Artificial Biochemistry

 Biological Systems as Reactive Systems
Luca Cardelli

Microsoft Research
Computability in Europe, Swansea 2006-07-05

Structural Architecture

Eukaryotic
Cell
(10~100 trillion in human body)

Membranes
everywhere

Stochastic Collectives

Stochastic Collectives

- "Collective":
- A large set of interacting finite state automata:
- Not quite language automata ("large set")
- Not quite cellular automata ("interacting" but not on a grid)
- Not quite process algebra ("finite state" and "collective")
- Cf. "multi-agent systems" and "swarm intelligence"
- "Stochastic":
- Interactions have rates
- Not quite discrete (hundreds or thousands of components)
- Not quite continuous (non-trivial stochastic effects)
- Not quite hybrid (no "switching" between regimes)
- Very much like biochemistry
- Which is a large set of stochastically interacting molecules/proteins
- Are proteins finite state and subject to automata-like transitions?
- Let's say they are, at least because:
- Much of the knowledge being accumulated in Systems Biology is described as state transition diagrams [Kitano].

State Transitions

Even More State Transitions

Interacting Automata

Communicating automata: a graphical FSA-like notation for "finite state restriction-free π calculus processes". Interacting automata do no \dagger even exchange values on communication.
The stochastic version has rates on communications, and delays.

"Finite state" means: no composition or restriction inside recursion. Analyzable by standard Markovian techniques, by first computing the "product automaton" to obtain the underlying finite Markov transition system. [Buchholz]

Interacting Automata Transition Rules

- - - D Delay
\longrightarrow Transition

Q: What kind of mass behavior can this produce?
(We need to understand that if want to understand biochemical systems.)

Groupies and Celebrities

A stochastic collective of celebrities:

Stable because as soon as a A finds itself in the majority, it is more likely to find somebody in the same state, and hence change, so the majority is weakened.

Groupie

(wants to be like somebody different)

$$
\begin{aligned}
& \text { directive sample } 0.1200 \\
& \text { directive plot } A() ; B() \\
& \text { new } a @ 1.0 \text { :chan(}) \\
& \text { new } b @ 1.0 \text { :chan() } \\
& \text { let } A()=\text { do !a; } A() \text { or ?b; } B() \\
& \text { and } B()=\text { do !b; } B() \text { or ?a; } A() \\
& \text { run } 100 \text { of }(A() \mid B())
\end{aligned}
$$

A stochastic collective of groupies:

Unstable because within an A majority, an A has difficulty finding a B to emulate, but the few B's have plenty of A's to emulate, so the majority may switch to B. Leads to deadlock when everybody is in the same state and there is nobody different to emulate.

A tiny bit of "noise" can make a huge difference

Both Together

A way to break the deadlocks: Groupies with just a few Celebrities

Regularity can arise not far from chaos

Hysteric Groupies

We can get more regular behavior from groupies if they "need more convincing", or "hysteresis" (history-dependence), to switch states.

! b

(With doping to break deadlocks)
N.B.: It will not oscillate without doping (noise)

directive sample 10.01000 directive plot $G a() ; G b()$
new a@1.0:chan() new b@1.0:chan()
let $G a()=$ do !a; $G a()$ or ?b; ?b; $G b()$ and $G b()=d o!b ; G b()$ or ?a; ?a; $G a()$
let $D a()=!a ; D a()$ and Db()$=!\mathrm{b} ; \mathrm{Db}()$
run 100 of $(\mathrm{Ga}() \mid G b())$
run 1 of $(\mathrm{Da}() \mid \mathrm{Db}())$

directive sample 10.01000 directive plot $G a() ; G b()$
new a@1.0:chan() new b@1.0:chan()
let $G a()=$ do !a; $G a()$ or ? $b ;$? $b ;$? $; G b()$ and $G b()=d o!b ; G b()$ or ? $a ; ? a ; ? a ; G a()$
let $D a()=!a ; D a()$
and Db()$=!\mathrm{b} ; \mathrm{Db}()$
run 100 of $(G a() \mid G b())$
run 1 of $(\mathrm{Da}() \mid \mathrm{Db}())$

Hysteric 3-Way Groupies

N.B.: It will not oscillate without doping (noise)
directive sample 3.01000
directive plot $A() ; B() ; C()$
new a@1.0:chan()
new b@1.0:chan() new c@1.0:chan()
let $A()=$ do ! $a ; A()$ or ? $c ; ? c ; C()$ and $B()=d o!b ; B()$ or ? $a ; ? a ; A()$ and $C()=$ do !c; $C()$ or ?b; ?b; $B()$
let $D a()=!a ; D a()$ and $\operatorname{Db}()=!b ; D b()$ and $D C()=!c ; D c()$
run 100 of $(A()|B()| C())$
run 1 of $(D a()|D b()| D c())$

Oscillation as Emergence

Just 2 of the hysteric groupies do not oscillate regularly at all!

> Without changing the components, interesting properties emerge with a critical size of the population.

Dotted lines indicate cross sections where one may look for evidence of alternation.

Pretty good with 64...

```
new a@1.0:chan()
new b@1.0:chan()
let }A()=\operatorname{do!a;A() or ?b; ?b; ?b;B()
and}B()=do!b;B() or ?a; ?a; ?a;A(
let As() = !a; As()
and Bs()=!b;Bs()
run 64 of (A()|B())
run 1 of (As()|Bs())
```


Distributions can be Programmed

Exercise (hard):

Build a small automaton where one state has an occupation distribution like this:

Or, more specifically, build a 3-state, $A-B-C$, automaton such that:

$$
[B]^{\circ}=[B]([A]-[C])
$$

Semantics of Collective Behavior

"Micromodels": Continuous Time Markov Chains

- The underlying semantics of stochastic π-calculus (and stochastic interacting automata). Well established in many ways.
- Automata with rates on transitions.
- "The" correct semantics for chemistry, executable.
- Gillespie stochastic simulation algorithm
- Lots of advantages
- Compositional, compact, mechanistic, etc.
- But do not give a good sense of "collective" properties.
- Yes one can do simulation.
- Yes one can do program analysis.
- Yes one can do modelchecking.
- But somewhat lacking in "analytical properties" and "predictive power".

"Macromodels": Ordinary Differential Equations

- They always ask:
- "Yes, but how does you automata model relate to the 75 ODE models in the literature?"
- Going from processes/automata to ODEs directly:
- In principle: just write down the Rate Equation: [Calder, Hillston]
- Determine the set of all possible states S of each process.
- Determine the rates of the transitions between such states.
- Let [S] be the "number of processes in state S" as a function of time.
- Define for each state S:

$$
\begin{aligned}
{[S]^{\circ}=} & \text { rate of change of the number of processes in state } S \text {) } \\
& \text { Cumulative rate of transitions from any state } S^{\prime} \text { to state } S \text {, times }\left[S^{\prime}\right], \\
& \text { minus cumulative rate of transitions from } S \text { to any state } S^{\prime \prime} \text {, times }[S] .
\end{aligned}
$$

- Intuitive (rate = inflow minus outflow), but often clumsy to write down precisely.
- But why go to the trouble?
- If we first convert processes to chemical reactions, then we can convert to ODEs by standard means!

Macromodel of Interaction

Law of Mass Interaction

The speed of interaction ${ }^{+}$is proportional to the number of possible interactions.

Decay

Exponential

 Decay law Rate of change proportional to number of possible decays.Mass interaction

Interaction Law generalizes Decay Law

Mass

Interaction law Rate of change proportional to number of possible interactions
${ }^{\dagger}$ speed of interaction (formally definable)
= number of interactions over time
not proportional to the number of interacting processes! $[P]$ is the number of processes P (this is informal; it is only meaningful for a set of processes offering a given action, but a set of such processes can be counted and plotted)

Chemical Law of Mass Action http://en.wikipedia.org/wiki/Chemical_kinetics The speed of a chemical reaction is proportional to the activity of the reacting substances.
Activity = concentration, for well-
stirred aqueous medium
Concentration = number of moles per
liter of solution
Mole $=6.022141 \times 10^{23}$ particles

From Chemistry to ODEs

Chemical Reactions

$$
\begin{array}{lllll}
A & \rightarrow^{r} B_{1}+\ldots+B_{n} & \text { Degradation } & {[A]^{0}=-r[A]} & \text { Exponential Decay } \\
A_{1}+A_{2} \rightarrow r B_{1}+\ldots+B_{n} & \text { Asymmetric Collision } & {\left[A_{i}\right]^{0}=-r\left[A_{1}\right]\left[A_{2}\right]} & \text { Mass Action Law } \\
A+A & \rightarrow^{r} B_{1}+\ldots+B_{n} & \text { Symmetric Collision } & {[A]^{\circ}=-r[A]([A]-1)} & \text { Mass Action Law } \\
& & \text { (assuming } A \neq B_{1} \neq A_{j} \text { for all } i, j \text {) }
\end{array}
$$

No other reactions!

Trimolecular reactions:

$$
A+B+C \rightarrow^{r} D
$$

the measured " r " is an (imperfect) aggregate of e.g.:

$$
A+B \leftrightarrow A B
$$

$$
A B+C \rightarrow D
$$

Enzymatic reactions:

$$
S \xrightarrow{E} P
$$

the " r " is given by Michaelis-Menten: (approximated steady-state) laws:
$E+S \leftrightarrow E S$
ES. \rightarrow P. E

From Reactions to ODEs

CAVEAT: A deterministic approximation of a stochastic system (i.e. possibly misleading)

$[A]^{\bullet}=-l_{1}-l_{2}$
$[B]^{\bullet}=-I_{1}+I_{4}$
$[C]^{\circ}=\left.2\right|_{1}-I_{2}-I_{3}$
$[D]^{\bullet}=l_{2}$
$[E]^{\bullet}=I_{3}$
Stoichiometric Matrix
Write the coefficients by columns
$v_{4}: F+F \rightarrow k_{4} B$

Quantity changes

Stoichiometric matrix

Rate laws

$$
[X]^{\circ}=\mathrm{N} \cdot \mathrm{I}
$$

$[F]^{\circ}=I_{3}-2 I_{4}$
E.g. $[\boldsymbol{A}]^{\circ}=$
E.9. $-k_{1}[A][B]-k_{2}[A][C]$

Read the concentration changes from the rows

Set a rate law for each reaction (Degradation/Asymmetric/Symmetric)

l	
I_{1}	$\mathrm{k}_{1}[\mathrm{~A}][\mathrm{B}]$
I_{2}	$\mathrm{k}_{2}[A][C]$
I_{3}	$\mathrm{k}_{3}[C]$
I_{4}	$\mathrm{k}_{4}[\mathrm{~F}]([\mathrm{F}]-1) / 2$

X: chemical species
[-]: quantity of molecules
I: rate laws
k: kinetic parameters
N : stoichiometric matrix

From Processes to Chemistry

Chemical Ground Form (CGF)

$E::=X_{1}=M_{1}, \ldots, X_{n}=M_{n} \quad$ Definitions ($n \geq 0$)
$M::=\pi_{1} ; P_{1} \oplus \ldots \oplus \pi_{n} ; P_{n} \quad$ Molecules $\quad(n \geq 0)$
$\mathrm{P}::=\mathrm{X}_{1}|\ldots| \mathrm{X}_{\mathrm{n}}$
$\pi::=\tau_{r} ? n_{(r)}!n_{(r)}$
CGF :: = E, P
Solutions ($n \geq 0$)
Interactions (delay, input, output)
Definitions with Initial Conditions
(To translate chemistry back to processes we need a bit more than simple automata: we may have "+" on the right of \rightarrow, that is we may need "|" after π.)

```
\(\oplus\) is stochastic choice (vs. + for chemical reactions)
0 is the null solution ( \(P|0=0| P=P\) )
    and null molecule \((M \oplus 0=0 \oplus M=M)\left(\tau_{0} ; P=0\right)\)
\(X_{i}\) are distinct in \(E\)
    Each name \(n\) is assigned a fixed rate \(r: n_{(r)}\)
```


CGF Semantics

Reduction

$$
\begin{array}{ll}
E,\left(X_{1} \mid P\right) \rightarrow^{r} E\left(P_{1} \mid P\right) & \text { if } E \equiv X_{1}=\tau_{r} \cdot P_{1} \oplus M_{1}, E^{\prime} \\
E,\left(X_{1}\left|X_{2}\right| P\right) \rightarrow^{r} E,\left(P_{1}\left|P_{2}\right| P\right) & \text { if } E \equiv X_{1}=? n_{(r)} ; P_{1} \oplus M_{1}, E_{1} \equiv X_{2}=!n_{(r)} ; P_{2} \oplus M_{2}, E_{2} \\
E, P \rightarrow E^{r} E^{\prime \prime}, P^{\prime \prime} & \text { if } E, P \equiv E^{\prime}, P_{1} \wedge E^{\prime}, P_{1} \rightarrow^{r} E^{\prime}, P_{2} \wedge E^{\prime}, P_{2} \equiv E^{\prime \prime}, P^{\prime \prime} \Rightarrow
\end{array}
$$

Structural Congruence

$$
\begin{array}{ll}
\equiv \text { is an equivalence relation } & E \equiv E^{\prime} \wedge P \equiv P^{\prime} \Rightarrow E, P \equiv E^{\prime}, P^{\prime} \\
E, E^{\prime} \equiv E^{\prime}, E & E \equiv E^{\prime} \wedge M \equiv M^{\prime} \Rightarrow X=M, E \equiv X=M^{\prime}, E^{\prime} \\
M \oplus M^{\prime} \equiv M^{\prime} \oplus M & M \equiv M^{\prime} \wedge P \equiv P^{\prime} \Rightarrow p ; P \oplus M \equiv p ; P^{\prime} \oplus M^{\prime} \\
P\left|P^{\prime} \equiv P^{\prime}\right| P & P \equiv P^{\prime} \Rightarrow X|P \equiv X| P^{\prime}
\end{array}
$$

$$
\begin{aligned}
& E=(A=!a ; A \oplus ? b ; B \\
& \quad B=!b ; B \oplus ? a ; A) \\
& E,(A|B| B) \rightarrow r^{r(a)} E,(A|A| B) \rightarrow r^{r(b)} E_{1}(A|B| B) \rightarrow r^{(b)} E_{1}(B|B| B)
\end{aligned}
$$

Automata to Chemistry

$$
\begin{array}{ll}
A+B \rightarrow B+B & A+B_{d} \rightarrow B+B_{d} \\
B+A \rightarrow A+A & B+A_{d} \rightarrow A+A_{d}
\end{array}
$$

Doping
!a
! b
(A)
(B)

$$
A+C \rightarrow C+C
$$

$$
A+C_{d} \rightarrow C+C_{d}
$$

$$
C+B_{d} \rightarrow B+B_{d}
$$

$$
B+A_{d} \rightarrow A+A_{d}
$$

Three Main Cases

Unary reactions. These are not finite state systems, but finite species systems are ok!

Unbounded state, but only 1 species. No problem!

Binary reactions.

The same interaction can occur multiple times and must be taken into account:

Symmetric reactions:

$$
\begin{array}{ll}
\mathrm{E}: & C(E): \\
X=!a ; 0 \oplus ? a ; Y & X+X \rightarrow \rightarrow^{2 p(a)} Y
\end{array}
$$

The rate of a was pre-halved and must be restored.

CGF to Chemistry

$$
\begin{array}{ll}
E::=X_{1}=M_{1}, \ldots, X_{n}=M_{n} & \text { Definitions } \\
\left.M::=\pi_{1}: P_{1} \oplus \ldots\right) \\
P::=X_{1}|\ldots| X_{n}: P_{n} & \text { Molecules } \quad(n \geq 0) \\
\pi::=\tau_{r} ? n_{(r)}!n_{(r)} & \text { Solutions } \quad(n \geq 0) \\
C G F::=E, P & \text { Interactions (delay, input, output) } \\
& \text { Definitions with Initial Conditions }
\end{array}
$$

Each X in E is seen as a separate species.
Chemical reactions for $E: \quad\left(N . B .:\left\{\{. .\}^{m}\right.\right.$ is a multiset, and P is P with all the \mid changed to +)

$$
\begin{aligned}
C h_{G}(E): & :=\left\{(X \rightarrow r P) \text { s.t. }\left(X \equiv \tau_{r}: P \oplus \ldots\right) \in E\right\}^{m} \\
& \cup^{m}\left\{(X+Y \rightarrow r P+Q) \text { s.t. } X \neq Y,\left\langle\left(X \equiv ? n_{(r)}: P \oplus \ldots\right)\left(Y \equiv!n_{(r)}: Q \oplus \ldots\right)\right\rangle \in E^{2}\right\} m \\
& \left.\cup^{m}\left\{\left(X+X \rightarrow \rightarrow^{2 r} P+Q\right) \text { s.t. }\left(X \equiv ? n_{(r)}: P \oplus \ldots \equiv!n_{(r)}: Q \oplus \ldots\right)\right\rangle \in E\right\}^{m}
\end{aligned}
$$

Initial conditions for P :
$\mathrm{Ch}_{G}(P):=P$

From Processes to ODEs

Nonlinear Transitions

Basic Nonlinear Transition

$A=? c_{(s)} ; B$
$B=!c_{(s)} \div B$

$$
\begin{aligned}
& \frac{A+B \rightarrow \rightarrow^{s} B+B}{\downarrow} \\
& {[A]^{\circ}=-s[A][B]} \\
& {[B]^{\circ}=s[A][B]}
\end{aligned}
$$

B 0
AO
directive sample 0.021000 directive plot $B() ; A()$
val $\mathrm{s}=1.0$
new c@s:chan
let $A()=? c ; B()$
and $B()=I c ; B()$
run (1000 of $A() \mid 1$ of $B())$
N.B.: needs at least 1 B to "get started".

Bell Exercise

Build a sma/l network where one node has a distribution like $B()$:

$[B]^{\circ}=[B]([A]-[C])$
directive sample 0.00251000
directive plot $B() ; A() ; C()$
new b@1.0:chan new c@1.0:chan
let $A()=$? $b ; B()$
and $B()=d o!b ; B()$ or $? c ; C()$
and $C()=!c ; C()$
run $((10000$ of $A())|B()| C())$

Oscillator

directive sample 0.11000
directive plot A1(): A2(); A3()
val $r=1.0$ val $s=1.0$
new a1@s:chan new a2@s:chan new a3@s:chan
let $A 1()=$ do !a1;A1() or delay@r:A2() or ?a2; ?a2; A2() and $A 2()=$ do !a2;A2() or delay@r:A3() or ?a3; ?a3; A3() and $A 3()=$ do !a3;A3() or delay@r:A1() or ?a1; ?a1; A1 ()
run 1000 of A 1()
N.B. this does not deadlock!

$$
\begin{aligned}
& A=!a_{(s)} ; A \oplus \tau_{r} ; B \oplus ? b_{(s)} ; A^{\prime} \\
& A^{\prime}=? b_{(s)} ; B \\
& B=!b_{(s)} ; B \oplus \tau_{r} ; C \oplus ? c_{(s)} ; B^{\prime} \\
& B^{\prime}=? c_{(s)} ; C \\
& C=!c_{(s)} ; C \oplus \tau_{r} ; A \oplus ? a_{(s)} ; C^{\prime} \\
& C^{\prime}=? a_{(s)} ; A
\end{aligned}
$$

Sustained Determinisitic Oscillation
$A \rightarrow{ }^{r} B$
$A+B \rightarrow A^{\prime}+B$
$A^{\prime}+B \rightarrow s+B$
$B \rightarrow{ }^{r} C$
$B+C \rightarrow{ }^{s} B^{\prime}+C$
$B^{\prime}+C \rightarrow{ }^{s} C+C$
$C \rightarrow{ }^{r}$ A
$C+A \rightarrow{ }^{s} C^{\prime}+A$
$C^{\prime}+A \rightarrow{ }^{s} A+A$

$$
\begin{aligned}
& {[A]^{\circ}=-r[A]-s[A][B]+r[C]+s\left[C^{\prime}\right][A]} \\
& {[B]^{\circ}=-r[B]-s[B][C]+r[A]+s\left[A^{\prime}\right][B]} \\
& {[C]^{\circ}=-r[C]-s[C][A]+r[B]+s\left[B^{\prime}\right][C]} \\
& {\left[A^{\prime}\right]^{\circ}=-s\left[A^{\prime}\right][B]+s[A][B]} \\
& {\left[B^{\prime}\right]^{\circ}=-s\left[B^{\prime}\right][C]+s[B][C]} \\
& {\left[C^{\prime}\right]^{\circ}=-s\left[C^{\prime}\right][A]+s[C][A]}
\end{aligned}
$$

Epidemics

Kermack, W. O. and McKendrick, A. G. "A Contribution to the Mathematical Theory of Epidemics." Proc. Roy. Soc. Lond. A 115, 700-721, 1927.
http://mathworld.wolfram.com/Kermack-McKendrickModel.html

Epidemics

Developing the Use of Process Algebra in the Derivation and Analysis of Mathematical Models of Infectious Disease
R. Norman and C. Shankland

Department of Computing Science and Mathematics, University of Stirling, UK. \{ces, ran\}@cs.stir.ac.uk

[^0]directive sample 500.0 1000
directive plot Recovered(); Susceptible(): Infected()
new infect @0.001:chan()
val recover $=0.03$
let Recovered() =
? infect; Recovered()
and Susceptible() =
? infect; Infected()
and Infected() $=$
do !infect; Infected()
or ?infect; Infected()
or delay@recover; Recovered()
run (200 of Susceptible() | 2 of Infected())

ODE

$$
\begin{aligned}
& \left(\begin{array}{l}
S=? i_{(t)} ; I \\
I=!i_{(t)} ; I \oplus ? i_{(+)} ; I \oplus \tau_{r} ; R \\
R=? i_{(t)} ; R
\end{array}\right] \\
& \begin{array}{l}
S+I \rightarrow^{+} I+I \\
I+I \rightarrow^{+} I+I \\
I \rightarrow r \\
R+I \rightarrow^{+} R+I
\end{array} \\
& \begin{array}{l}
{[S]^{\circ}=-+[S][I]} \\
{[I]^{\circ}=+[S][I]-r[I]} \\
\text { reacestess"ions } \\
{[R]^{\circ}=r[I]}
\end{array}
\end{aligned}
$$

Automata match $\frac{d S}{d t}=-a I S$ the standard
 $$
\frac{d I}{d f}=a I S-b I
$$ ODE model!
 $$
\frac{d R}{d t}=b I
$$

(the Kermack-McKendrick, or SIR model)!

Simplified Model

Susceptible

Lotka-Volterra

Predator-Prey

Carnivor0 Herbivor0

An unbounded state system!

```
directive sample 5000.0 1000
directive plot Carnivor(); Herbivor()
val mortality = 0.01
val breeding=0.01
val predation=0.01
new cull @predation:chan()
let Herbivor() =
    do delay@breeding; (Herbivor() | Herbivor())
    or ?cull; ()
and Carnivor() =
    do delay@mortality; ()
    or !cull; (Carnivor() | Carnivor())
```

run replicate delay@0.01; (Herbivor() | Carnivor())
Since predator and prey drive each other to exinction (stochastically), we restart the popolations periodically.
(This is a case where the continuous system oscillates and the stochastic one does not! We have seen examples of the opposite situation.)

ODE

$$
\begin{aligned}
& H=\tau_{b} ;(H \mid H) \oplus ? c_{(p)} ; 0 \\
& C=\tau_{m} ; 0 \oplus!c_{(p)} ;(C \mid C)
\end{aligned}
$$

Lotka-Volterra Equations

```
```

COMMENT

```
```

```
```

COMMENT

```
```

[14. DOWNLOAD

math old

10. DOWNLOAD

The Lotka-Volterra equations describe an ecological predator-prey (or parasite-host) model which assumes that, for a set of fixed positive constants A (the growth rate of prey), B (the rate at which predators destroy prey), C (the death rate of predators), and D (the rate at which predators increase by consuming prey), the following conditions hold.

1. A prey population x increases at a rate $d x=A x d t$ (proportional to the number of prey) but is simultaneously destroyed by predators at a rate $d x=-B x y d t$ (proportional to the product of the numbers of prey and predators).
2. A predator population y decreases at a rate $d y=-C y d t$ (proportional to the number of predators), but increases at a rate $d y=D x y d t$ (again proportional to the product of the numbers of prey and predators).

This gives the coupled differential equations

$$
\begin{array}{rlrl}
\frac{d x}{d t} & = & A x-B \times y \tag{1}\\
\frac{d y}{d t} & & = & -C y+D \times y
\end{array}
$$

Automata match the LotkaVolterra model (with $B=D$)

Laws by ODEs

Choice Law by ODEs

Idle Delay Law by ODEs

Idle Interaction Law by ODEs

Asynchronous Interleaving

$$
\tau_{\kappa}: B \mid \tau_{\mu} \cdot D=\tau_{\kappa} \cdot\left(B \mid \tau_{\mu} \cdot D\right)+\tau_{\mu} \cdot\left(\tau_{\kappa} ; B \mid D\right)
$$


```
directive sample 4.010000 directive plot \(A() ; B() ; C() ; D()\)
let \(A()=\) delay@1.0; \(B()\) and \(B()=()\)
let \(C()=\) delay@2.0; \(D()\) and \(D()=()\)
run 1000 of \((A() \mid C())\)
```


directive sample 4.010000
directive plot
?YA; $B() ; ? Y C ; D() ; Y() ; A() ; C()$ new YA@1.0:chan new YC@1.0:chan
let $A()=$ do delay@1.0; $B()$ or ?Y A
and $B()=()$
let $C()=$ do delay@2.0; $D()$ or ?yc
and $D()=()$
let $y()=$
do delay@1.0; $(B() \mid C())$
or delay@2.0; $(A() \mid D())$
1000 of Y
Amazingly, the B's and the D's from the two branches sum up to exponential distributions

Asynchronous Interleaving Law by ODEs

Want to show that B and D on both sides have the "same behavior" (equal quantities of B and D produced at all times)
$[B]$ and $[D]$ have equal time evolutions on the two sides provided that $\left[A_{1}\right]=\left[Y+A_{2}\right]$ and $\left[C_{1}\right]=\left[Y+C_{2}\right]$.
This imposes the constraint, in particular, that $\left[A_{1}\right]_{0}=\left[Y+A_{2}\right]_{0}$ and $\left[C_{1}\right]_{0}=\left[Y+C_{2}\right]_{0}$ (at time zero).
The initial conditions of the right hand system specify that $\left[A_{2}\right]_{0}=\left[C_{2}\right]_{0}=0$ (since only Y is present).
Therefore, we obtain that $\left[A_{1}\right]_{0}=\left[C_{1}\right]_{0}=[Y]_{0}$.
So, for example, if we run a stochastic simulation of the left hand side with 1000*A1 and $1000 * C 1$, we obtain the same curves for B and D than a stochastic simulation of the right hand side with 1000*y.

Parametric Form

Chemical Parametric Form (CPF)

A translation from CPF to CGF exists (expanding all possible instantiation of parameters from the initial conditions)

An incremental translation algorithm exists (expanding on demand from initial conditions)

Repressilator ODEs

```
\(\operatorname{Neg}(a, b)=? a ; \operatorname{Inh}(a, b) \oplus \tau_{\varepsilon^{\prime}}(\operatorname{Tr}(b) \mid \operatorname{Neg}(a, b))\)
\(\operatorname{Inh}(a, b)=\tau_{\eta} ; \operatorname{Neg}(a, b)\)
\(\operatorname{Tr}(b)=!b ; \operatorname{Tr}(b) \oplus \tau_{\gamma^{\prime}} 0\)
\(\operatorname{Neg}\left(x_{(r)}, y_{(r)}\right)\left|\operatorname{Neg}\left(y_{(r)}, z_{(r)}\right)\right| \operatorname{Neg}\left(z_{(r)}, x_{(r)}\right)\)
```

Neg/x,y $\rightarrow^{\varepsilon} \operatorname{Tr} / y+$ Neg/x,y
Neg/y,z $\rightarrow^{\varepsilon} \operatorname{Tr} / z+$ Neg/y,z
Neg/z,x $\rightarrow^{\varepsilon} \operatorname{Tr} / x+$ Neg/z, x
$\operatorname{Tr} / x+$ Neg/x,y $\rightarrow{ }^{r} \operatorname{Tr} / x+\operatorname{Inh} / x, y$
$\operatorname{Tr} / y+N e g / y, z \rightarrow r \operatorname{Tr} / y+\operatorname{Inh} / y, z$
$\operatorname{Tr} / z+$ Neg/z, $x \rightarrow{ }^{r} \operatorname{Tr} / z+\operatorname{Inh} / z, x$
$\operatorname{Inh} / x, y \rightarrow \eta$ Neg/x,y
Inh/y,z $\rightarrow \eta$ Neg/y,z
$\operatorname{Inh} / z, x \rightarrow \eta$ Neg/z, x
$\operatorname{Tr} / x \rightarrow \gamma 0$
$\mathrm{Tr} / \mathrm{y} \rightarrow \mathrm{m}^{\mathrm{O}}$
$\mathrm{Tr} / \mathrm{z} \rightarrow \mathrm{r}^{0}$
Neg/x,y + Neg/y,z + Neg/z,x

```
[Neg/x,y\mp@subsup{]}{}{*}=-r[Tr/x][Neg/x,y]+\eta[Inh/x,y]
[Neg/y,z\mp@subsup{]}{}{\circ}=-r[Tr/y][Neg/y,z] + \eta[Inh/y,z]
[Neg/z,x\mp@subsup{]}{}{\circ}=-r[Tr/z][Neg/z,x]+\eta[Inh/z,x]
[Inh/x,y\mp@subsup{]}{}{\circ}=r[Tr/x][Neg/x,y]-\eta[Inh/x,y]
[Inh/y,z]= = [[Tr/y][Neg/y,z]-\eta[Inh/y,z]
[Inh/z,x\mp@subsup{]}{}{\circ}=r[Tr/z][Neg/z,x]-\eta[Inh/z,x]
[Tr/x]}\mp@subsup{}{}{*}=\varepsilon[Neg/z,x]-\gamma[Tr/x
[Tr/y]}\mp@subsup{}{}{\circ}=\varepsilon[Neg/x,y]-\gamma[Tr/y
[Tr/z]}\mp@subsup{}{}{\circ}=\varepsilon[Neg/y,z]-\gamma[Tr/z
\([\text { Neg } / y, z]^{\circ}=-r[\operatorname{Tr} / y][\) Neg \(/ y, z]+\eta[\) Inh \(/ y, z]\)
```



```
\([\operatorname{Inh} / y, z]^{\circ}=r[\operatorname{Tr} / y][\) Neg \(/ y, z]-\eta[\operatorname{Inh} / y, z]\)
\([\text { Inh } / z, x]^{\circ}=r[\operatorname{Tr} / z][\) Neg \(/ z, x]-\eta[\) Inh \(/ z, x]\)
\([\mathrm{Tr} / \mathrm{z}]^{+}=\varepsilon[\) Neg \(/ z, x]-\gamma[\mathrm{Tr} / \mathrm{x}]\)
\([T r / z]^{\circ}=\varepsilon[\) Neg \(\left./ y, z]-{ }^{[T T r} / z\right]\)
```


No sustained oscillations (with SPiM parameters).
But see Elowitz\&Leibler.

Simulation: Time $=53810.179900$ (1070 points at 34439 simTime/sysTime and halted)

Groupies ODE

Doped Groupies ODE

Q: What does this do?

Stochastic Answer: bounded random walk

$$
\begin{aligned}
& \begin{array}{l}
A=!a_{(r)} ; A \oplus ? b_{(r)} ; B
\end{array} \begin{array}{l}
A_{d}=!a_{(r)} ; A_{d} \\
B=!b_{(r)} ; B \oplus ? a_{(r)} ; A
\end{array} \begin{array}{l}
B_{d}=!b_{(r)} ; B_{d}
\end{array} \\
& \left.\begin{array}{ll}
A+B \rightarrow r^{r} A+A & A+B_{d} \rightarrow^{r} \\
B+B_{d} \\
B+A \rightarrow r & B+B
\end{array} \right\rvert\, \begin{array}{ll}
B+A_{d} \rightarrow^{r} A+A_{d}
\end{array}
\end{aligned}
$$

$$
[A]^{\bullet}=r[A][B]-r[B][A]-r[A]\left[B_{d}\right]+r[B]\left[A_{d}\right]\left[A_{d}\right]^{0}=0
$$

$$
[B]^{\circ}=r[B][A]-r[A][B]-r[B]\left[A_{d}\right]+r[A]\left[B_{d}\right]
$$

$$
\left[\mathrm{B}_{\mathrm{d}}\right]^{\bullet}=0
$$

$$
\left[\mathrm{A}_{\mathrm{d}}\right],\left[\mathrm{B}_{\mathrm{d}}\right] \text { are constant; }
$$

$$
\text { assume them both }=k
$$

> Deterministic Answer:

ODE predicts converging stable equilibrium at $[A]=[B]$ instead of the total chaos observed in: the stochastic system!
For $k=0$ (no dope), predicts deadlock $[A]^{\circ}=[B]^{\circ}=0$ but at any value of $[A]$, which is definitely not true in the stochastic system.

$$
\begin{aligned}
& {[A]^{\circ}=-r k([A]-[B])} \\
& \text { At }[B]=0: \quad[A]^{0}=-r k[A] \text {, } \\
& {[B]^{\bullet}=\left.\operatorname{rk}([A]-[B])\right|^{A+[A] \sim[B]]:[A]^{\circ}=[B]^{\sim} \sim 0} \begin{array}{l}
A+[B]:[A]^{\circ}=[B]^{\sim}=0
\end{array}}
\end{aligned}
$$

Conclusions

Conclusions

- Stochastic Collectives
- Complex global behavior from simple components
- Emergence of collective functionality from "non-functional" components
- (Cf. "swarm intelligence": simple global behavior from complex components)
- Artificial Biochemistry
- Stochastic collectives with Law of Mass Interaction kinetics
- Connections to classical Markov theory, chemical Master Equation, and Rate Equation
- Properties of collective behavior
- Simulation
- Systematic translation to ODEs from parametric process "libraries"
- Correspondence (or not) between stochastic and deterministic behavior
- Interdisciplinary connections
- Process descriptions vs. chemical descriptions
- Process descriptions vs. ODE descriptions

[^0]: Abstract. We introduce a series of descriptions of disease spread using the process algebra WSCCS and compare the derived mean field equations with the traditional ordinary differential equation model. Even the preliminary work presented here brings to light interesting theoretical questions about the "best" way to defined the model.

