,b) | neg(b.c))

1]
53.8947

40054

Simulation: Time = 53810179300 (1070 points at 34439 simTime/sysTime and halted)
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Doped Groupies ODE

Q: What does this do?
(A=zlg.A®?b. B | Ay=la.,A
la A= .G(r.),A D ; (r) d = Qi) Ag
a \B Ib(r.),B @® ?Cl(r.);A Bd = Ib(r.), Bd
a . b (A+B 5™ A+A A+B, —r B+B,
(B+A 7 BB | B+A, 7 AvA,

0 ([AT = cLAYBI-riBIAT-r[AIBJ+r[BI[A] | [A4) = O
la ™ Ib [BI" = r[BYAFTTAIBT-r[BI[AJ+r[Al[B,] | [B] = O
ooping é At [B1=0: [AT=-rk[A [A4].[B4] are constant;
[A]. - -r'k([A]-[B]) [B]NOB %B]]ir;t(,gj: assume them both = k
Stochastic Answer: \[B]. - r'k([A]-[B]) 21 E:}:[[B]];E:}’;EB}‘:O

bounded random walk  Li.i..eiiiiiiieniiiiiiienniiiiiinniiiiiiinnstiiiaans. Deterministic Answer:
. TSI torio convergence and stability

dx1/dt = -(x1-x2), 200.0
dx2/dt = (x1-x2), 0.0

) — ) —Da) —
- () —— Go) ——Da() ——Di) o

180
160

140
® 1201
120 °

ODE predicts converging stable equilibrium a’r°
[A]=[B] instead of the total chaos observed m
the stochastic system! :

For k=0 (no dope), predicts deadlock [A]*=[B]*=0
N . Matlab but at any value of [A], which is definitely not true ¢
'SPiM° ¢ s el . “merem~ | in the stochastic system. .

100 e  o0f
80

60
40 ° BO

20 e 40r
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Conclusions

Stochastic Collectives
- Complex global behavior from simple components
- Emergence of collective functionality from "non-functional” components
- (Cf. "swarm intelligence": simple global behavior from complex components)

Artificial Biochemistry
- Stochastic collectives with Law of Mass Interaction kinetics

- Connections to classical Markov theory,
chemical Master Equation, and Rate Equation

Properties of collective behavior
- Simulation
- Systematic translation Yo ODEs from parametric process "libraries”
- Correspondence (or not) between stochastic and deterministic behavior

Interdisciplinary connections
- Process descriptions vs. chemical descriptions
- Process descriptions vs. ODE descriptions



