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50 Years of Molecular Cell Biology

SOLVING THE NEUTRINO MYSTERY ¢ RECOGNIZING ANCIENT LIFE

e Genes are made of DNA

- Store digital information as sequences of 4
different nucleotides

- Direct protein assembly through RNA and the
Genetic Code

e Proteins (>10000) are made of amino acids
- Process signals

Activate genes

Move materials

Catalyze reactions to produce substances

Control energy production and consumption

e Bootstrapping still a mystery

- DNA, RNA, proteines, membranes are today
interdependent. Not clear who came first

- Separation of tasks happened a long time ago
- Not understood, not essential



Towards Systems Biology

Biologists now understand many of the cellular components
- A whole team of biologists will typically study a single protein for years
- When each component and each reaction is understood, the system is understood (?)

But this has not led to understand how "the system" works
- Behavior comes from complex chains of interactions between components
- Predictive biology and pharmacology still rare
- Synthetic biology still unreliable

New approach: try to understand "the system”
- Experimentally: massive data gathering and data mining (e.g. Genome projects)
- Conceptually: modeling and analyzing networks (i.e. interactions) of components

What kind of a system?
- Just beyond the basic chemistry of energy and materials processing...
- Built right out of digital information (DNA)
- Based on information processing for both survival and evolution

Can we fix it when it breaks?
- Readlly becomes: How is information structured and processed?



Storing Processes

e Today we represent, store, search, and analyze:
- Gene sequence data
- Protein structure data

- Metabolic network data Cellular Abstractions: Cells as Computation
Signalling pathway data RegevaShapiro NATURE vol 419, 2002-09-26, 343

e How can we represent, store, and analyze biological processes?

- Scalable, precise, dynamic, highly structured, maintainable representations
for systems biology.

- Not just huge lists of chemical reactions or differential equations.

e In computing..

- There are well-established scalable representations of dynamic reactive
processes.

- They look more or less like little, mathematically based, programming
languages.
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Abstract Machines of Systems Biology

The “hardware" (biochemistry) is Regulation  .roccepeensensesee: y
fairly well understood.
But what is the "software” that

runs on these machines? Gene +***"Gene Regulatory
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Reactive Systems

e Modeling biological systems
- Not as continuous systems (often highly nonlinear)

- But as discrete reactive systems; abstract machines with:
e States represent situations
e Event-driven transitions between states represent dynamics

- The adequacy of describing (discrete) complex systems as reactive systems
has been argued convincingly [Harel]

e Many biological systems exhibit features of reactive systems:
- Deep layering of abstractions

Complex composition of simple components

Discrete transitions between states

Digital coding and processing of information

Reactive information-driven behavior

High degree of concurrency and nondeterminism

"Emergent behavior” not obvious from part list



Chemistry vs. n-calculus

A process calculus (chemistry, or SBML)

Na + Cl —,, Na* + Cl
Na* + CI- —,, Na + Cl

.

1 line per
reaction

The same “model”

A compositional graphical representation,
and the corresponding calculus.

Na Cl
o o
ki k1
?s lr 4 ?p

k2 k2
Na* Cl-

1 line per
component

Na*

A

Maps to Maps to
aCTMC

Na = !r'k1: ?SkZ; Na

a CTMC

This Petri-Net-like graphical representation
degenerates into spaghetti diagrams: precise
and dynamic, but not scalable, structured, or
maintainable.

CI - ?r'kl,'\ !SkZ; Cl

A4

Cl-

A different process calculus (r)
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Methods

e Model Construction (writing things down precisely)
- Formalizing the notations used in systems biology.
- Formulating description languages.
- Studying their kinetics (semantics).

e Model Validation (using models for postdiction and prediction)

- Simulation from compositional descriptions

e Stochastic: quantitative concurrent semantics.

e Hybrid: discrete transitions between continuously evolving states.
- "Program” Analysis

e Control flow analysis

e Causality analysis
- Modelchecking

e Standard, Quantitative, Probabilistic



Basic Modeling Guidelines

e Regev-Shapiro: "Molecules as Processes":

Molecule Process
Interaction capability Channel
Interaction Communication
Modification State change
(of chemical components) (state-transition systems)

Cellular Abstractions: Cells as Computation
Regev&Shapiro NATURE vol 419, 2002-09-26, 343

e They chose n-calculus and adapted it with stochastic features
- To match the stochastic aspects of (bio)chemistry

- Many probabilistic process calculi predate them, but only Hillston (CSP) and
Priami (w) had already studied stochastic calculi.



n-calculus Executive Summary

It's for:
- The modular description of concurrent, nondeterministic systems
- Study of such systems based on their descriptions

It's got:
- Processes
- Channels
- A minimalistic syntax (it's a /anguage and also a model)

You can:
- Fork new processes
Create new channels

Do I/0 over channels (synchronous and asynchronous)
including passing channels over channels

Make nondeterministic choices
Define processes recursively

That's it.
- Except for extensive model theory and metatheory.

- Cannot pass processes over channels
(simulated by passing channels to them)

- Cannot define procedures
(simulated by supplying reply channels)



nt-calculus

Syntax
m u= x(y) receivey alongx
F(y) send y along x
Pu=0|3,mPlle=y| P|P|P|(newz)P|!P
Structural congruence SYm'GX

Renaming of bound variables

2)P = o(x).({z/y}P)  ifz¢ FN(P)
(newy).P = (newz).({z/y}P) ifz¢g FN(P)
Structural congruence laws
PlQ = QP commutativity of parallel composition
(PIQ)R = P|Q|R) associativity of parallel composition .
P+@Q = Q+P commutativity of summation ChemICGl
(P+Q)+R = P+ (Q+R) associativity of summation o s
(new z)0 = 0 restriction of inert processes M|x 'ng
(new z)(new y)P = (new y)(new z)P polyadic restriction
((new z)P)|Q) = (new z)(P|Q) ifx¢ FN(Q) scope extrusion
P = PIP replication

Reaction rules

(o +F(2).Q|(- - +2(y).P) = Q|P{z/y} communication (COMM)

P P

—_—t reaction under parallel compaosition (PAR .
PIQ— PR (PAR Reactions
P P reaction under restriction (RES)

(new z) P — (new z) P’

Q=PP— P P =
Q— Q'

structural congruence (STRUCT)




Stochastic n-calculus Executive Summary

e A simple variant of n-calculus:

Channels have stochastic “firing"
rates with exponential distribution.

Nondeterministic choice becomes
stochastic race.

Cuts down to CTMCs (Continuous
Time Markov Chains) in the finite
case (not always). Then, standard
analytical tools are applicable.

Can be given friendly automata-like
scalable graphical syntax (work in
progress: Andrew Phillips).

Is directly executable (e.g. via the
Gillespie algorithm from physical
chemistry).

Is analyzable (large body of

literature, at least in the non-
stochastic case).
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Figure 2. Regulating Gene Expression by Positive Feedback [9)
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Importance of Stochastic Effects

e A deterministic system:
- May get "stuck in a fixpoint”.
- And hence never oscillate.

e A similar stochastic system:

- May be "thrown off the fixpoint" by
stochastic noise, entering a long orbit
that will later bring it back to the fixpoint.

- And hence oscillate.

Surprisingly enough, we -
have found that parameter values that give rise to a stable steady
state in the deterministic limit continue to produce reliable
oscillations in the stochastic case, as shown in Fig. 5. Therefore,
the presence of noise not only changes the behavior of the system
by adding more disorder but can also lead to marked qualitative
differences.
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Fig. 5.

Time evolution of A for the deterministic Eq. [1] {a) and stochastic (b)

versions of the model. The values ofthe parameters are as inthe ca ption of Fig.
1, except that now we set & = 0.05 h~'. For these parameter values, + < 0, so
that the fixed point is stable.

{former) oscillatory trajectory.



Gene Networks



The Gene Machine

The "Central Dogma" of Molecular Biology
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The Gene Machine “Instruction Set”

cf. Hybrid Petri Nets [Matsuno, Doi, Nagasaki, Miyano]

Positive Regulation
Negative Regulation F\ /—{ Transcription Input

Input Output Output?2 Outputl
I ]

Gene
(Stretch of DNA)

Regulation of a gene (positive and
negative) influences
transcription. The requlatory
region has precise DNA
sequences, but not meant for
coding proteins: meant for
binding reqgulators.

Transcription produces molecules
(RNA or, through RNA, proteins)
that bind to regulatory region of
other genes (or that are end-
products).

]

"External Choice"
The phage
lambda switch

—

Coding region

Regulatory region

Human (and mammalian) Genome Size
3Gbp (Giga base pairs) 750MB @ 4bp/Byte (CD)
Non-repetitive: 16bp 250MB
In genes: 320Mbp 80MB
Coding: 160Mbp 40MB
Protein-coding genes: 30,000-40,000

M.Genitalium (smallest true organism)
580,073bp 145KB (eBook)

E.Coli (bacteria): 4Mbp IMB (floppy)

Yeast (eukarya): 12Mbp 3MB (MP3 song)

Wheat 17Gbp 4.256B (DVD)




Gene Composition

—I:’_'I'—bl:> Is a shorthand for:
a

Under the assumptions [Kim & Tidor]

1) The solution is well-stirred
(no spatial dependence on concentrations or rates).

2) There is no regulation cross-talk.

3) Control of expression is at transcription level only
(no RNA-RNA or RNA-protein effects)

4) Transcriptions and translation rates monotonically
affect mRNA and protein concentrations resp.

Ex: Bistable Switch

1

Ex: Oscillator r

@

degradation

l,

protein @

A
translation
reg
mRNA
transcription
gene
a

[

C
1

Expressed

Expressing



Gene Regulatory Networks

http://strc.herts.ac.uk/bio/maria/NetBuilder/

NetBuilder
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(The Classical ODE Approach)

[Chen, He, Church]

Qegrada’rion)

n: number of genes

dr _ F(p)- Vr r mRNA concentrations (n-dim vector)
dt p protein concentrations (n-dim vector)
dp _
g S Lr-Ur f (p) transcription functions:

(n-dim vector polynomials on p)



Nullary Gate

spontaneous
, ("constitutive")
no input |-\ _E> b output

null
interaction site of
output protein

null(b) 2 <,; (tr(b) | null(b))

(recursive, parametric) \ d ¥
process definition and repea

output protein

stochastic delay (t) with (transcripion factor),
rate € of constitutive spawn out

transcription

A stochastic rate r is always associated with each channel a. (at channel
creation time) and delay 1., but is often omitted when unambiguous.



Production and Degradation

Degradation is extremely important and often deliberate;
it changes unbounded growth into (roughly) stable signals.

/ and repeat
transcripton
factor ’\ tr(p) £ (Ip,.. tr( —

degradation
P)) + 15
\{ degradation rate 6
interaction site of stochastic choice
transcription factor (race between r and §)

(output, !) interaction with rate r
(input, ?, is on the target gene)

A transcription factor is a process (not a message or a channel):
it has behavior such as interaction on p and degradation.

combined effect of
production and
degradation (without

any interaction on b) null(b)  eo1 50001
product \ b ..
interaction 7
— b offersonb Q
— null(b) £ t.; (tr(b) | null(b)) ;r:c“e“;i:;f“w )




Unary Pos Gate

input ’\ /‘ output (stimulated
(excitatory) a= > b or constitutive)

pos
transcripton delay
A with rate n
(input, ?) interaction with rate r pos(a,b) >
?a. 7. (tr(b) | pos(a,b)) +
e L r race between
or constitutive transcription .. (tr(b) | pos(a,b))
. e P ' rand e
to always get things started
output protein
parallel, not sequence, unlimited
to handle self-loops r=10,£=0.01, 1=0.1, =0.001 amount of
without deadlock b :
L R A Stimulated -
el AN Y +— *tr(a,) | pos(a,,b)

— pos(a,b)

10000 120



Unary Neg Gate

input ’\ /‘ output (constitutive
(inhibitory) a 1 > b when not inhibited)

neg

inhibition delay

A
(input, ?) interaction with rate r |\n39(azb)=//‘ with rate 1
?a.; 1. heg(a,b) +
or constitutive transcription i T, (tr(b) | neg(a,b))\‘ race between

to always get things started rand ¢

r=1.0, e=0.1, n=0.01, $=0.001

e e ir(a) | neg(e.)




pos(a,b) |
pos(b,c)

Signal Amplification

a b c
B2 s

pos pos

With little degradation

r=10,¢=0.01,1=01, 6=0.00001

pos(a,b) £

?a,; t,. (tr(b) | pos(a,b)) +
1. (tr(b) | pos(a,b))

tr(p) £ (Ip,.. tr(p)) + 75

r=1.0,=0.01,1=0.1, 3=0.001

pos(a,b) | pos(b,c)

E.g. 1 a that
interacts twice
before decay can
produces 2 b that
each interact twice
before decay, which
produce 4 c...

even with no a input,
consitutive production
of b gets amplified to
a high c signal



Signal Normalization

neg(a,b) | a b c neogéa.,:). éne
?a.. T, neg(a,b) +
neg(b.c) 1 1™ T, (‘rrh(b) | neg(a,b))

neg neg

tr(p) = (Ip.. tr(p)) + T

r=1.0,e=0.1,1=0.01, 5=0.001

a non-zero input level, g,
whether weak or strong,
is renormalized to a
standard level, c.

30*tr(a) | neg(a,b) | neg(b,c)



Self Feedback Circuits

os(a,a neg(a,a
o) ©D g
pos heg
pos(a,b) £ neg(a,b) £
?a.; (tr(b) | pos(a,b)) + ?a.; T, neg(a,b) +
1. (tr(b) | pos(a,b)) T.. (tr(b) | neg(a,b))
tr(p) £ (p.: tr(p)) + T tr(p) £ (p.: Tr(p)) + T
(Can overwhelm degradation, high, to raise
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Two-gate Feedback Circuits

b
N

pos neg

pos(b,a) |
heg(a,b)

Monostable:

For some degradation rates is quite stable:

r=1.0, &=0.1, h=0.01, 6=0.0005

700 700
600 600
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200 SR o 200 ""‘W'-M'
. " J/,N
: b b

: : : ‘ .
0 10000 20000 30000 40000 50000 5 qpggy 20000 30000 40000 50000

pos(b,a) | neg(a,b)

But with a small change in degradation, it goes wild:

r=1.0,¢=0.1, h=0.01, 3=0.0001
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Repressilator

neg(a,b) | 1L neg(a,b) &

neg(b,c) | ¢ neg ?a.; T,; neg(a,b) +

neg(c,a) 1l [al t.. (tr(b) | neg(a,b))
neg neg

Same circuit, three different degradation models by chaning the tr component:

— ol

interact once and die intferact once and die

A otherwise stick around A otherwise decay
Tr'(p) - Ipr r=10,e701,h=004 Tf‘(p) - Ipr * T r=10, 0.1, h=0.04, 3=0.0001 _
- ab— A ab
—— f’\\_/ Y A f\/\ J\/ \ f\;
o 7 Ja NS AN XN AN K
e : e : JK\//\\//\\//\\//\\/’X :
N _ interact many times
’ Tr’(P) = (!P,« Tr‘(P)) + T /‘ and decay r=1.0, £20.1, h=0.001, 520,001
ol [ A R PR "7 T L —a ab
oot = W AT o, W . VA P
o L M A \ r [T | Y| Y i
e T / . | P y N FE ] { I | :
-0 ] A 5 I A f [ 1 f r N
. | I | [ N 1 PN T I S

10000 20000 20000 40000 soooo soo0o0o 100000

Subtle.. at any point one gate is inhibited and the other two can fire constitutively. If one of them fires first,
nothing really changes, but if the other one fires first, then the cycle progresses.



Repressilator in SPiM

val dk = 0.001 (* Decay rate ¥*)
val eta = 0.001 (* Inhibition rate *)
val cst = 0.1 (* Constitutive rate ¥*)

let tr(p:chan(Q)) =
do !p; tr(p)
or delay@dk

let neg(a:chan(), b:chan(Q)) =
do ?7a; delay@eta; neg(a,b)
or delay@cst; (tr(b) | neg(a,b))

(* The circuit *)
val bnd = 1.0 (* Protein binding rate *)
new a@bnd: chan()
new b@bnd: chan()
new c@bnd: chan()

run (neg(c,a) | neg(a,b) | neg(b,c))



Repressilator ODE Model and Simulation

| Bruce E Shapiro
0—" R{I " ¥P¢Z -0 Cellerator
Y—PY——0
RNA ‘
o — - X—PX——0
RNA
d[X] _ a+o[PY]" ‘ d[PX] _ _[PX
d Ky AR
dly] _ a+a[PZ]" d[PY] _ _IpY
di Kapzy O AN
dzy_,  oetalPX]" .. d[;z]=ﬁ{[z]—[PZ]}

dt

K" +[PX]"




Guet et al.:

D038/lac-

Combinatorial Synthesis of Genetic Networks, Guet, Elowitz, Hsing, Leibler,
1996, Science, May 2002, 1466-1470.
IPTG
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We can model an inducer like
aTc a$ something that
compeétés_ for| the
transcription factor.

IPTG de-represses the lac
operon, by binding to the lac
repressor(the lac I gene
prodiict); preventing it from

bindirig'fo-the operator.




Protein Networks



MAPK Cascade - Huang&Ferrell

Ultrasensitivity in the mitogen-activated protein

cascade, Chi-Ying F. Huang and

James E. Ferrell, Jr., 1996, Proc. Nat! Acad. Sci. USA, 93, 10078-10083.

Biochemistry: Huang and Ferrell Proc. Nail. Acad. Sci. USA 93 (1996)

Table 2. Predicted Hill coefficients for MAP kinase cascade components: Varying the assumed Kw values

Range of effective HilleGetficients (nH)
Range of assumed K, predicted for

Reaction values APKEKK MAPKK MAPK

1. MAPKEK — MAPKKK* 60-1500 nM 1.0 1.7 4.9

2 MAPEEK* — MAPKEEK 00 nM 1.0 1.7 4.9
3. MAPKK — MAPKK-P 60-1500 nM 1.0 1.3-23 4.0-5.1
4. MAPEK-P — MAPEK 60-1500 nM 1.0 1.5-1.9 16-6.7
5 MAPKK-P — MAPKK-PP 60-1500 nM 1.0 1.3-24 3852
6. MAPEE-PP — MAPEE-P 60-1500 nM 1.0 L.7-1.8 4.1-64
7. MAPK — MAPE-P 60-1500 nM (300 nMT) 1.0 1.7 39-62
8 MAPK-P — MAPK 60-1500 nM 1.0 1.7 4352
9. MAPK-P — MAPK-PP 60-1500 nM 1.0 1.7 3461
10. MAPK-FPP — MAPK-P 60-1500 nM 1.0 1.7 47-51

The assumed K values for each reaction were individually varied over the ranges shown, with the assumed K values for
the other nine reactions held constant. The effective Hill coefficients were calculated from the steepness of the predicted
stimulus/response curves, as described in the text.
1The K., value for reaction 7 has been measured to be 300 nM for the phosphorylation of a mammalian MAPK by a MAPKK

(N. Ahn, personal communication). All of the other Km values were initially assumed to be 300 nM as well.

10 chemical
reactions

¥
MAPKKK o = MAPKKK®

4
E2

MAPKK 7= MAPKK-P &> MAPKK-PP

t ¢

MAPKK F'ase

MAPK > MAPK-P

| |

e MAPK Pase
Caleulations. Eqs. 1-10 represent the reactions of the MAPK KK-PP + KK P'ase == KK-PP-KK P'ase R .
cascade, which are shown schematically in Fig. 1. We have used dg eservoirs
Goldbeter and Koshland’s nomenclature for the rate constants— OUTPUT
the letter a denotes association, d denotes dissociation without kg B k
catalysis, and k denotes product formation (11). KKK denotes — KK-P + KK P'ase 161 ac Enzymes
MATIIIG RIS denotes MAPIE and K denotes MAPE Fic. 1. Schematic view of the MAPK cascade. Activation of
KKK + Fl s KKECEL 2 KKK + Bl N ar ks MAPK depends u pon the phosphorylation of two conserve_d si_tes
dl B e [Thr-183 and Tyr-185 in rat p42 MAPK/Erk2 (4, 5)]. Full activation
KKK + B2 kckmn KKK o 1 o1 ! of MAPKK also requires phosphorylation of two sites [Ser-218 and
d; ) KoP 4 K Pase s ke P ks KoK P . Ser-222 in mouse Mek-1/MKK1 (6-10)]. Detailed mechanisms for the
o K R s 0 S activation of various MAPKKKs (e.g., Raf-1, B-Raf, Mos) are not vet
eSSt s sk At g s E . established; here we assume that MAPKKKs are activated and inac-
? ao o . . . . - #
. K-P + KK-PP — K-P-KK-PP —» K-PP + KK-PP  [9] twqted by enzymes we denote El1 and E2. MAPKKK ) denotes
KK-P + KK P'ase —= KK-PKK P'ase do activated MAPKKK. MAPKK-P and MAPKK-PP denote singly and

dy
I'%y d10
— KK + KK Pase 141 K-PP + K P'ase d.f:» KK-PP-K P'ase
10
= k- Kio

KK-P + KKK* =KK-P-KKK* — KK-PP + KKK*  [5] — K-P + K P'ase [10]

s

doubly phosphorylated MAPKK, respectively. MAPK-P and
MAPK-PP denote singly and doubly phosphorylated MAPK. P'ase
denotes phosphatase.



As 18 Ordinary Differential Equations
Plus 7 conservation equations

i
;[K—P] = K KKK-PP| — ag[ K-P][K P'ase]

+ deK-P+ K P'ase] — adK-PIKK-PP]

+ do[K-P+ KK-PP] + k[K-PP- K P'ase] 1241

d
a1 7 o RERIE AR The 10 reactions described above give rise to 18 rate
+ KRR B2 i equations.
;—l[[KKK-El] = a,[KKK][E1]- (d, + k)[KKK-E1]  [12]
. ;—l[[K-P'K P’ase] = a3[K-P][K P'ase]
7 [KKK*] = —a,[KKK*J[E2]+ d[KKK*E2]

+ ky[KKK-E1] + (ky + ds)[KK-KKK*] — a:[KKK*]KK]

+ (ks + d<)[KK-P-KKK*] — aJKK-PIKKK*] [13]

One equation for each
species (8) and complex
(10), but not for constant
concentration enzymes (4)

— (ds + kg)[K-P-K P'ase] [25]
d
g7 [K-P-KK-PP] = as[K-P][KK-PP]

d _ CATRLP . KR
G [KKK*E2] = ;[ KKK*J[E2] = (d; + ko) [KKK*E2] (ds + ko)[K-P - KK-PP] 126]

1141 d _ -
77 [K-PP] = —ai[K-PP][K Pasc]

i[KK] = —a[KK|[KKK*] + d3] KK-KKK*|

dat + dy[K-PP-K Plase] + kJ[K-P-KK-PP]  [27]

e . ;
+ kJKK-P KK P'ase] [1s] £ [K-PPK Prase] = a,oK-PP|[K P'ase]
. dt
d

q; [KKKKK'] = a5[KK][KKK"] — (dyo + ki J[K-PP-K P'ase] [28]

— (dy + ky)[KK-KKK*] [16]

i
i[KK-P] = —a,[KK-P][KK P'ase] + d,[KK-P-KK P'ase]
+ kKK -KKK*] + ko KK-PP-KK P'ase]
+ d{KK-P-KKK*] — adKK-PI[KKK*] [17]

+ dfKK-P-KKK*] — afKK-PIKKK*] 117]

[Ely = [E1] + [KKKE1] 1301 In addition, there are seven conservation equations (Eqgs.
[E2,] = [E2] + [KKK"E2] 1311 29-33).

[KK,u] = [KK] + [KK-P] + [KK-PP] + [KKKKK']

1
; |[KK-PKK P'ase] = a,[KK-P|[KK P'ase]
— (dy + ky)[KK-P-KK P'ase] [18]
+ [KK-P-KKK*] + [KK-P-KK P'ase]
+ [KK-PP-KK P'ase]
+ [KK-PP-K] + [KK-PP-K-P] 132]
[KK P'asei ] = [KK P'ase] + [KK P'ase-KK-P]

i
%[KK-P-KKK*] = as[KK-P][KKK*]

[KKK,o = [KKK] + [KKK*] + [KKK-E1]
+ [KKK*-E2]

— (ds + ks)[KK-P-KKK"] 1191

d
37 [KK-PP] = k[KK-PKKK '] ~ a,[KK-PP][KK P'ase]

+ d[KK-PP+KK P'ase] — a;[KK-PP][K] + [KK P'ase - KK-PP] [33]

+ [KKK" K] + [KKK"-K-P] [29]

+ (d; + k;)[K:KK-PP]
+ (dy + ko)[K-P-KK-PP]
— a [K-P[KK-PP] [20]
1
%[KK-PP‘KK Pase] = ag[KK-PP][KK P’ase]
— (ds + Ke)[KK-PP-KK P'ase] [21]
1
#[K] = —a;[K][KK-PP] + d;[K-KK-PP]
+ ks[K-P-K P'ase] [22]

d
3¢ [KKK-PP] = a;[K][KK-PP] ~ (d; + k;)[KKK-PP]
123]

[Kiot] = [K] + [K-P] + [K-PP] + [KK-PP-K]
+ KK-PP-K-P| + [K-P+K P'ase] + [K-PP-K P'ase]  [34]
[K Prase,,] = [K P'ase] + [K-P-K P'ase]
+ [K-PP:K P'ase] 135]
These equations were solved numerically using the Runge—
Kutta-based NDSolve algorithm in Mathematica (Wolfram
Research, Champaign, IL). An annotated copy of the Math-

ematica code for the MAPK cascade rate equations can be
obtained from J.E.F.

Each molecule

{ in exactly one state



The Circuit

(input)
[ | I | : !
KKK = KKK* KK e KK-P o—— KK-PP. K = K-P —no
T T ? T 7 (output)

E2 KK-Pase K-Pase



Enzymatic Reactions

Reaction View

intermediate
complex
E c .

o E+S = ES — P+E
S ——> P d

. . ivate bindings bet
Interaction View Pl
bind
. S() 2 new u@d new k@e
ol la (u,k): (lug: SO + k. PO)
] react
bind unbind react
aC ud ke ............ > @
EO) 2 ?a.(uk); Pug EQ + 2k, EQ))
@ PO .




MAPK Cascade in SPiM

let KKK() =
(new ul@d1:Release new kl@r1:React

!al(ul,kl); (do !'ul;KKK() or !k1;KKKst())) [1]substrate
KKK:E1 complex
and KKKst() =
(new u2@d2:Release new k2@r2:React
do !a2(u2,k2); (do 'u2;KKKst() or 'k2; KKK()) [2]substrate

or ?a3(u3,k3); (do ?u3;KKKst() or ?k3;KKKst()) [3]|kinase
or ?a5(u5,k5); (do ?u5;KKKst() or ?k5; KKKst())) [5]|kinase

let E1() =

2al(ul,k1); (do 2ul;E1() or ?K1;E1() [1]enzyme

E1:KKK complex

let E2() =

?a2(u2,k2); (do ?u2;E2() or ?k2;E2()) [2]enzyme
let KK() =

(new u3@d3:Release new k3@r3:React

!a3(u3,k3); (do 'u3;KK() or 'k3; KK P())) [3]substrate
and KK P() =

(new u4@d4:Release new kd@r4:React

new uS@d5S:Release new kS@r5:React

do !a4(u4,k4); (do 'u4;KK P() or 'k4;KK())

or !a5(u5,k5); (do !uS;KK _P() or !k5; KK PP()))

[4]substrate
[S]substrate

and KK PP() =
(new wb6@d6:Release new k6@r6:React

do !'a6(u§,k6); (do !u6;KK PP() or 'k6;KK P()) [6]substrate
OI' ?a7 u7, 3 /9 PO N, P v V4B ) ) ) TANPNSSD) ) ML, P Ve Vg nn/\ 7 kinase
( One process for each )17 :

or ?a9(u9,k9): . . ) [9]kinase
component (12) including
enzymes, but not for

and KKPse() = ymes, f

complexes.

or ?a6(u6,k6); (do ?u6;KKPse() or ?k6;KKPse()) [6]|phtase

No need for conservation
equations: implicit in “choice”
Joperator in the calculus.

[7]substrate

and K P() =
(new u8@d8:Release new k8 @r8:React
new u9@d9:Release new k9@r9:React

do !'a8(u8,k8); (do !u8;K P() or 'k8;K()) [8]substrate

or !a9(u9,k9); (do 'u9;K P() or !k9;K PP())) [9]substrate
and K PP() =

(new ul0@d10:Release new k10@r10:React

1a10(u10,k10); (do 'u10;K_PP() or 'k10;K_P())) [10]substrate
and KPse() =

do ?a8(u8.k8); (do ?u8;KPse() or ?k8;KPse()) [8]phtase

or 2a10(u10,k10); (do ?ul0;KPse() or ?k10;KPse()) [10|phtase



.. globals

type Release = chan()
type React = chan()
type Bond = chan(Release,React)

new al@1.0:Bond val dlil.() val rlil.O | a.(u.,k.): release (U-@d-) and react (k@r')
new a2@]1.0:Bond val d2=1.0 val r2=1.0 'h e | d y Ib d h | | !
new a3@1.0:Bond val d3=1.0 val r3=1.0 channels passed over bond (;) channel.
new a4@1.0:Bond val d4=1.0 val r4=1.0 (NO behavior attached to channels

new a5@1.0:Bond val d5=1.0 val r5=1.0 except interaction rate.)

new a6@1.0:Bond val d6=1.0 val r6=1.0
new a7@1.0:Bond val d7=1.0 val r7=1.0
new a8@1.0:Bond val d8=1.0 val r8=1.0
new a9@1.0:Bond val d9=1.0 val r9=1.0
new al0@]1.0:Bond val d10=1.0 val r10=1.0

run 100 of KKK() run 100 of KK() run 100 of K()
run 1 of E2() run 1 of KKPse() run 1 of KPse()
run 1 of E1()



MAPK Cascade Simulation in SPiM

I l 1 I

KKK* KK —— KK-P =— KK-PP

T J

E2 KK-P'ase

120

— KKK*
KK
KK_P

—KK_PP

— K

— KP

\® injected

— KKK

—K_PP

R

T (oquuT)
K-P'ase
1st stage:
KKK* barely rises
2nd stage:
KK-PP rises, but is not stable
3rd stage:

K-PP flips up to max
even anticipating 2" stage

All coefficients 1.0 lll
100xKKK, 100xKK, 100xK,
5xE2, 5xKKPse, 5xKPse.

Input is 1xE1.
Output is 90xK-PP (ultrasensitivity).



MAPK Cascade Simulation in SPiM

e (input)
100 1 o
— KKK~
: o L, ]
[=3n] 2
e | KKK KK KK kkp o2 Kk K= kP == (D)
40 1
—FK_F (output)
i 5
=t E2 KK-Pase  Poce
a
120
100 FH K All coefficients 1.0 lll
- —:'K" 100xKKK, 100xKK, 100xK,
s K _p 13xE2, 13xKKPse, 13xKPse.
=R nxE1 as indicated
40 4 .
kP (1xE1 is not sufficient to produce an output)
=0 — _K_FPFP
o 4
120
100 — KKK
— KK}
BB bk
KK _P
[=1n] HKKE._FF
40 L .
— =R
=0 — _FK_FF
[
1Z0
100 — KK
q KK K"
a0 4 [
KK _F
s — _KK_FP
40 4 — K
K_F
=0 — K_PP
a 4 T T T J
(=] =0 100 =0 200 220




MAPK Cascade Simulation in SPiM

(input)

CGD
b ) $ o :

KKK o KKK* KK T— KK-P =——" KK-PP| K T— K-P _-

T ? ? T (output)

E2 KK-P'ase K-P'ase

Rates and concentrations from paper:

1400

1xE2 (0.3 nM)

1200 - R :

KKK - e 1xKKPase (0.3 nM)
o0 KK-PP » 120xKPase (120 nM)
ado y{ ' KKK* KiK_P 3xKKK (3 HM)

— Kk _PP 1200xKK (1.2 UM)

B0

_ K 1200xK (1.2 uM)

[
400 S
200 A\ﬂ* /}u //I- KKK_PP ! —E:EF' dx=rx =150, ax =1

M (Kmx = (dx + rx) / ax, Km = 300 nM)

14 20
1xE1
injected




Gene-Protein Networks



Indirect Gene Effects

o e
No combination of standard (a) er phosatise - factor

high-throughput experiments | | 1 o
can reconstruct an a-priori proten 0

known gene/protein network I T f ! \ T
[Wagner'], DN:‘“\—[{.GeneHDJ:TGene 2] —qune3| —[{.Gene4| QJ:{.Gene5|

(b) (c)

Aspect of gene activity: mRNA expression Aspect of gene activity: phosphorylation state

Genetic perturbation: gene deletion Genetic perturbation: gene deletion

Gl: G2, G5 G1: G3. G4

G2: G5 G2: G3.G4

G3: G5 G3: G4

G4: G5 G4

G5: G5: Taken from

Andreas Wagner

Fig. 1. The importance of specifiying gene activity when reconstructing genetic networks. (a) A hypothetical biochemical pathway involving
two transcription factors, a protein kinase, and a protein phosphatase, as well as the genes encoding them. See text for details. (by Shown
is a list of perturbation effects for each of the five genes in {a), when perturbing individual genes by deleting them, and when using mRNA
expression level as an indicator of gene activity. The left-most symbol in each line stands for the perturbed gene. To the right of each colon is
a list of genes whose activity is affected by the perturbation. (¢) Analogous to (b} but for a different notion of gene activity (phosphorylation
state).

One of many bistable switches A B “ A:B B
that cannot be described by - i . D @

pure gene regulatory networks I \ |
[Francois & Hakim]. J |




MNumber of proteins

Frangois & Hakim Fig3A

PNAS (101)2, 580-585, 2004

Design of genetic networks with specified functions by evolution in

silico
) Reactions Constants | Stability
(AYB) a > a+A .20 0.9-1.4
A —Nothing | 0.0085 0.0-1.5
} b — b+B 0.37 0.7-1.3
B —Nothing 0.034 0.0-8.9
@ : 3 @' A+B—+ AB 0.72 0.1->10
/ \ _ A:B —Nothing 0.53 Irrelevant
. @ £, b+A— BA 0.19 0.7-7.6
+ |Z— (A BA = b+A 0.42 0.2-1.5
(e} LB Flg bA — bA+D | 0.027 0.0-2.3
Fig 3A N
Reaction
oriented
50 - 1 - - 1 T - - 50 ' ' 1 - - - - -
45 | Protein A —— | a5 | Protein A ———
40 | o 40 |
35 Pulse of A Pulse of B '% S50 Rl et
30 F =
25 | =
20 F o
15 | 8
10 t 3
5 L _
0 100 200 300 400 500 600 700 800 900 0 100 200 300 400 500 600 700 800 900
time (min) time (min)

Fig 14A



Frangois & Hakim Fig3A, SPiM simulation

Parameters as in paper

3 copies of each gene.

35 35
SPiM simulation SPiM simulation %0 o ;
SPiM simulation
30 30 80 Ah
{ i
25 | l | | 25 70 [1 | f
2 IEW. 2 - B0 R ¥
n | “ h — dkA0.0085) 50 m = — dkA0.0085()
15 15 1 } —— dkB0.034() o ]' M‘ — dkBL0.034()
10 - 10 | ll' 0 l r
- _ l T " 20 il
q 2 T ’
10 i
oM | 0 N,/ E— il [
. . i R _ } T T
0 2000 4000 600 5000 10000 15000 20000 25000 0 2000 4000 6000
Spontaneous switch at ~500 .
(as discussed in Supporting Text) Free evolution Spontaneous switch at ~1100
30xB injected at ~3000 100xB injected at ~3000
30xA injected at ~4000 30xA injected at ~4000
Modified for stability: wa- o0z, ae- o002
120 140 140
SPiM simulation SPiM simulation SPiM simulation
. 3 120 120
b 100 M "1' 100 i
" N 80 N M M W \l"l a0 Jl ﬁ ll
- | — dkA:0.002() ) W u i J‘W 11 ﬂ L w — dkA0.002()
2 .
/ I Ii( — dkB-0.002() 50 - ‘ 80 i — dkB0.002()
" oW
} 40 A 40 }
e H 20 20
0 T T 0 T T 0 T T
0 5000 10000 15000 0 5000 10000 15000 i 5000 10000 15000

120xA injected at ~4000
120xB injected at ~8000

Free evolution



Frangois & Hakim Fig3Ast8

Circuit of Fig 3A with parameters from SupportingText Fig 8, plotted in Fig 13A

Reactions Constants : :
a — at+A 0.52 I: £U oA ]
A —Nothing | 0.00019 < Pulse of A Pulse of B
b = b+B 0.79 g o0
B —Nothing 0.0030 @ + 5 o
A+B— AB 0.053 g
= 0 = £
AR —Nothing 0.15 / \ 2 200
Z
A DA 0.22 @ Y
b:A — b+A 0.31 + R @ 0 - - .
bA = ALB | 043 <~ 2000 4000 6000 B000
time (min)
Fig 13A
Fig 8
300 -
T 400 140
SPiM simulation 600 SPiM simulation SPiM simulation SPiM simulation
250 j‘w"] c00 Pt 350 n 120
- /ﬂN s N 300 W W e J% . |
150 f - W = ' — dkA0.00019()
? / 300 200 ., ( IO
l" Il — - ur
N ,. | - ,-f’ 50 ][ | H dkB-0.003(
» ; P\
501 100 iw- \.\.’*‘\W ” f 20 H
50
0 n T N : : 0 . ; 0 - T T
0 5000 e 15000 5000 10000 15000 0 5000 10000 15000 O 5000 10000 15000

200xA injected at ~2500
500xB injected at ~5000
200xA injected at ~7500

200xB injected at O
600xA injected at ~2500
600xB injected at ~7500

Free evolution




(* Francois and Hakim circuit 3A *)

val
val
val
val
val
val
val
val
val

Francois & Hakim 3A in SPiM

pntAunb = 0.42
geneACst = 0.20
geneBCst = 0.37
geneBInh = 0.027
bA = 0.19

AB = 0.72

dkA = 0.0085

dkB = 0.034

dkAB = 0.53

Tet

Tet

Tet

et

et

and

run

ptnAQ) =
(new unb@pntAunb
do delay@dkA or !AB or !bACunb);(?unb; ptnA()))

ptnB() =

do delay@dkB or ?AB;cpxAB()

cpxAB() = delay@dkAB In'l'ef'GCTion
oriented

geneA() =

delay@geneACst; (ptnA() | geneA())

geneBfree() =
do delay@geneBCst; (ptnB() | geneBfree())
or ?bA(unb); geneBbound(unb)

geneBbound(unb:ch(Q)) =
do delay@geneBInh; (ptnB() | geneBbound(unb))

or !unb; geneBfree()

(geneA() | geneBfree())



Scaling up:
ODE vs Process
Descriptions



From Chemical Reactions to ODE's

ri A+B —k, C+C

/

ri A+C —k, D Write the coefficients
ry: C —k, E+F by columns
ri F—k, B reactions
N|r |ro|rs|r,
Concentration Al-11-1
changes X)) B |-1 1
Stoichiometric oflcl2]|-1]-1
matrix 8_ D 1
)
Qo‘re laws E 1
1(-1
d[x F
dix] | ;

d’r'

d[A)/dt = -v, - v,
d[B]l/dt = -v, + v4
d[C]/dt = 2 v1
d[D)/dt = v,
d[E]/dt = v,
d[F1/dt = v5 - v,

/

Read the concentration
changes from the rows

- V3

E.g. d[A)/dt =
-k [A][B] - k,[AT[C]

Stoichiometric

N\

Matrix

Vi(xleilki)

\

ki-[A][B]

kp:[AT[C]

ks-[C]

Ky [F]

Dk
D\

A

0

B C
> F k3E

Read the rate laws
from the columns

x: chemical species

[-]: concentrations

v: rate laws

k: kinetic parameters

N: stoichiometric matrix
e: catalysts (if any)



From Chemical Reactions to Processes

ri A+B —k, C+C

k
rs A+C —k, D Write the coefficients A L C

ry C —k; E+F wolumns
ri P —k, B interactions
N r[ra|rs|ry
Al-1(-1
MEIE 1
wi|ic|2(-1-1
. o o Q
For binary reactoins, first species in O [D 1
the column does an input and o)
produces result, second species does | E 1
an ouput, For unary reactions, Q.
species does a tau action and F 11-1
produces result. No ternary
reactions. /
A = ?2vk.(C|C) + ?v,k,.D +2a Add a barb
| for counting
B-= 'Vik; +?b and plotting
C = IV k, + Thy(E|F) + 2
D=0+2d
E=0+2

F = t,.B +>f

Stoichiometric Ky
Matrix

B C

';4\F<AkiE

Read the process
interactions from the rows

(Rate laws are implicit in
stochastic semantics)



Stoichiometric Matrices Blow Up

e We can translate Chemistry to ODE's or Processes
- It is standard to go from chemical equations to ODE's via a stoichiometric
matrix.

- It is similarly possible to go from chemical equations to processes via a
stoichiometric matrix.

e But there is a better way:
- Stoichiometric matrices blow-up exponentially for biochemical systems
(unlike for ordinary chemical systems) because proteins have combinatorial
state and complexed states are common.

- To avoid this explosion, we should describe biochemical systems
compositionally without going through a stochiometric matrix (and hence
without ODE's).



Complexes: The ODE Way

n A B,C ABC = ABC
; _ The matrix is very sparse, so
domains ABC = AB,C the corresponding ODE system
5 A=A, ABC ABC = ABC, is not dense. But it still has 2n
n B=R A BC A,BC = AB.C  equations, one per species, plus
domain P P A BC = ABC conservation equations
reactions € = C, AB,C pPC = ApBCh  ([ABCI+[A BCI=constant, efc.).
AB C=AZB.C
ABC 1 p PP
1 ABC 2l A BPC ) AB,C = AB.C,
ies P P~ reactions - System description is
Species A BC (twice number of ABcp -~ ApBCp . o
complex PPCP LI ABC = AB.C exponential in the number
p = MBpp :
28562 ABC=ABC, of basic components.
P=PP APBCp = APBPCp
Stoichiometric AB,C, = ABC,

Matrix

N Vi V2 V3 Vy Vs Ve V7 Vg Vo Vio Vit Viz Viz Via Vis Vie Viz Vig Vig Vao Vai Va2 Va3 Va4

ABC

ApBC

ABpC

2n x 2n(2n1)

ApBpC

ApBCp l

ABpCp

ApBpCp




Complexes: The Reactive System Way

A= Ap
B=RB
2n P
domain C= CP
reactions

A =?knA, A, =?phA

2n

B =?kn:B, B, =?phB

processes C = ?kn;cp Cp = 9ph,C

ASA|B|C

\ System description is

When the local domain reactions are not independent,

we can use lateral communication so that each
component is aware of the relevant others.

linear in the number of
basic components.

(Its "run-time" behavior or
analysis potentially blows-up just
as in the previous case, but its
description does not.)




Model Validation




Model Validation: Simulation

e Basic stochastic algorithm: Gillespie
- Exact (i.e. based on physics) stochastic simulation of chemical kinetics.
- Can compute concentrations and reaction times for biochemical networks.

e Stochastic Process Calculi
- BioSPi [Shapiro, Regev, Priami, et. al.]
e Stochastic process calculus based on Gillespie.
- BioAmbients [Regev, Panina, Silverma, Cardelli, Shapiro]
e Extension of BioSpi for membranes.
Case study: Lymphocytes in Inflamed Blood Vessels iecaa, priami, quagiaj
e Original analysis of lymphocyte rolling in blood vessels of different diameters.
Case STUdyi Lambda Switch (ceiine kuttier, Tr1 Lille]
e Model of phage lambda genome (well-studied system).

Case study: VICE w risa

e Minimal prokaryote genome (180 genes) and metabolism of who/e VIrtual CEll, in
stochastic n-calculus, simulated under stable conditions for 40K transitions.

e Hybrid approaches

- Charon language (vren;

. Hybr‘i}c‘i systems: continuous differential equations + discrete/stochastic mode
switching.

- Etc.



Model Validation: "Program” Analysis

e Causality Analysis

- Biochemical pathways, ("concurrent traces”
such as the one here), are found in biology
publications, summarizing known facts.

- This one, however, was automatically P
gener'a’red.fr'om a program writfen in BioSpi ;
by comparing ftraces of all possible :
Interactions. [Curti, Priami, Degano, Baldari] \.,ﬁ

- One. Can play WiTh The pr.ogr'am TO inves-rigaTe Fig.2. A computation of Sys. For llezlidabiliL_',"es:'ses‘ enclosed in boxes, have
various hypotheses about the pathways. i g o e e et T o

e Control Flow Analysis

- Flow analysis techniques applied to process
calculi.

- Overapproximation of behavior used to
answer questions about what "cannot
happen”.

- Analeis of positive feedback transcription
regulation in BioAmbients [Flemming Nielson].

e Probabilistic Abstract Interpretation
- [DiPierro Wicklicky].



Model Validation: Modelchecking

e Temporal
- Software verification of biomolecular systems (NA pump)

[Ciobanu]

- Analxsis of mammalian cell cycle (after Kohn) in CTL.

[Chabrier-Rivier Chiaverini Danos Fages Schachter]

e E.g. is state S; a necessary checkpoint for reaching state S,?

e Quantitative: Simpathica/xssys

[Antioniotti Park Policriti Ugel Mishra]

- Quantitative ‘rem,poral logic queries of human Purine
metabolism model.

Eventually(Always (PRPP = 1.7 * PRPP1)
implies
steady_state()
and Eventually(Always(IMP < 2 * IMP1))
and Eventually(Always(hx_pool < 10*hx_pool1)))

e Stochastic: Spring

[Parker Normal Kwiatkowska]

- Designed for stochastic (computer) network analysis
e Discrete and Continuous Markov Processes.
e Process input language.
e Modelchecking of probabilistic queries.



What Reactive Systems Do For Us

We can write things down precisely We can reason
- We can modularly describe high structural - Suitable equivalences on processes
and combinatorial complexity (“do induce algebraic laws.
programming”). - We can relate different systems (e.g.
equivalent behaviors).
We can calculate and analyze - We can relate different abstraction
- Directly support simulation. levels. .
- Support analysis (e.g. control flow, causality, = We can use equivalences for state
nondeterminism). minimization (symmetries).

- Support state exploration (modelchecking).
Disclaimers

- - - Some of these technologies are basically
We can vusual.nze ' ready (medium-scale stochastic simulation and
- Automata-like presentations. analysis, medium-scale nondeterministic and

- Petri-Net-like presentations. stochastic modelchecking).

- - - Others need to scale up significantly to be
State _Char’rs,.lee Sequence Charts [Harel] really useful. This is (has been) the challenge
e Hierarchical automata. for computer scientists.

e Scenario composition.

Many approaches, same basic philosophy, tools being built:
= Proc. Computational Methodss in Systems Biology [2003-2005]



Conclusions

| —— . - Q! "The data are accumulating and
&ﬁ,‘;‘;{% T2 Ti8 | the computers are humming,
o o This @ what we are lacking are the
Qalft '. ﬁ'AZGCTAA9 words, the grammar and ﬂl\'e
CGCATAACTG a5 syntax of a new language...
g %[/ D. Bray (TIBS 22(9):325-326, 1997)

'-?." l/\
%\ugé A: “The most advanced tools for

computer process description

e \M\ seem to be also the best tools
T for the description of
A biomolecular systems.”
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Papers
BioAmbients
a stochastic calculus with compartments.
Brane Calculi
process calculi with computation "on" the membranes, not inside them.
Bitonal Systems
membrane reactions and their connections to “local” patch reactions.
Abstract Machines of Systems Biology
the abstract machines implemented by biochemical toolkits.

www.luca.demon.co.uk/BioComputing.htm



