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50 Years of Molecular Cell Biology

● Genes are made of DNA
– Store digital information as sequences of 4 
different nucleotides

– Direct protein assembly through RNA and the 
Genetic Code

● Proteins (>10000) are made of amino acids
– Process signals

– Activate genes 

– Move materials

– Catalyze reactions to produce substances

– Control energy production and consumption

● Bootstrapping still a mystery
– DNA, RNA, proteines, membranes are today 
interdependent. Not clear who came first

– Separation of tasks happened a long time ago

– Not understood, not essential
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Towards Systems Biology

● Biologists now understand many of the cellular components
– A whole team of biologists will typically study a single protein for years
– When each component and each reaction is understood, the system is understood (?)

● But this has not led to understand how “the system” works
– Behavior comes from complex chains of interactions between components
– Predictive biology and pharmacology still rare
– Synthetic biology still unreliable

● New approach: try to understand “the system”
– Experimentally: massive data gathering and data mining (e.g. Genome projects)
– Conceptually: modeling and analyzing networks (i.e. interactions) of components

● What kind of a system?
– Just beyond the basic chemistry of energy and materials processing…
– Built right out of digital information (DNA)
– Based on information processing for both survival and evolution

● Can we fix it when it breaks?
– Really becomes: How is information structured and processed?
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Storing Processes

● Today we represent, store, search, and analyze:
– Gene sequence data

– Protein structure data

– Metabolic network data

– Signalling pathway data

– …

● How can we represent, store, and analyze biological processes?
– Scalable, precise, dynamic, highly structured, maintainable representations 
for systems biology.

– Not just huge lists of chemical reactions or differential equations.

● In computing…
– There are well-established scalable representations of dynamic reactive 
processes.

– They look more or less like little, mathematically based, programming 
languages.

Cellular Abstractions: Cells as Computation
Regev&Shapiro NATURE vol 419, 2002-09-26, 343



2005-07-07 5

Structural Architecture

Nuclear
membrane

Membranes
everywhere

Mitochondria

Plasma 
membrane

(<10% of all 
membranes)

Vesicles

Eukaryotic
Cell

(10~100 trillion 
in human body)

Golgi

E.R.

H.Lodish et al.
Molecular Cell Biology 
fourth edition p.1
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Abstract Machines of Systems Biology
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Model Integration
Different time 
and space scales

PPPP QQQQ

Machine
Phospholipids

Membrane 

The “hardware” (biochemistry) is 
fairly well understood.
But what is the “software” that 
runs on these machines? 

Functional Architecture
Diverse 
- chemical toolkits
- instruction sets
- programming models
- notations

[   ]Glycan
Machine

Sugars

Surface and 
Extracellular
Features

Biochemical 
Networks

Transport 
Networks

Gene Regulatory 
Networks
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Reactive Systems

● Modeling biological systems
– Not as continuous systems (often highly nonlinear)

– But as discrete reactive systems; abstract machines with:
●States represent situations

●Event-driven transitions between states represent dynamics

– The adequacy of describing (discrete) complex systems as reactive systems 
has been argued convincingly [Harel]

● Many biological systems exhibit features of reactive systems:
– Deep layering of abstractions

– Complex composition of simple components

– Discrete transitions between states

– Digital coding and processing of information

– Reactive information-driven behavior

– High degree of concurrency and nondeterminism

– “Emergent behavior” not obvious from part list
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Chemistry vs. ππππ-calculus

Na + Cl  →k1 Na+ + Cl-

Na+ + Cl- →k2 Na + Cl

Na

Na+

Cl

Cl-

!r ?r !s?s

k1

k2

k1

k2

Na Cl

Na+ Cl-

k1

k2

A process calculus (chemistry, or SBML)

Na = !rk1; ?sk2; Na 
Cl = ?rk1; !sk2; Cl

Cl-

Na+

A different process calculus (π)

This Petri-Net-like graphical representation 
degenerates into spaghetti diagrams: precise 
and dynamic, but not scalable, structured, or 
maintainable.

A compositional graphical representation, 
and the corresponding calculus.

Reaction
oriented
Reaction
oriented

Interaction
oriented

Maps to 
a CTMC

Maps to 
a CTMC

The same “model”

Interaction
oriented

1 line per 
reaction

1 line per 
component
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Methods

● Model Construction (writing things down precisely)
– Formalizing the notations used in systems biology.

– Formulating description languages.

– Studying their kinetics (semantics).

● Model Validation (using models for postdiction and prediction)
– Simulation from compositional descriptions

●Stochastic: quantitative concurrent semantics.

●Hybrid: discrete transitions between continuously evolving states.

– “Program” Analysis
●Control flow analysis

●Causality analysis

– Modelchecking
●Standard, Quantitative, Probabilistic
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● Regev-Shapiro: “Molecules as Processes”:

● They chose π-calculus and adapted it with stochastic features
– To match the stochastic aspects of (bio)chemistry

– Many probabilistic process calculi predate them, but only Hillston (CSP) and 
Priami (π) had already studied stochastic calculi.

Basic Modeling Guidelines

Cellular Abstractions: Cells as Computation
Regev&Shapiro NATURE vol 419, 2002-09-26, 343

State change
(state-transition systems)

Modification
(of chemical components)

CommunicationInteraction

ChannelInteraction capability

ProcessMolecule
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ππππ-calculus Executive Summary

● It’s for:
– The modular description of concurrent, nondeterministic systems
– Study of such systems based on their descriptions

● It’s got:
– Processes
– Channels
– A minimalistic syntax (it’s a language and also a model)

● You can:
– Fork new processes
– Create new channels
– Do I/O over channels (synchronous and asynchronous)

including passing channels over channels
– Make nondeterministic choices
– Define processes recursively

● That’s it.
– Except for extensive model theory and metatheory.
– Cannot pass processes over channels 

(simulated by passing channels to them)
– Cannot define procedures

(simulated by supplying reply channels)
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ππππ-calculus

Syntax

Chemical 
Mixing

Reactions
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Stochastic ππππ-calculus Executive Summary

● A simple variant of π-calculus: 
– Channels have stochastic “firing”
rates with exponential distribution.

– Nondeterministic choice becomes 
stochastic race.

– Cuts down to CTMCs (Continuous 
Time Markov Chains) in the finite 
case (not always). Then, standard 
analytical tools are applicable.

– Can be given friendly automata-like 
scalable graphical syntax (work in 
progress: Andrew Phillips).

– Is directly executable (e.g. via the 
Gillespie algorithm from physical 
chemistry).

– Is analyzable (large body of 
literature, at least in the non-
stochastic case).

A.Phillips, L.Cardelli. BioConcur’04.
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● A deterministic system:
– May get “stuck in a fixpoint”. 

– And hence never oscillate.

● A similar stochastic system:
– May be “thrown off the fixpoint” by 

stochastic noise, entering a long orbit 
that will later bring it back to the fixpoint. 

– And hence oscillate.

Importance of Stochastic Effects

Mechanisms of noise-
resistance in genetic 
oscillators

Jose´ M. G. Vilar, Hao
Yuan Kueh, Naama Barkai, 
Stanislas Leibler

PNAS  April 30, 2002  vol. 
99  no. 9  p.5991



Gene Networks
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The Gene Machine

Taken from
Leroy Hood

The “Central Dogma” of Molecular Biology

transcription translation interaction

folding

regulation

4-letter
digital code

4-letter
digital code

20-letter
digital code

50.000(?) 
shapes

Lactose Operon

Taken from
Pedro Mendes

DNA Tutorial
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The Gene Machine “Instruction Set”

Coding region

Positive Regulation

TranscriptionNegative Regulation

Regulatory region

Gene
(Stretch of DNA)

Regulation of a gene (positive and 
negative) influences 
transcription. The regulatory 
region has precise DNA 
sequences, but not meant for 
coding proteins: meant for 
binding regulators.

Transcription produces molecules 
(RNA or, through RNA, proteins) 
that bind to regulatory region of 
other genes (or that are end-
products).

Human (and mammalian) Genome Size
3Gbp (Giga base pairs) 750MB @ 4bp/Byte (CD)
Non-repetitive: 1Gbp 250MB
In genes: 320Mbp 80MB
Coding: 160Mbp 40MB
Protein-coding genes: 30,000-40,000

M.Genitalium (smallest true organism)
580,073bp 145KB (eBook)

E.Coli (bacteria): 4Mbp 1MB (floppy)
Yeast (eukarya): 12Mbp 3MB (MP3 song)
Wheat 17Gbp 4.25GB (DVD)

Input Output
Input

Output1Output2

“External Choice”
The phage 

lambda switch

cf. Hybrid Petri Nets [Matsuno, Doi, Nagasaki, Miyano]
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Gene Composition

a b

Under the assumptions [Kim & Tidor]
1) The solution is well-stirred

(no spatial dependence on concentrations or rates).
2) There is no regulation cross-talk.
3) Control of expression is at transcription level only 

(no RNA-RNA or RNA-protein effects)
4) Transcriptions and translation rates monotonically 

affect mRNA and protein concentrations resp.

Is a shorthand for:

gene
b

mRNA

protein

a

A B

translation

transcription

regulation

degradation

a b a b

Ex: Bistable Switch

a b

c

a b

c

a b

c
Expressed

Repressed

Expressing

Ex: Oscillator
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E.H.Davidson, D.R.McClay, L.Hood. Regulatory gene 
networks and the properties of the developmental 

process. PNAS 100(4):1475–1480, 2003.

Gene Regulatory Networks

NetBuilder
http://strc.herts.ac.uk/bio/maria/NetBuilder/

Or

And

GateAmplify
Sum

DNA
Begin coding region

C-H.Yuh, H.Bolouri, E.H.Davidson. Genomic Cis-Regulatory Logic: Experimental and 
Computational Analysis of a Sea Urchin Gene. Science 279:1896-1902, 1998
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(The Classical ODE Approach)
[Chen, He, Church]

Genes mRNA Proteins

Degradation

C L

V U

r p

d r
dt

= f (p) - V r

d p
dt

= L r - U r

n: number of genes
r mRNA concentrations (n-dim vector)
p protein concentrations (n-dim vector)

f (p) transcription functions: 
(n-dim vector polynomials on p)



2005-07-07 21

Nullary Gate

b

null

stochastic delay (τ) with 
rate ε of constitutive 

transcription 

output protein 
(transcripion factor), 

spawn out

and repeat
(recursive, parametric) 

process definition

null(b) @ τε; (tr(b) | null(b))

interaction site of 
output protein

spontaneous 
(“constitutive”) 

outputno input

A stochastic rate r is always associated with each channel ar (at channel 
creation time) and delay τr, but is often omitted when unambiguous.
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Production and Degradation
Degradation is extremely important and often deliberate; 
it changes unbounded growth into (roughly) stable signals.

(output, !) interaction with rate r
(input, ?, is on the target gene)

tr(p) @ (!pr; tr(p)) + τδ

degradation rate δ

transcripton
factor

and repeat

time

null(b) @ τε; (tr(b) | null(b))
b

null

product

ε=0.1, δ=0.001

interaction 
offers on b

(= number of tr
processes)

combined effect of 
production and 

degradation (without 
any interaction on b) null(b)

interaction site of 
transcription factor

degradation

A transcription factor is a process (not a message or a channel): 
it has behavior such as interaction on p and degradation.

stochastic choice 
(race between r and δ)

b
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Unary Pos Gate

pos

a b

output (stimulated 
or constitutive)

input 
(excitatory)

pos(a,b) @
?ar; τη; (tr(b) | pos(a,b)) + 
τε; (tr(b) | pos(a,b)) 

*tr(ar) | pos(ar,b)

pos(a,b)

parallel, not sequence, 
to handle self-loops 
without deadlock

(input, ?) interaction with rate r

or constitutive transcription
to always get things started

output protein

unlimited 
amount of

Constitutive

Stimulated

b
r=1.0, ε=0.01, η=0.1, δ=0.001

transcripton delay 
with rate η

race between 
r and ε
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Unary Neg Gate

a b

neg

output (constitutive 
when not inhibited)

input 
(inhibitory)

neg(a,b) @
?ar; τη; neg(a,b) + 
τε; (tr(b) | neg(a,b)) 

inhibition delay 
with rate η

or constitutive transcription
to always get things started

(input, ?) interaction with rate r

neg(ar,b)

*tr(ar) | neg(ar,b)

Constitutive

Inhibited

r=1.0, ε=0.1, η=0.01, δ=0.001

b

race between 
r and ε
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Signal Amplification

pos

a

pos

cb

tr(p) @ (!pr; tr(p)) + τδ

pos(a,b) @
?ar; τη; (tr(b) | pos(a,b)) + 
τε; (tr(b) | pos(a,b))

E.g. 1 a that 
interacts twice 
before decay can 
produces 2 b that 
each interact twice 
before decay, which 
produce 4 c…

pos(a,b) | 
pos(b,c)

pos(a,b) | pos(b,c)

With little degradation

r=1.0, ε=0.01, η=0.1, δ=0.00001

a
b

c
r=1.0, ε=0.01, η=0.1, δ=0.001

a

b

c

even with no a input, 
consitutive production 
of b gets amplified to 

a high c signal

pos(a,b) | pos(b,c)
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Signal Normalization

negneg

a cbneg(a,b) | 
neg(b,c) 

neg(a,b) @
?ar; τh; neg(a,b) + 
τε; (tr(b) | neg(a,b)) 

tr(p) @ (!pr; tr(p)) + τδ

a

b
c

a non-zero input level, a, 
whether weak or strong, 

is renormalized to a 
standard level, c.

30*tr(a) | neg(a,b) | neg(b,c)

r=1.0, ε=0.1, η=0.01, δ=0.001
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r=1.0, ε=10.0, h=1.0, δ=0.005

neg(a,a)

a

Self Feedback Circuits

pos(a,a) neg(a,a) 
a

neg

a

pos

neg(a,b) @
?ar; τh; neg(a,b) + 
τε; (tr(b) | neg(a,b)) 

tr(p) @ (!pr; tr(p)) + τδ

r=1.0, ε=0.1, δ=0.01

pos(a,a)

a

pos(a,b) @
?ar; (tr(b) | pos(a,b)) + 
τε; (tr(b) | pos(a,b)) 

tr(p) @ (!pr; tr(p)) + τδ

δ=0.0005Less degradation

And a bit less δ=0.0001

high, to raise 
the signal

(Can overwhelm degradation, 
depending on parameters)
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Two-gate Feedback Circuits

negpos

b

a

pos(b,a) |
neg(a,b) 

neg(b,a) |
neg(a,b) 

negneg

b

a

For some degradation rates is quite stable:

r=1.0, ε=0.1, h=0.01, δ=0.0005

pos(b,a) | neg(a,b)

aa

bb

r=1.0, ε=0.1, h=0.01, δ=0.0001

But with a small change in degradation, it goes wild:

pos(b,a) | neg(a,b)

a

b

Bistable:

a b

ab

r=1.0, ε=0.1, h=0.01, δ=0.001

neg(b,a) | neg(a,b)

ε=0.1, h=0.01, δ=0.001

5 runs with r(a)=0.1, 
r(b)=1.0 shows that 
circuit is now biased 
towards expressing b

b

Monostable:
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neg(a,b) @
?ar; τh; neg(a,b) + 
τε; (tr(b) | neg(a,b)) 

Repressilator

neg neg

negc b

a

neg(a,b) |
neg(b,c) |
neg(c,a) 

tr(p) @ !pr tr(p) @ !pr + τδ

tr(p) @ (!pr; tr(p)) + τδ

r=1.0, ε=0.1, h=0.04 r=1.0, ε=0.1, h=0.04, δ=0.0001

r=1.0, ε=0.1, h=0.001, δ=0.001

a b c a b c

a b c

Same circuit, three different degradation models by chaning the tr component:

Subtle… at any point one gate is inhibited and the other two can fire constitutively. If one of them fires first, 
nothing really changes, but if the other one fires first, then the cycle progresses.

interact once and die
otherwise stick around

interact once and die
otherwise decay

interact many times
and decay
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Repressilator in SPiM

valvalvalval dkdkdkdk = 0.001 = 0.001 = 0.001 = 0.001 (* Decay rate *)(* Decay rate *)(* Decay rate *)(* Decay rate *)

valvalvalval etaetaetaeta = 0.001= 0.001= 0.001= 0.001 (* Inhibition rate *)(* Inhibition rate *)(* Inhibition rate *)(* Inhibition rate *)

valvalvalval cstcstcstcst = 0.1= 0.1= 0.1= 0.1 (* Constitutive rate *)(* Constitutive rate *)(* Constitutive rate *)(* Constitutive rate *)

let let let let tr(p:chantr(p:chantr(p:chantr(p:chan()) = ()) = ()) = ()) = 

do !p; do !p; do !p; do !p; tr(ptr(ptr(ptr(p))))

or or or or delay@dkdelay@dkdelay@dkdelay@dk

let let let let neg(a:channeg(a:channeg(a:channeg(a:chan(), (), (), (), b:chanb:chanb:chanb:chan()) =()) =()) =()) =

do ?a; do ?a; do ?a; do ?a; delay@etadelay@etadelay@etadelay@eta; ; ; ; neg(a,bneg(a,bneg(a,bneg(a,b))))

or or or or delay@cstdelay@cstdelay@cstdelay@cst; (; (; (; (tr(btr(btr(btr(b) | ) | ) | ) | neg(a,bneg(a,bneg(a,bneg(a,b))))))))

(* The circuit *)(* The circuit *)(* The circuit *)(* The circuit *)

valvalvalval bndbndbndbnd = 1.0= 1.0= 1.0= 1.0 (* Protein binding rate *)(* Protein binding rate *)(* Protein binding rate *)(* Protein binding rate *)

new new new new a@bnda@bnda@bnda@bnd: : : : chanchanchanchan() () () () 

new new new new b@bndb@bndb@bndb@bnd: : : : chanchanchanchan() () () () 

new new new new c@bndc@bndc@bndc@bnd: : : : chanchanchanchan()()()()

run (run (run (run (neg(c,aneg(c,aneg(c,aneg(c,a) | ) | ) | ) | neg(a,bneg(a,bneg(a,bneg(a,b) | ) | ) | ) | neg(b,cneg(b,cneg(b,cneg(b,c))))))))
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Repressilator ODE Model and Simulation

d[X]

dt
= α0 +

α +α1[PY]
n

K
n +[PY]n

− k[X],  
d[PX]

dt
= β{[X]−[PX]}

d[Y]

dt
= α0 +

α +α1[PZ]
n

K
n +[PZ]n

− k[Y],  
d[PY]

dt
= β{[Y]−[PY]}

d[Z ]

dt
= α0 +

α +α1[PX]
n

K
n +[PX]n

− k[Z],  
d[PZ]

dt
= β{[Z]−[PZ]}

Z PZ

Y PY

X PX

φ

φ

φφ

φ

φ
RNA

RNA

RNA

Bruce E Shapiro
Cellerator
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Guet et al.: D038/lac-

TetR

tet lac

LacI

cI

λλλλcI

gfp

GFP
IPTGaTc

experiment:
aTc - + - +
IPTG - - + +
GFP - + - -
(LacI - + - -)

neg(TetR,TetR) | neg(TetR,LacI) | neg(LacI,λcI) | neg(λcI,GFP)

PT PL2PT Pλλλλ
-

aTc -
IPTG -
GFP -

aTc +
IPTG -
GFP +

GFP!

aTc -
IPTG +
GFP -

aTc +
IPTG +
GFP -

r=1.0, ε=0.1, h=1.0, δ=0.001

IPTG de-represses the lac 
operon, by binding to the lac
repressor (the lac I gene 
product), preventing it from 
binding to the operator.

Combinatorial Synthesis of Genetic Networks, Guet, Elowitz, Hsing, Leibler, 
1996, Science, May 2002, 1466-1470.

We can model an inducer like 
aTc as something that 
competes for the 
transcription factor.



Protein Networks
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MAPK Cascade - Huang&Ferrell

Ultrasensitivity in the mitogen-activated protein cascade, Chi-Ying F. Huang and 
James E. Ferrell, Jr., 1996, Proc. Natl. Acad. Sci. USA, 93, 10078-10083.

10 chemical 
reactions

ReservoirsReservoirsReservoirs

Back EnzymesBack Enzymes
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As 18 Ordinary Differential Equations
Plus 7 conservation equations

Each molecule

in exactly one state

One equation for each 
species (8) and complex 
(10), but not for constant 
concentration enzymes (4)
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The Circuit

K-PKKK KKK*

E1 

E2

KK KK-P

KK-P’ase

KK-PP K

K-P’ase

K-PP

(output)

(input)
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Enzymatic Reactions

S P

E

E+S ES P+E
c

d

e

S() @ new u@d new k@e
!ac(u,k); (!ud; S() + !ke; P())

E() @ ?ac(u,k); (?ud; E() + ?ke; E())

E

Pac ud ke

S

Reaction View

≡

Interaction View
bind

unbind

react
bind unbind react

P() @ …

private bindings between
one S and one E molecule

(c,d,e)

intermediate
complex
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MAPK Cascade in SPiM
let KKK() =

(new u1@d1:Release new k1@r1:React

!a1(u1,k1); (do !u1;KKK() or !k1;KKKst()))

and KKKst() =

(new u2@d2:Release new k2@r2:React

do !a2(u2,k2); (do !u2;KKKst() or !k2;KKK())

or ?a3(u3,k3); (do ?u3;KKKst() or ?k3;KKKst())

or ?a5(u5,k5); (do ?u5;KKKst() or ?k5;KKKst()))

let E1() = 

?a1(u1,k1); (do ?u1;E1() or ?k1;E1())

let E2() =

?a2(u2,k2); (do ?u2;E2() or ?k2;E2())

let KK() =

(new u3@d3:Release new k3@r3:React 

!a3(u3,k3); (do !u3;KK() or !k3;KK_P()))

and KK_P() =

(new u4@d4:Release new k4@r4:React 

new u5@d5:Release new k5@r5:React

do !a4(u4,k4); (do !u4;KK_P() or !k4;KK())

or !a5(u5,k5); (do !u5;KK_P() or !k5;KK_PP()))

and KK_PP() =

(new u6@d6:Release new k6@r6:React 

do !a6(u6,k6); (do !u6;KK_PP() or !k6;KK_P())

or ?a7(u7,k7); (do ?u7;KK_PP() or ?k7;KK_PP())

or ?a9(u9,k9); (do ?u9;KK_PP() or ?k9;KK_PP()))

and KKPse() = 

do ?a4(u4,k4); (do ?u4;KKPse() or ?k4;KKPse())

or ?a6(u6,k6); (do ?u6;KKPse() or ?k6;KKPse())

let K() = 

(new u7@d7:Release new k7@r7:React 

!a7(u7,k7); (do !u7;K() or !k7;K_P()))

and K_P() = 

(new u8@d8:Release new k8@r8:React 

new u9@d9:Release new k9@r9:React 

do !a8(u8,k8); (do !u8;K_P() or !k8;K())

or !a9(u9,k9); (do !u9;K_P() or !k9;K_PP()))

and K_PP() = 

(new u10@d10:Release new k10@r10:React 

!a10(u10,k10); (do !u10;K_PP() or !k10;K_P()))

and KPse() = 

do ?a8(u8,k8); (do ?u8;KPse() or ?k8;KPse())

or ?a10(u10,k10); (do ?u10;KPse() or ?k10;KPse())

[1]substrate

[2]substrate

[3]kinase

[5]kinase

[1]enzyme

[2]enzyme

[3]substrate

[4]substrate

[5]substrate

[6]substrate

[7]kinase

[9]kinase

[4]phtase

[6]phtase

[7]substrate

[8]substrate

[9]substrate

[10]substrate

[8]phtase

[10]phtase

KKK:E1 complex

E1:KKK complex

One process for each 
component (12) including 
enzymes, but not for 
complexes. 

No need for conservation 
equations: implicit in “choice”
operator in the calculus.
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… globals

type Release = chan() 

type React = chan()

type Bond = chan(Release,React) 

new a1@1.0:Bond val d1=1.0 val r1=1.0

new a2@1.0:Bond val d2=1.0 val r2=1.0

new a3@1.0:Bond val d3=1.0 val r3=1.0

new a4@1.0:Bond val d4=1.0 val r4=1.0

new a5@1.0:Bond val d5=1.0 val r5=1.0

new a6@1.0:Bond val d6=1.0 val r6=1.0

new a7@1.0:Bond val d7=1.0 val r7=1.0

new a8@1.0:Bond val d8=1.0 val r8=1.0

new a9@1.0:Bond val d9=1.0 val r9=1.0

new a10@1.0:Bond val d10=1.0 val r10=1.0

…

run 100 of KKK()  run 100 of KK()   run 100 of K()

run 1 of E2()  run 1 of KKPse()  run 1 of KPse()

run 1 of E1()

ai(ui,ki): release (ui@di) and react (ki@ri) 
channels passed over bond (ai) channel.
(No behavior attached to channels 
except interaction rate.)
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MAPK Cascade Simulation in SPiM

K-PKKK KKK*

E1 

E2

KK KK-P

KK-P’ase

KK-PP K

K-P’ase

K-PP

(output)

(input)

All coefficients 1.0 !!!

100xKKK, 100xKK, 100xK,   

5xE2, 5xKKPse, 5xKPse.  

Input is 1xE1. 
Output is 90xK-PP (ultrasensitivity).

KKK*

KK-PP

K-PP

KKK

KK

K

KK-P

K-P

1xE1   injected

1st stage: 
KKK* barely rises

2nd stage: 

KK-PP rises, but is not stable

3rd stage: 

K-PP flips up to max

even anticipating 2nd stage 
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MAPK Cascade Simulation in SPiM

K-PKKK KKK*

E1 

E2

KK KK-P

KK-P’ase

KK-PP K

K-P’ase

K-PP

(output)

(input)

All coefficients 1.0 !!!

100xKKK, 100xKK, 100xK,   

13xE2, 13xKKPse, 13xKPse.

nxE1 as indicated

(1xE1 is not sufficient to produce an output)
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MAPK Cascade Simulation in SPiM

Rates and concentrations from paper:

1xE2 (0.3 nM)

1xKKPase (0.3 nM)

120xKPase (120 nM)

3xKKK (3 nM)

1200xKK (1.2 uM)

1200xK (1.2 uM)

dx = rx = 150,  ax = 1  

(Kmx = (dx + rx) / ax, Km = 300 nM)

1xE1

K-PKKK KKK*

E1 

E2

KK KK-P

KK-P’ase

KK-PP K

K-P’ase

K-PP

(output)

(input)

KKK

KK

K

KK-P

K-P

1xE1   injected

KKK*

KK-PP

K-PP



Gene-Protein Networks
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Indirect Gene Effects

Taken from
Andreas Wagner

No combination of standard 
high-throughput experiments 
can reconstruct an a-priori 
known gene/protein network 
[Wagner].

ba

A B

ba

BA:BAOne of many bistable switches 
that cannot be described by 
pure gene regulatory networks 
[Francois & Hakim].
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François & Hakim Fig3A

Fig 3A

Fig 14A

PNAS (101)2, 580-585, 2004

Free evolution

Design of genetic networks with specified functions by evolution in 
silico

Reaction
oriented
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François & Hakim Fig3A, SPiM simulation

Spontaneous switch at ~500
(as discussed in Supporting Text)
30xB injected at ~3000
30xA injected at ~4000

Free evolution

120xA injected at ~4000
120xB injected at ~8000

Parameters as in paper

Modified for stability: dkA = 0.02, dkB = 0.02

Free evolution

Spontaneous switch at ~1100
100xB injected at ~3000
30xA injected at ~4000

3 copies of each gene.

SPiM simulation
SPiM simulationSPiM simulation

SPiM simulation SPiM simulation SPiM simulation
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François & Hakim Fig3Ast8

200xA injected at ~2500
500xB injected at ~5000
200xA injected at ~7500

Fig 13A

Circuit of Fig 3A with parameters from SupportingText Fig 8, plotted in Fig 13A

Fig 8

200xB injected at 0
600xA injected at ~2500
600xB injected at ~7500

Free evolution

SPiM simulation
SPiM simulation SPiM simulation SPiM simulation
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François & Hakim 3A in SPiM

(* Francois and Hakim circuit 3A *)(* Francois and Hakim circuit 3A *)(* Francois and Hakim circuit 3A *)(* Francois and Hakim circuit 3A *)

valvalvalval pntAunbpntAunbpntAunbpntAunb = 0.42= 0.42= 0.42= 0.42

valvalvalval geneACstgeneACstgeneACstgeneACst = 0.20= 0.20= 0.20= 0.20

valvalvalval geneBCstgeneBCstgeneBCstgeneBCst = 0.37= 0.37= 0.37= 0.37

valvalvalval geneBInhgeneBInhgeneBInhgeneBInh = 0.027 = 0.027 = 0.027 = 0.027 

valvalvalval bAbAbAbA = 0.19= 0.19= 0.19= 0.19

valvalvalval AB = 0.72AB = 0.72AB = 0.72AB = 0.72

valvalvalval dkAdkAdkAdkA = 0.0085= 0.0085= 0.0085= 0.0085

valvalvalval dkBdkBdkBdkB = 0.034= 0.034= 0.034= 0.034

valvalvalval dkABdkABdkABdkAB = 0.53= 0.53= 0.53= 0.53

let let let let ptnAptnAptnAptnA() =() =() =() =

(new (new (new (new unb@pntAunbunb@pntAunbunb@pntAunbunb@pntAunb

do do do do delay@dkAdelay@dkAdelay@dkAdelay@dkA or !AB or !or !AB or !or !AB or !or !AB or !bA(unb);(?unbbA(unb);(?unbbA(unb);(?unbbA(unb);(?unb; ; ; ; ptnAptnAptnAptnA()))()))()))()))

let let let let ptnBptnBptnBptnB() =() =() =() =

do do do do delay@dkBdelay@dkBdelay@dkBdelay@dkB or ?or ?or ?or ?AB;cpxABAB;cpxABAB;cpxABAB;cpxAB()()()()

let let let let cpxABcpxABcpxABcpxAB() = () = () = () = delay@dkABdelay@dkABdelay@dkABdelay@dkAB

let let let let geneAgeneAgeneAgeneA() =() =() =() =

delay@geneACstdelay@geneACstdelay@geneACstdelay@geneACst; (; (; (; (ptnAptnAptnAptnA() | () | () | () | geneAgeneAgeneAgeneA())())())())

let let let let geneBfreegeneBfreegeneBfreegeneBfree() =() =() =() =

do do do do delay@geneBCstdelay@geneBCstdelay@geneBCstdelay@geneBCst; (; (; (; (ptnBptnBptnBptnB() | () | () | () | geneBfreegeneBfreegeneBfreegeneBfree())())())())

or ?or ?or ?or ?bA(unbbA(unbbA(unbbA(unb); ); ); ); geneBbound(unbgeneBbound(unbgeneBbound(unbgeneBbound(unb))))

and and and and geneBbound(unb:chgeneBbound(unb:chgeneBbound(unb:chgeneBbound(unb:ch()) =()) =()) =()) =

do do do do delay@geneBInhdelay@geneBInhdelay@geneBInhdelay@geneBInh; (; (; (; (ptnBptnBptnBptnB() | () | () | () | geneBbound(unbgeneBbound(unbgeneBbound(unbgeneBbound(unb))))))))

or !or !or !or !unbunbunbunb; ; ; ; geneBfreegeneBfreegeneBfreegeneBfree()()()()

run (run (run (run (geneAgeneAgeneAgeneA() | () | () | () | geneBfreegeneBfreegeneBfreegeneBfree())())())())

Interaction
oriented



Scaling up:
ODE vs Process 
Descriptions
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From Chemical Reactions to ODE’s

-11F

1E

1D

-1-12C

1-1B

-1-1A
r4r3r2r1N

d[A]/dt = -v1 - v2
d[B]/dt = -v1 + v4
d[C]/dt = 2⋅v1 - v2 - v3
d[D]/dt = v2
d[E]/dt = v3
d[F]/dt = v3 - v4

vi(x,ei,ki) 

Write the coefficients 
by columns

Read the concentration 
changes from the rows

x: chemical species

[-]: concentrations

v: rate laws

k: kinetic parameters

N: stoichiometric matrix

e: catalysts (if any)

x

reactions

sp
ec

ie
s

A

B C

D

EF

C
k1

k2

k4
k3

r1: A+B →k1 C+C

r2: A+C →k2 D

r3: C →k3 E+F

r4: F →k4 B

k4⋅[F]v4

k3⋅[C]v3

k2⋅[A]⋅[C]v2

k1⋅[A]⋅[B]v1

v

Concentration 
changes

Stoichiometric
matrix

Rate laws

dt
= N⋅⋅⋅⋅v

d[x]
Read the rate laws 
from the columns

E.g. d[A]/dt = 
-k1⋅[A]⋅[B] - k2⋅[A]⋅[C]

Stoichiometric
Matrix
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From Chemical Reactions to Processes

A = ?v1k1.(C|C) + ?v2k2.D + ?a

B = !v1k1 + ?b

C = !v2k2 + τk3(E|F) + ?c

D = 0 + ?d

E = 0 + ?e

F = τk3.B + ?f

interactions

pr
oc
es
se
s

(Rate laws are implicit in 
stochastic semantics)

-11F

1E

1D

-1-12C

1-1B

-1-1A
r4r3r2r1N

A

B C

D

EF

C
k1

k2

k4
k3

For binary reactoins, first species in 
the column does an input and 
produces result, second species does 
an ouput, For unary reactions, 
species does a tau action and 
produces result. No ternary 
reactions.

Read the process 
interactions from the rows

Add a barb 
for counting 
and plotting

Write the coefficients 
by columns

r1: A+B →k1 C+C

r2: A+C →k2 D

r3: C →k3 E+F

r4: F →k4 B
Stoichiometric

Matrix
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Stoichiometric Matrices Blow Up

● We can translate Chemistry to ODE’s or Processes
– It is standard to go from chemical equations to ODE’s via a stoichiometric
matrix.

– It is similarly possible to go from chemical equations to processes via a 
stoichiometric matrix.

● But there is a better way:
– Stoichiometric matrices blow-up exponentially for biochemical systems
(unlike for ordinary chemical systems) because proteins have combinatorial 
state and complexed states are common.

– To avoid this explosion, we should describe biochemical systems 
compositionally without going through a stochiometric matrix (and hence 
without ODE’s).
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Complexes: The ODE Way

A 69 Ap

B 69 Bp

C 69 Cp

ABC 69 ApBC

ABC 69 ABpC

ABC 69 ABCp

ApBC 69 ApBpC

ApBC 69 ApBCp

ABpC 69 ApBpC

ABpC 69 ABpCp

ABCp 69 ApBCp

ABCp 69 ABpCp

ApBpC 69 ApBpCp

ApBCp 69 ApBpCp

ABpCp 69 ApBpCp

v12 v13 v14 v15 v16 v17 v18 v19 v20 v21 v22 v23

ApBpCp

ABpCp

ApBCp

ApBpC

ABCp

ABpC

ApBC

ABC

v24v11v10v9v8v7v6v5v4v3v2v1N

ABC

ApBC

ABpC

ABCp
ApBpC

ApBCp
ABpCp
ApBpCp

2n x 2n(2n-1)

2n
ABC1

2n
domain
reactions

complex
species reactions

(twice number of 
edges in n-dim 
hypercube)

2n(2n-1)

A, B, Cn

domains

Stoichiometric
Matrix

The matrix is very sparse, so 
the corresponding ODE system 
is not dense. But it still has 2n

equations, one per species, plus 
conservation equations 
([ABC]+[ApBC]=constant, etc.).

System description is 
exponential in the number 
of basic components.
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Complexes: The Reactive System Way

A 69 Ap

B 69 Bp

C 69 Cp

2n

A  = ?kn;Ap Ap = ?ph;A

B  = ?kn;Bp Bp = ?ph;B

C  = ?kn;Cp Cp = ?ph;C

A | B | C

2n

When the local domain reactions are not independent, 
we can use lateral communication so that each 
component is aware of the relevant others.

n

(Its “run-time” behavior or 
analysis potentially blows-up just 
as in the previous case, but its 
description does not.)

System description is 
linear in the number of 
basic components.

domain
reactions

processes



Model Validation
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Model Validation: Simulation

● Basic stochastic algorithm: Gillespie
– Exact (i.e. based on physics) stochastic simulation of chemical kinetics.
– Can compute concentrations and reaction times for biochemical networks.

● Stochastic Process Calculi
– BioSPi [Shapiro, Regev, Priami, et. al.]

●Stochastic process calculus based on Gillespie.
– BioAmbients [Regev, Panina, Silverma, Cardelli, Shapiro]

●Extension of BioSpi for membranes.
– Case study: Lymphocytes in Inflamed Blood Vessels [Lecaa, Priami, Quaglia]

●Original analysis of lymphocyte rolling in blood vessels of different diameters.
– Case study: Lambda Switch [Celine Kuttler, IRI Lille]

●Model of phage lambda genome (well-studied system).
– Case study: VICE [U. Pisa]

●Minimal prokaryote genome (180 genes) and metabolism of whole VIrtual CEll, in 
stochastic π-calculus, simulated under stable conditions for 40K transitions.

● Hybrid approaches
– Charon language [UPenn]

●Hybrid systems: continuous differential equations + discrete/stochastic mode 
switching.

– Etc.
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Model Validation: “Program” Analysis

● Causality Analysis
– Biochemical pathways, (“concurrent traces”
such as the one here), are found in biology 
publications, summarizing known facts.  

– This one, however, was automatically 
generated from a program written in BioSpi 
by comparing traces of all possible 
interactions. [Curti, Priami, Degano, Baldari]

– One can play with the program to investigate 
various hypotheses about the pathways.

● Control Flow Analysis
– Flow analysis techniques applied to process 
calculi.

– Overapproximation of behavior used to 
answer questions about what “cannot 
happen”.

– Analysis of positive feedback transcription 
regulation in BioAmbients [Flemming Nielson].

● Probabilistic Abstract Interpretation
– [DiPierro Wicklicky].
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Model Validation: Modelchecking

● Temporal
– Software verification of biomolecular systems (NA pump)

[Ciobanu]

– Analysis of mammalian cell cycle (after Kohn) in CTL.
[Chabrier-Rivier Chiaverini Danos Fages Schachter]

●E.g. is state S1 a necessary checkpoint for reaching state S2?

● Quantitative: Simpathica/xssys
[Antioniotti Park Policriti Ugel Mishra]

– Quantitative temporal logic queries of human Purine 
metabolism model.

● Stochastic: Spring
[Parker Normal Kwiatkowska]

– Designed for stochastic (computer) network analysis
●Discrete and Continuous Markov Processes.
● Process input language.
●Modelchecking of probabilistic queries. 

Eventually(Always (PRPP = 1.7 * PRPP1)
implies
steady_state()
and Eventually(Always(IMP < 2 * IMP1))
and Eventually(Always(hx_pool < 10*hx_pool1)))



2005-07-07 59

What Reactive Systems Do For Us

We can write things down precisely
– We can modularly describe high structural 

and combinatorial complexity (“do 
programming”).

We can calculate and analyze
– Directly support simulation.
– Support analysis (e.g. control flow, causality, 

nondeterminism).
– Support state exploration (modelchecking).

We can visualize
– Automata-like presentations.
– Petri-Net-like presentations.
– State Charts, Live Sequence Charts [Harel]

●Hierarchical automata.
●Scenario composition.

We can reason
– Suitable equivalences on processes 

induce algebraic laws.
– We can relate different systems (e.g. 

equivalent behaviors).
– We can relate different abstraction 

levels.
– We can use equivalences for state 

minimization (symmetries).

Disclaimers
– Some of these technologies are basically 

ready (medium-scale stochastic simulation and 
analysis, medium-scale nondeterministic and 
stochastic modelchecking).

– Others need to scale up significantly to be 
really useful. This is (has been) the challenge 
for computer scientists.

Many approaches, same basic philosophy, tools being built:
⇒ Proc. Computational Methods in Systems Biology [2003-2005]



Conclusions
“The data are accumulating and 
the computers are humming, 
what we are lacking are the 
words, the grammar and the 
syntax of a new language…”

D. Bray (TIBS 22(9):325-326, 1997)

“The most advanced tools for 
computer process description 
seem to be also the best tools 
for the description of 
biomolecular systems.”

E.Shapiro (Lecture Notes)

Q:

A:
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Papers
BioAmbients

a stochastic calculus with compartments.
Brane Calculi

process calculi with computation “on” the membranes, not inside them.
Bitonal Systems

membrane reactions and their connections to “local” patch reactions.
Abstract Machines of Systems Biology

the abstract machines implemented by biochemical toolkits.

www.luca.demon.co.uk/BioComputing.htm


