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Stochastic Collectives
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Stochastic Collectives

● “Collective”:
– A large set of interacting finite state automata:

●Not quite language automata (“large set”)
●Not quite cellular automata (“interacting” but not on a grid)
●Not quite process algebra (“finite state” and “collective”)
●Cf. “multi-agent systems” and “swarm intelligence”

● “Stochastic”:
– Interactions have rates

●Not quite discrete (hundreds or thousands of components)
●Not quite continuous (non-trivial stochastic effects)
●Not quite hybrid (no “switching” between regimes)

● Very much like biochemistry 
– Which is a large set of stochastically interacting molecules/proteins
– Are proteins finite state and subject to automata-like transitions?

●Let’s say they are, at least because:
●Much of the knowledge being accumulated in Systems Biology 

is described as state transition diagrams [Kitano].
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State Transitions
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Even More State Transitions

http://www.expasy.ch/cgi-bin/show_thumbnails.pl
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Reverse Engineering Nature

● That’s what Systems Biology is up against
– Exemplified by a technological analogy:

● Tamagotchi: a technological organism
– Has inputs (buttons) and outputs (screen/sound)

– It has state: happy or needy (or hungry, sick, dead…)

– Has to be petted at a certain rate (or gets needy)

– Each one has a slightly different behavior

● Reverse Engineering Tamagotchi 
– Running experiments that elucidate their behavior

– Building models that explain the experiments

● Applications
– Engineering: Can we build our own Tamagotchi?

– Maintenance: Can we fix a broken Tamagotchi?

How often do I have to 

exercise my Tamagotchi?

Every Tamagotchi is 

different. However we do 

recommend exercising at 

least three times a day 
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Understanding T.Nipponensis

● Tamagotchi Nipponensis: a stochastic interactive automaton
– 40 million sold worldwide; discontinued in 1998
– Still found “in the wild” in Akihabara
– New version in 2004: they communicate!

● Traditional scientific investigations fail
– Design-driven understanding fails

● We cannot read the manual (Japanese)
● What does a Tamagotchi “compute”? What is its “purpose”?
● Why does it have 3 buttons?

– Mechanistic understanding fails
● Few moving parts. Removing components mostly ineffective or “lethal”
● The “tamagotchi folding problem” (sequence of manufacturing steps) 

is too hard and gives little insight on function
– Behavioral understanding fails

● Subjecting to extreme conditions reveals little and may void warranty
● Does not answer consistently to individual stimuli, nor to sequences of stimuli
● There are stochastic variations between individuals

– Ecological understanding fails
● Difficult to observe in its native environment (kids’ hands)
● Mass produced in little-understood automated factories
● It evolved by competing with other products in the baffling Japanese market

– Mathematical understanding fails
● What differential equations does it obey? (Uh?)

Tamagotchi X-ray

Tamagotchi Surgery
http://necrobones.com/tamasurg/
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A New Approach

● “Systems Technology” of T. Nipponensis
– High-throughput experiments (get all the information you possibly can)

●Decode the entire software and hardware

●Take sequences of tamagotchi screen dumps under different conditions

● Put 300 in a basket and shake them; make statistics of final state

– Modeling (organize all the information you got)
●Ignore the “folding” (manufacturing) problem

●Ignore materials (it’s just something with buttons, display, and a program.)

●Abstract until you find a conceptual model (ah-ha: it’s a stochastic automaton).

● Do we understand what stochastic automata collectives can do?

Communicating Tamagotchi
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Automata Collectives
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Interacting Automata

Communicating automata: a graphical FSA-like 
notation for “finite state restriction-free π-
calculus processes”. Interacting automata do not 
even exchange values on communication.

The stochastic version has rates on 
communications, and delays.

@λ1
@λ2

@λ3

@λ4

@λ5

@r1

@r2

@r3

?a !a

?b

!b!c

?c

A1

A2

A3

B1

B2B3

C1 C2

C3

new a@r1 

new b@r2 

new c@r3

A1 = ?a; A2

A2 = !c; A3

A3 = @λ5; A1

B1 = @λ2; B2 + !a; B3

B2 = @λ1; B1

B3 = ?b; B2

C1 = !b; C2 + ?c; C3

C2 = @λ3; C1

C3 = @λ4; C2

A1 | B1 | C1

Communication 
channels

A
utom

ata

The system and 
initial state

“Finite state” means: no composition or restriction inside recursion.

Analyzable by standard Markovian techniques, by first computing 
the “product automaton” to obtain the underlying finite Markov 
transition system. [Buchholz]

Current State

Interaction
Transition
Delay
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Interacting Automata Transition Rules

?a !a ?a !a

Interaction

Delay

a@r

@r @r
r

r

Current State

Transition
Delay
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Groupies and Celebrities

Groupie
(wants to be like somebody different)

Celebrity
(does not want to be like somebody else)
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always 
eventually 
deadlock

directive sample 5.0 1000

directive plot A(); B()

new a@1.0:chan()

new b@1.0:chan()

let A() = do !a; A() or ?b; B()

and B() = do !b; B() or ?a; A()

run 100 of (A() | B())

directive sample 0.1 1000

directive plot A(); B()

new a@1.0:chan()

new b@1.0:chan()

let A() = do !a; A() or ?a; B()

and B() = do !b; B() or ?b; A()

run 100 of (A() | B())

Unstable because within an A majority, an A has difficulty finding a B to 
emulate, but the few B’s have plenty of A’s to emulate, so the majority may 
switch to B. Leads to deadlock when everybody is in the same state and there is 
nobody different to emulate.

Stable because as soon as a A finds itself in the majority, it is more likely to 
find somebody in the same state, and hence change, so the majority is weakened.

A

B

!a

?b

!b

?a

A

B

!a

?a ?b

!b

A stochastic collective of celebrities: A stochastic collective of groupies:
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Ca

Cb

Ga

Gb
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Both Together

A way to break the deadlocks: Groupies with just a few Celebrities 

directive sample 10.0 1000

directive plot Ga(); Gb(); Ca(); Cb()

new a@1.0:chan()

new b@1.0:chan()

let Ca() = do !a; Ca() or ?a; Cb()

and Cb() = do !b; Cb() or ?b; Ca()

let Ga() = do !a; Ga() or ?b; Gb()

and Gb() = do !b; Gb() or ?a; Ga()

run     1 of (Ca() | Cb())

run 100 of (Ga() | Gb())

A few
Celebrities

Many
Groupies

never 
deadlock

!a

?b

!b

?a
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?a ?b

!b

A tiny bit of 
“noise” can make a 
huge difference
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Ga
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Da Db
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Doped Groupies

directive sample 10.0 1000

directive plot Ga(); Gb(); Da(); Db()

new a@1.0:chan()

new b@1.0:chan()

let Ga() = do !a; Ga() or ?b; Gb()

and Gb() = do !b; Gb() or ?a; Ga()

let Da() = !a; Da()

and Db() = !b; Db()

run   1 of (Da() | Db())

run 100 of (Ga() | Gb())

Groupie

never 
deadlock

!a !b

A similar way to break the deadlocks: destabilize the groupies by a small perturbation.

Doping(1)

(1)A technical term in microelectronics
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Hysteric Groupies

directive sample 10.0 1000

directive plot Ga(); Gb()

new a@1.0:chan()

new b@1.0:chan()

let Ga() = do !a; Ga() or ?b; ?b; Gb()

and Gb() = do !b; Gb() or ?a; ?a; Ga()

let Da() = !a; Da()

and Db() = !b; Db()

run 100 of (Ga() | Gb())

run   1 of (Da() | Db())

We can get more regular behavior from groupies if they “need more convincing”, 
or “hysteresis” (history-dependence), to switch states. 

(Still with doping)
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directive sample 10.0 1000

directive plot Ga(); Gb()

new a@1.0:chan()

new b@1.0:chan()

let Ga() = do !a; Ga() or ?b; ?b; ?b; Gb()

and Gb() = do !b; Gb() or ?a; ?a; ?a; Ga()

let Da() = !a; Da()

and Db() = !b; Db()

run 100 of (Ga() | Gb())

run   1 of (Da() | Db())
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N.B.: It will not oscillate 
without doping (noise)
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C
Da Db Dc

Hysteric 3-Way Groupies
directive sample 3.0 1000

directive plot A(); B(); C()

new a@1.0:chan()

new b@1.0:chan()

new c@1.0:chan()

let A() = do !a; A() or ?c; ?c; C()

and B() = do !b; B() or ?a; ?a; A()

and C() = do !c; C() or ?b; ?b; B()

let Da() = !a; Da()

and Db() = !b; Db()

and Dc() = !c; Dc()

run 100 of (A() | B() | C())

run 1 of (Da() | Db() | Dc())
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?c
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N.B.: It will not oscillate 
without doping (noise)

(Still with doping)
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Oscillation as Emergence

Just 2 of the hysteric groupies 
do not oscillate regularly at all!

Nor 16…
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A() B()

Pretty good with 64…

new a@1.0:chan()

new b@1.0:chan()

let A() = do !a; A() or ?b; ?b; ?b; B()

and B() = do !b; B() or ?a; ?a; ?a; A()

let As() = !a; As()

and Bs() = !b; Bs()

run 64 of (A() | B())

run   1 of (As() | Bs())

Without changing the 
components, interesting 
properties emerge with a 

critical size of the population.

Dotted lines indicate cross 
sections where one may look 
for evidence of alternation.
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Collective Boolean Logic
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The Strength of Populations

?a @λ!a

@µ

N

B
N

A

directive sample 0.01 1000

directive plot B()

val lam = 1000.0     

val mu = 1.0

new a@mu:chan

let A() = !a; A()

and B() = ?a; C()     

and C() = delay@lam; B() 

run 1000 of (A() | B())

At size 2N, on a shared channel, 
µ is N times stronger than λ: 

interaction easily wins over delay.
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Equilibrium
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N=10
λ=10
µ=1

N=100
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µ=1

N=1000
λ=1000
µ=1

N=10000
λ=10000
µ=1

fight!fight!
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!a !b

directive sample 110.0 1000

directive plot !a; !b

new a@1.0:chan new b@1.0:chan

let Inv2_hi(a:chan, b:chan) = 

do !b; Inv2_hi(a,b) or ?a; Inv2_mi(a,b)

and Inv2_mi(a:chan, b:chan) = 

do ?b; Inv2_hi(a,b) or delay@1.0; Inv2_hi(a,b)

or ?a; Inv2_lo(a,b)

and Inv2_lo(a:chan, b:chan) = 

do ?b; Inv2_mi(a,b) or delay@1.0; Inv2_mi(a,b)

run 100 of Inv2_hi(a,b)

let clock(t:float, tick:chan) =        (* sends a tick every t time *)

(val ti = t/100.0 val d = 1.0/ti     (* by 100-step erlang timers *)

let step(n:int) = if n<=0 then !tick; clock(t,tick) else delay@d; step(n-1)

run step(100))

let S1(a:chan, tock:chan) =  do !a; S1(a,tock) or ?tock; ()

let SN(n:int, t:float, a:chan, tick:chan, tock:chan) = 

if n=0 then clock(t, tock) else ?tick; (S1(a,tock) | SN(n-1,t,a,tick,tock))

let raisingfalling(a:chan, n:int, t:float) = 

(new tick:chan new tock:chan 

run (clock(t,tick) | SN(n,t,a,tick,tock)))

run raisingfalling(a,100,0.5)

Boolean Inverter Collectives

directive sample 110.0 1000

directive plot !a; !b

new a@1.0:chan new b@1.0:chan

let Inv_hi(a:chan, b:chan) = 

do !b; Inv_hi(a,b) 

or ?a; Inv_lo(a,b)

and Inv_lo(a:chan, b:chan) = 

delay@1.0; Inv_hi(a,b)

run 100 of Inv_hi(a,b)

let clock(t:float, tick:chan) =        (* sends a tick every t time *)

(val ti = t/100.0 val d = 1.0/ti     (* by 100-step erlang timers *)

let step(n:int) = if n<=0 then !tick; clock(t,tick) else delay@d; step(n-1)

run step(100))

let S1(a:chan, tock:chan) =  do !a; S1(a,tock) or ?tock; ()

let SN(n:int, t:float, a:chan, tick:chan, tock:chan) = 

if n=0 then clock(t, tock) else ?tick; (S1(a,tock) | SN(n-1,t,a,tick,tock))

let raisingfalling(a:chan, n:int, t:float) = 

(new tick:chan new tock:chan 

run (clock(t,tick) | SN(n,t,a,tick,tock)))

run raisingfalling(a,100,0.5)

directive sample 110.0 1000

directive plot !a; !b

new a@1.0:chan new b@1.0:chan

let Inv_hi(a:chan, b:chan) = 

do !b; Inv_hi(a,b) 

or ?a; Inv_lo(a,b)

and Inv_lo(a:chan, b:chan) = 

do ?b; Inv_hi(a,b)

or delay@1.0; Inv_hi(a,b)

run 100 of Inv_hi(a,b)

let clock(t:float, tick:chan) =        (* sends a tick every t time *)

(val ti = t/100.0 val d = 1.0/ti     (* by 100-step erlang timers *)

let step(n:int) = if n<=0 then !tick; clock(t,tick) else delay@d; step(n-1)

run step(100))

let S1(a:chan, tock:chan) =  do !a; S1(a,tock) or ?tock; ()

let SN(n:int, t:float, a:chan, tick:chan, tock:chan) = 

if n=0 then clock(t, tock) else ?tick; (S1(a,tock) | SN(n-1,t,a,tick,tock))

let raisingfalling(a:chan, n:int, t:float) = 

(new tick:chan new tock:chan 

run (clock(t,tick) | SN(n,t,a,tick,tock)))

run raisingfalling(a,100,0.5)

!b

?a

!b

?a ?b

!b

?a ?b

?a ?b

directive sample 110.0 1000

directive plot !a; !b; !c; !d

new a@1.0:chan new b@1.0:chan new c@1.0:chan 

let Inv2_hi(a:chan, b:chan) = 

do !b; Inv2_hi(a,b) or ?a; Inv2_mi(a,b)

and Inv2_mi(a:chan, b:chan) = 

do ?b; Inv2_hi(a,b) or delay@1.0; Inv2_hi(a,b)

or ?a; Inv2_lo(a,b)

and Inv2_lo(a:chan, b:chan) = 

do ?b; Inv2_mi(a,b) or delay@1.0; Inv2_mi(a,b)

run 100 of (Inv2_hi(a,b) | Inv2_lo(b,c))

let clock(t:float, tick:chan) =        (* sends a tick every t time *)

(val ti = t/100.0 val d = 1.0/ti     (* by 100-step erlang timers *)

let step(n:int) = if n<=0 then !tick; clock(t,tick) else delay@d; step(n-1)

run step(100))

let S1(a:chan, tock:chan) =  do !a; S1(a,tock) or ?tock; ()

let SN(n:int, t:float, a:chan, tick:chan, tock:chan) = 

if n=0 then clock(t, tock) else ?tick; (S1(a,tock) | SN(n-1,t,a,tick,tock))

let raisingfalling(a:chan, n:int, t:float) = 

(new tick:chan new tock:chan 

run (clock(t,tick) | SN(n,t,a,tick,tock)))

run raisingfalling(a,100,0.5)

!b

?a ?b

?a ?b

!c

?b ?c

?b ?c

perfect
rectifier

hysteresis

in presence of a, b goes low
in absence of a, b goes high

the high b state reinforces 
itself (as a population)

input 
stimulus

zero-point noise 
resistant 

b = not a b = not a b = not a b = not a
c = not b

!b
!a

time

# !a

#
#

 !b

!c

“signal”

“no signal”
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Boolean Gate Collectives
c = a or b c = a imply b

!c !c

?a ?b

!c

?a ?b

Inputs:
10 !a for 4t
2t; 10 !b for 4t

directive sample 10.0 1000

directive plot !a; !b; !c

new a@1.0:chan new b@1.0:chan new c@1.0:chan

val del = 1.0

let Or_hi(a:chan, b:chan, c:chan) = 

do !c; Or_hi(a,b,c) or delay@del; Or_lo(a,b,c)

and Or_lo(a:chan, b:chan, c:chan) = 

do ?a; Or_hi(a,b,c) or ?b; Or_hi(a,b,c)

run 100 of Or_lo(a,b,c)

let clock(t:float, tick:chan) =      (* sends a tick every t time *)

(val ti = t/200.0 val d = 1.0/ti

let step(n:int) = 

if n<=0 then !tick; clock(t, tick) else delay@d; step(n-1)

run step(200))

let S_a(tick:chan) = do !a; S_a(tick) or ?tick; ()

let S_b(tick:chan) = ?tick; S_b1(tick)

and S_b1(tick:chan) = do !b; S_b1(tick) or ?tick; S_b2(tick)

and S_b2(tick:chan) = do !b; S_b2(tick) or ?tick; ()

run 10 of (new tick:chan run (clock(4.0,tick) | S_a(tick)))

run 10 of (new tick:chan run (clock(2.0,tick) | S_b(tick)))

!c

?a ?b

c = a unless b

directive sample 10.0 1000

directive plot !a; !b; !c

new a@1.0:chan new b@1.0:chan new c@1.0:chan

val del = 1.0

let And_hi(a:chan, b:chan, c:chan) = 

do !c; And_hi(a,b,c) or delay@del; And_lo_a(a,b,c)

and And_lo_a(a:chan, b:chan, c:chan) = 

do ?a; And_hi(a,b,c) or delay@del; And_lo_b(a,b,c)

and And_lo_b(a:chan, b:chan, c:chan) = 

?b; And_lo_a(a,b,c)

run 100 of And_lo_b(a,b,c)

let clock(t:float, tick:chan) =      (* sends a tick every t time *)

(val ti = t/200.0 val d = 1.0/ti

let step(n:int) = 

if n<=0 then !tick; clock(t, tick) else delay@d; step(n-1)

run step(200))

let S_a(tick:chan) = do !a; S_a(tick) or ?tick; ()

let S_b(tick:chan) = ?tick; S_b1(tick)

and S_b1(tick:chan) = do !b; S_b1(tick) or ?tick; S_b2(tick)

and S_b2(tick:chan) = do !b; S_b2(tick) or ?tick; S_b3(tick)

and S_b3(tick:chan) = do !b; S_b3(tick) or ?tick; ()

run 10 of (new tick:chan run (clock(4.0,tick) | S_a(tick)))

run 10 of (new tick:chan run (clock(2.0,tick) | S_b(tick)))

directive sample 10.0 1000

directive plot !a; !b; !c

new a@1.0:chan new b@1.0:chan new c@1.0:chan

val del = 1.0

let Imply_hi_a(a:chan, b:chan, c:chan) = 

do !c; Imply_hi_a(a,b,c) or ?a; Imply_lo(a,b,c)

and Imply_hi_b(a:chan, b:chan, c:chan) = 

do !c; Imply_hi_b(a,b,c) or delay@del; Imply_lo(a,b,c)

and Imply_lo(a:chan, b:chan, c:chan) = 

do ?b; Imply_hi_b(a,b,c) or delay@del; Imply_hi_a(a,b,c)

run 100 of Imply_lo(a,b,c)

let clock(t:float, tick:chan) =      (* sends a tick every t time *)

(val ti = t/200.0 val d = 1.0/ti

let step(n:int) = 

if n<=0 then !tick; clock(t, tick) else delay@d; step(n-1)

run step(200))

let S_a(tick:chan) = do !a; S_a(tick) or ?tick; ()

let S_b(tick:chan) = ?tick; S_b1(tick)

and S_b1(tick:chan) = do !b; S_b1(tick) or ?tick; S_b2(tick)

and S_b2(tick:chan) = do !b; S_b2(tick) or ?tick; ()

run 10 of (new tick:chan run (clock(4.0,tick) | S_a(tick)))

run 10 of (new tick:chan run (clock(2.0,tick) | S_b(tick)))

directive sample 10.0 1000

directive plot !a; !b; !c

new a@1.0:chan new b@1.0:chan new c@1.0:chan

val del = 1.0

let OOlO_hi(a:chan, b:chan, c:chan) = 

do !c; OOlO_hi(a,b,c) or delay@del; OOlO_lo_a(a,b,c) or ?b; 
OOlO_lo_b(a,b,c)

and OOlO_lo_a(a:chan, b:chan, c:chan) = 

?a; OOlO_hi(a,b,c)

and OOlO_lo_b(a:chan, b:chan, c:chan) = 

delay@del; OOlO_hi(a,b,c)

run 50 of (OOlO_lo_a(a,b,c) | OOlO_lo_b(a,b,c))

let clock(t:float, tick:chan) =      (* sends a tick every t time *)

(val ti = t/200.0 val d = 1.0/ti

let step(n:int) = 

if n<=0 then !tick; clock(t, tick) else delay@d; step(n-1)

run step(200))

let S_a(tick:chan) = do !a; S_a(tick) or ?tick; ()

let S_b(tick:chan) = ?tick; S_b1(tick)

and S_b1(tick:chan) = do !b; S_b1(tick) or ?tick; S_b2(tick)

and S_b2(tick:chan) = do !b; S_b2(tick) or ?tick; ()

run 10 of (new tick:chan run (clock(4.0,tick) | S_a(tick)))

run 10 of (new tick:chan run (clock(2.0,tick) | S_b(tick)))

c = a and b

!c

?b

?a !c !c

?a ?b

!c !c

?a ?b

!c !c

?a ?b

!c !c

?a ?b

!b!a

!c

c = a xor b
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!a !b !c

!c

?a

?b

!c

?b

?a

?b ?a

directive sample 10.0 1000

directive plot !a; !b; !c

new a@1.0:chan new b@1.0:chan new c@1.0:chan

let Xor_hi_a(a:chan, b:chan, c:chan) = 

do !c; Xor_hi_a(a,b,c) or ?b; Xor_lo_ab(a,b,c) or delay@1.0; Xor_lo_a(a,b,c) 

and Xor_hi_b(a:chan, b:chan, c:chan) = 

do !c; Xor_hi_b(a,b,c) or ?a; Xor_lo_ab(a,b,c) or delay@1.0; Xor_lo_b(a,b,c) 

and Xor_lo_a(a:chan, b:chan, c:chan) = 

do ?a; Xor_hi_a(a,b,c) or ?b; Xor_lo_ab(a,b,c)

and Xor_lo_b(a:chan, b:chan, c:chan) = 

do ?b; Xor_hi_b(a,b,c) or ?a; Xor_lo_ab(a,b,c)

and Xor_lo_ab(a:chan, b:chan, c:chan) = 

do delay@1.0; Xor_hi_a(a,b,c) or delay@1.0; Xor_hi_b(a,b,c)

run 50 of (Xor_lo_a(a,b,c) | Xor_lo_b(a,b,c))

let clock(t:float, tick:chan) =      (* sends a tick every t time *)

(val ti = t/200.0 val d = 1.0/ti

let step(n:int) = 

if n<=0 then !tick; clock(t, tick) else delay@d; step(n-1)

run step(200))

let S_a(tick:chan) = do !a; S_a(tick) or ?tick; ()

let S_b(tick:chan) = ?tick; S_b1(tick)

and S_b1(tick:chan) = do !b; S_b1(tick) or ?tick; S_b2(tick)

and S_b2(tick:chan) = do !b; S_b2(tick) or ?tick; ()

run 10 of (new tick:chan run (clock(4.0,tick) | S_a(tick)))

run 10 of (new tick:chan run (clock(2.0,tick) | S_b(tick)))

!c

?a

?b

!c

?b

?a

?b ?a

!c

?a

?b

!c

?b

?a

?b ?a

!c

?a

?b

!c

?b

?a

?b ?a

!c

?a

?b

!c

?b

?a

?b ?a
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Collective Analog Devices
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Xor as an Op Amp
c = A*(a – b)
d = A*(b - a)

!c

?a

?b

!d

?b

?a

?b ?a

directive sample 20.0 1000

directive plot !a; !b; !c; !d

new a@1.0:chan new b@1.0:chan new c@1.0:chan new d@1.0:chan

let Xor_hi_a(a:chan, b:chan, c:chan, d:chan) = 

do !c; Xor_hi_a(a,b,c,d) or ?b; Xor_lo_ab(a,b,c,d) or delay@1.0; Xor_lo_a(a,b,c,d) 

and Xor_hi_b(a:chan, b:chan, c:chan, d:chan) = 

do !d; Xor_hi_b(a,b,c,d) or ?a; Xor_lo_ab(a,b,c,d) or delay@1.0; Xor_lo_b(a,b,c,d) 

and Xor_lo_a(a:chan, b:chan, c:chan, d:chan) = 

do ?a; Xor_hi_a(a,b,c,d) or ?b; Xor_lo_ab(a,b,c,d)

and Xor_lo_b(a:chan, b:chan, c:chan, d:chan) = 

do ?b; Xor_hi_b(a,b,c,d) or ?a; Xor_lo_ab(a,b,c,d)

and Xor_lo_ab(a:chan, b:chan, c:chan, d:chan) = 

do delay@1.0; Xor_hi_a(a,b,c,d) or delay@1.0; Xor_hi_b(a,b,c,d)

run 50 of (Xor_lo_a(a,b,c,d) | Xor_lo_b(a,b,c,d))

let clock(t:float, tick:chan) =      (* sends a tick every t time *)

(val ti = t/200.0 val d = 1.0/ti

let step(n:int) = 

if n<=0 then !tick; clock(t, tick) else delay@d; step(n-1)

run step(200))

let S_a(tick:chan) = do !a; S_a(tick) or ?tick; ()

let S_b(tick:chan) = ?tick; S_b1(tick)

and S_b1(tick:chan) = do !b; S_b1(tick) or ?tick; S_b2(tick)

and S_b2(tick:chan) = do !b; S_b2(tick) or ?tick; ()

run 100 of (new tick:chan run (clock(8.0,tick) | S_a(tick)))

run 100 of (new tick:chan run (clock(4.0,tick) | S_b(tick)))

!c

?a

?b

!d

?b

?a

?b ?a

!c

?a

?b

!d

?b

?a

?b ?a

!c

?a

?b

!d

?b

?a

?b ?a

!c

?a

?b

!d

?b

?a

?b ?a

directive sample 40.0 1000

directive plot !a; !b; !d

new a@1.0:chan new b@1.0:chan new d@1.0:chan

let Xor_hi_a(a:chan, b:chan, c:chan, d:chan) = 

do !c; Xor_hi_a(a,b,c,d) or ?b; Xor_lo_ab(a,b,c,d) or delay@1.0; Xor_lo_a(a,b,c,d) 

and Xor_hi_b(a:chan, b:chan, c:chan, d:chan) = 

do !d; Xor_hi_b(a,b,c,d) or ?a; Xor_lo_ab(a,b,c,d) or delay@1.0; Xor_lo_b(a,b,c,d) 

and Xor_lo_a(a:chan, b:chan, c:chan, d:chan) = 

do ?a; Xor_hi_a(a,b,c,d) or ?b; Xor_lo_ab(a,b,c,d)

and Xor_lo_b(a:chan, b:chan, c:chan, d:chan) = 

do ?b; Xor_hi_b(a,b,c,d) or ?a; Xor_lo_ab(a,b,c,d)

and Xor_lo_ab(a:chan, b:chan, c:chan, d:chan) = 

do delay@1.0; Xor_hi_a(a,b,c,d) or delay@1.0; Xor_hi_b(a,b,c,d)

run 50 of (Xor_lo_a(a,b,a,d) | Xor_lo_b(a,b,a,d))

let clock(t:float, tick:chan) =      (* sends a tick every t time *)

(val ti = t/200.0 val d = 1.0/ti

let step(n:int) = 

if n<=0 then !tick; clock(t, tick) else delay@d; step(n-1)

run step(200))

let S_b(tick:chan) = ?tick; S_b1(tick)

and S_b1(tick:chan) = do !b; S_b1(tick) or ?tick; S_b2(tick)

and S_b2(tick:chan) = do !b; S_b2(tick) or ?tick; S_b3(tick)

and S_b3(tick:chan) = ?tick; S_b4(tick)

and S_b4(tick:chan) = !b; S_b4(tick) 

run 10 of (new tick:chan run (clock(8.0,tick) | S_b(tick)))

Follower (a standard OpAmp trick)!c?a

!d?b

hence d=b
!a

?a

?b

!d

?b

?a

?b ?a

a=0 b=0 ⇒ d=b-a=0 a=c=a-b=0
a=0 b=1 ⇒ d=b-a=1 a=c=a-b=0
a=1 b=0 ⇒ d=b-a=0 a=c=a-b=1
a=1 b=1 ⇒ d=b-a=0 a=c=a-b=0

hence d=1 at next step

?a

!d?b

(!c=!a)

d=b analog response!!
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a=100 may or may not happen

“Noninverting Configuration”
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Changing the OpAmp Gain

directive sample 40.0 1000

directive plot !a; !b; !d

new a@1.0:chan new b@1.0:chan new d@1.0:chan

let Xor_hi_a(a:chan, b:chan, c:chan, d:chan) = 

do !c; Xor_hi_a(a,b,c,d) or ?b; Xor_lo_ab(a,b,c,d) or delay@1.0; Xor_lo_a(a,b,c,d) 

and Xor_hi_b(a:chan, b:chan, c:chan, d:chan) = 

do !d; Xor_hi_b(a,b,c,d) or ?a; Xor_lo_ab(a,b,c,d) or delay@1.0; Xor_lo_b(a,b,c,d) 

and Xor_lo_a(a:chan, b:chan, c:chan, d:chan) = 

do ?a; Xor_hi_a(a,b,c,d) or ?b; Xor_lo_ab(a,b,c,d)

and Xor_lo_b(a:chan, b:chan, c:chan, d:chan) = 

do ?b; Xor_hi_b(a,b,c,d) or ?a; Xor_lo_ab(a,b,c,d)

and Xor_lo_ab(a:chan, b:chan, c:chan, d:chan) = 

do delay@1.0; Xor_hi_a(a,b,c,d) or delay@1.0; Xor_hi_b(a,b,c,d)

run 100 of (Xor_lo_a(a,b,a,d) | Xor_lo_b(a,b,a,d))

run 100 of replicate !b

!a

?a

?b

!d

?b

?a

?b ?a

b=100
a@1.0

d gain 1.0
#OpAmp=200

An OpAmp provides “infinite” differential 
amplification, but a stable finite amplification 
can be obtained by a feedback loop with a load 
splitter (the follower is a special case of that, 
which gives gain 1). The equivalent here is simply 
changing the rate on the feedback link.

?a

!d?b

rate control
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d gain 0.5
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d gain 0.25
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Empirical law:

[d] = [b]/rate(a)

but why?

b=100
a@0.75

d gain 1.33
#OpAmp=200 0
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b=100
a@0.6

d gain 1.66
#OpAmp=200

b=100
a@0.5

d gain 2.00
#OpAmp=200
(saturated)
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Automata Polymers
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Bidirectional

Polymerization
new c@µ new stop@1.0

Afree = 

(new rht@λ; !c(rht); Abrht(rht))

+ ?c(lft); Ablft(lft)

Ablft(lft) = 

(new rht@λ; !c(rht); Abound(lft,rht))

Abrht(rht) = 

?c(lft); Abound(lft,rht)

Abound(lft,rht) = ?stop

A A A A

?c(r) !c(νl)

Ar

Af

Al

Ab

?c(l)

?c(l)

!c(νr)

!c(νr)

Free

Bound
right

Bound
left

Bound
both

Monomer 
Automaton

Afree

Ablft

Abrht

Abound

!c(νr)?c(l)

?c(l)

?c(l)

?c(l)

!c(νr)

!c(νr)!c(νr)

Free

Bound
right

Bound
left

Bound
both

Free

Bound
right

Bound
left

Bound
both

directive sample 10000.0

directive plot Afree(); Ablft(); Abrht(); Abound()

val lam = 1.0   val mu = 1.0

new c@mu:chan(chan)  new stop@1.0:chan

let Afree() = 

(new rht@lam:chan run

do !c(rht); Abrht(rht)

or ?c(lft); Ablft(lft))

and Ablft(lft:chan) = 

(new rht@lam:chan run

!c(rht); Abound(lft,rht))

and Abrht(rht:chan) = 

?c(lft); Abound(lft,rht)

and Abound(lft:chan, rht:chan) =

?stop

run (2 of Afree())

Communicating Automata
Bound output !c(νr) and input ?c(l)
on automata transitions
to model complexation
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Bidirectional Polymerization

Circular Polymer Lengths
directive sample 1000.0

directive plot Abound(); ?count

type Link = chan(chan)

type Barb = chan

val lam = 1000.0 (* set high for better counting *)

val mu = 1.0

new c@mu:chan(Link)

new enter@lam:chan(Barb)

new count@lam:Barb

let Afree() = 

(new rht@lam:Link run

do !c(rht); Abrht(rht)

or ?c(lft); Ablft(lft))

and Ablft(lft:Link) = 

(new rht@lam:Link run

!c(rht); Abound(lft,rht))

and Abrht(rht:Link) = 

?c(lft); Abound(lft,rht)

and Abound(lft:Link, rht:Link) =

do ?enter(barb); (?barb | !rht(barb))

or ?lft(barb); (?barb | !rht(barb))

(* each Abound waits for a barb, exhibits it, and passes it to 

the right so we can plot number of Abound in a ring *)

let clock(t:float, tick:chan) =       (* sends a tick every t time *)

(val ti = t/1000.0 val d = 1.0/ti

let step(n:int) = 

if n<=0 then !tick; clock(t,tick) else delay@d; step(n-1)

run step(1000))

new tick:chan

let Scan() = ?tick; !enter(count); Scan()

run 100 of Afree() 

run (clock(100.0, tick) | Scan())

Scanning and counting the size of the circular polymers (by a cheap trick).

Polymer formation is complete within 10t; then a different polymer is scanned every 100t. 

100xAfree, initially.

The height of each rising 
step is the size of a 
separate circular polymer. 
(Unbiased sample of nine 
consecutive runs.)
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Actin-like

Poly/Depolymerization
Ap pA

A p A p

new c@µ

Afree = 

(new lft@λ; !c(lft); Ablft(lft)) +

?c(rht); Abrht(rht)

Ablft(lft) = 

!lft; Afree +

?c(rht); Abound(lft,rht)

Abrht(rht) = 

?rht; Afree

Abound(lft,rht) =

!lft; Abrht(rht)

!c(νl)?c(r)

?r !l

Af

Al

Ab

!l

?c(r)

?r

?c(r)
!l

Free

Bound
right

Bound
left

Bound
both

Ar

!c(νl)

Monomer 
Automaton

r←νl!l

?c(r)

?r

?c(r)
!l

Free

Bound
left

Bound
both

!c(νl)

!l

?c(r)

?r

?c(r)
!l

Free

Bound
right

Bound
both

!c(νl)

Bound
right

Bound
left
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Semantics of 
Collective Behavior 
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“Micromodels”: Continuous Time Markov Chains

● The underlying semantics of stochastic π-calculus (and stochastic 
interacting automata). Well established in many ways.
– Automata with rates on transitions.

● “The” correct semantics for chemistry, executable.
– Gillespie stochastic simulation algorithm

● But does not give a good sense of “collective” properties.
– Yes one can do simulation.

– Yes one can do program analysis.

– Yes one can do modelchecking.

– But somewhat lacking in “predictive power”.
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● Micromodels have lots of advantages
– Compositional, compact, mechanistic, etc.

● But they always ask:
– “Yes, but how does you automata model relate to the 75 ODE models in the 

literature?”

● From processes/automata to ODEs directly:
– In principle: just write down the Rate Equation:

- Determine the set of all possible states S of each process.
- Determine the rates of the transitions between such states.
- Let [S] be the “number of processes in state S” as a function of time. 
- Define for each state S:

[S]• =   (rate of change of the number of processes in state S)
Cumulative rate of transitions from any state S’ to state S, times [S’], 
minus cumulative rate of transitions from S to any state S”, times [S].

- Intuitive (rate = inflow minus outflow), but often clumsy to write down precisely.

● But why go to the trouble?
– If we first convert processes to chemical reactions, 

then we can convert to ODEs by standard means!

“Macromodels”: Ordinary Differential Equations

!
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Macromodel of Interaction

Law of Mass Interaction

[D]• =  -λ [D]    

The speed of interaction† is proportional 
to the number of possible interactions.

@λ
D
1000

E

[E]• = λ [D] 

† speed of interaction (formally definable) 

= number of interactions over time

not proportional to the number of interacting processes!

[P] is the number of processes P (this is informal; it is only 
meaningful for a set of processes offering a given action, but 
a set of such processes can be counted and plotted)

Decay

Exponential
Decay law
Rate of change 

proportional to number 
of possible decays.

[A]• =  -λ [A] [B]

[B]• = -λ [A] [B]

[AB]• = λ [A] [B]

?c
A

B

1000

1000

!c

AB
@λ

Mass interaction

Mass 
Interaction law

Rate of change 
proportional to number 
of possible interactions

Interaction 
Law generalizes  
Decay Law

0

200

400

600

800

1000

0 0.002 0.004 0.006 0.008 0.01

D() A1() A2()

A4() A8()

λ=1

Chemical Law of Mass Action
http://en.wikipedia.org/wiki/Chemical_kinetics

The speed of a chemical reaction is 
proportional to the activity of the 
reacting substances. 

Activity = concentration, for well-
stirred aqueous medium 

Concentration = number of moles per 
liter of solution

Mole = 6.022141×1023 particles

decay

interaction

directive sample 0.01 1000

directive plot D(); A1(); A2(); A4(); A8()

new c1@1.0: chan()   new c2@2.0: chan()

new c4@4.0: chan()   new c8@8.0: chan()

let D() = delay@1.0

let A1() = ?c1 and B1() = !c1

let A2() = ?c2 and B2() = !c2

let A4() = ?c4 and B4() = !c4

let A8() = ?c8 and B8() = !c8

run 1000 of (D() | A1() | B1() | A2() 

| B2() | A4() | B4() | A8() | B8())

[A]0=1000

λ=1,2,4,8
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Forbidden (Mix) 
interactions

Assume each process P is in restricted-
sum-normal-form. For each channel x:

In(x,P) = Num of active ?x in P

Out(x,P) = Num of active !x in P

Mix(x,P) = In(x,P)*Out(x,P)

In(x) = Sum P of In(x,P)

Out(x) = Sum P of Out(x,P)

Mix(x) = Sum P of Mix(x,P)

The global Activity on channel x:

The global speed of interaction on a 
channel x:

Act(x) = (In(x)*Out(x))-Mix(x)

Possible Interactions

!3a

?2a
In(a,A) = 2

Out(a,A) = 3

Mix(a,A) = 

2*3 = 6

?2a

!1a

BA B
In(a,B) = 2

Out(a,B) = 1

Mix(a,B) = 

2*1 = 2

Act(a) = (In(a) * Out(a)) – Mix(a) = 4*4 – 8 = 8

speed(a) = Act(a)*rate(a) = 8*rate(a)

In(a) = 2+2 = 4

Out(a) = 3+1 = 4

Mix(a,P) = 6+2 = 8

6

2

speed(x) = Act(x)*rate(x)

6 2

#interactions that cannot happen 
in a given summation P

total #interactions that cannot happen 

total cross product of inputs and outputs

minus total #interactions that cannot happen 

The speed of interaction is proportional to 
the number of possible interactions.

But a process cannot interact with itself.
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From Chemistry to ODEs
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Chemical Reactions

A →r B1 + … + Bn

A1 + A2 →r B1 + … + Bn

A + A →r B1 + … + Bn

Degradation [A]• = -r[A]

Asymmetric Collision [Ai]• = -r[A1][A2]

Symmetric Collision [A]• = -r[A]([A]-1)

No other reactions!

Trimolecular reactions:

A + B + C →r D

the measured “r” is an (imperfect)
aggregate of e.g.:

A + B ↔ AB

AB + C → D

Exponential Decay 

Mass Action Law

Mass Action Law

Chapter IV: Chemical Kinetics    

[David A. Reckhow , CEE 572 Course]

...  reactions may be either elementary or non-

elementary. Elementary reactions are those reactions 

that occur exactly as they are written, without any 

intermediate steps. These reactions almost always 

involve just one or two reactants. ... Non-elementary 

reactions involve a series of two or more elementary 

reactions. Many complex environmental reactions are 

non-elementary. In general, reactions with an overall 

reaction order greater than two, or reactions with 

some non-integer reaction order are non-elementary. 

THE COLLISION THEORY OF 

REACTION RATES

www.chemguide.co.uk

The chances of all this happening if your 

reaction needed a collision involving more 

than 2 particles are remote. All three (or 

more) particles would have to arrive at 

exactly the same point in space at the same 

time, with everything lined up exactly right, 

and having enough energy to react. That's 

not likely to happen very often!

(assuming A≠Bi≠Aj for all i,j) 

Enzymatic reactions:

S   E  r P

the “r” is given by Michaelis-Menten 
(approximated steady-state) laws:

E + S ↔ ES

ES → P + E
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From Reactions to ODEs

-21F

1E

1D

-1-12C

1-1B

-1-1A
v4v3v2v1N

[A]• = -l1 - l2
[B]• = -l1 + l4
[C]• = 2l1 - l2 - l3
[D]• = l2
[E]• = l3
[F]• = l3 - 2l4

Write the coefficients 
by columns

Read the concentration 
changes from the rows

X: chemical species

[-]: quantity of molecules

l: rate laws

k: kinetic parameters

N: stoichiometric matrix

X

reactions

sp
ec

ie
s

v1: A+B →k1 C+C

v2: A+C →k2 D

v3: C →k3 E+F

v4: F+F →k4 B

k4[F]([F]-1)/2l4

k3[C]l3

k2[A][C]l2

k1[A][B]l1

l

Quantity 
changes

Stoichiometric
matrix

Rate laws

[X]• = N⋅⋅⋅⋅l

Set a rate law for each reaction 
(Degradation/Asymmetric/Symmetric)

E.g. [A]• = 
-k1[A][B] - k2[A][C]

Stoichiometric 
Matrix

A

B C

D

EF

C
k1

k2

k4

k3

CAVEAT: A deterministic approximation of a 
stochastic system (i.e. possibly dead wrong)
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From Processes 
to Chemistry
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Chemical Ground Form (CGF)

E ::= X1=M1, …, Xn=Mn Definitions (n≥0)

M ::= π1;P1 ⊕ … ⊕ πn;Pn Molecules (n≥0) 

P ::= X1 | … | Xn Solutions (n≥0) 

π ::= τr ?n(r) !n(r) Interactions (delay, input, output) 

A

B

!a

?a ?b

!b

A = !a;A ⊕ ?b;B

B = !b;B ⊕ ?a;A

Init = τ∞;(A|A|B|B)

Ex: interacting automata 
(which are CGFs using “|” only in Init):

Initial 
conditions: 
2A and 2B

Automaton in state A

Automaton in state B

⊕ is stochastic choice (vs. + for chemical reactions)
0 is the null solution (P|0 = 0|P = P) 

and null molecule (M⊕0 = 0⊕M = M) (τ0;P = 0)  
Xi are distinct in E
Each name n is assigned a fixed rate r: n(r)

(To translate chemistry back to 
processes we need a bit more than simple 
automata: we may have “+” on the right of 
→, that is we may need “|” after π.)
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CGF to Chemistry

E ::= X1=M1, …, Xn=Mn Definitions (n ≥ 0)

M ::= π1;P1 ⊕ … ⊕ πn;Pn Molecules (n ≥ 0)

P ::= X1 | … | Xn Solutions (n ≥ 0)

π ::= τr ?n   !n            Interactions

Chemical system for E: (N.B.: {…}m is a multiset, and P is P with all the | changed to +)

Each X in E is seen as a separate species.

ChG(E) := {(X →r P) s.t. (X ≡ τr;P ⊕ …) ∈ E}m

∪m {(X + Y →r P + Q) s.t. X≠Y, 〈(X ≡ ?n(r);P ⊕ …),(Y ≡ !n(r);Q ⊕ …)〉 ∈ E2}m

∪m {(X + X →2r P + Q) s.t. (X ≡ ?n(r);P ⊕ … ≡ !n(r);Q ⊕ …)〉 ∈ E}m
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(Note on computing the multisets)

A multiset M ∈ Multiset(S), where S is a set with equality, is a total function S→Nat, which may also be 
written as a finite enumeration with repetitions: {…}m.

Multiset binary union is the function ∪m(M,M’) = \s. M(s)+M’(s).

The shorthand 

{(X →r P) s.t. (X ≡ τr;P ⊕ …) ∈ E}m

is defined as the following finite union of singleton multisets:
∪m{(X=π1;P1⊕…⊕πn;Pn)∈E}

of(∪m{i s.t. πi=τr} 
of {(X →r Pi)}

m)

i.e. “for each (X=π1;P1⊕…⊕πn;Pn)∈E and for each i such that πi=τr, return a copy of (X →r Pi)“.

The shorthand 

{(X + Y →r P + Q) s.t. X≠Y, 〈(X ≡ ?n(r);P ⊕ …),(Y ≡ !n(r);Q ⊕ …)〉 ∈ E2}m

is defined as the following finite union of singleton multisets:

∪m 〈(X=π1;P1⊕…⊕πn;Pn), (Y=ρ1;Q1⊕…⊕ρm;Qm)〉∈E2 with X≠Y 
of ∪m{<i,j> s.t. πi=?n(r), ρj=!n(r)} 

of {(X + Y →r Pi + Qj)}
m)
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Example

E:

Na = ?i; Na+

Cl = !i; Cl-

Na+ = ?d; Na

Cl- = !d; Cl

Init = τ∞; (Na | Na | Cl | Cl)

ChG(E):

Na + Cl →ρ(i) Na+ + Cl-

Na+ + Cl- →ρ(d) Na + Cl

Init →∞ Na + Na + Cl + Cl

ChG(E) := {(X →r P) s.t. (X ≡ τr;P ⊕ …) ∈ E}m

∪m {(X + Y →r P + Q) s.t. X≠Y, 〈(X ≡ ?n(r);P ⊕ …),(Y ≡ !n(r);Q ⊕ …)〉 ∈ E2}m

∪m ...

ρE(n(r)) = r

Na

Na+

?d ?i

Cl

Cl-

!d !i
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Subtler Examples

E:

A = ?n;B ⊕ ?n;B

C = !n;D

C(E):

A + C →ρ(n) B + D

A + C →ρ(n) B + D

That is:

A + C →2ρ(n) B + D

E:

X = !a;0 ⊕ ?a;Y

C(E):

X + X  →2ρ(a) Y

The rate of a was pre-halved and must be restored.

Multisets:

The same interaction can occur multiple times and must be taken into account:

Symmetric reactions:

These are not finite state systems, but finite species systems are ok!

E:

X = τr;(X | X)

C(E):

X  →r X + X
Unbounded state, 
but only 1 species.
No problem!
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Automata Descriptions are n2 More Compact

S0+S0 → S0+S1

S0+S1 → S0+S2

S0+S2 → S0+S0

S1+S0 → S1+S1

S1+S1 → S1+S2

S1+S2 → S1+S0

S2+S0 → S2+S1

S2+S1 → S2+S2

S2+S2 → S2+S0

S0

S2

?a

S1

?a

!a

!a

!a

?a

S0

S2

?a

S1

?a

!a

!a

!a

?a

S0

S2

?a

S1

?a

!a

!a

!a

?a

S3

?a

!a

S0

S2

?a

S1

?a

!a

!a

!a

?a

S3

?a

!a

S0+S0 → S0+S1

S0+S1 → S0+S2

S0+S2 → S0+S3

S0+S3 → S0+S0

S1+S0 → S1+S1

S1+S1 → S1+S2

S1+S2 → S1+S3

S1+S3 → S1+S0

Automaton Chemistry

S2+S0 → S2+S1

S2+S1 → S2+S2

S2+S2 → S2+S3

S2+S3 → S2+S0

S3+S0 → S3+S1

S3+S1 → S3+S2

S3+S2 → S3+S3

S3+S3 → S3+S0

3 states
(2*3 transitions)

=

32 reactions

4 states
(2*4 transitions)

=

42 reactions

A copy of the automaton 
to illustrate interactions 
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From Processes 
to ODEs via Chemistry
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Choice Law by ODEs

A = τλ;B ⊕ τµ;B A = τλ+µ;B

A →λ+µ BA →λ B
A →µ B

[A]• = -λ[A] - µ[A]
[B]• = λ[A] + µ[A] 

[A]• = -(λ+µ)[A]
[B]• = (λ+µ)[A] =

A A

B

B
B

τλ

τµ

τλ+µ

τλ;B | τµ;B  =  τλ+µ;B
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Idle Loop Law by ODEs

A = τλ;A ⊕ τµ;B A = τµ;B

A →µ BA →λ A
A →µ B

[A]• = -µ[A]
[B]• = µ[A] 

[A]• = -µ[A]
[B]• = µ[A] 

=

A

τλ

τµ
B A

τµ
B
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Equiconfluence Law by ODEs

A

C

B E
B

τλ

τλ

τ2λ

τλ

F = τ∞;(A | C)
A = τλ;B
C = τλ;B

E = τ2λ;(B | G)
G = τλ;B

A →λ B
C →λ B

[A]• = -λ[A]
[C]• = -λ[C]
[B]• = λ[A] + λ[C]

E →2λB + G
G →λ B

[E]• = -2λ[E]
[G]• = 2λ[E] -λ[G]
[B]• = 2λ[E] + λ[G]

[A’]• = -λ[A’]
[C’]• = -λ[C’]
[B]• = λ[A’] + λ[C’]

Equal ODEs up to a change of 
variables (A’=E+G/2, C’=E+G/2), 
where [B] has the same 
behavior! 

=

Want to show that B on both 
sides has the “same behavior”
(equal quantities of B produced 
at all times)

=?

=?

τλ;B | τλ;B  =  τ2λ;(B | τλ;B)

G B

let A’ = C’ = E+G/2

λ[A’] + λ[C’]
= λ[E+G/2] + λ[E+G/2]
= 2λ[E] + λ[G] = [B]•

[A’]• = [E+G/2]• = [E]•+[G]•/2
= -2λ[E]+(2λ[E]-λ[G])/2
= -λ[E]-λ[G]/2
= -λ[E+G/2] = -λ[A’]
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A

B

!a

?a ?b

!b

Groupies ODE

A+B →r A+A

B+A →r B+B

A = !a(r);A ⊕ ?b(r);B

B = !b(r);B ⊕ ?a(r);A

[A]• = r[A][B]-r[B][A]-r[A][Bd]+r[B][Ad]
[B]• = r[B][A]-r[A][B]-r[B][Ad]+r[A][Bd]

Ad = !a(r);Ad

Bd = !b(r);Bd

Ad Bd

!a !b

Doping

A+Bd →r B+Bd

B+Ad →r A+Ad

[Ad]• = 0
[Bd]• = 0

[Ad],[Bd] are constant; 
assume them both = k[A]• = -rk([A]-[B])

[B]• = rk([A]-[B])

ODE predicts converging stable equilibrium at 
[A]=[B] instead of the total chaos observed in 
the stochastic system!

At [B]=0: [A]•=-rk[A], 
[B]•=rk[A]

At [A]≈[B]:[A]•=[B]•≈0 

At [A]=[B]: [A]•=[B]•=0 

For k=0 (no dope), predicts deadlock [A]•=[B]•=0 
but at any value of [A], which is definitely not true 
in the stochastic system.DESSolver

-1.0*(y1-y2), 1.0

1.0*(y1-y1), 0.0
Wrong Answer!
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[A]• = r[A][B’]-r[B][A]-r[A][Bd]+r[B’][Ad]
[A’]• = r[B][A]-r[B][A’]+r[A][Bd]-r[A’][Bd]
[B]• = r[B][A’]-r[A][B]-r[B][Ad]+r[A’][Bd]
[B’]• = r[A][B]-r[A][B’]+r[B][Ad]-r[B’][Ad]

Hysteric Groupies ODE

A+B →r A+B’ A+B’ →r A+A

B+A →r B+A’ B+A’ →r B+B

A = !a(r);A ⊕ ?b;A’ A’ = ?b;B

B = !b(r);B ⊕ ?a;B’ B’ = ?a;A
A

B
?a
?a

?b
?b

!a

!b

Ad = !a(r);Ad

Bd = !b(r);Bd

A+Bd →r A’+Bd A’+Bd →r B+Bd

B+Ad →r B’+Ad B’+Ad →r A+Bd

A’

B’

Ad Bd

!a !b

Doping

[Ad]
• = 0

[Bd]
• = 0

[A]• = r[A][B’]-r[B][A]-rk[A]+rk[B’]
[A’]• = r[B][A]-r[B][A’]+rk[A]-rk[A’]
[B]• = r[B][A’]-r[A][B]-rk[B]+rk[A’]
[B’]• = r[A][B]-r[A][B’]+rk[B]-rk[B’]

[Ad],[Bd] are constant; 
assume them both = k

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5 6 7 8 9 10

Ga() Gb()

DESSolver

y1*y4-y3*y1-0.01*y1+0.01*y4, 1.0

y3*y1-y3*y2+0.01*y1-0.01*y2, 0.0

y3*y2-y1*y3-0.01*y3+0.01*y2, 0.0

y1*y3-y1*y4+0.01*y3-0.01*y4, 0.0

r=1.0
k=0.01

Wrong 
Answer!
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Conclusions
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Conclusions

● Stochastic Collectives
– Complex global behavior from simple components
– Emergence of collective functionality from “non-functional” components
– (Cf. “swarm intelligence”: simple global behavior from complex components)

● Artificial Biochemistry
– Stochastic collectives with Law of Mass Interaction kinetics
– Connections to classical Markov theory, 

chemical Master Equation, and Rate Equation

● The agent/automaton/process point of view
– Individuals that transition between states

(vs. transmutation between unrelated chemical species)
– More appropriate for Systems Biology
– Stochastic π-calculus (SPiM) for investigating stochastic collectives

●Restriction+Communication ⇒ Polymerization: FSA that “stick together”

● Properties of collective behavior
– ??


