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50 Years of Molecular Cell Biology

SOLVING THE NEUTRINO MYSTERY ¢ RECOGNIZING ANCIENT LIFE

e Genes are made of DNA

- Store digital information as sequences of 4
different nucleotides

- Direct protein assembly through RNA and the
Genetic Code

e Proteins (>10000) are made of amino acids
- Process signals

Activate genes

Move materials

Catalyze reactions to produce substances

Control energy production and consumption

e Bootstrapping still a mystery

- DNA, RNA, proteins, membranes are today
interdependent. Not clear who came first

- Separation of tasks happened a long time ago
- Not understood, not essential



Towards Systems Biology

Biologists now understand many of the cellular components
- A whole team of biologists will typically study a single protein for years
- Reductionism: understand the components in order to understand the system

But this has not led to understand how "the system” works
- Behavior comes from complex patterns of interactions between components
- Predictive biology and pharmacology still rare
- Synthetic biology still unreliable

New approach: try to understand "the system”
- Experimentally: massive data gathering and data mining (e.g. Genome projects)
- Conceptually: modeling and analyzing networks (i.e. interactions) of components

What kind of a system?
- Just beyond the basic chemistry of energy and materials processing...

- Built right out of digital information (DNA) Bioinformatics: storing and
- Based on information processing for both survival and evolution analyzing experimental data.
- Highly concurrent

Molecular Biology: figuring out
the components of living things.

Can we fix it when it breaks? : —
.. ) Systems Biology: figuring out
- Really becomes: How is information structured and processed? their connectivity.



Storing Processes

e Today we represent, store, search, and analyze:
- Gene sequence data
- Protein structure data
- Metabolic network data
- Signaling pathway data

Cellular Abstractions: Cells as Computation
Regev&Shapiro NATURE vol 419, 2002-09-26, 343

e How can we represent, store, and analyze biological processes?

- Scalable, precise, dynamic, highly structured, maintainable representations
for systems biology.

- Not just huge lists of chemical reactions or differential equations.

e In computing..

- There are well-established scalable representations of dynamic reactive
processes.

- They look more or less like little, mathematically based, programming
languages.
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Abstract Machines of Systems Biology
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Reactive Systems

e Modeling biological systems
- Not as continuous systems (often highly nonlinear)

- But as discrete reactive systems; abstract machines with:
e States represent situations
e Event-driven transitions between states represent dynamics

- The adequacy of describing (discrete) complex systems as reactive systems
has been argued convincingly [Harel]

e Many biological systems exhibit features of reactive systems:
- Deep layering of abstractions

Complex composition of simple components

Discrete transitions between states

Digital coding and processing of information

Reactive information-driven behavior

High degree of concurrency and nondeterminism

"Emergent behavior” not obvious from part list



Chemistry vs. n-calculus

A process calculus (chemistry, or SBML)

Na + Cl —,, Na* + Cl
Na* + CI- —,, Na + Cl

.

1 line per
reaction

The same “model”

A compositional graphical representation,
and the corresponding calculus.

Na Cl
o o
ki k1
?s lr 4 ?p

k2 k2
Na* Cl-

1 line per
component

Na*

A

Maps to Maps to
aCTMC

Na = !r'k1: ?SkZ; Na

a CTMC

This Petri-Net-like graphical representation
degenerates into spaghetti diagrams: precise
and dynamic, but not scalable, structured, or
maintainable.

CI - ?r'kl,'\ !SkZ; Cl

A4

Cl-

A different process calculus (r)

J




Methods

e Model Construction (writing things down precisely)
- Formalizing the notations used in systems biology.
- Formulating modeling languages.
- Studying their kinetics (semantics).

e Model Validation (using models for postdiction and prediction)

- Simulation from compositional descriptions

e Stochastic: quantitative concurrent semantics.

e Hybrid: discrete transitions between continuously evolving states.
- "Program” Analysis

e Control flow analysis

e Causality analysis
- Modelchecking

e Standard, Quantitative, Probabilistic



Basic Modeling Guidelines

e Regev-Shapiro: "Molecules as Processes":

Molecule Process
Interaction capability Channel
Interaction Communication
Modification State change
(of chemical components) (state-transition systems)

Cellular Abstractions: Cells as Computation
Regev&Shapiro NATURE vol 419, 2002-09-26, 343

e They chose n-calculus and adapted it with stochastic features
- To match the stochastic aspects of (bio)chemistry

- Many probabilistic process calculi predate them, but only Hillston (CSP) and
Priami (w) had already studied stochastic calculi.



n-calculus Executive Summary

It's for:
- The modular description of concurrent, nondeterministic systems
- Study of such systems based on their descriptions

It's got:
- Processes
- Channels
- A minimal syntax (it's a /anguage and also a model)

You can:
- Fork new processes
Create new channels

Do I/0 over channels (synchronous and asynchronous)
including passing channels over channels

Make nondeterministic choices
Define processes recursively

That's it.
- Except for extensive model theory and metatheory.

- Cannot pass processes over channels
(simulated by passing channels to them)

- Cannot define procedures
(simulated by supplying reply channels)



n-calculus (a Process Algebra)

e Processes P,Q,.. - components of a system

e Channels a,b,.. - interactions between components
0 the process that does nothing
la(b):; P the process that outputs b on channel a (and then does P)
?a(x). P the process that inputs b on channel a (and then does P{x})
PlQ the process made of subprocesses P and Q running concurrently
P+Q the process that behaves like either P or Q nondeterministically
*P the process that behaves like unboundedly many copies of P

=> recursive processes
=> unbounded number and species of processes
hew x; P the process that creates a new channel x (and then does P{x})
=> private interactions
=> unbounded number and species of interactions



n-calculus (a Process Algebra)

e Dynamics
(la(b); P) + P | (Pa(x); Qx}) + Q' = P | Qb}
Ex. la(b): ?b | ?a(x): (Ix + ?b)
> ?b | Ib+?b
> 0 | O
= 0

e "Compositional” descriptions
- Describe how the individual components behave
e i.e. how they interact with any environment they may be placed in
- Build systems by combining components
e each components is part of the environment for the other components

- Behavior (and its analysis) arises from the combinatorics of interactions
e state space can be arbitrarily larger than its compositional description

e For concurrent, nondeterministic, unbounded-state systems
- Dynamic creation of new channels (e.g. binding sites)
- Dynamic creation of new processes (e.g. proteins)



nt-calculus

Syntax
m u= x(y) receivey alongx
F(y) send y along x
Pu=0|3,mPlle=y| P|P|P|(newz)P|!P
Structural congruence SYm'GX

Renaming of bound variables

2)P = o(x).({z/y}P)  ifz¢ FN(P)
(newy).P = (newz).({z/y}P) ifz¢g FN(P)
Structural congruence laws
PlQ = QP commutativity of parallel composition
(PIQ)R = P|Q|R) associativity of parallel composition .
P+@Q = Q+P commutativity of summation ChemICGl
(P+Q)+R = P+ (Q+R) associativity of summation o s
(new z)0 = 0 restriction of inert processes M|x 'ng
(new z)(new y)P = (new y)(new z)P polyadic restriction
((new z)P)|Q) = (new z)(P|Q) ifx¢ FN(Q) scope extrusion
P = PIP replication

Reaction rules

(o +F(2).Q|(- - +2(y).P) = Q|P{z/y} communication (COMM)

P P

—_—t reaction under parallel compaosition (PAR .
PIQ— PR (PAR Reactions
P P reaction under restriction (RES)

(new z) P — (new z) P’

Q=PP— P P =
Q— Q'

structural congruence (STRUCT)




Stochastic n-calculus Executive Summary

e A simple variant of n-calculus:

Channels have stochastic “firing"
rates with exponential distribution.

Nondeterministic choice becomes
stochastic race.

Cuts down to CTMCs (Continuous
Time Markov Chains) in the finite
case (not always). Then, standard
analytical tools are applicable.

Can be given friendly automata-like
scalable graphical syntax (work in
progress: Andrew Phillips).

Is directly executable (e.g. via the
Gillespie algorithm from physical
chemistry).

Is analyzable (large body of

literature, at least in the non-
stochastic case).
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Figure 2. Regulating Gene Expression by Positive Feedback [9)
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Figure 3. Protein A molecules v.s. time in presence (left) and absence (right) of TF

A_Phillips, L.Cardelli. BioConcur'04.




Stochastic w-calculus

Stochastic extension of n-calculus. [C.Priami]
- Associate a single parameter r (rate) in (O, infinity] to each activity a.

- The rate and the associated exponential distribution describes the
stochastic behavior of the activity.

a.P is replaced by a@r.P

Exponential distribution

- guarantees the memoryless property: the time at which a change of state
occurs is independent of the time at which the last change of state
occurred.

Race condition

- is defined in a probabilistic competitive context: all the activities that are
enabled in a state compete and the fastest one (stochastically) succeeds.

New implementation: SPiM. [A.Phillips]. Paper at BioConcur



Stochastic Approach

e Relatively recent development on Process Calculi
- For computer networking simulation and analysis
- Now for biochemical simulation and analysis

e Continuous Time Markov Chains

- Finite State Machines, with state transition times exponentially distributed
(memoryless)

- Well studied class of stochastic processes
- Efficient analysis algorithms for stationary and transient analysis

e High level formalisms mapping to CTMCs

- Stochastic Petri Nets [Molloy]
Markovian Queuing Networks [Muppala & Triverdi]
Stochastic Automata Networks [Plateau]
Probabilistic I/0O Automata [Wu et al.]
Stochastic Process Algebras [Herzog et al.] [Hillston]

Holger Hermanns



Importance of Stochastic Effects

e A deterministic system:
- May get "stuck in a fixpoint”.
- And hence never oscillate.

e A similar stochastic system:

- May be "thrown off the fixpoint" by
stochastic noise, entering a long orbit
that will later bring it back to the fixpoint.

- And hence oscillate.

Surprisingly enough, we -
have found that parameter values that give rise to a stable steady
state in the deterministic limit continue to produce reliable
oscillations in the stochastic case, as shown in Fig. 5. Therefore,
the presence of noise not only changes the behavior of the system
by adding more disorder but can also lead to marked qualitative
differences.
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Fig. 5.

Time evolution of A for the deterministic Eq. [1] {a) and stochastic (b)

versions of the model. The values ofthe parameters are as inthe ca ption of Fig.
1, except that now we set & = 0.05 h~'. For these parameter values, + < 0, so
that the fixed point is stable.

{former) oscillatory trajectory.



Protein Networks

Gene
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Signal Processing
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. . Ve / 1
1. The Protein Machine ;.. aroms.

e Complex folded-up shapes that:

Fit together, dock, undock.

Excite/unexcite, warp each other.

Bring together, catalyze, transform materials.
Form complex aggregates and networks.

|||||||||
H":' l '\‘:‘I phosphatase

é) L @ @
é -
e Mapping out such networks:

- Inprinciple, it's "just” a very large set of chemical equations.
- Notations: ” been developed to summarize and abstract.

e

5.0

S =~ An actual molecular interaction network.
-3 e (Nodes are distinct protein kinds,
g e arcs mean that two kinds of proteins interact.)



Protein Structure

Primary Secondary Tertiary Quaternary

The 20 Aminoacids
Triose Phosphate Isomerase

Green Fluorescent Protein

Tryptophan Alpha Helix, Beta Sheet

http://www.cmbi.kun.nl/gvteach/bioinformatical/
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Some Allosteric Switches

Domain architecture

Repressed state Activated state

Currant Opinion in Structural Biclooy

(a) i
P
(b)
[ Input ] [ Cutput ]
SH2 g SHZ Phosphatase
| )
; R
[ TnpLt | [COutput | *
EVHIE B! GBD = pro i
il \sw- o (7
| l 0o 2/3
It ——————————————— -F _.:"l\|'|'|/ \\...,..' __‘"\.'ll

A 0On
Actin polymerization

Dormain architecture and autcinhibitory interactions in modular switch
proteins. (a) Sro family kinases contain M-terminal SH3 and SH2
domains, and a kinase domain flanked by intramolecular SH3-binding
and SHZ-binding sites (when the C-terminal motif tyosine is
phosphoryated by Csk). The crystal structures of several family
members show that both intramolecular domain interactions function in
concert to lock the kinase in an inactive conformation. Activating stimuli
(red) include external SHZ or SH3 ligands. After initial activation, the
kinase is maintained in an active state by autophosphorylation of its
activation loop. (b) SHP-2 phosphatase contains two SHZ domains
and a phosphatase domain. The crystal structure of the phosphatase

shows that the N-terminal SHZ domain participates in an autoinhibitory
interaction that directly blocks the phosphatase active site. Binding of
external SHZ ligands activates by disrupting the autoinhibitory
interaction. (¢} M-AWASE contains an Enabled YASP homology 1
(EVH1) domain, a B motif, a GED, a proline-rich segment (proj and an
output region (YCA) that alone binds the Arp2/3 complex and
stimulates its actin nucleation activity. The B and GEBD motifs are
recjuired to repress activity and, by current models, are thought to
participate in intracomplex interactions (only the structure of the GBD
intramolecular complex for WASPF is known). GTP-bound Cde42 and
FIF; synergistically activate N-WASP,

Allosteric ("other shape")
reactions modify accessibility.

Kinase

= donates phosphate P
= phosphorilates other proteins

Phosphatase

= accepts phosphate P
= dephosphorilates other proteins

Logical AND

at equal concentrations of the
individual input stimuli, activation is
much higher if both stimuli are
present

“Phosphatase Kinase Kinase” =
a kinase that activates a kinase
that activates a phosphatase
that deactivates a protein.

Humans have the same
number of modular protein
domains (building blocks) as
worms, but twice the number
of multi-domain proteins.

Taken from
Wendell Lim



MIM: Molecular Interaction Maps (Kohn)

@H Thre double-acrowed [ine ndicales ila pooteins A and B
can bicd 1o ench ather.  The “node” placed an the line

represents the A:B complex.

@H—@ Agymmetric binding where protein A donates a peptide that
Timds (2 & recepooe site o pockel on pootein B

@' "F‘“"@ Raprezentation of mnltunclecular complexes: © is A,
wis (A BT This notation is extensible to Aoy numbear
of cowtponents in a complex

Conalenl il veetion of protein &, The single-armowed
F —t—:—@ line indicates that A can exist i a phosphorylabed stabe.
The miwde repuesenls the phosphor, ated fpecises.

Cleavagrs of 4 covalent bond;: dephosphorylation of & by
a phrosphatase.

{ C ) Proteol vtie cleavage st a specific site within a protein,

®—eC
s

@

@-‘f—r—}-

'Y

Stichiomeine conversion of A o B

Trapsport of A from cylosol W necleus, The node
represents A after it has been transported inta the
nucles.

Formarion of a homodimer. Filled circle on the right
represents anolher copy of A, The node on the line
represents the homodimer &: A

2 1% the combinaion of states defined by x and y.

Eazymatic sumulanon of a reaction.

General symbaol for stimulation.
A bar behind the armowhead signifies necessity.

Generml symbal for inhibition.

Shorthand aymbol for transeriptional acfivation.
Shorthand symbol for transcriptional inhibition.

[Dragradation products Taken from
Kurt W. Kohn



olecular Interaction Maps

http://www.cds.caltech.edu/~hsauro/index.htm

J'Designer- The p53-Mdm2 and DNA Repair Regulatory Network
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Kohn Diagrams

® A1, K2, k3

ES

& )

£+5—H—* e

_—
F ¥4

e o 3

FIG. 3. Simple one-way enzymatic reaction. (If there is an ENErgY sOUrce,
such as ATP hydrolysis, it can be omitted when ATP concentration is not an
important factor.) In explicit formulabions, the reaction identifiers or rate
constant designations can be placed on the enzyme reaction line, and the
node ES can identify the enzyme-substrate species.

@EH—o0

=

GDP

| RasGAP}

FIG. 4. Interconversions between the GTP- and GDP-bound states of Ras.
(1) GDP and GTP compete with each other for binding to a site on Ras (this
binding is only slowly reversible). (2) GEF (guanine nucleotide exchange
factor facilitates the binding or dissociation of GDP or GTP (the concen-
tration of GTP normally far exceeds that of GDP). iImplicit is the reversible
binding between GEF and Ras which opens the binding site for GDP/GTP
exchange.) (3) Ras has an intrinsic GTPase activity that slowly converts
bownd GTP to bound GDP (stoichiometric comversion arrow points from the
node representing Ras.GTP to the node representing Ras.GDP . 4 RasGAP
ia G TPase activating protein) enhances the GTPase activity of Ras. (Implicit
is the reversible enzyme—substrate binding between RasGAP and Ras.)

Taken from
Kurt W. Kohn



From direct graphical
representation of
chemical reactions

Kitano Diagrams

To more abstract
representation of the
logic such reactions

implement
Weed ‘—t
IikA
FY15FT14 FT1&7 Mese b
= Celo25 N
Wee] — 7
Mikd — C— Masi P FlJ {F‘} ..
Cdo25 = =4 | / = Cdce
3 2 |2 2
l_i_. e o E-‘:J
Lamina z; e
Cde1a [ Cdez ) Cde13 &
Rumi
A ] Cigl
Cigt ——@—— \
> Cigz
Cigz Rumi Rumi
- o
- 5-Phase
Onset
Lamina
Fumi
S-Fhase
On-set
(a) Graphical representation of fission yeast Cdc2

in Kohn diagram

Figure |.Representation of fission yeast Cde protein in (a) the original MIM and (B) proposed improvernents. Both diagrams represent interactions

(h) Proposed improvements of graphical representation of
fizssion yeast Cdc2

BinSilico

irvolving fission yeast Cdc2. Weel phosphorylates Thr 14 and Tyr | 5. Mile | phosphorylaces Tyr |5, Mesé phosphorylites Thr 167, and Cde2h
dephosphorylates Thr 14 and Tyrl 5. Cde2 binds to either Cde 13, Cigl, or Cigd When Cdel is forming a complex with Cdel 3 and only Thr 167 is
phosphorylited, the complex interacts with Lamina. Phosphaorylation of either Thrl4 cr Ty |5 inhibits activation of Cde due to phosphorylation of

Thri&7.The complex autc-phosphorylates Try 15 of is ©de2 The complex of Cde and Cigl interaces with Rum | Cde2-Cde| 3 complex and Cde-Cig2
cormnplex form heterctrimars involking Rurnl.

Taken from
Hiroaki Kitano



The Protein Machine “"Instruction Set”

. cf. BioCalculus [Kitano&Nagasaki], k-calculus [Danosé&lLaneve]
On/Off switches .
Each protein has a structure

1 llnaccessiblel ¢ binary switches and binding sites.
But not all may be always accessible.

Protein

nactivi
MPF SELivaLing

\—{ Inaccessible é w“g. @
Binding Sites S

inhibyitory kinase

o % Switching of accessible switches.

- May cause other switches and

binding sites to become (in)accessible.

- May be triggered or inhibited by nearby specific
proteins in specific states.

Binding on accessible sites.

- May cause other switches and

binding sites to become (in)accessible.

- May be triggered or inhibited by nearby specific
proteins in specific states.




Notations for the Protein Machine

Stochastic n-Calculus

- Priami (following Hillston's PEPA) formalizes a
stochastic version of p-calculus where channels
have communication rates.

BioSPi

- Regev-Shapiro-Silverman propose modeling
chemical interactions (exchange of electrons and
small molecules) as "communication”.

- Standard stochastic simulation algorithms
(Gillespie) can be used to run in-silico
experiments.

- Complex formation is encoded via p-restriction.

PEPA

- Calder Gilmore and Hillston model the ERK
pathway.

k-calculus

- Danos and Laneve (following Kitano's BioCalculus)
define a calculus where complex formation is
primitive.

(Stochastic) Petri Nets
- S.Reddy'94 modeling pathways.

- Srivastava Perterson and Bentley analyze and
simulate E.coli stress response circuit.

Bio State Charts

- Harel uses State Charts to model biological
interactions via a semi-graphical FSM notation.

Pathway Logic

- Talcott-Eker-Knapp-Lincoln use term-rewriting.

BioCham

- ChabrierRivier-Fages-Soliman use term-rewriting
and CLT modelchecking.

Kohn Diagrams, Kitano Diagrams

SBML (Systems Biology Markup Language)
- XML dialect for MIM's:

e Compartments (statically nested)
e Reagents with concentrations
e Reactions with various rate laws

- Read and written by many tools
via the Systems Biology Workbench protocol



Frangois & Hakim

Design of genetic networks with specified functions by evolution in silico
P. Francois, V. Hakim, Proc. Natl. Acad. Sci. USA, (101)2, 580-585, 2004.

Reactions Constants | Stability
a7 — n+A 0.20 0.9 -1.4
A —:-.'\'nrhing 0085 0.0-1.5
} b — b+B 0.37 0.7-1.3
B —Nothing 0.034 0.0-8.9
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rates

dkA £ 0.0085

dkB & 0.034
dkAaB & 0.53
pntAunb £ 0

.42

geneACst 4 0.20
geneBCst 4 0.37
geneBInh & 0.027
new bA @ 0.19
new AB @ 0.72

Frangois & Hakim 3A

ptnB() 2 Interaction
Te@dks oriented degrade
+ ?2AB; cpxAB() complex with prot A
ptnA() &
TodkA degrade
+ 1AB complex with prot B
+ new unbg, i aunb bind to gene b

IbA(unb); ?unb; ptnA()

cpxAB() £ Togkae degrade
geneA() £ Tggepeacst: (PTNA() | geneA()) constit. make prot A
geneBfree() 4

Tagenescsr: (PTNB() | geneBfree()) constit. make prot B

+ ?bA(unb); geneBbound(unb) bind to prot A (inhibit)
geneBbound(unb) 4

Tegenesrnn: (PTNB() | geneBbound(unb)) inhib. make prot B

+ lunb; geneBfree() unbind from prot A

geneA() | geneBfree() 1 gene a and 1 gene b



6 possible
reactions
on AB

1 possible
reactions
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One State of the Simulation

Tge eACst "~‘

%

2 possible
reactions
onh bA

bAgo19
?(unb)
BCsT
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(* Francois and Hakim circuit 3A *)

val
val
val
val
val
val

val
new

new

Francois & Hakim 3A in SPiM

pntAunb = 0.42

geneACst = 0.20
geneBCst = 0.37
geneBInh = 0.027
dkA = 0.0085

dkB = 0.034

dkAB = 0.53

ba @ 0.19

AB @ 0.72

Tet

Tet

et

et

et

and

run

ptnaQ) = Interaction
do delay@dkAa degrade orienTed
or !AB complex with prot B
or (new unb@pntAunb bind to gene b
!'bACunb) ; (?unb; ptnAQ)))
ptnB() =
do delay@dkB degrade
or ?AB;cpxAB() complex with prot A
cpxAB() = delay@dkAB degrade
geneA() =
delay@geneACst; (ptnA() | geneA()) constit. make prot A
geneBfree() =
do delay@geneBCst; (ptnB() | geneBfree()) constit. make prot B
or ?bA(unb); geneBbound(unb) bind to prot A (inhibit)
geneBbound(unb:ch()) =

do delay@geneBInh; (ptnB() | geneBbound(unb)) inhib. make prot B
or 'unb; geneBfree() unbind from prot A

(geneA() | geneBfree()) 1 gene a and 1 gene b



Frangois & Hakim Fig3A, SPiM simulation

Parameters as in paper

3 copies of each gene.

35 35
SPiM simulation SPiM simulation %0 o ;
SPiM simulation
30 30 80 Ah
{ i
25 | l | | 25 70 [1 | f
2 IEW. 2 - B0 R ¥
n | “ h — dkA0.0085) 50 m = — dkA0.0085()
15 15 1 } —— dkB0.034() o ]' M‘ — dkBL0.034()
10 - 10 | ll' 0 l r
- _ l T " 20 il
q 2 T ’
10 i
oM | 0 N,/ E— il [
. . i R _ } T T
0 2000 4000 600 5000 10000 15000 20000 25000 0 2000 4000 6000
Spontaneous switch at ~500 .
(as discussed in Supporting Text) Free evolution Spontaneous switch at ~1100
30xB injected at ~3000 100xB injected at ~3000
30xA injected at ~4000 30xA injected at ~4000
Modified for stability: wa- o0z, ae- o002
120 140 140
SPiM simulation SPiM simulation SPiM simulation
. 3 120 120
b 100 M "1' 100 i
" N 80 N M M W \l"l a0 Jl ﬁ ll
- | — dkA:0.002() ) W u i J‘W 11 ﬂ L w — dkA0.002()
2 .
/ I Ii( — dkB-0.002() 50 - ‘ 80 i — dkB0.002()
" oW
} 40 A 40 }
e H 20 20
0 T T 0 T T 0 T T
0 5000 10000 15000 0 5000 10000 15000 i 5000 10000 15000

120xA injected at ~4000
120xB injected at ~8000

Free evolution



Frangois & Hakim Fig3Ast8

Circuit of Fig 3A with parameters from SupportingText Fig 8, plotted in Fig 13A

Reactions Constants : :
a — at+A 0.52 I: £U oA ]
A —Nothing | 0.00019 < Pulse of A Pulse of B
b = b+B 0.79 g o0
B —Nothing 0.0030 @ + 5 o
A+B— AB 0.053 g
= 0 = £
AR —Nothing 0.15 / \ 2 200
Z
A DA 0.22 @ Y
b:A — b+A 0.31 + R @ 0 - - .
bA = ALB | 043 <~ 2000 4000 6000 B000
time (min)
Fig 13A
Fig 8
300 -
T 400 140
SPiM simulation 600 SPiM simulation SPiM simulation SPiM simulation
250 j‘w"] c00 Pt 350 n 120
- /ﬂN s N 300 W W e J% . |
150 f - W = ' — dkA0.00019()
? / 300 200 ., ( IO
l" Il — - ur
N ,. | - ,-f’ 50 ][ | H dkB-0.003(
» ; P\
501 100 iw- \.\.’*‘\W ” f 20 H
50
0 n T N : : 0 . ; 0 - T T
0 5000 e 15000 5000 10000 15000 0 5000 10000 15000 O 5000 10000 15000

200xA injected at ~2500
500xB injected at ~5000
200xA injected at ~7500

200xB injected at O
600xA injected at ~2500
600xB injected at ~7500

Free evolution




Graphical Representation
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MAPK Cascade

Ultrasensitivity in the mitogen-activated protein

cascade, Chi-Ying F. Huang and

James E. Ferrell, Jr., 1996, Proc. Nat! Acad. Sci. USA, 93, 10078-10083.

Biochemistry: Huang and Ferrell Proc. Nail. Acad. Sci. USA 93 (1996)

Table 2. Predicted Hill coefficients for MAP kinase cascade components: Varying the assumed Kw values

Range of effective HilleGetficients (nH)
Range of assumed K, predicted for

Reaction values APKEKK MAPKK MAPK

1. MAPKEK — MAPKKK* 60-1500 nM 1.0 1.7 4.9

2 MAPEEK* — MAPKEEK 00 nM 1.0 1.7 4.9
3. MAPKK — MAPKK-P 60-1500 nM 1.0 1.3-23 4.0-5.1
4. MAPEK-P — MAPEK 60-1500 nM 1.0 1.5-1.9 16-6.7
5 MAPKK-P — MAPKK-PP 60-1500 nM 1.0 1.3-24 3852
6. MAPEE-PP — MAPEE-P 60-1500 nM 1.0 L.7-1.8 4.1-64
7. MAPK — MAPE-P 60-1500 nM (300 nMT) 1.0 1.7 39-62
8 MAPK-P — MAPK 60-1500 nM 1.0 1.7 4352
9. MAPK-P — MAPK-PP 60-1500 nM 1.0 1.7 3461
10. MAPK-FPP — MAPK-P 60-1500 nM 1.0 1.7 47-51

The assumed K values for each reaction were individually varied over the ranges shown, with the assumed K values for
the other nine reactions held constant. The effective Hill coefficients were calculated from the steepness of the predicted
stimulus/response curves, as described in the text.
1The K., value for reaction 7 has been measured to be 300 nM for the phosphorylation of a mammalian MAPK by a MAPKK

(N. Ahn, personal communication). All of the other Km values were initially assumed to be 300 nM as well.

10 chemical
reactions

¥
MAPKKK o = MAPKKK®

4
E2

MAPKK 7= MAPKK-P &> MAPKK-PP

t ¢

MAPKK F'ase

MAPK > MAPK-P

| |

e MAPK Pase
Caleulations. Eqs. 1-10 represent the reactions of the MAPK KK-PP + KK P'ase == KK-PP-KK P'ase R .
cascade, which are shown schematically in Fig. 1. We have used dg eservoirs
Goldbeter and Koshland’s nomenclature for the rate constants— OUTPUT
the letter a denotes association, d denotes dissociation without kg B k
catalysis, and k denotes product formation (11). KKK denotes — KK-P + KK P'ase 161 ac Enzymes
MATIIIG RIS denotes MAPIE and K denotes MAPE Fic. 1. Schematic view of the MAPK cascade. Activation of
KKK + Fl s KKECEL 2 KKK + Bl N ar ks MAPK depends u pon the phosphorylation of two conserve_d si_tes
dl B e [Thr-183 and Tyr-185 in rat p42 MAPK/Erk2 (4, 5)]. Full activation
KKK + B2 kckmn KKK o 1 o1 ! of MAPKK also requires phosphorylation of two sites [Ser-218 and
d; ) KoP 4 K Pase s ke P ks KoK P . Ser-222 in mouse Mek-1/MKK1 (6-10)]. Detailed mechanisms for the
o K R s 0 S activation of various MAPKKKs (e.g., Raf-1, B-Raf, Mos) are not vet
eSSt s sk At g s E . established; here we assume that MAPKKKs are activated and inac-
? ao o . . . . - #
. K-P + KK-PP — K-P-KK-PP —» K-PP + KK-PP  [9] twqted by enzymes we denote El1 and E2. MAPKKK ) denotes
KK-P + KK P'ase —= KK-PKK P'ase do activated MAPKKK. MAPKK-P and MAPKK-PP denote singly and

dy
I'%y d10
— KK + KK Pase 141 K-PP + K P'ase d.f:» KK-PP-K P'ase
10
= k- Kio

KK-P + KKK* =KK-P-KKK* — KK-PP + KKK*  [5] — K-P + K P'ase [10]

s

doubly phosphorylated MAPKK, respectively. MAPK-P and
MAPK-PP denote singly and doubly phosphorylated MAPK. P'ase
denotes phosphatase.



As 18 Ordinary Differential Equations
Plus 7 conservation equations

i
;[K—P] = K KKK-PP| — ag[ K-P][K P'ase]

+ deK-P+ K P'ase] — adK-PIKK-PP]

+ do[K-P+ KK-PP] + k[K-PP- K P'ase] 1241

d
a1 7 o RERIE AR The 10 reactions described above give rise to 18 rate
+ KRR B2 i equations.
;—l[[KKK-El] = a,[KKK][E1]- (d, + k)[KKK-E1]  [12]
. ;—l[[K-P'K P’ase] = a3[K-P][K P'ase]
7 [KKK*] = —a,[KKK*J[E2]+ d[KKK*E2]

+ ky[KKK-E1] + (ky + ds)[KK-KKK*] — a:[KKK*]KK]

+ (ks + d<)[KK-P-KKK*] — aJKK-PIKKK*] [13]

One equation for each
species (8) and complex
(10), but not for constant
concentration enzymes (4)

— (ds + kg)[K-P-K P'ase] [25]
d
g7 [K-P-KK-PP] = as[K-P][KK-PP]

d _ CATRLP . KR
G [KKK*E2] = ;[ KKK*J[E2] = (d; + ko) [KKK*E2] (ds + ko)[K-P - KK-PP] 126]

1141 d _ -
77 [K-PP] = —ai[K-PP][K Pasc]

i[KK] = —a[KK|[KKK*] + d3] KK-KKK*|

dat + dy[K-PP-K Plase] + kJ[K-P-KK-PP]  [27]

e . ;
+ kJKK-P KK P'ase] [1s] £ [K-PPK Prase] = a,oK-PP|[K P'ase]
. dt
d

q; [KKKKK'] = a5[KK][KKK"] — (dyo + ki J[K-PP-K P'ase] [28]

— (dy + ky)[KK-KKK*] [16]

i
i[KK-P] = —a,[KK-P][KK P'ase] + d,[KK-P-KK P'ase]
+ kKK -KKK*] + ko KK-PP-KK P'ase]
+ d{KK-P-KKK*] — adKK-PI[KKK*] [17]

+ dfKK-P-KKK*] — afKK-PIKKK*] 117]

[Ely = [E1] + [KKKE1] 1301 In addition, there are seven conservation equations (Eqgs.
[E2,] = [E2] + [KKK"E2] 1311 29-33).

[KK,u] = [KK] + [KK-P] + [KK-PP] + [KKKKK']

1
; |[KK-PKK P'ase] = a,[KK-P|[KK P'ase]
— (dy + ky)[KK-P-KK P'ase] [18]
+ [KK-P-KKK*] + [KK-P-KK P'ase]
+ [KK-PP-KK P'ase]
+ [KK-PP-K] + [KK-PP-K-P] 132]
[KK P'asei ] = [KK P'ase] + [KK P'ase-KK-P]

i
%[KK-P-KKK*] = as[KK-P][KKK*]

[KKK,o = [KKK] + [KKK*] + [KKK-E1]
+ [KKK*-E2]

— (ds + ks)[KK-P-KKK"] 1191

d
37 [KK-PP] = k[KK-PKKK '] ~ a,[KK-PP][KK P'ase]

+ d[KK-PP+KK P'ase] — a;[KK-PP][K] + [KK P'ase - KK-PP] [33]

+ [KKK" K] + [KKK"-K-P] [29]

+ (d; + k;)[K:KK-PP]
+ (dy + ko)[K-P-KK-PP]
— a [K-P[KK-PP] [20]
1
%[KK-PP‘KK Pase] = ag[KK-PP][KK P’ase]
— (ds + Ke)[KK-PP-KK P'ase] [21]
1
#[K] = —a;[K][KK-PP] + d;[K-KK-PP]
+ ks[K-P-K P'ase] [22]

d
3¢ [KKK-PP] = a;[K][KK-PP] ~ (d; + k;)[KKK-PP]
123]

[Kiot] = [K] + [K-P] + [K-PP] + [KK-PP-K]
+ KK-PP-K-P| + [K-P+K P'ase] + [K-PP-K P'ase]  [34]
[K Prase,,] = [K P'ase] + [K-P-K P'ase]
+ [K-PP:K P'ase] 135]
These equations were solved numerically using the Runge—
Kutta-based NDSolve algorithm in Mathematica (Wolfram
Research, Champaign, IL). An annotated copy of the Math-

ematica code for the MAPK cascade rate equations can be
obtained from J.E.F.

Each molecule

{ in exactly one state



The Circuit

(input)
[ | I | : !
KKK = KKK* KK e KK-P o—— KK-PP. K = K-P —no
T T ? T 7 (output)

E2 KK-Pase K-Pase



Enzymatic Reactions

Reaction View

intermediate
complex
E C

e E+S T ES —— P:E
s == p x

. . ivate bindings bet
Interaction View Pl
bind
. S() 2 new u@d new k@e
ol la (u,k): (lug: SO + k. PO)
] react
bind unbind react
GC ud ke ............ > @
EO) 2 ?a.(uk); Pug EQ + 2k, EQ))
@ PO .




MAPK Cascade in SPiM

let KKK() =
(new ul@d1:Release new kl@r1:React

!al(ul,kl); (do !'ul;KKK() or !k1;KKKst())) [1]substrate

KKK:E1 complex
and KKKst() =
(new u2@d2:Release new k2@r2:React
do !a2(u2,k2); (do 'u2;KKKst() or 'k2; KKK()) [2]substrate
or ?a3(u3,k3); (do ?u3;KKKst() or ?k3;KKKst()) [3]|kinase
or ?a5(u5,k5); (do ?uS;KKKst() or ?k5;KKKst())) [5]|kinase

let E1() =
?al(ul,kl); (do ?ul;E1() or ?k1;E1()) [1]enzyme
E1:KKK complex
let E2() =
?a2(u2,k2); (do ?u2;E2() or ?k2;E2()) [2]enzyme

let KK() =

(new u3@d3:Release new k3@r3:React

!a3(u3,k3); (do 'u3;KK() or 'k3; KK P())) [3]substrate
and KK P() =

(new u4@d4:Release new kd@r4:React

new uS@dS:Release new kS@r5:React

do !a4(u4,k4); (do 'u4;KK P() or 'k4;KK())

or !a5(u5,k5); (do !uS;KK _P() or !k5; KK PP()))

[4]substrate
[S]substrate

and KK PP() =
(new wb6@d6:Release new k6@r6:React
k6); (do !'u6;KK PP() or 'k6; KK P())

[6]substrate

Or ?a7(u7, ‘. £ A DM X707 DDA e OV nn/\) I7]kinase
One process for each :

or ?a9(u9,k9): . . ) [9]kinase
component (12) including
enzymes, but not for

and KKPse() = ymes, f

complexes.

or ?a6(u6,k6); (do ?u6;KKPse() or ?k6;KKPse()) [6]|phtase

No need for conservation
equations: implicit in “choice”
Joperator in the calculus.

[7]substrate

and K P() =
(new u8@d8:Release new k8 @r8:React
new u9@d9:Release new k9@r9:React
do !a8(u8,k8); (do !u8;K_P() or 'k8;K())
or !a9(u9,k9); (do 'u9;K P() or !k9;K PP()))

[8]substrate
[9]substrate

and K PP() =
(new ul0@d10:Release new k10@r10:React
1a10(u10,k10); (do 'u10;K_PP() or 'k10;K_P())) [10]substrate
and KPse() =
do ?a8(u8.k8); (do ?u8;KPse() or ?k8;KPse()) [8]phtase
or 2a10(u10,k10); (do ?ul0;KPse() or ?k10;KPse()) [10|phtase



.. global channels

type Release = chan()
type React = chan()
type Bond = chan(Release,React)

new al@1.0:Bond val dlil.() val rlil.O | a.(u.,k.): release (U-@d-) and react (k@r')
new a2@1.0:Bond val d2=1.0 val r2=1.0 'h e | d y Ib d h | | !
new a3@1.0:Bond val d3=1.0 val r3=1.0 channels passed over bond (;) channel.
new a4@1.0:Bond val d4=1.0 val r4=1.0 (NO behavior attached to channels

new a5@1.0:Bond val d5=1.0 val r5=1.0 except interaction rate.)

new a6@1.0:Bond val d6=1.0 val r6=1.0
new a7@1.0:Bond val d7=1.0 val r7=1.0
new a8@1.0:Bond val d8=1.0 val r8=1.0
new a9@1.0:Bond val d9=1.0 val r9=1.0
new al0@1.0:Bond val d10=1.0 val r10=1.0

run 100 of KKK() run 100 of KK() run 100 of K()
run 1 of E2() run 1 of KKPse() run 1 of KPse()
run 1 of E1()



MAPK Cascade Simulation in SPiM

I l 1 I

KKK* KK —— KK-P =— KK-PP

T J

E2 KK-P'ase

120

— KKK*
KK
KK_P

—KK_PP

— K

— KP

\® injected

— KKK

—K_PP

R

T (oquuT)
K-P'ase
1st stage:
KKK* barely rises
2nd stage:
KK-PP rises, but is not stable
3rd stage:

K-PP flips up to max
even anticipating 2" stage

Rates and concentrations
ARTIFICIAL:

All coefficients 1.0 Il
100xKKK, 100xKK, 100xK,
5xE2, 5xKKPse, 5xKPse.

Input is 1xE1.
Output is 90xK-PP (ultrasensitivity).



MAPK Cascade Simulation in SPiM

120

100 T (input)
FE K"
=0 KK
- e I YOu NN YU YO R Y
in : _ " KKK > KKK* KK > KKP o> KK-PP. K > Kk-P 4_
. JA RSP | —e (output)
_D -__-uh_.-,_—._‘l_pa.ﬂlﬂﬁ—ﬁﬁ—u—_q@_ KKK* | ——= E2 KK-P'ase K-P'ase
[=] =0 100 150 Z00 250
120 ..
' s X X X
gy A o e ’ ’ '
e Lo T e K 13xE2, 13xKKPse, 13xKPse.
::.ij nxE1l as indicated
—n (1xE1 is not sufficient to produce an output)
K_P
— K_FP

1zZ0

100

=0 4

&0

40

120

100

=0 45

&0

40 4

o =0 100 150 200 Z=0




MAPK Cascade Simulation in SPiM

(input)

CGD
b ) $ o :

KKK o KKK* KK T— KK-P =——" KK-PP| K T— K-P _-

T T T T (output)

E2 KK-P'ase K-P'ase

Rates and concentrations
AS IN PAPER:

1200

% ; KKK :EE? 1XE2 (0.3 nM)
1000 KK-PP » 1xKKPase (0.3 nM)
800 y Jr - KKK* KI_P 120xKPase (120 nM)

— KK_PP 3xKKK (3 nM)

1400

B0

. 1200xKK (1.2 uM)

zzz A\{,K M/’ / /| K:_pp- :E:Ep 1200xK (1.2 uM)
0 JM dx = rx = 150, ax = 1

= . (Kmx = (dx + rx) / ax, Km = 300 nM)
injected IxE1




Gene Networks

RCgUlOﬂOﬂ R .

Gene Regulatory
Networks

Gene
Machine

Holds receptors, actuators
hosts reactions

Protein
Machine

Aminoacids

R

Implements fusion, fission



Pretty far from

2. The Gene Machine . croms.

The "Central Dogma" of Molecular Biology

DNA messenger PROTEIN SYSTEMS

RMA

interaction

4-letter 4-letter 20-letter 50.000(?)
digital code digital code  digital code shapes

Structural genes RNA polymerase
) D — i

Lactose—4 .
facrepressor > .
B-galactosidase Permease Transacetylase

DNA Tutorial

Metabolic space

Meiabaolife 1 Metabolite 2

o . =
e, PrOtEIN space

Complex 34 - .
Prolein 4

Protein 1 Frotain .3

N

| ezt
_ Gene 2 - T~

~

%
# Gene3d ™

Iy L9
Gene 1 ‘1
Gene space Gene 4
- Taken from

Pedro Mendes



The Gene Machine “Instruction Set”

cf. Hybrid Petri Nets [Matsuno, Doi, Nagasaki, Miyano]

Positive Regulation
Negative Regulation F\ /—{ Transcription Input

Input Output Output?2 Outputl
I ]

Gene
(Stretch of DNA)

Regulation of a gene (positive and
negative) influences
transcription. The requlatory
region has precise DNA
sequences, but not meant for
coding proteins: meant for
binding reqgulators.

Transcription produces molecules
(RNA or, through RNA, proteins)
that bind to regulatory region of
other genes (or that are end-
products).

]

"External Choice"
The phage
lambda switch

—

Coding region

Regulatory region

Human (and mammalian) Genome Size
3Gbp (Giga base pairs) 750MB @ 4bp/Byte (CD)
Non-repetitive: 16bp 250MB
In genes: 320Mbp 80MB
Coding: 160Mbp 40MB
Protein-coding genes: 30,000-40,000

M.Genitalium (smallest true organism)
580,073bp 145KB (eBook)

E.Coli (bacteria): 4Mbp IMB (floppy)

Yeast (eukarya): 12Mbp 3MB (MP3 song)

Wheat 17Gbp 4.256B (DVD)




Gene Composition

—I:’_'I'—bl:> Is a shorthand for:
a

Under the assumptions [Kim & Tidor]

1) The solution is well-stirred
(no spatial dependence on concentrations or rates).

2) There is no regulation cross-talk.

3) Control of expression is at transcription level only
(no RNA-RNA or RNA-protein effects)

4) Transcriptions and translation rates monotonically
affect mRNA and protein concentrations resp.

Ex: Bistable Switch

1

Ex: Oscillator r

@

degradation

l,

protein @

A
translation
reg
mRNA
transcription
gene
a

[

C
1

Expressed

Expressing



Indirect Gene Effects

o e
No combination of standard (a) er phosatise - factor

high-throughput experiments | | 1 o
can reconstruct an a-priori proten 0

known gene/protein network I T f ! \ T
[Wagner'], DN:‘“\—[{.GeneHDJ:TGene 2] —qune3| —[{.Gene4| QJ:{.Gene5|

(b) (c)

Aspect of gene activity: mRNA expression Aspect of gene activity: phosphorylation state

Genetic perturbation: gene deletion Genetic perturbation: gene deletion

Gl: G2, G5 G1: G3. G4

G2: G5 G2: G3.G4

G3: G5 G3: G4

G4: G5 G4

G5: G5: Taken from

Andreas Wagner

Fig. 1. The importance of specifiying gene activity when reconstructing genetic networks. (a) A hypothetical biochemical pathway involving
two transcription factors, a protein kinase, and a protein phosphatase, as well as the genes encoding them. See text for details. (by Shown
is a list of perturbation effects for each of the five genes in {a), when perturbing individual genes by deleting them, and when using mRNA
expression level as an indicator of gene activity. The left-most symbol in each line stands for the perturbed gene. To the right of each colon is
a list of genes whose activity is affected by the perturbation. (¢) Analogous to (b} but for a different notion of gene activity (phosphorylation
state).

One of many bistable switches A : 4 A:B B
that cannot be described by - & T O @&

pure gene regulatory networks \ i
[Francois & Hakim]. ‘ J g




Structure of the Coding Region

The Central Dogma

DNA

transcription 1

MRNA
translation 1
Protein @

RNA is not just an intermediary; it can:
- Fold-up like a protein

- Act like an enzyme

- Regulate other transcribed RNA

- Direct protein editing

* The majority of the genomic sequence in
higher organisms (the non-protein-coding DNA)
is devoted to the control of developmental
programming.
* The majority of the regulatory transactions in
higher organisms are conveyed by RNAs, not
proteins.

John S. Mattick

Challenging the Dogma
(in higher organisms)

gene
chrom atin ———

transcription

L
primary transcript

splicing

o

rocassin
assembled exons + Introns P g

[RMNA editing)
i = microRNAs
transiation Processing  (mqulatory functions)
¥ others?
protein ncANA
{structural, cataytic,  (various tunctions)
signang, foguiaon) BEHisS

97-98% of the transcriptional output of the

human genome is non-protein-coding RNA.
30-40,000 "protein genes” (1.5% of genome)
60-100,000 “transcription units” (>30% of genome is transcribed)



|
Proteins l—/' ' .
DNA — | | b - T

Structure of a Regulatory Region

A
(-2300) G F E

= {1 00bp

DC B Bp

3 — '
| | % | o AL | !
Protein ® 4@3@ el ﬁi% geﬁ % & @) -?@ _ ‘ “ ﬁ]“g ... “@spacn
binding sites . -
B (-218) {-200) (-180) (-160) (-140) {uuy i-118)
CG1 F 2 G2 SpGCF1
DNA ’-Bmmﬁgum srmmokazornrcaontcocs
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C Module A functions:

Vegetal plate expression in early development:

Synergism with moedules B and G enhancing endoderm expression in later development: I

Repression in ectoderm (modules E and F) and skeletogenic masenchyme (module DC):

Modules E, F and DC with LiCl treatment:

Fig. 1. Endo 16 cis-regulatory system and interactive roles of module A, (A)
Diversity of protein binding sites and organization into modular subregions
[madified from (7], Specific ONA binding sites are indicated as red blocks,
modular subregions are denoted by letters G to A Bp, basal promotern).
Proteing binding at the target sites considerad in this worlks are indicated: Oy,
SpOte-1 (72 SpGCH (74); the proteins CG, £, and P, which are not yet
cloned; and protein C [a CREE family protein (181] in subregion F. Proteins for
which sites coour in multiple regions of the DMNA sequence (indicated by the
black lingl are shown bensath. (B) Sequence of module A and location of
protein binding sites, Sites are indicated in the same colors as in (&), A
fragment containing CG, and GG, stes as well a3 Bp has no endoderm-

A >
dﬁl‘)’

F/??qu—x
/??\ﬂr)

specific activity and services other upstream cis-regulatory systems promis-
cuously; similarly, the Endold cis-regulatory system functions specifically
with heterologous promoters substituted for BEp (5, 8. 12). Boxed sequences
indicate conserved core elements of the target sites (7, 12 74), not the
complete target site sequences, IC) Intearative and interactive functions of
module ALE, &. Module A communicates the output of all upstream modules
to the basal transcription apparatus. It also initiates endoderm expression,
increasas the output of modules B and G, and is required for functions of the
Lpstream modules F, E, and OC. These functions are repression of expres-
sionin nonendodermal domains and enhancemant of expression inresponss
tio LiCl.
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Taken from
Eric H Davidson



Function of a Regulatory Region

[r3]
-

DNA |

whrrarree=y

Or

tima varying influence ———= scalar factor - ---- 2 inhibitory swich e ]

if(F=1orE=10orCD=1)and (Z=1) Repression functions of modules F, E, and

a=1 DC mediated by Z site

eise a=0

if(P=1andCG, =1) Both P and CG, needed for synergistic link
with medule B
p=2
else p=0
if (CG,=1and CG,=1and CG,=1) Final step up of system output

r=2
else  y=1
B(t) = B(t) + G(t) Positive input from modules B and G
e(t) = [i"5(t) Synergistic amplification of module B
output by CG,-P subsystem
if ((t) = 0) Switch determining whether Otx site in
_ module A, or upstream modules (i.e.,
51 = Otx(t) mainly module B), will control level of
else E(t) = £(t) activity
if (o = 1) Repression function inoperative in
endoderm but blocks activity elsewhere
nit)=0
else  n{t)=5(1) C-H.Yuh, H.Bolouri, E.H.Davidson. Genomic Cis-Regulatory
a(t) = y*n(t) Final output communicated to BTA Logic: Experimental and Computational Analysis of a

Sea Urchin Gene. Science 279:1896-1902, 1998



The Raw Data

S.cerevisiae

" I CeIID;vision
yeast cell cycle

oo tarors =
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Cyclins

Average value of a given feature
over all cell-cycle-proteins whose
genes are maximally expressed
at a given time in the cycle.

Y phosphorylation
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m

PEST regions
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-

Figure 6. Feature variation during the cell cycle. The temporal variation in nine selected protein features during the cell cycle, with zero time (at the top of the plot) corresponding to the presumed time of cell division (M=61 transition). The color scales correspond to +/-two
standard deviations from the cell cycle average. The concentric feature circles correspond fo: isoelectric point, nuclear and extracellular localization predictions, PEST regions, instability index, N-linked glycosylation potential, O-GalNAc ?chasylahon potential,

serine/threonine phosphorylation potential and tyrosine phosphorylation potential. The presumed positions of the four cell cycle phases 61; S, 62 and M are marked. Also depicted are known cell cycle transcriptional activators (marked in b

where they are reporfed to function.

Protein Feature Based Identification of Cell Cycle Regulated Proteins in Yeast
Ulrik de Lichtenberg, Thomas S. Jensen, Lars J. Jensen and Seren Brunak

ue), positioned at the time

Measured protein features



Gene Regulatory Networks

http://strc.herts.ac.uk/bio/maria/NetBuilder/

NetBuilder
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Epigenetic Control



The Programming Model

e Strange facts about genetic networks:

Not an operator algebra. The output of each gate is fixed and pre-determined; it is
never a function of the input!

Not term-rewriting, nor Petri nets. Inhibition is widespread.

Not Communicating Sequential Processes. Feedback is widespread: asynchronous
communication needed to avoid immediate self-deadlocks. Even the simplest gates
cannot be modeled as a single synchronous automata.

Not Message-Passing between genes. Messages themselves have behavior (e.g., they
stochastically decay and combine), hence messages are processes as well.

Not Data-Flow. Any attempt to use data-flow-style modeling seems doomed because
of widespread loops that lead to deadlocks or unbounded queues. Data-flow tokens do
not “decay” like proteins.

e How can it possibly work?

Stochastic broadcasting. The apparently crude idea of broadcasting a whole bunch of
asynchronous decaying messages to activate a future gate, means there are never any
“pipeline full” deadlocks, even in presence of abundant feedback loops.

Stochastic degradation. Degradation is fundamental for system stability, and at the
same time can lead to sudden instability and detection of concentration levels.



Notations for the

e Many of the same techniques as for
the Protein Machine apply.

- Process Calculi, Petri Nets, Term-
Rewriting Systems...

e But the "programming model” is
different.
- Asynchronous stochastic control.
- Biologically poorly understood.

- Network "motifs” are being analyzed.

Gene Machine

Specific techniques:
- Hybrid Petri Nets

e [Matsuno, Doi, Nagasaki, Miyano]
Gene Regulation

e Genomic Object Net
www.genomicobject.net

Gene Regulation Diagrams

Mixed Gene-Protein Diagrams



(The Classical ODE Approach)

[Chen, He, Church]

I.e.: to model an operating
system, write a set of
differential equations relating
: the concentrations in memor
crotaon v
Q gradation of data structures and stack

frames over time. (Duh!)

n: number of genes

dr _ F(p)- Vr r mRNA concentrations (n-dim vector)
dt p protein concentrations (n-dim vector)
dp _
g S Lr-Ur f (p) transcription functions:

(n-dim vector polynomials on p)



Nullary Gate

spontaneous
, ("constitutive")
no input |-\ _E> b output

null
interaction site of
output protein

null(b) 2 <,; (tr(b) | null(b))

(recursive, parametric) \ d ¥
process definition and repea

output protein

stochastic delay (t) with (transcripion factor),
rate € of constitutive spawn out

transcription

A stochastic rate r is always associated with each channel a. (at channel
creation time) and delay 1., but is often omitted when unambiguous.



Production and Degradation

Degradation is extremely important and often deliberate;
it changes unbounded growth into (roughly) stable signals.

/ and repeat
transcripton
factor ’\ tr(p) £ (Ip,.. tr( —

degradation
P)) + 15
\{ degradation rate 6
interaction site of stochastic choice
transcription factor (race between r and §)

(output, !) interaction with rate r
(input, ?, is on the target gene)

A transcription factor is a process (not a message or a channel):
it has behavior such as interaction on p and degradation.

combined effect of
production and
degradation (without

any interaction on b) null(b)  eo1 50001
product \ b ..
interaction 7
— b offersonb Q
— null(b) £ t.; (tr(b) | null(b)) ;r:c“e“;i:;f“w )




Unary Pos Gate

input ’\ /‘ output (stimulated
(excitatory) a= > b or constitutive)

pos
transcripton delay
A with rate n
(input, ?) interaction with rate r pos(a,b) >
?a. 7. (tr(b) | pos(a,b)) +
e L r race between
or constitutive transcription .. (tr(b) | pos(a,b))
. e P ' rand e
to always get things started
output protein
parallel, not sequence, unlimited
to handle self-loops r=10,£=0.01, 1=0.1, =0.001 amount of
without deadlock b :
L R A Stimulated -
el AN Y +— *tr(a,) | pos(a,,b)

— pos(a,b)

10000 120



Unary Neg Gate

input ’\ /‘ output (constitutive
(inhibitory) a 1 > b when not inhibited)

neg

inhibition delay

A
(input, ?) interaction with rate r |\n39(azb)=//‘ with rate 1
?a.; 1. heg(a,b) +
or constitutive transcription i T, (tr(b) | neg(a,b))\‘ race between

to always get things started rand ¢

r=1.0, e=0.1, n=0.01, $=0.001

e e ir(a) | neg(e.)




pos(a,b) |
pos(b,c)

Signal Amplification

a b c
B2 s

pos pos

With little degradation

r=10,¢=0.01,1=01, 6=0.00001

pos(a,b) £

?a,; t,. (tr(b) | pos(a,b)) +
1. (tr(b) | pos(a,b))

tr(p) £ (Ip,.. tr(p)) + 75

r=1.0,=0.01,1=0.1, 3=0.001

pos(a,b) | pos(b,c)

E.g. 1 a that
interacts twice
before decay can
produces 2 b that
each interact twice
before decay, which
produce 4 c...

even with no a input,
consitutive production
of b gets amplified to
a high c signal



Signal Normalization

neg(a,b) | a b c neogéa.,:). éne
?a.. T, neg(a,b) +
neg(b.c) 1 1™ T, (‘rrh(b) | neg(a,b))

neg neg

tr(p) = (Ip.. tr(p)) + T

r=1.0,e=0.1,1=0.01, 5=0.001

a non-zero input level, g,
whether weak or strong,
is renormalized to a
standard level, c.

30*tr(a) | neg(a,b) | neg(b,c)



Self Feedback Circuits

os(a,a neg(a,a
o) ©D g
pos heg
pos(a,b) £ neg(a,b) £
?a.; (tr(b) | pos(a,b)) + ?a.; T, neg(a,b) +
1. (tr(b) | pos(a,b)) T.. (tr(b) | neg(a,b))
tr(p) £ (p.: tr(p)) + T tr(p) £ (p.: Tr(p)) + T
(Can overwhelm degradation, high, to raise
depending on parameters) the signal Less degradation 3-00005 -
r=1.0,e=0.1,8=001 - r=1.0, £=10.0, h=1.0, 5=0.005 160
3500 50 KL
3000 ]I' ol w
A a 0 1
2500 f 40 ;g ]
2000 0 : : : :
_ ;l( 30 0 1000 2000 3000 4000 5000
1500 / _ And a bit less 30,0001 -
1000 e B _
. / 0 - B
2 200
: . v : SR it
0 5 10 15 20 0 500 1000 1500 2000 2500 =0
pOS(G ,a) neg (a ,a) ! il 50‘00 10(‘]00 15(‘]00 20000




Two-gate Feedback Circuits

b
N

pos neg

pos(b,a) |
heg(a,b)

Monostable:

For some degradation rates is quite stable:

r=1.0, &=0.1, h=0.01, 6=0.0005

700 700
600 600
500 \ 500
400 \ 400
300 300
\\.._ A, m._ a a
oty PV hid
200 SR o 200 ""‘W'-M'
. " J/,N
: b b

: : : ‘ .
0 10000 20000 30000 40000 50000 5 qpggy 20000 30000 40000 50000

pos(b,a) | neg(a,b)

But with a small change in degradation, it goes wild:

r=1.0,¢=0.1, h=0.01, 3=0.0001
6000

5000
,,f’/,, a

4000

3000 //////

2000

1000

b

2000 4000 6000 G000

0

pos(lﬂo,a) | neg(a,b)

160

140

120

100
80

60
40
20

0

b
|

neg neg

neg(b,a) |
heg(a,b)

Bistable:

r=1.0, e=0.1, h=0.01, =0.001

120 140 )
100 W&WWDWF 120 L ‘
. Tj’ﬁ”&@w&w—
80 T
i b
/ 50
40 » /
20 o
BRI
0 5000 10000 15000 20000 0 5000 10000 15000 20000
neg(b,a) | neg(a,b)
£=0.1, h=0.01, 8=0.001

5 runs with r(a)=0.1,

— b1:1.<=
—w2i<| n(b)=1.0 shows that
b3:1.<> . ea .
1| Circuit is now biased
—wi<| towards expressing b

/
|

5000 10000 15000 20000 25000



Repressilator

neg(a,b) | 1L neg(a,b) &

neg(b,c) | ¢ neg ?a.; T,; neg(a,b) +

neg(c,a) 1l [al t.. (tr(b) | neg(a,b))
neg neg

Same circuit, three different degradation models by chaning the tr component:

— ol

interact once and die intferact once and die

A otherwise stick around A otherwise decay
Tr'(p) - Ipr r=10,e701,h=004 Tf‘(p) - Ipr * T r=10, 0.1, h=0.04, 3=0.0001 _
- ab— A ab
—— f’\\_/ Y A f\/\ J\/ \ f\;
o 7 Ja NS AN XN AN K
e : e : JK\//\\//\\//\\//\\/’X :
N _ interact many times
’ Tr’(P) = (!P,« Tr‘(P)) + T /‘ and decay r=1.0, £20.1, h=0.001, 520,001
ol [ A R PR "7 T L —a ab
oot = W AT o, W . VA P
o L M A \ r [T | Y| Y i
e T / . | P y N FE ] { I | :
-0 ] A 5 I A f [ 1 f r N
. | I | [ N 1 PN T I S

10000 20000 20000 40000 soooo soo0o0o 100000

Subtle.. at any point one gate is inhibited and the other two can fire constitutively. If one of them fires first,
nothing really changes, but if the other one fires first, then the cycle progresses.



System Properties: Oscillation Parameters

€=0.5,1=0.0001 €=0.5,1n=0.01
600

400
200 i r
0 I I T
0 10000 20000 30000 40000 50000 60000 10000 20000 30000 40000 50000 60000
n
£=0.05,7 = 0.0001 £=0.05,1=0.01

80

j Kgm A

10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000

The constitutive rate € (fogether with the degradation rate) determines
oscillation ampli’rude, while the inhibition rate n determines oscillation frequency.

= r=10.0
150 150 |
1001 ’/‘X\ 100 j W
WX‘\ f“}( ‘ . / }("'\ f)(u
L ANCE AL NN I (NS N Y L W N
10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000

We can view the interaction rate ras a measure of the volume (or femperature)
of the solution; that is, of how often transcription factors bump into gates.
Oscillation frequency and amplitude remain unaffected in a large range of
variation of .



Repressilator in SPiM

val dk = 0.001 (* Decay rate *)
val eta = 0.001 (* Inhibition rate *)
val cst = 0.1 (* Constitutive rate ¥*)

let tr(p:chan(Q)) =

do !p; tr(p)
or delay@dk

let neg(a:chan(), b:chan()) =
do ?a; delay@eta; neg(a,b)
or delay@cst; (tr(b) | neg(a,b))

(* The circuit *)
val bnd = 1.0 (* Protein binding rate ¥*)
new a@bnd: chan()
new b@bnd: chan()
new c@bnd: chan()

run (neg(c,a) | neg(a,b) | neg(b,c))



System Properties: Fixpoints

a b c d e
I - a
- L 1 — b Asequence of neg
neg(a,b) | neg(b,c) | neg(c,d) | neg(d,e) — d gates behaves as
A ¢ expected, with
12 n-091 128 n=to 128 n=190%0 alternating signals,
r’fca QP ons W (less “Booleanly”
501/ SOﬁV\Pm/‘/\A”Jf 50| /- i depending on
0 attenuation).

T 7 0 w T 0 ‘ .
0 5000 10000 0 5000 10000 0 5000 10000

a b c d e
I_’ — Now add a self-loop
a
L] 1 1 1 1 — an at the head. Not a
neg(a,a) | neg(a,b) | neg(b,c) | neg(c,d) | neg(d,e) — d Boolean circuit!
e
1 n=001]150 n=19 15 No more alternations,
100 1 T"smb'e / all fow! | 100 \ because... each gate
50 50* 50| S €Tt ke finoi
0* } fl L el | | is at its fixpoint.

5000 10000 O 5000 10000 0 5000 10000



Repressilator ODE Model and Simulation

| Bruce E Shapiro
0—" R{I " ¥P¢Z -0 Cellerator
Y—PY——0
RNA ‘
o — - X—PX——0
RNA
d[X] _ a+o[PY]" ‘ d[PX] _ _[PX
d Ky AR
dly] _ a+a[PZ]" d[PY] _ _IpY
di Kapzy O AN
dzy_,  oetalPX]" .. d[;z]=ﬁ{[z]—[PZ]}

dt

K" +[PX]"




Guet et al.:

D038/lac-

Combinatorial Synthesis of Genetic Networks, Guet, Elowitz, Hsing, Leibler,
1996, Science, May 2002, 1466-1470.
IPTG

alc

__I_ TetR

LacI _I__

AcI

|

L]

|

-1

tet lac

cIl

gfp

experiment:

alc - + - +
IPTG - - + +
GFP -+ - -

(LacI -+ - =)

neg(TetR,TetR) | neg(TetR,LacI) | neg(LacI AcI) | neg(AcI,GFP)

140

120

.1

are

TDT.
Ll IF

40 —

20 e

r’;_‘b-h-—uw;gt, w
o feeR -u.--#r--.-...---"--.._ P R ]

a 2(](](] 4000 5000 s000
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Q 2000 4000 S000 S000

140

120

100

S0

40 -

20 —+

1000¢
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100

S0

50
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1000

r=1.0, e=0.1, h=1.0, 6=0.001

a 2000

4000 5000 8000 10000

aTc

1 TIPTG

GFP

a 2000

4000 5000 S000 10000

We can model an inducer like
aTc a$ something that
compeétés_ for| the
transcription factor.

IPTG de-represses the lac
operon, by binding to the lac
repressor(the lac I gene
prodiict); preventing it from

bindirig'fo-the operator.




Guet et al.

Combinatorial Synthesis of Genetic Networks, Guet, Elowitz, Hsing, Leibler,
1996, Science, May 2002, 1466-1470.

They engineered in E.Coli all genetic circuits with four single-
input gates; such as this one:

aTc IPTG
] TeR ez [T AL GFP
—>
[T A A 2
tet lac cI gfp

Then they measured the GFP output (a fluorescent protein) in presence or
absence of each of two inhibitors (aTc and IPTG).

E)](”pe"m()er(g:l | The output of some
?p;(; 0011 circuits did not seem
GFP_ 0100 to make any sense...

Here "1" means “high brightness” and "0" means "low brightness” on a
population of bacteria after some time. (I.e. integrated in space and time.)




Further Building Blocks

rates
Negp Gate regulatory
input AA pI‘O duct

a ll:» 0 negp(a,(€N),p) =
Ta. T, negp(a,(en),p) +

negp product generation

TS‘ (p() | negp(aa(ean)ap))

(/I repressible factor
rtr(b,r) =

v interaction >1b. rtr(b,r) + < binding
b _I__ interaction > lr. 0+ < repression
_] del 5 T, 0 < degradation

rtr(b,r) — 0

repressor |\ ,/-ep(r) =M. rep(V)

arbitray amounts of..



D038/lac-

D038/lac: Experiment:
alc IPTG alc 0101
_l TetR Lacl r lel GFP IPTG 0011
>
or FH N o 1 o, 1 o 1| GFP 0100
tet lac cl gfp
Naive “Boolean” analysis would
suggest GFP=0.5 (oscillation)
channels|TetR:r,, Lacl:r,, lcl:ry;, GFP:r, alc:rs, IPTG:r because of self-loop.
PT=(g;,m;) Ph=(g,M,) PL=(&, My molecules GFP=0 there is consistent only
\ with (somehow) the head loop
tet = negp(TetR, PT, rtr(TetR,alc)) promoters setting TetR=LacI=0. But in that
lac = negp( TetR, PT, 7'1‘7'( Lacl I PTG)) case, aTc should have no effect (it
7= Lacl ’PL (1 LS can only subtract from those
¢l = negp ( act, " 2 7'( CI)) repressors signals) but instead it sets GFP=1.
gfp = negp(lcl, P*, tr(GFP)) / (when present)
DO038lac =| tet | lac | cl T IPTG Hence we need to
“c et|lac|cl| glp ||| replaTc) | rep( ) understand better the

“dynamics” of this network.



Simulation results for D0O38/lac-

Experiment:
alc 0101
IPTG 0011
GFP 0100
r=10, =01, h=1.0, 5X
140 aTe=0,IPTG=0 140 alc=0,IPTG=1
120 1201
100 100 The fixpoint effect can explain this
80 1 80 1 0
N ol (all signals set very low).
40 40
D e i
0 0 Then, aTc can destabilize the fixpoint,
0 5000 10000 15000 20000 10000 15000 20000

explaining GFP high (oscillating)

140 140

aTc=1, IPTG=0 alc=1,IPTG=1

120 120
1001 100
801 P
60 60
40 40
GFP |/

0+ - " 0=

0 5000 10000 15000 20000 0 5000 10000 15000 20000
r=1.0, £=0.1, =025 (P7), n=1.0 (PL, PL), §=0.001
D038/lac
alc IPTG

__|_ TetR Lacl _|__ lel GFP
ﬁ
PT l_l_ PT l PL, l P l

tet lac cl gfp




DO16/lac-

D016/lac Experiment:
alc 0101

alc IPTG

__|_ TetR _|__ Lacl lel GFP

IPTG 001

—> GFP 00
PT rl PL, l I PL, l PA l @

tet lac cl gfp

channels|TetR:r,, Lacl:r,, lcl:r;, GFP:r,, alc:rs, IPTG:r,

Pr=[g,n] Pa=[g,M,] PL=[g,n;] Ph=[g,n,]

tet = negp|TetR, PT, rtr[TetR,alc]] N promoters
lac = negp[Lacl, P\, rtr[Lacl, IPTG]]

cI = negp[Lacl, P, tr{lcl]] genes
gfp = negpllcl, P*, tr[GFP]] / repressors

DO016lac = |tet | lac | cl | gfp || | replalc] | rep[IPTG]

How can aTc
affect the result??

One theory: aTc prevents
the self-inhibition of tet, so
that a very large quantity of
TetR is produced. That then
overloads the overall
degradation machinery of
the cell, affecting the rest
of the circuit.

Even so, how can
GFP be high here?

Even the fixpoint
explanation fails here,
unless we assume that
the lac gate is
operating in its
instability region.



Simulation results for DO16/lac-

150 B 150
aTc=0(83=0.001), IPTG=0 aTc=1(8=0.00001), IPTG=0
100 1 GFP I\ 100 -
50 ’A 50
0- . 0
0 50000 100000 0
150 D 6000
aTc=0(3=0.001), IPTG =1 aTc=1(8=0.00001), IPTG =1
5000 |
100 - 4000 |
3000
50 - 2000 -
1000 -
0 !- ! 0 T
0 50000 100000 0 50000 100000
150 $=0.005 aTc=0, IPTG=0 N GFP r=1.0
e=0.1
100 —— Lacl n=0.01
lel
507 — 1tk DO016/lac
o thbope o Jo il
0 50000 100000 alc

1 TetR
pL1

tet

o N RN S T |

Experiment:
alc 0101
IPTG 0011
1000

GFP

The fixpoint effect, in
instability region, explains
this: GFP high because
wildly oscillating.

Overloading of
degradation machinery,
induced by aTc, can
reinstate the fixpoint

regime.
IPTG
_|__ Lacl lel GFP
ﬁ

lac cl



What was the point?

Deliberately pick a controversial/unsettled example to test the
methodology.

Show that we can easily "play with the model” and run simulations.
Get a feeling for the kind of subtle effects that may play a role.

Get a feeling for kind of analysis that is required to understand the
behavior of these systems.

In the end, we are never “"understanding” anything; we are just building
theories/models that support of contradict experiments (and that
suggest further experiments).



Transport Networks

Gene
Machine

Confinement
Storage
Bulk Transport

Holds receptors, actuators

hosts reactions Networks

Protein
Machine

Aminoacids

R/

Membrane
Machine

R/

Implements fusion, fission



. Very far f
3. The Membrane Machine s e 77"

Molecular transport and
transformation through
dynamic compartment
fusion and fission.

} The Instruction Set

oo A N\ Mature

A protein
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Membranes are Oriented 2D Surfaces

Lipid Diffusion (fast)

| Hydrophilic head "\
Flip &

/—{ Hydrophobic tail  (rare):

Llpld Bilayer‘ © Cytosol (H,0)
Self-assembling ‘
Largely impermeable

Asymmetrical (in real cells) % R :.ll

Wl"'h embedded pr'O‘l'eins fmbeddec: . , ICh:nnelsé,' Purtn.ps )
c . . . membrane proteins selective, directio
A 2D fluid inside a 3D fluid! i —

X"> ">< /\>\//\/

(Not spontaneous)

Extracellular
Space (H,0)

-
\1

~60 atoms




Positive curvature to

Membrane Fusion Negative curvature

Cell membrane

Aggressive fusion
(virus)

' By unknown mechanisms,

the exoplasmic leaflets

of the two membranes
fuse" [MCB p745]

Cooperative fusion
(vesicle)

"Fusion of the two
membranes immediately
follows prefusion, but
precisely how this occurs is
not known" [MCB p742]

Target mermitrane



Negative curvature to

Membrane Fission Pestive curvature

Vesicle
Formation
romn 10w e s N *Nonetheless, the actual . .
process whereby a segment of derieleidliEonigee

phospholipid bilayer is ‘pinched
off' o form a pit and

eventually a new vesicle is still

not understood” [MCB p.746]

[al
Cytokinesis
(Mitosis)




Protein Production
and Secretion

Copyright 1998 John Wiley and Sons, Inc. All rights resarved.

Viral Replication v

_.,

LDL-Cholesterol
Degradation

Cholesterol esters
Phospholipid Lot
monolayer pan
Apo-B protein

ceptor




Receptor-Mediate Degradation Pathway

As a "shapshot” diagram

~ Cholesterol esters
o . o / i
Lipid bilayer Q ; :ﬂnnossgvgf TS
— Apo-B protein
‘\

~ LDL receptor

e LDL-Cholesterol Degradation

- A cast of many thousands (molecules) just to get one C\?H’/kgi o
molecule from A to B. A
- Membranes are key to the algorithm, we want to model @ Cone
them, not their individual millions of molecules. ‘
e X o
e Some very fancy chemistry e
- But its "purpose” is to reliably implement a specific S
sequence of discrete steps. B
s Separation of

| of receptors to
\, plasma membrane

b E
Transport
vesicle
N
I
[:l
¥

Degradation
of LDL to:

Amino acids

Cholesterol - Lysosome

Taken from
MCB p.730

Fatty acids






Membrane Orientation

|

Membranes are closed non-intersecting  Phospholipid bilayer )é(’r —F
curves, with an orientation®, membrane proteins

(consistently oriented)
Each membrane has two faces. A cytosolic
(~inner) face and an exoplasmic (~outer) face. cytosolic face
Nested membranes alternate orientation.
(E.g. cytosolic faces always face each other,
by definition, or by fusion/fission dynamics)

cytosolic face

cytosol

This alternation is illustrated by using two exosol |—
tones: blue (cytosol®) and white (exosol®). ~exosol
Bitonal diagrams.

cytosol
Double membranes (e.g. the nuclear ~cytosol |

membrane) gives us blue-in-blue components.

(1) A membrane is built from a phospholipid bilayer that is asymmetrical. Moreover, all real membranes are heavily
sprinkled with proteins: “"each type of integral membrane protein has a single specific orientation with respect to
the cytosolic and exoplasmic faces of a cellular membrane, and all molecules of any particular integral membrane
protein share this orientation. This absolute asymmetry in protein orientation confers different properties on the
two membrane faces." MCB p162.

(2) Short for Cytoplasmic Solution. (3) Short for Exoplasmic Region (I am making this one up).

T

SWwpubpip |puotig



Contiguous Membranes have Opposite Orientation

True "by construction”: look at the basic

biological operations that increase the number
of membranes in a system:

—=nn
C} @ @ L

opposite
orientation



Bitonal Structure

Bitonalit | - —
Blue and white areas alternate. E— 6wl |
Bitonal Invariant (~ Orientation Invariant) Golgi Mitechohdria

6%vol

Bitonality and subsystem coloring is preserved
by reactions. I.e., blue and white fluids
never mix and never flip color.

\ 2%vol, #1700
Bitonal Duality E @

Reactions come in complementary-tone versions.

A

The cell maintains a strong compartment-based Chloroplasts "/ || |\ sos0mes

separation between /nside fluids and outside fluids ] Vacuoles

even when incorporating foreign material. 54%ol Transport
Exosol Sbol

Evolutionary Mitochondria ) <ﬁ!i9 o G@
explanations acquisition @
of bitonal
structure
Mitochondria N I ( :: )
to Chloroplasts
Pre-Eukarya o 8‘4: ) m— C
to Eukarya @




Membrane Reactions

o

What reactions
Membrane “make sense”

System biologically?

Reactions that “make
sense” from a local,
molecular viewpoint

O oy [ Gpmmericnrso
eV o | rotation.)




Global Membrane Reactions

Reactions that “make
sense” from a descriptive, ” » ‘ . (Fission)
global viewpoint

E » E .

m » m -

R
SamT ﬂ » ﬂ (Fusion)
Loca
View!




Mito/Mate by 3 Endo/Exo




Lysosome and target don’t just merge.
Target —
1 @
@) (.
A
.3
.5? .6?
Biologically, Mito/Mate
clearly happens. However,
weird sequences of
7 Endo/Exo are also common.




Non-Reactions

Some global reactions are ruled out by bitonality,

o0 <

Flips tone
b
: Wrap

Violate bitonality.

4{ Flips tone

o
o

Non implementable by “local” membrane operations.
Not observed (except gradual Open during “digestion” or “lysis").

Happen to be the Ambient Calculus operations :-(



The Membrane Machine “Instruction Set”

Zero case

Mh‘o '
specml One case
cases ' a
Arbitrary
subsystem
Fi sssss
........ Zero case
Endo
P specml One case
CGSCS

Arbitrary
subsystem

llllll



.. in 3D

00 0
T
o 3
00 2




Notations for the Membrane Machine

e "Snapshot” diagrams e BioAmbients

- Inbiology literature. - An extension of BioSPT along
Ambient Calculus lines (with more
bio-relevant mobility primitives) to

o P-Systems model dynamic compartments.

- G.Paun uses ideas from the theory of
grammars and formal languages to .
model "Membrane Computing” (book  Brane Calculi

2002). - Computation onthe membrane...
http://psystems.disco.unimib.it/.



Brane Calculi

Computation “on”
the membrane




Brane Calculi Q
-

systems = P,Q = o | PoQ | IP | cdPD nests of membranes
branes o1 = 0 | (5|’C | lo | a.o combinations of actions
actions a:.=1 | (fill in as needed)

. .. . TWO commutative monoids instead of
1D fluids (G) inside a 2D fluid (P) ONE of normal process calculi

odPD (5|’C((PD a.c|t = (a.0)|t
: o(?)
membrane - membrane t
contents patches

N.B. Restriction (vn) could be added to both systems and branes. It usually would originate in branes, but would extrude to whole
systems.



Congruence = and Reaction ==

System Brane

> PoQ = QoP clt=1lo

S Po(QeR) = (PoQ)eR sl(xlp) = (olo)lp
Poo =P 6l0=oc

Plentitude  IP = PolP  etc. lc =ol|lc eftc.
Units 0d¢)D = ¢ Froth/Fizz 1.0 = ¢ Inaction

S P=Q = PoR = Q°R o=t = clp =1|p

2 P=Q=1P=1Q oc=t=lo=h

S P=Q A 6=1 = o(PD = 1(Q)D G=T = 4.0 = Q.1

R 1.. .s I ] [ ]

tocongruence.  P=P AP=Q A Q=Q=P=rQ  Thisis the whole

Reactions in semantics, except
P=>Q = PoR ==» QoR for the effects of

solution individual actions
P==>Q = o(PD =» c(QD |



“"Determinization”

Zero case
Arbitrary
subsystem
- Endo
« \ E i One case :

Zero case
“ w- (&) (£
Mito I 'A

Arbitrary
subsysfem

One case

s (7) ()



actions a:=. o, |2 () | o, |9 | e(p) phago », exo ©, pino ©
S

coordination tags
sometimes omitted

—>0+(p).T
Qoo
®-

VLT

T

! !

T » .T
o1
' G'
o(p).t Old "spontaneous” endo splits into
— phagocytosis (phago, often still
@ pronounced endo) and pinocytosis (pino).
S Pino  ©
T




~ Brane Reactions (Cartoons)
G5

A Turing-Complete language
[Busi Gorrieri]

- - (D
vl
O - O
=P
Phago

L




Phago ean.\GIG'C(PBEJLn(p).’CI’c'((QD = t|t'(pdo|c'APDDoQD

Exo WSn.Glﬁ'GPDOQD = Pog|c'|t|t'(QD

Pino _, o(p).c|c'(PD =» G|c'dpdoDoPD

N.B.: the parity of nesting of P and Q is preserved;
this makes the reactions preserve bitonality.

B&R o =3 .olodp, o PD =» g, o a|clqg, © PD
Ul(pg)\ 9:(92) |/B2 q; © ool

(multiset rewriting, inside and outside membranes)




N.B.: in Phago (and Pino), one could perhaps require r to be, conservatively, a piece
of t, by a non-linear rewrite:

CPhago ©,.6|c'PD o v+ (p).t|t'|pdQD == t|t'(pdc|c'IPDDoQD
® A

s 107



A Decidable-Termination language
[Busi Gorrieri]

(@ e [ra
£ = © O3

&) - 0@




Abbreviations: Mate

Mate mate,.c = 9,.9,.0
mate:,. T = ¥4 (94,:.9.4).9% T

@ @ > ED

ma’re .0 mate* .t




Abbreviations: Bud

A budding version of old “spontaneous” mito, ¢

B“d bUdn.G = Q‘_)n.G avoid arbitrary splits. Follows the pattern of
bUdln(p),’c - @)(Q')ln(p)-s)n')-Sln“ﬂc

inverse-mate.

/@(Ol (p).,).04.1 .

O+ T

@-o@®

Phago




Abbreviations: Drip

A zero-expelled-membranes version of old

Dri P d r i pn(p ).G = © ( © (p ). ) n). ) J-n.G “spontaneous” mito, to avoid arbitrary

splits. Follows the pattern of inverse-mate.







Ex: Viral Infection

VIruys cell
A A

' N 7 N
.0 nucaph oo (mate)lImate: | loLdoDocytosoh ==

Phago

Y
membrane endosome

lo(mate){matedo(nucapddelmate |lordeDocytosoh ==, ..
ﬁ—l

membrane vesicle endosome

lot(mate)Umatet|lo (o nucapddo cytosoh =,
—_— -

membrane endosome

loL(mate)lImatet|lordoDonucape cytosod
— v 7 \P/

membrane endosome



Ex: Viral Progeny

Assume:

nucap © cytosol =»== nucap” o envelope-vesicle™ o cytosol’
by available cellular machinery

Then:
cell
A
— —~~
940 . bud(».9)( OBOI\bUd|G((VRNAJD°C)/7‘05'0/”D o
Y

envelopefvesicle  nucap

!@llbudL(e).@)C(!budIGC(VRI\IJADocyfasol’ﬁ - o ud

envelope nugap

lo+dcytosol/™d o ».oWnucapd
\ v J \\ v J
cell virus




With molecule multisets p.q:

91\ r‘h

0/ ) > (o)



Molecules

We now add mo/ecules to the model:

systems P,Q = | m meM molecules
p.g :i= mgo..om, molecule multisets
actions a:..=.. | pl(pZ) 3 Ch(QZ) bind&release

P4

This single operation can essentially account for the whole Protein
Machine, including its interactions with membranes. Except that, one must
add some form of protein complexation, either as in BioSPi by adding
restriction, or as in k-calculus by adding complex molecules.



B&R  p; © pi(p2)34:(qp).alolp, © PD == q; © a|odq, © PD
R o~
(multiset rewriting, inside and outside membranes)

Simple bindings and releases - "¢(¢)" is omitted:

m(¢)3  bind out 3m(¢) release out
o(m)=3  bindin 3<¢(m) release in



Ex: Molecular Pumps and Channels

E.g. plant vacuole (white).

“H* impermeable
H* Proton Pump
H* ATP charges up the vacuole
with H*. Several other pumps

work off that charge.

H* H*
) Ion Channel
Ccl-
‘H* » ( Na* Proton Antiporter

A plant vacuole membrane has all those things on it.



ProtonPump = | ATP(¢) 3 ADPoP,(H*oH"*)
TonChannel = | CI-(H*) 3 ¢(H*Cl")
ProtonAntiporter = | Na*(H*) 3 H*(Na*)

PlantVacuole =
ProtonPump | TonChannel | ProtonAntiporter (oD

Hence this reaction notation, 3, is "like" chemical reaction
notation, —, but talking about both sides on a membrane at once.

(N.B. no built-in conservation of mass in either case.)



Special Cases of B&R

Chemical reaction catalysis (inside a compartment)
p—4q £ !p(c)3q(c)D
p=q £ p—q°q—p
E.g. peptide bond between two aminoacids R! R?:
RI-COOH o H,N-R? — RI-CO-HN-R? o H,O

Compartment conditions (on the membrane of a compartment)

p=q £ l°(p)3 °(q)

p—q|codPD Condition affecting P

E.g. a condition-driven reaction:
p—q|clpD = p—q|clqD



Ex: Virus

Replication

nucap © cytosol =»== nucap” o envelope-vesicle™ o cytosol’

ER £

when

triggered

by VRNA

IVRNA(¢)3VRNA(?). drip(o.bud*(».9))INucleusd

exo to cell membrane
hucap budding receptor

L v \7’—1 virus membrane

envelope-vesicle

(See paper for the other fwo VRNA pathways)



“On Brane” vs. "In Brane”

Q - Original “on brane"
P @ Exo of Brane Calculus
o “In brane" encoding
@ » P° ﬂ (e.g. in BioAmbients
¢ or SMBL) goes wrong
G > 8 = - (D 555
j P |g encoding; best we can
LJJ @ %~  do “inbrane"

Awkward encoding. And all kinds of things can go wrong in the
intermediate state.

e One cannot easily represent the Exo reaction in BioAmbients or any such
compartment-based calculus, nor can one easily add it as a new primitive!

e But we can add BioAmbients-like In/Out out to Brane Calculi if we want to.



Adding Frills to the Framework

e So far, purely combinatorial:
- No name binding, channel creation, communication...
- Closer to combinatorial flavor of protein interactions
- Goes a long way: do not try to extend needlessly.

e But one can easily add all that, and more:
- CCS-style communication
e Diffusion of molecules on cellular membrane
- BioAmbients-style communication
e Diffusion of molecules across cellular membrane
- BioAmbients-like mobility
e Non-bitonal
- m-style restriction

e We have a framework where we can plug&play a rich set of
interactions, while supporting compartments.



Towards the
Million-Line Model



From Chemical Reactions to ODE's

ri A+B —k, C+C

/

ri A+C —k, D Write the coefficients
ry: C —k, E+F by columns
ri F—k, B reactions
N|r |ro|rs|r,
Concentration Al-11-1
changes X)) B |-1 1
Stoichiometric oflcl2]|-1]-1
matrix 8_ D 1
)
Qo‘re laws E 1
1(-1
d[x F
dix] | ;

d’r'

d[A)/dt = -v, - v,
d[B]l/dt = -v, + v4
d[C]/dt = 2 v1
d[D)/dt = v,
d[E]/dt = v,
d[F1/dt = v5 - v,

/

Read the concentration
changes from the rows

- V3

E.g. d[A)/dt =
-k [A][B] - k,[AT[C]

Stoichiometric

N\

Matrix

Vi(xleilki)

\

ki-[A][B]

kp:[AT[C]

ks-[C]

Ky [F]

Dk
D\

A

0

B C
> F k3E

Read the rate laws
from the columns

x: chemical species

[-]: concentrations

v: rate laws

k: kinetic parameters

N: stoichiometric matrix
e: catalysts (if any)



From Chemical Reactions to Processes

ri A+B —k, C+C

k
rs A+C —k, D Write the coefficients A L C

ry C —k; E+F wolumns
ri P —k, B interactions
N r[ra|rs|ry
Al-1(-1
MEIE 1
wi|ic|2(-1-1
. o o Q
For binary reactoins, first species in O [D 1
the column does an input and o)
produces result, second species does | E 1
an ouput, For unary reactions, Q.
species does a tau action and F 11-1
produces result. No ternary
reactions. /
A = ?2vk.(C|C) + ?v,k,.D +2a Add a barb
| for counting
B-= 'Vik; +?b and plotting
C = IV k, + Thy(E|F) + 2
D=0+2d
E=0+2

F = t,.B +>f

Stoichiometric Ky
Matrix

B C

';4\F<AkiE

Read the process
interactions from the rows

(Rate laws are implicit in
stochastic semantics)



Stoichiometric Matrices Blow Up

e We can translate Chemistry to ODE's or Processes
- It is standard to go from chemical equations to ODE's via a stoichiometric
matrix.

- It is similarly possible to go from chemical equations to processes via a
stoichiometric matrix.

e But there is a better way:
- Stoichiometric matrices blow-up exponentially for biochemical systems
(unlike for ordinary chemical systems) because proteins have combinatorial
state and complexed states are common.

- To avoid this explosion, we should describe biochemical systems
compositionally without going through a stochiometric matrix (and hence
without ODE's).



Complexes: The ODE Way

n A B,C ABC = A BC
; _ The matrix is very sparse, so
domains ABC = AB,C the corresponding ODE system
5 A=A, ABC ABC = ABC, is not dense. But it still has 2n
n B=R A BC A,BC = AB.C  equations, one per species, plus
domain P P A BC = A BC conservation equations
reactions € = C, AB,C pPC = ApPCp  ([ABCI+[A BCI=constant, efc.).
AB.C= AB.C
ABC 1 p PP
X ABC N BPC ) AB,C = AB.C,
ies P P~ reactions - System description is
species A BC (twice number of ABcp g ApBCp 0 .
complex PPCP BT ABC = AB.C exponential in the number
p = "Sptp :
28562 ABC=ABC, of basic components.
P=PP APBCp = APBPCp
Stoichiometric ABC, = AB,C,

Matrix

N Vi V2 V3 Vy Vs Ve V7 Vg Vo Vio Vit Viz Viz Via Vis Vie Viz Vig Vig Vao Vai Va2 Va3 Va4

ABC

ApBC

ABpC

2n x 2n(2n1)

ApBpC

ApBCp l

ABpCp

ApBpCp




Complexes: The Reactive System Way

A= Ap
B=RB
2n P
domain C= CP
reactions

A =?knA, A, =?phA

2n

B =?kn:B, B, =?phB

processes C = ?kn;cp Cp = 9ph,C

ASA|B|C

\ System description is

When the local domain reactions are not independent,

we can use lateral communication so that each
component is aware of the relevant others.

linear in the number of
basic components.

(Its "run-time" behavior or
analysis potentially blows-up just
as in the previous case, but its
description does not.)




Model Validation




Model Validation: Simulation

e Basic stochastic algorithm: Gillespie
- Exact (i.e. based on physics) stochastic simulation of chemical kinetics.
- Can compute concentrations and reaction times for biochemical networks.

e Stochastic Process Calculi
- BioSPi [Shapiro, Regev, Priami, et. al.]
e Stochastic process calculus based on Gillespie.
- BioAmbients [Regev, Panina, Silverma, Cardelli, Shapiro]
e Extension of BioSpi for membranes.
Case study: Lymphocytes in Inflamed Blood Vessels iecaa, priami, quagiaj
e Original analysis of lymphocyte rolling in blood vessels of different diameters.
Case STUdyi Lambda Switch (ceiine kuttier, Tr1 Lille]
e Model of phage lambda genome (well-studied system).

Case study: VICE w risa

e Minimal prokaryote genome (180 genes) and metabolism of who/e VIrtual CEll, in
stochastic n-calculus, simulated under stable conditions for 40K transitions.

e Hybrid approaches

- Charon language (vren;

. Hybr‘i}c‘i systems: continuous differential equations + discrete/stochastic mode
switching.

- Etc.



Model Validation: "Program” Analysis

e Causality Analysis

- Biochemical pathways, ("concurrent traces”
such as the one here), are found in biology
publications, summarizing known facts.

- This one, however, was automatically P
gener'a’red.fr'om a program writfen in BioSpi ;
by comparing ftraces of all possible :
Interactions. [Curti, Priami, Degano, Baldari] \.,ﬁ

- One. Can play WiTh The pr.ogr'am TO inves-rigaTe Fig.2. A computation of Sys. For llezlidabiliL_',"es:'ses‘ enclosed in boxes, have
various hypotheses about the pathways. i g o e e et T o

e Control Flow Analysis

- Flow analysis techniques applied to process
calculi.

- Overapproximation of behavior used to
answer questions about what "cannot
happen”.

- Analeis of positive feedback transcription
regulation in BioAmbients [Flemming Nielson].

e Probabilistic Abstract Interpretation
- [DiPierro Wicklicky].



Model Validation: Modelchecking

e Temporal
- Software verification of biomolecular systems (NA pump)

[Ciobanu]

- Analxsis of mammalian cell cycle (after Kohn) in CTL.

[Chabrier-Rivier Chiaverini Danos Fages Schachter]

e E.g. is state S; a necessary checkpoint for reaching state S,?

e Quantitative: Simpathica/xssys

[Antioniotti Park Policriti Ugel Mishra]

- Quantitative ‘rem,poral logic queries of human Purine
metabolism model.

Eventually(Always (PRPP = 1.7 * PRPP1)
implies
steady_state()
and Eventually(Always(IMP < 2 * IMP1))
and Eventually(Always(hx_pool < 10*hx_pool1)))

e Stochastic: Spring

[Parker Normal Kwiatkowska]

- Designed for stochastic (computer) network analysis
e Discrete and Continuous Markov Processes.
e Process input language.
e Modelchecking of probabilistic queries.



What Reactive Systems Do For Us

We can write things down precisely We can reason
- We can modularly describe high structural - Suitable equivalences on processes
and combinatorial complexity (“do induce algebraic laws.
programming”). - We can relate different systems (e.g.
equivalent behaviors).
We can calculate and analyze - We can relate different abstraction
- Directly support simulation. levels. .
- Support analysis (e.g. control flow, causality, = We can use equivalences for state
nondeterminism). minimization (symmetries).

- Support state exploration (modelchecking).
Disclaimers

- - - Some of these technologies are basically
We can vusual.nze ' ready (medium-scale stochastic simulation and
- Automata-like presentations. analysis, medium-scale nondeterministic and

- Petri-Net-like presentations. stochastic modelchecking).

- - - Others need to scale up significantly to be
State _Char’rs,.lee Sequence Charts [Harel] really useful. This is (has been) the challenge
e Hierarchical automata. for computer scientists.

e Scenario composition.

Many approaches, same basic philosophy, tools being built:
= Proc. Computational Methodss in Systems Biology [2003-2005]



Conclusions

| —— . - Q! "The data are accumulating and
&ﬁ,‘;‘;{% T2 Ti8 | the computers are humming,
o o This @ what we are lacking are the
Qalft '. ﬁ'AZGCTAA9 words, the grammar and ﬂl\'e
CGCATAACTG a5 syntax of a new language...
g %[/ D. Bray (TIBS 22(9):325-326, 1997)

'-?." l/\
%\ugé A: “The most advanced tools for

computer process description

e \M\ seem to be also the best tools
T for the description of
A biomolecular systems.”

80  SCIENTIFIC AMERICAN  March 2001 E.Shapir‘o (LCCTUI"Z NOTCS)
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Papers
BioAmbients
a stochastic calculus with compartments.
Brane Calculi
process calculi with computation "on" the membranes, not inside them.
Bitonal Systems
membrane reactions and their connections to “local” patch reactions.
Abstract Machines of Systems Biology
the abstract machines implemented by biochemical toolkits.

www.luca.demon.co.uk/BioComputing.htm



