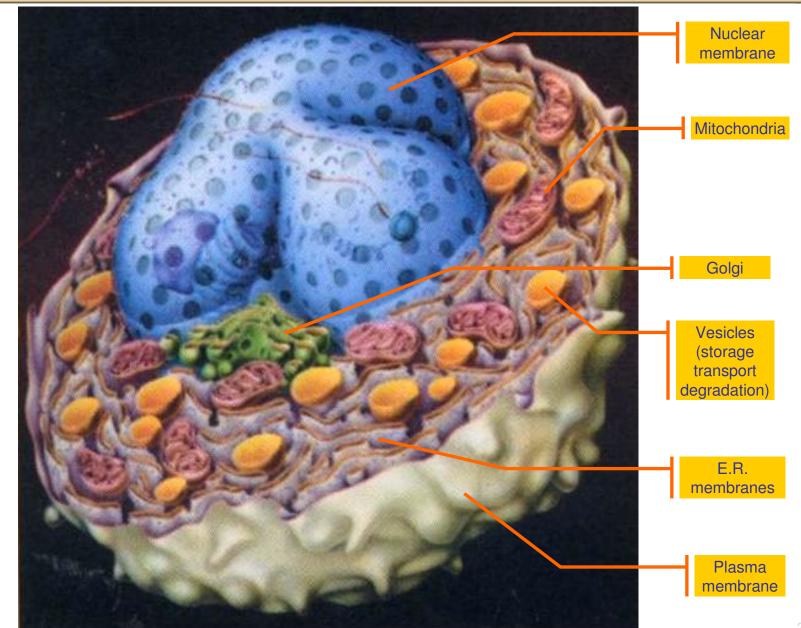
Membrane Interactions Luca Cardelli **Microsoft Research BioConcur, 2003-09-06**

Eukaryotic Cell

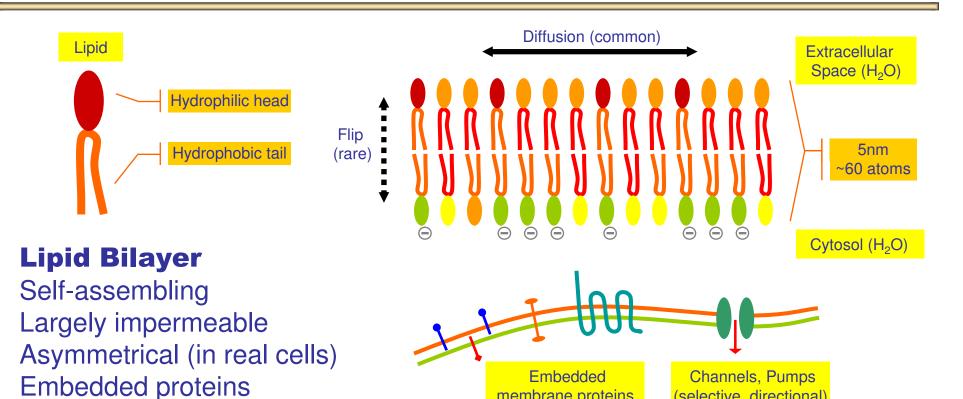


Membranes everywhere

Membrane-based Systems

- Many cellular processes operate on membranes, through membranes, via membrane transformations, and via active membrane transport. It's *very far* from a "chemical soup":
 - For a cell to function properly, each of its numerous proteins must be localized to the correct cellular membrane or aqueous compartment. [MCB p.675]
- What is the dynamics of these complex configurations of membranes? (Still poorly understood in biology.)
- In modeling it, we *must* use abstractions, to avoid combinatorial explosion: 1 membrane ≈ ∞ molecules.
- Emerging area of *Systems Biology* (~ above molecules, ~ study of biological processes).

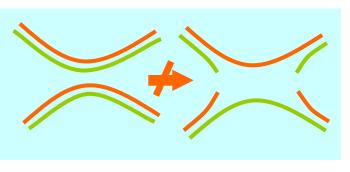
Membranes are Oriented 2D Surfaces



membrane proteins

Possibly less favorable

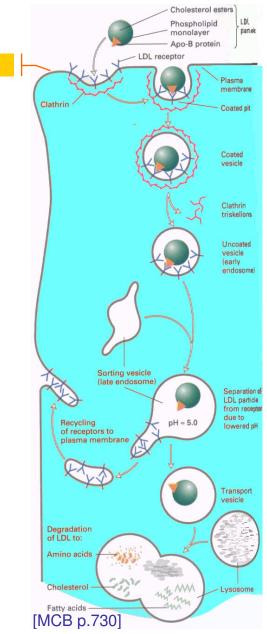
A 2D fluid inside a 3D fluid!



(selective, directional)

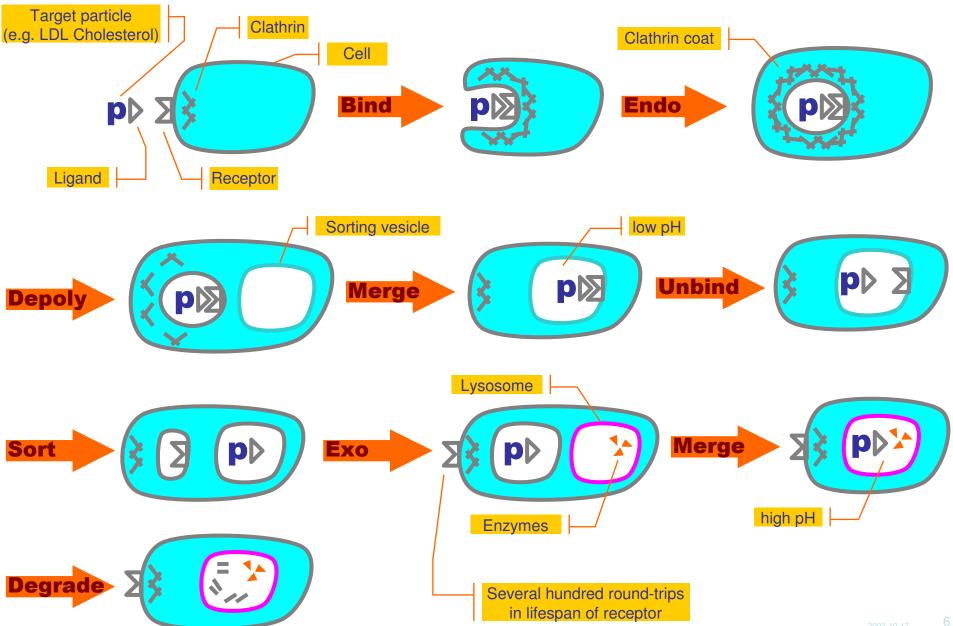
A Biological Algorithm

- LDL-Cholesterol Degradation
 - A cast of many thousands (molecules) just to get one molecule from A to B.
 - Membranes are key to the algorithm, we want to model *them*, not their individual molecules.
- How do people know all that?
 - They take pictures, see all stages of the algorithm in the same snapshot.
 - Stop genes, see what stages survive; build temporal sequence of stages.
 - Identify key molecules. Model them and play with them to see what they do.
 - Many steps still murky. Not possible to model them in detail even if wanted to.



Receptor-Mediated Degradation Pathway

(Abstract view)



Aims

- Describing biological processes
 - Avoid informal diagrams.
 - Write bioalgorithms in something close to a language.
- Abstraction options
 - Start too low \Rightarrow get lost in a mess of details.
 - Start too high \Rightarrow ignore too many details.
- Strategy (for now)
 - 1) Start too high (but learn basic gameplay).
 - 2) Move one or two levels down.
- Approaches considered here
 - Algebras (*Bitonal Algebra*)
 - Rewriting systems (BiGraphs, Gamma, P-Systems, etc.)
 - Calculi (BioSPi, BioAmbients, and now *Brane Calculi*)

Bitonal Systems

Systems of Oriented Membranes

Membranes are closed non-intersecting curves, with an orientation⁽¹⁾.

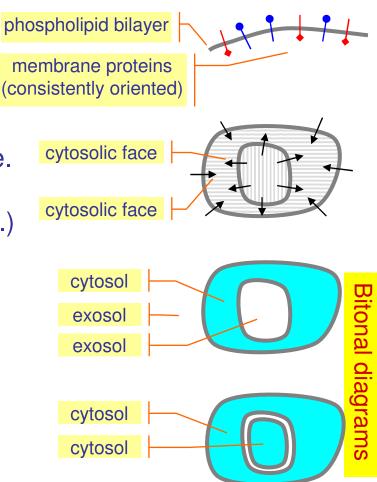
Each membrane has two faces. A cytosolic (~*inner*) face and an exoplasmic (~*outer*) face. Nested membranes alternate orientation. (E.g. cytosolic faces always face each other.)

This alternation is illustrated by using two tones: blue (cytosol⁽²⁾) and white (exosol⁽³⁾). Bitonal diagrams.

Double membranes (e.g. the nuclear membrane) can be used for blue-in-blue components.

(1) A membrane is built from a phospholipid bilayer that is asymmetrical. Moreover, all real membranes are heavily sprinkled with proteins: "each type of integral membrane protein has a single specific orientation with respect to the cytosolic and exoplasmic faces of a cellular membrane, and all molecules of any particular integral membrane protein share this orientation. This absolute asymmetry in protein orientation confers different properties on the two membrane faces." MCB p162.

(2) Short for Cytoplasmic Solution. (3) Short for Exoplasmic Region (I am making this one up).



Bitonal Diagrams

Bitonal Postulate

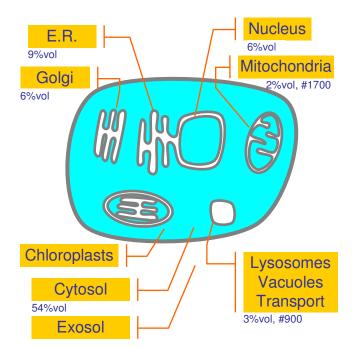
Blue and white areas alternate. Bitonal Invariant

Bitonality is preserved by reactions.

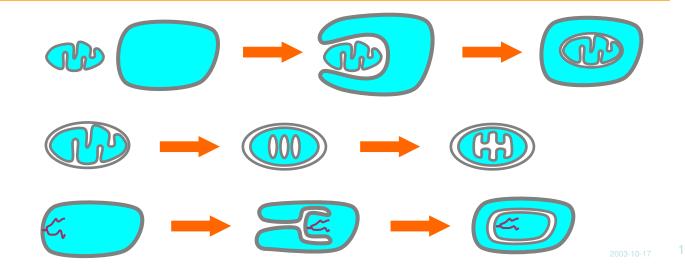
Tonal Duality Postulate

The tone-dual of a reaction is a reaction. **Tonal Stability Invariant**

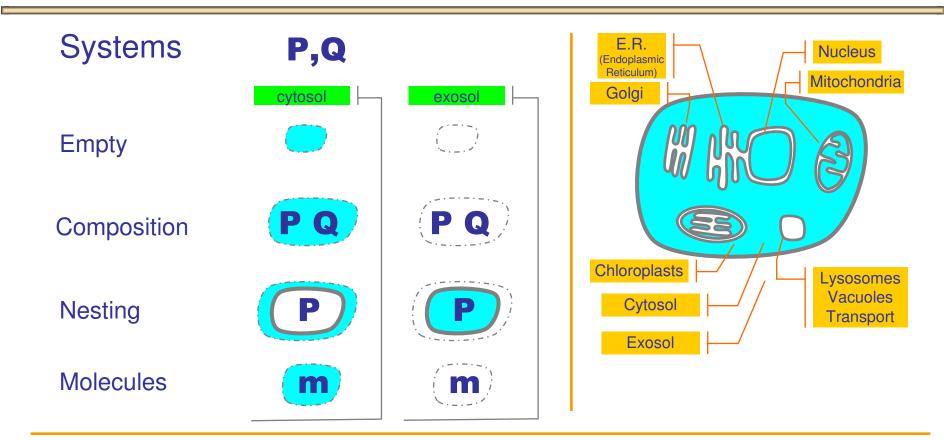
Reactions do not re-tone the background. Reactions do not re-tone whole subsystems.



Evolutionary explanations of bitonality



Bitonal Systems



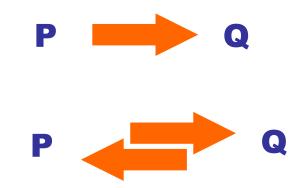
A *bitonal* system **P** has proper tone alternation. The *tonality* of **P** is the tone of its background, also drawn as:

a system **P** of blue tonality ("**P** swims in cytosol")

P

a system **P** of white tonality ("**P** swims in exosol")

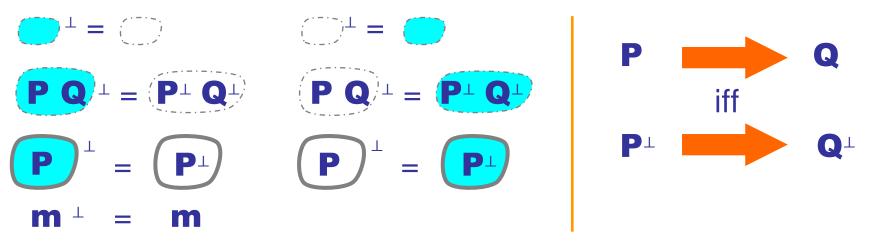
Bitonal Reactions



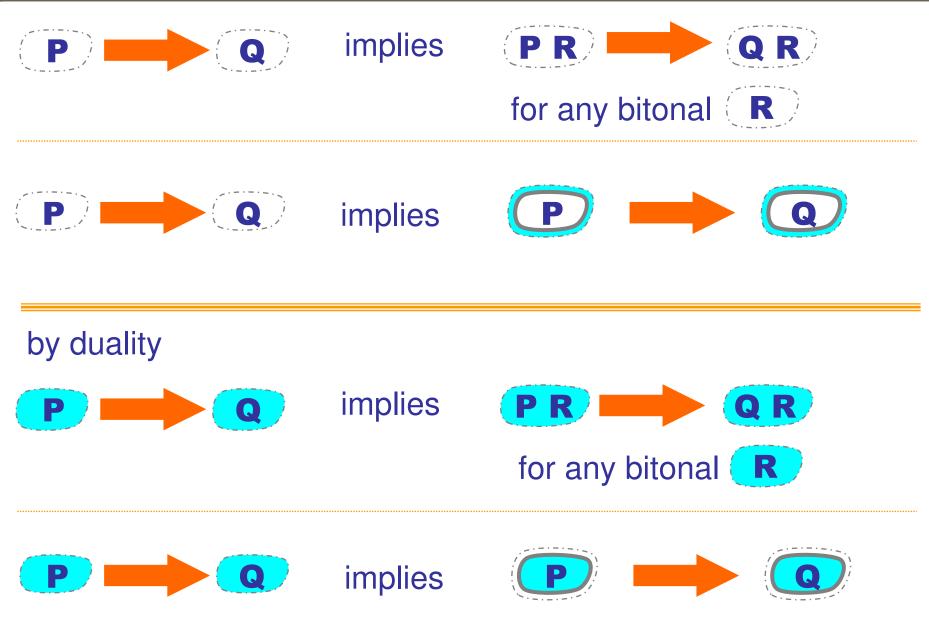
Directed reaction P,Q same tonality

Reversible reaction P,Q same tonality

Dual Reactions

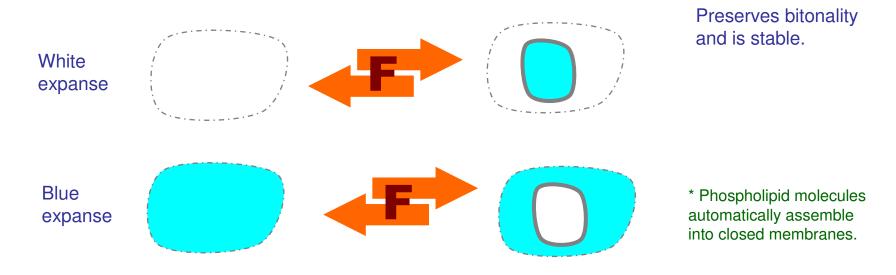


Reactions in Context



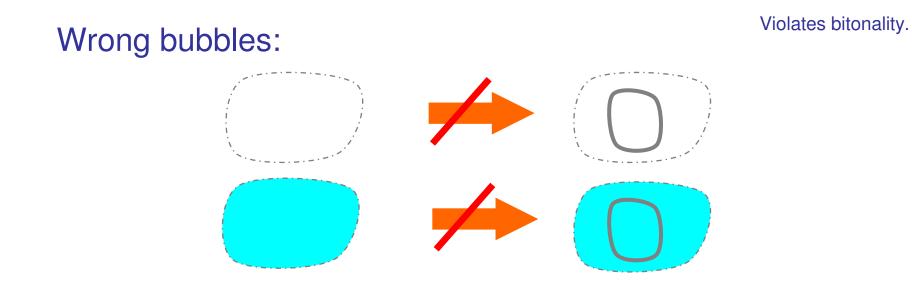
Froth/Fizz Reaction

The spontaneous appearance/disappearance of empty bubbles (of the correct tonality).



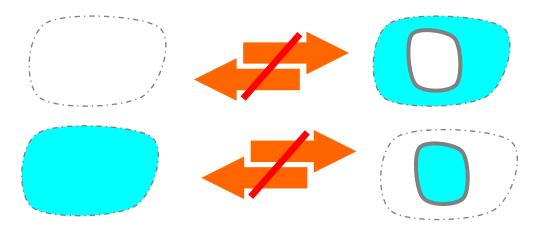
N.B. non-empty membranes should not "spontaneously" be created or deleted: usually only very deliberate processes cause that. However, spontaneous froth/fizz seems be harmless; it means that empty membranes are not observable.

× Bad Bubbles



Bubble catastrophe:

Violates bitonality in context. Also, ill-toned reaction arrow.



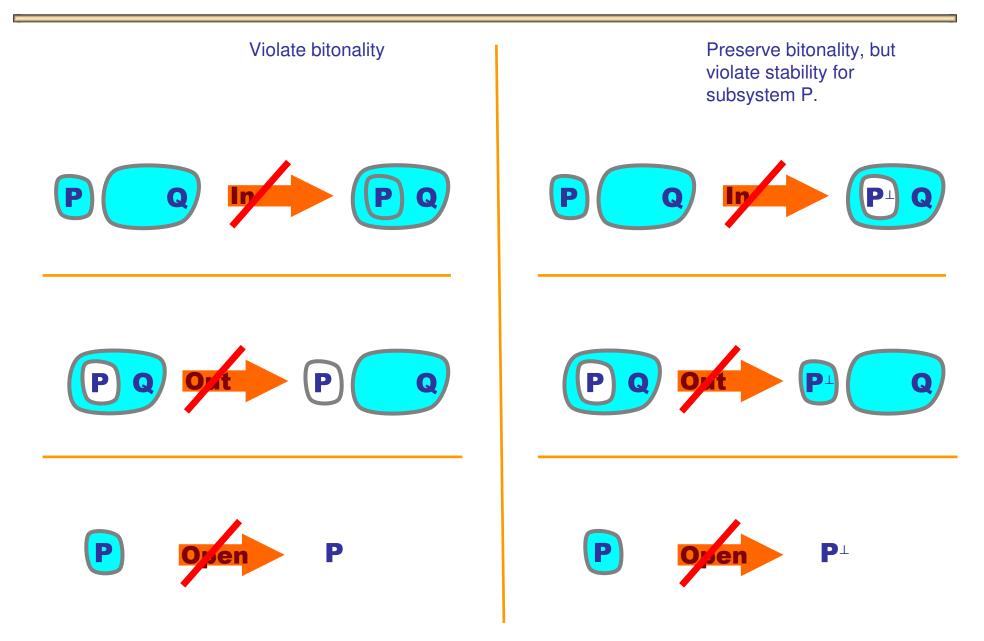
× Flooding

Flooding

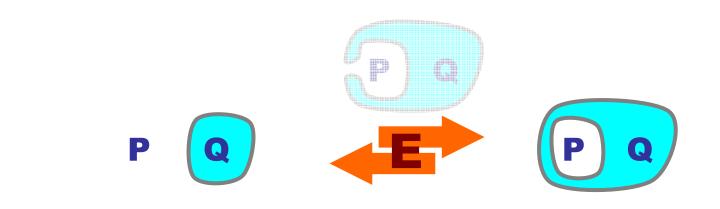
Violates bitonality in context. Also, ill-toned reaction arrow.

Flooding in context violates bitonality:

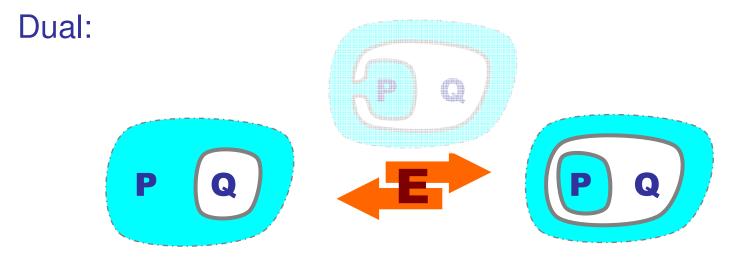
× Ambients



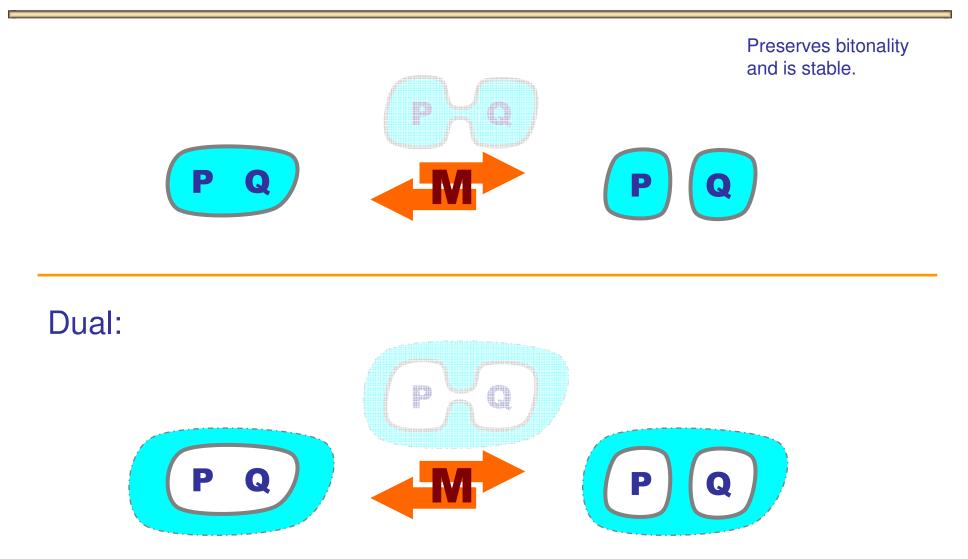
✓ Endo/Exo Reaction



Preserves bitonality and is stable: the tonality of P and Q does not change.



Mito/Mate Reaction

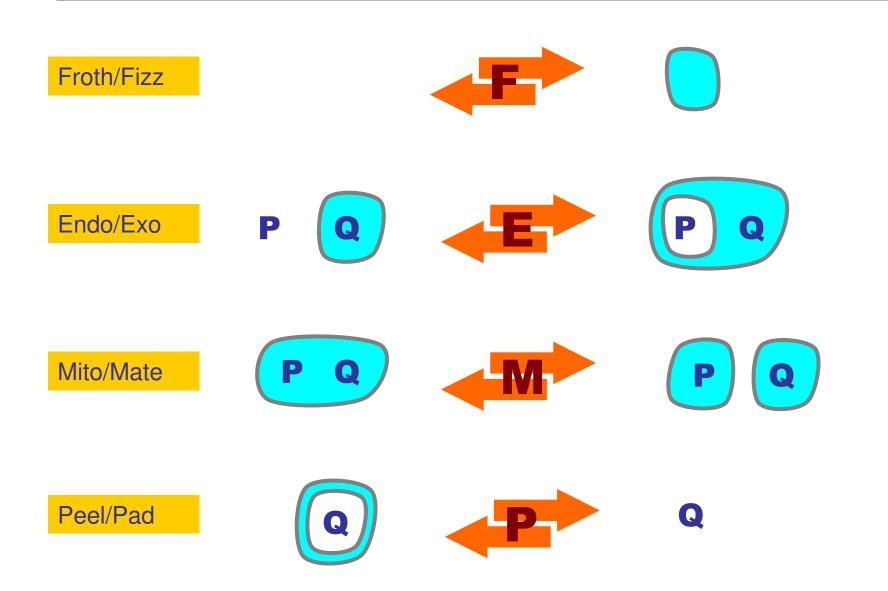


Peel/Pad Reaction

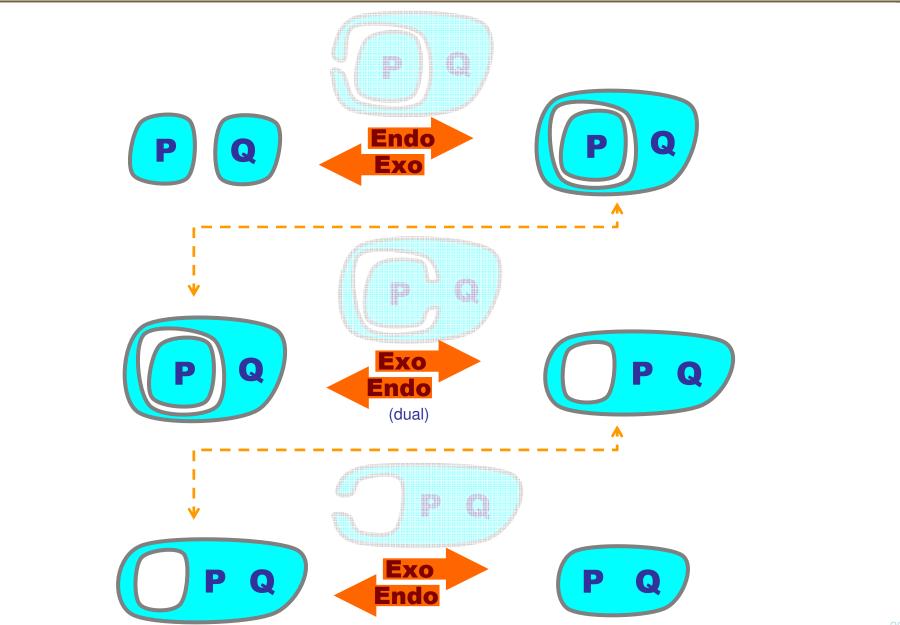
Preserves bitonality and is stable.

Dual:

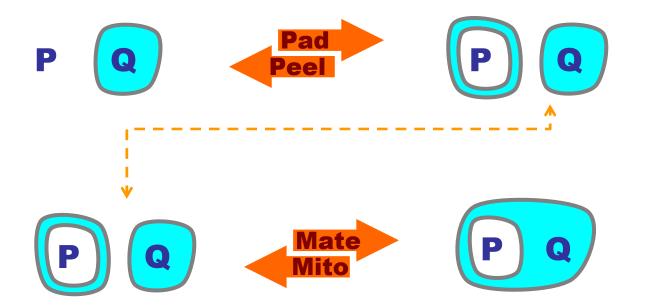
Summary: Four Good Reactions



Mito/Mate by 3 Endo/Exo

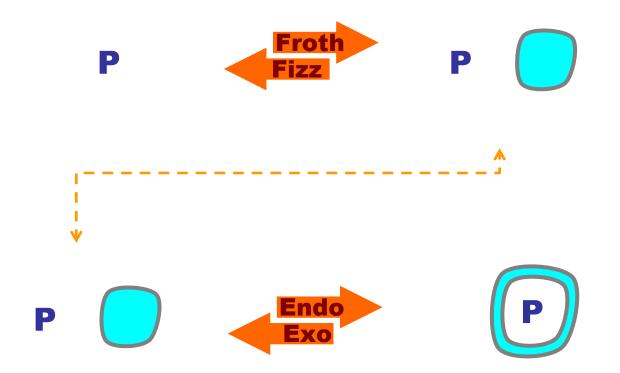


Endo/Exo by Mito/Mate and Peel/Pad



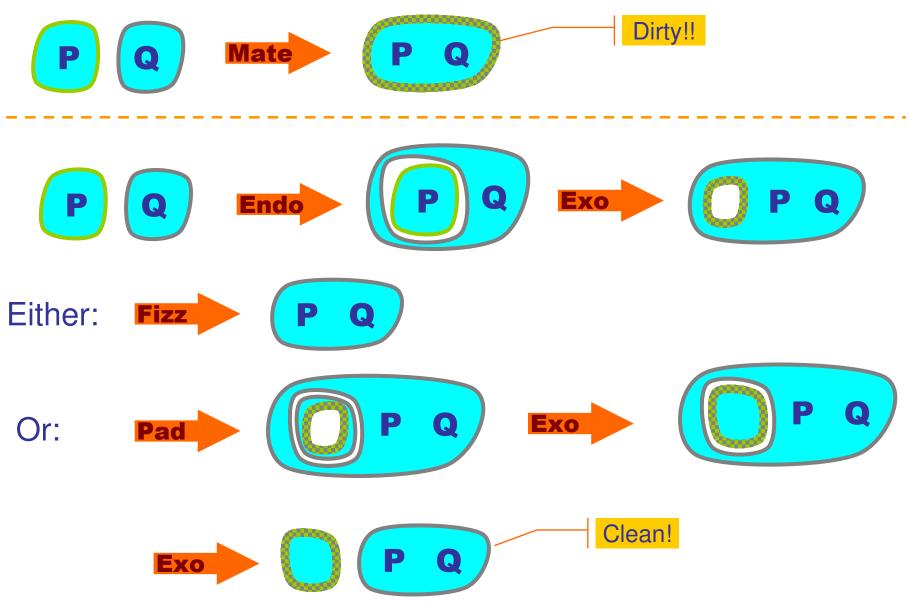
Endo/Exo from Mito/Mate only? No: depth of nesting is constant in Mito/Mate. 2003-10-17 23

Peel/Pad by Froth/Fizz and Endo/Exo

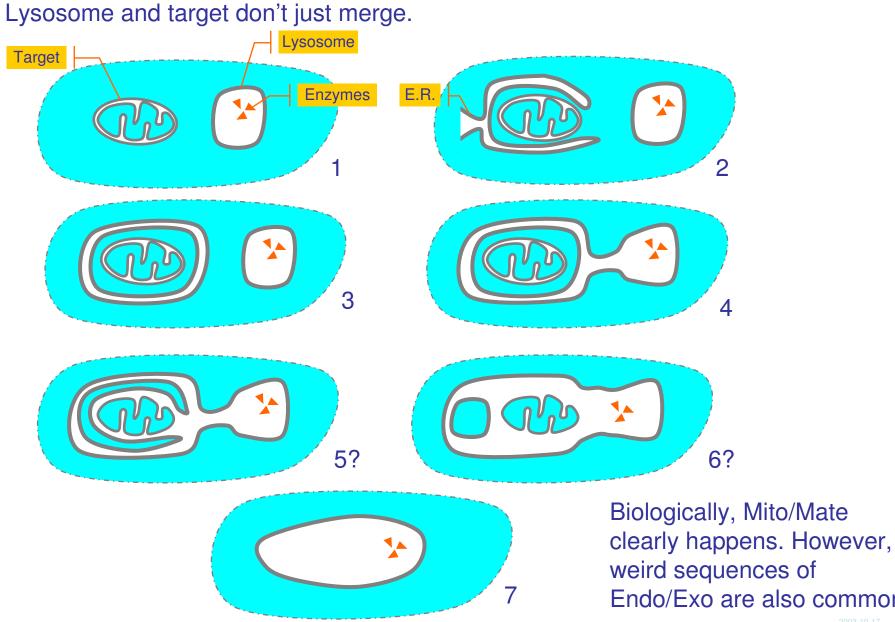


Ex: Clean Eating

(why Endo/Exo is "healthier" than Mito/Mate)

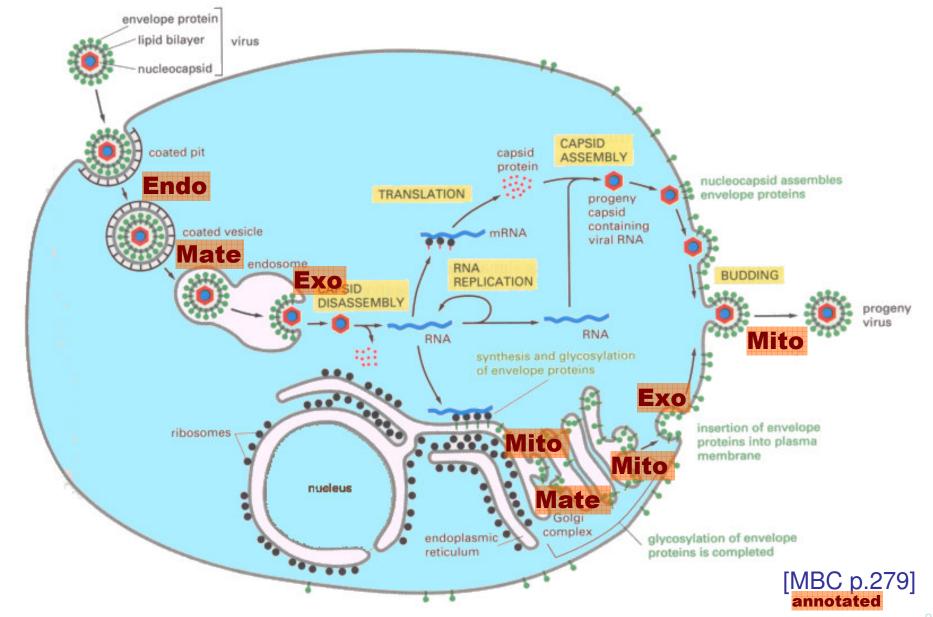


(Real) Ex: Autophagic Process



Endo/Exo are also common.

(Real) Ex: Viral Reproduction

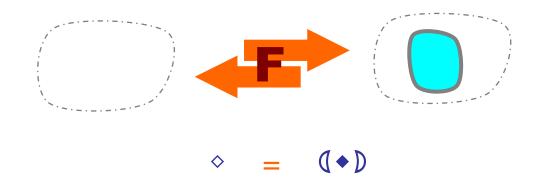


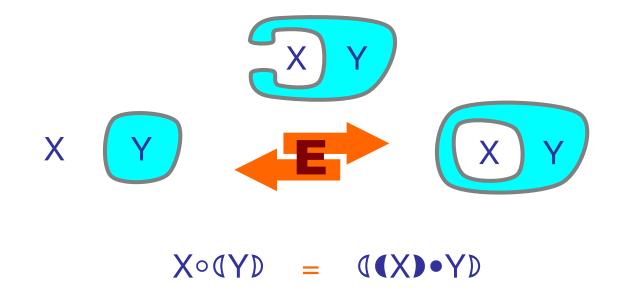
₀₃₋₁₀₋₁₇ 27

Bitonal Algebra

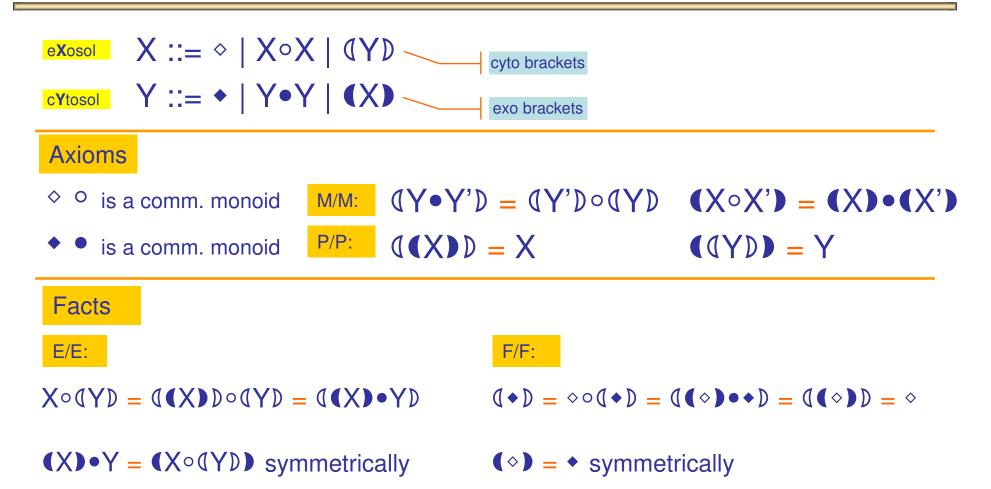
eXosolX ::= \diamond X \diamond X (Y) cyto bracketscYtosolY ::= \diamond Y \diamond Y (X) exo brackets	We look at this algebra as a preliminary abstraction of process calculi one may devise. Algebraic symmetries will soon be broken, but are still inspiring.
Axioms	
$\diamond \circ$ is a comm. monoid F/F: $\diamond = (\diamond)$	★ = (◊)
• • is a comm. monoid $E/E: X \circ (Y) = ((X))$	$\bullet Y D (X) \bullet Y = (X \circ (Y) D)$
Facts (without using commutativity)	
M/M:	P/P:
$(YD \ (Y'D = ((YD) \ Y'D = ((\land (YD) \ Y'D)))))$	$X=X\diamond=X\mathtt{(}\bullet\mathtt{)}$
$= \mathbb{Q} (\diamond) Y Y' \mathbb{D} = \diamond \mathbb{Q} Y Y' \mathbb{D} = \mathbb{Q} Y Y' \mathbb{D}$	$= \mathbb{(X)} \cdot \mathbb{D} = \mathbb{(X)} \mathbb{D}$
(X) (X') = (X X') symmetrically	Y = ((Y)) symmetrically

Axioms Illustrated





Bitonal Algebra v2



Ex: Viral Infection

(capsid) ○ ((endosome) • cytosol) = Endo

(((capsid)) • (endosome) • cytosol) =_{Mate}

 $((capsid) \circ endosome) \circ cytosol) =_{Exo}$

((endosome)•capsid•cytosol)

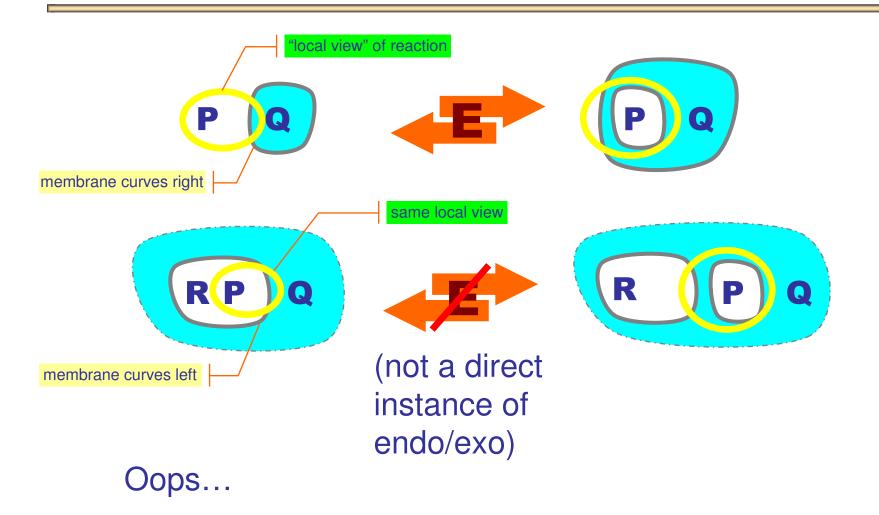
Equivalent to a single Mate step, but that's not what "really happens". To explain what "really happens" a bit better, we need to move to a lower level of abstraction.

Back to Postulates

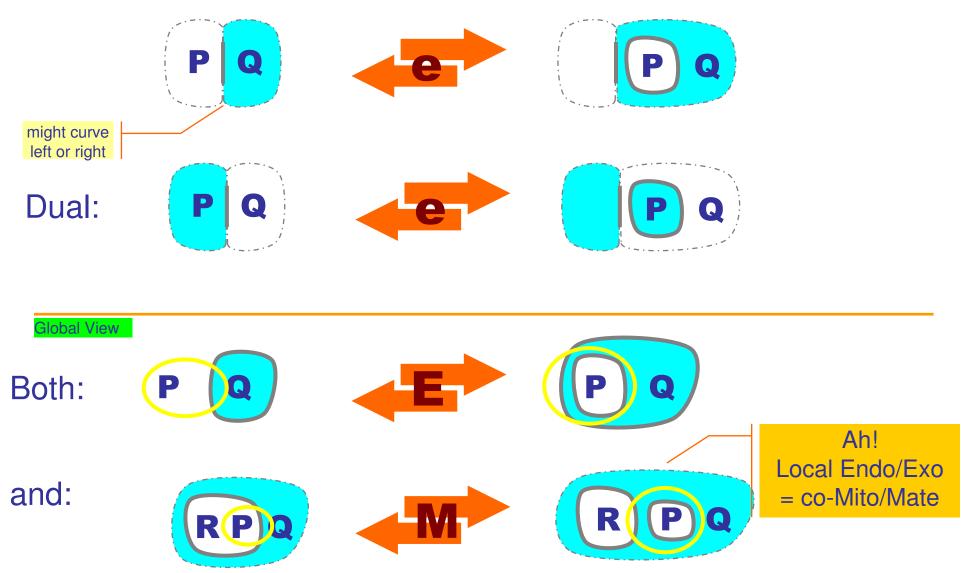
Locality Postulate

- Interactions should be local to small membrane patches.
- E.g., independent of global membrane properties such as overall curvature.

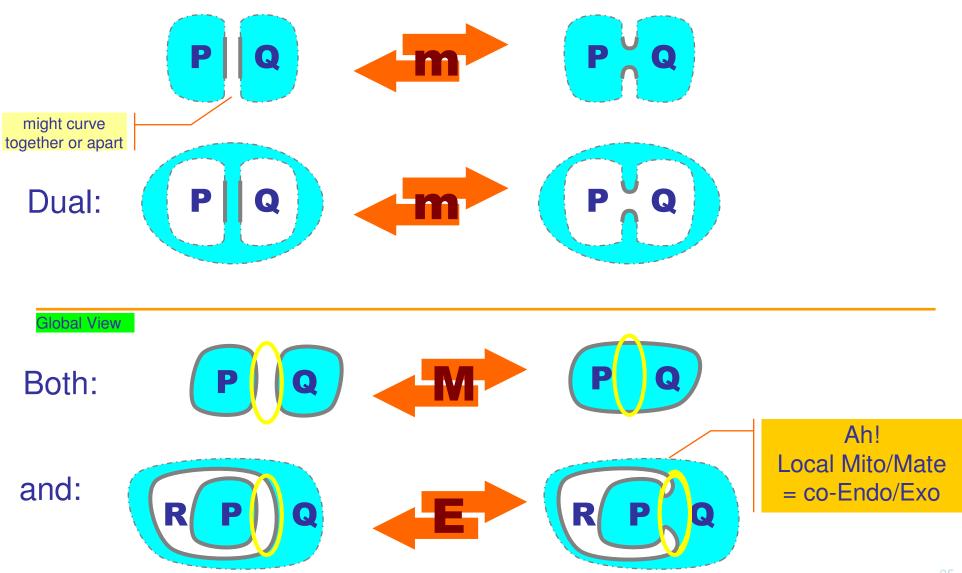
Endo/Exo Violates Locality



✓ Local-view Endo/Exo Reaction



✓ Local-view Mito/Mate Reaction



Locality is Not Violated

- Hence, even though Endo/Exo and Mito/Mate strictly violate locality, locality is indirectly preserved in a bigger system that includes them both and their duals.
- Problem: how to formally represent the localview reactions?

Assessment

- High-level: Algebras
 - Abstraction level still too high; we want to talk about "different sorts" of membranes.
 - We need to be a bit more deterministic.
- Mid-level: Graph Rewriting
 - Abstractly talk about the "sort" of a membrane, and how it changes into other abstract sorts.
- Lower-Level: Calculi
 - Model individual membrane proteins.

Part II (short)

Different Kinds of Membranes

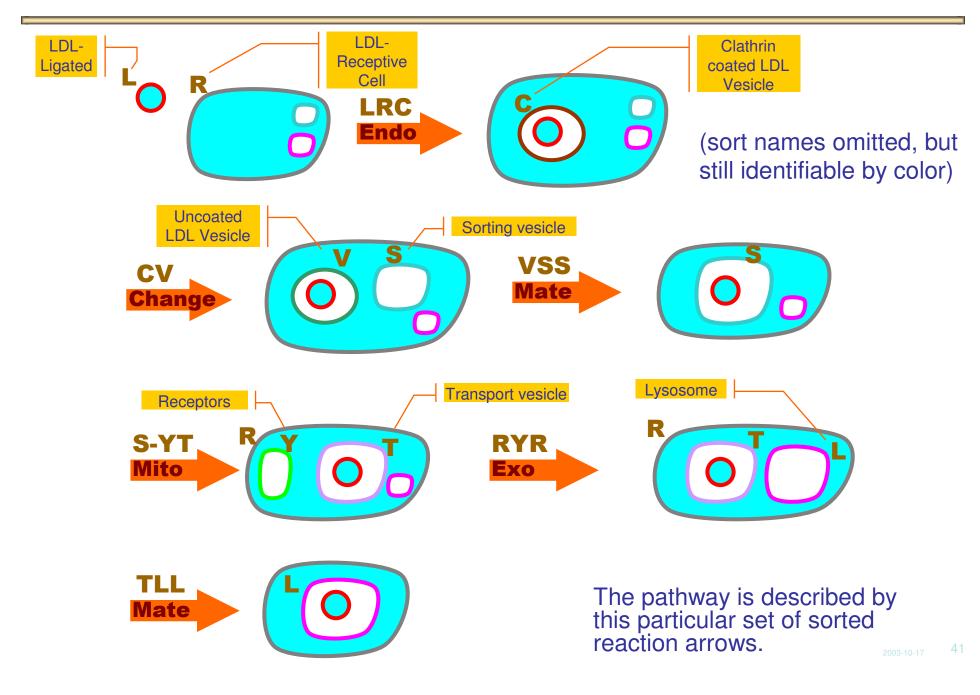
Sorted Membranes

- Different kinds of membranes.
 - Lipid bilayer is universal. All membranes can in principle merge, but the lipid compositions vary.
 - The set of proteins bound to a membrane confer unique characteristics to it and its contents.
- Each membrane is uniform.
 - Membrane proteins diffuse rapidly through the surface of a membrane; they are not localized (unless held together).
- Hence: sorts of membranes.
 - A single name will characterize the collection of features of a membrane; its *sort*.
 - Each sort is meant to be "implemented" by lower level mechanisms.
 Sort a a

Sorted Membrane Rewrites

- Rewriting systems
 - We can describe sorted membrane reactions as labeled rewrites (such as labeled versions of endo/exo).
 - E.g. as a special case of Milner's BiGraphs, where the "sort" is the "control". This is possible because each node in a bigraph has a single control. (However, extensions to multi-patch membranes may not fit easily in the BiGraph framework.)

Receptor-Mediated Degradation Pathway



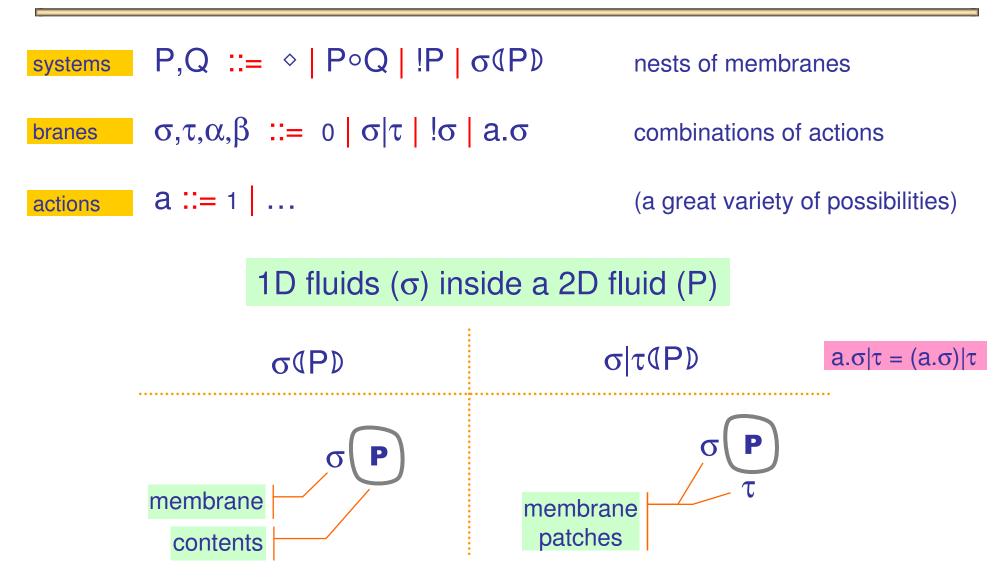
Part III

Brane Calculi

What makes Endo happen?

- Moving down a level, to explain "why" certain reactions like endo/exo happen: they do not happen magically.
- Describe membranes as composed of independently active "patches" or membrane proteins (not characterized by a single sort).
- Can be formalized pretty much as action/coaction interactions in process calculi.
- But with actions "on" the membranes, not "inside" them!

Brane Calculi



N.B. Restriction (vn) could be added to both systems and branes. It usually originate in branes, but may extrude to whole systems.

Structural Congruences

 $P \circ Q \equiv Q \circ P$ $P \circ (Q \circ R) \equiv (P \circ Q) \circ R$ $P \circ \diamond \equiv P$ $!P \equiv P \circ !P \quad \text{etc.}$ $o(l \diamond) \equiv \diamond$ $P \equiv Q \Rightarrow P \circ R \equiv Q \circ R$ $P \equiv Q \Rightarrow !P \equiv !Q$ $P \equiv Q \land \sigma \equiv \tau \Rightarrow \sigma (P) \equiv \tau (Q)$

 $\sigma |\tau \equiv \tau | \sigma$ $\sigma |(\tau | \rho) \equiv (\sigma | \tau) | \rho$ $\sigma | 0 \equiv \sigma$ $!\sigma \equiv \sigma |!\sigma \quad \text{etc.}$ $1.\sigma \equiv \sigma$ $\sigma \equiv \tau \Rightarrow \sigma | \rho \equiv \tau | \rho$ $\sigma \equiv \tau \Rightarrow !\sigma \equiv !\tau$ $\sigma \equiv \tau \Rightarrow a.\sigma \equiv a.\tau$

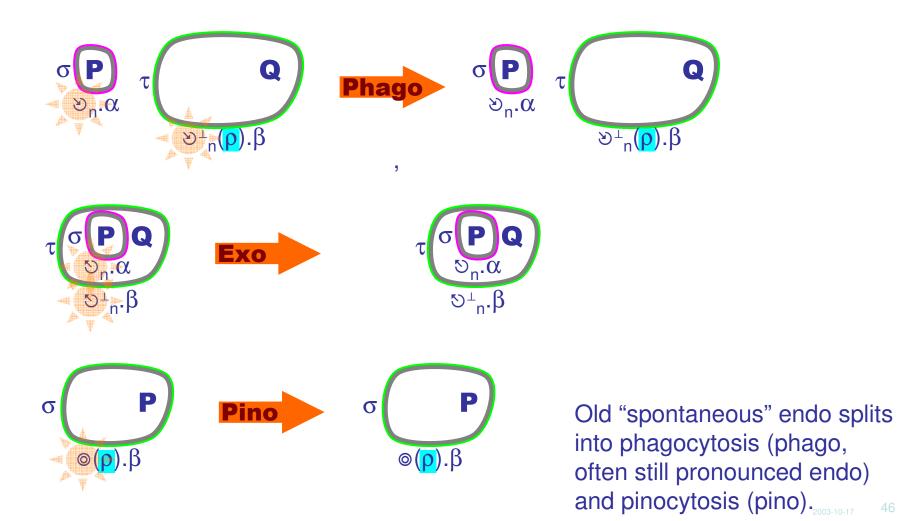
 $\mathsf{P}{\equiv}\mathsf{P}'\land\mathsf{P}'{\Longrightarrow}\mathsf{Q}'\land\mathsf{Q}'{\equiv}\mathsf{Q}\Rightarrow\mathsf{P}{\Longrightarrow}\mathsf{Q}$

Bitonal Mobility Actions

actions

a ::= ... $\mathfrak{S}_n \mathfrak{S}_n(\sigma) \mathfrak{S}_n \mathfrak{S}_n \mathfrak{S}_n \mathfrak{S}_n$

phago ୬, exo ୭, pino ⊚

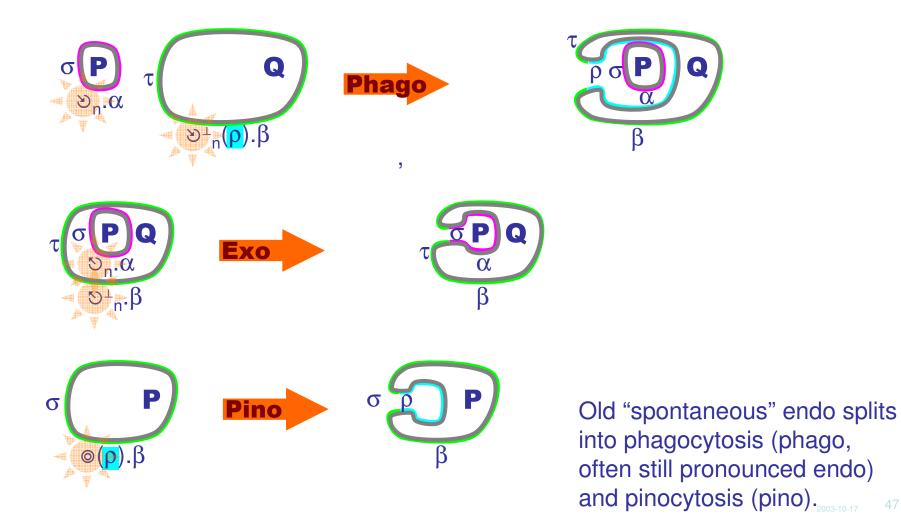


Bitonal Mobility Actions

actions

a ::= ... $\mathfrak{S}_n \mathfrak{S}_n(\sigma) \mathfrak{S}_n \mathfrak{S}_n \mathfrak{S}_n \mathfrak{S}_n$

phago ୬, exo ୭, pino ⊚

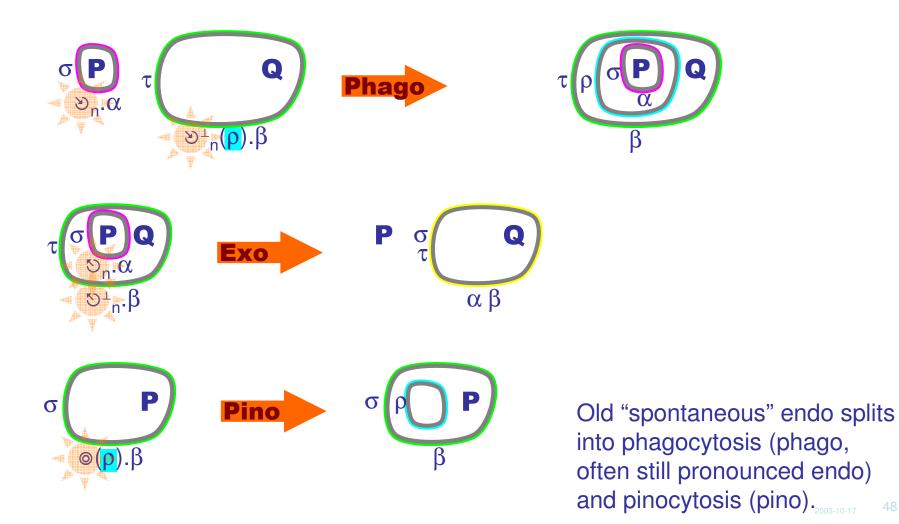


Bitonal Mobility Actions

actions

a ::= ... $\mathfrak{S}_n \mathfrak{S}_n(\sigma) \mathfrak{S}_n \mathfrak{S}_n \mathfrak{S}_n \mathfrak{S}_n$

phago ୬, exo ୭, pino ⊚



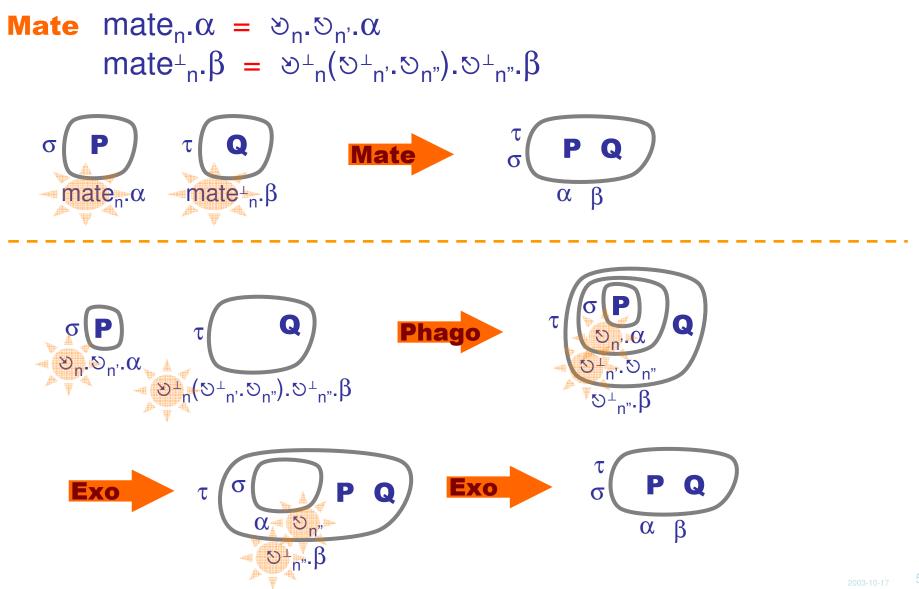
Phago (ρ) (ρ)

N.B.: the parity of nesting of P and Q is preserved; this makes the reactions preserve bitonality.

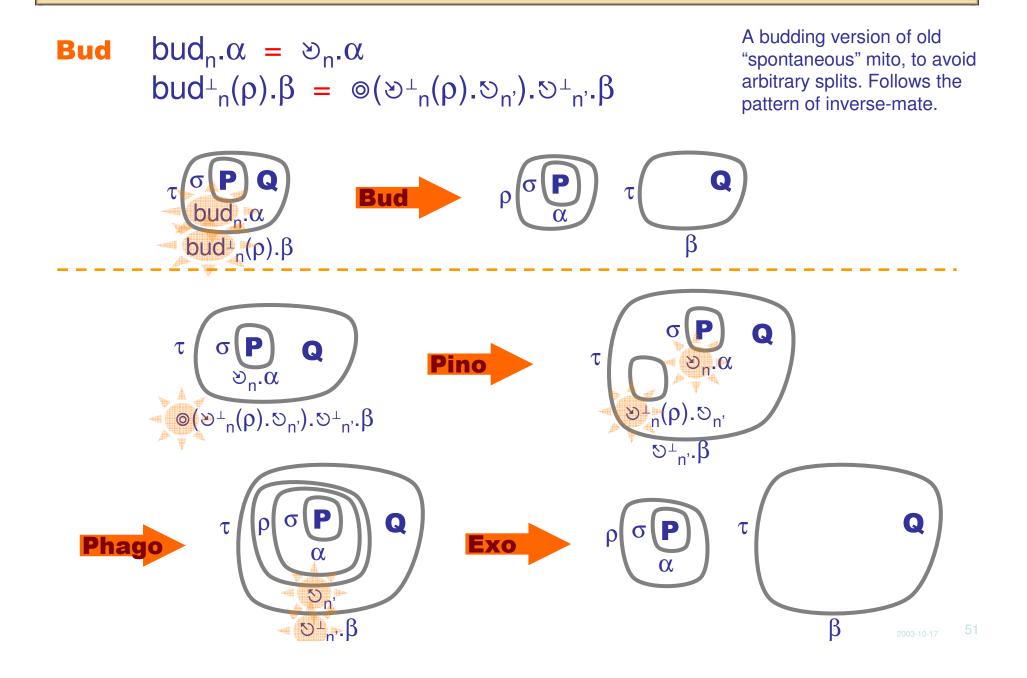
N.B.: in Phago (and Pino), one could perhaps require ρ to be, conservatively, a piece of τ , by a non-linear rewrite:

 $\mathbf{CPhago} \bigotimes_{n} \alpha | \sigma(\mathsf{PD} \circ \bigotimes_{n} (\rho).\beta | \rho | \tau(\mathsf{QD} \rightarrow \beta | \tau(\rho(\alpha | \sigma(\mathsf{PDD} \circ \mathsf{QD}))))) | \sigma(\mathsf{PDD} \circ \mathsf{QD}) = \beta | \tau(\rho(\alpha | \sigma(\mathsf{PDD} \circ \mathsf{QD}))) | \sigma(\mathsf{PDD} \circ \mathsf{QD}) | \sigma(\mathsf{PDD} \circ \mathsf{QD}$

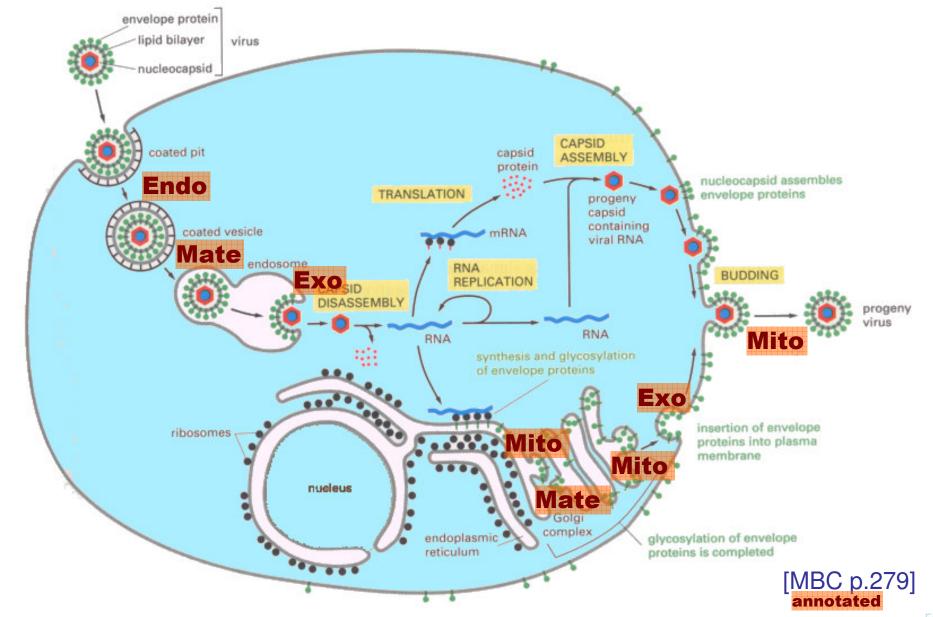
Abbreviations: Mate



Abbreviations: Bud

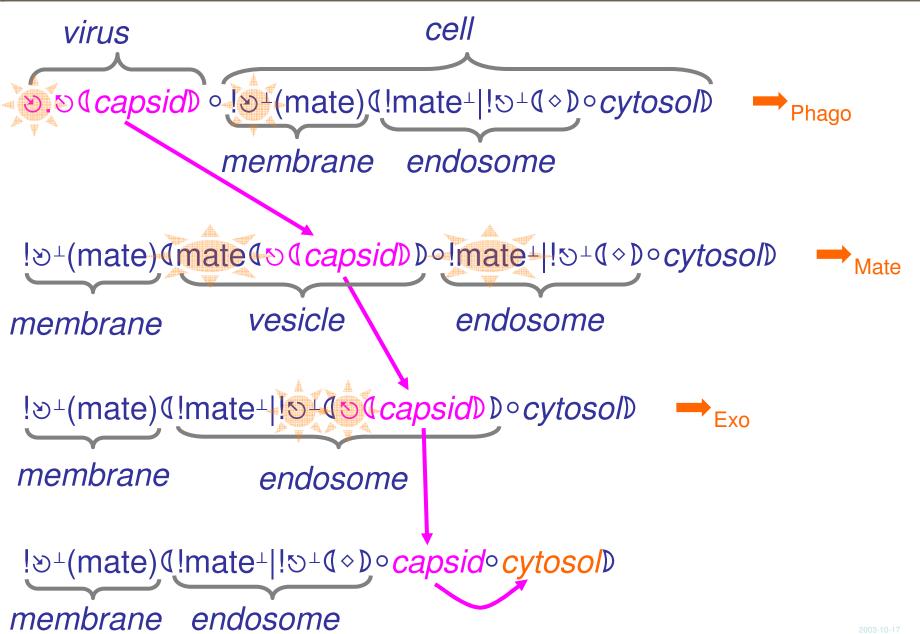


(Real) Ex: Viral Reproduction



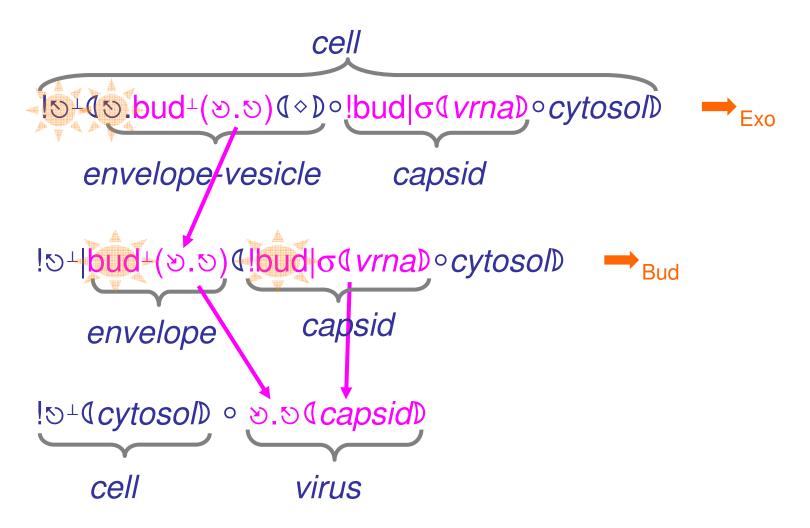
₀₃₋₁₀₋₁₇ 52

Ex: Viral Infection



Ex: Viral Progeny

capsid ∘ *cytosol* → → !*envelope-vesicle* ∘ !*capsid* ∘ *cytosol* by available cellular machinery



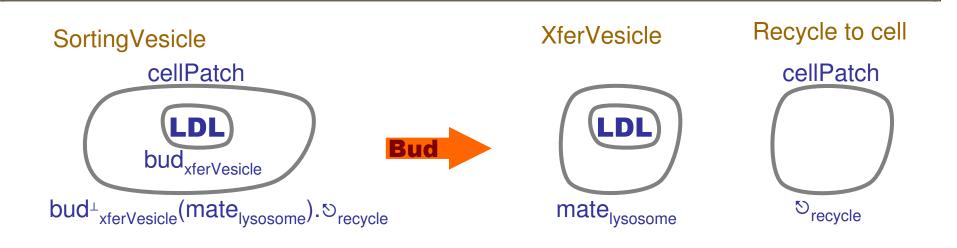
Ex: LDL Degradation Pathway

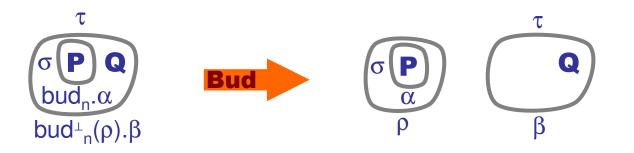
LigatedLdl = LdlLigand(LDL) Cell = CellBrane(!Lysosome • !SortingVesicle) Lysosome = LysoBrane (LysoBody) SortingVesicle = SortingBrane(>) Compartments Membranes

 $\begin{aligned} & LdlLigand = \Im_{ldlReceptor}.bud_{xferVesicle} \\ & CellBrane = ! \Im_{ldlReceptor}(VesicleBrane) \mid ! \Im_{recycle}^{\perp} \\ & VesicleBrane = mate_{sortingVesicle} \mid cellPatch^{(1)} \\ & SortingBrane = mate_{sortingVesicle}. \ bud_{xferVesicle}(XferBrane). \ \Im_{recycle} \\ & XferBrane = mate_{lysosome} \\ & LysoBrane = !mate_{lysosome} \end{aligned}$

⁽¹⁾whatever gets dragged by phago from the cell membrane, e.g. more LDL receptors.

... the critical Bud step





LigatedLdl = [LdlLigand | LDL] Cell = [CellBrane • !Lysosome • !SortingVesicle] Vesicle(n) = [VesicleBrane(n)] SortingVesicle = [SortingBrane | XferVesicle] XferVesicle = [XferBrane] Lysosome = [LysoBrane | LysoBody]

$$\begin{split} LdlLigand &= s2s_{ldlBind}{}^{\perp}(n).in_{n}.in_{n}.merge_{xferVesicle} \\ LdlReceptor &= (vn) \ s2s_{ldlBind}(n).in_{n}^{\perp} \mid Vesicle(n) \\ CellBrane &= !LdlReceptor \mid !pop_{recycle}^{(1)} \\ VesicleBrane(n) &= in_{n}^{\perp}. \ merge_{sortingVesicle} \mid cellPatch^{(2)} \\ SortingBrane &= merge_{sortingVesicle}^{\perp}.out_{bud}.pop_{recycle} \\ XferBrane &= merge_{xferVesicle}^{\perp}.out_{bud}.merge_{lysosome} \\ LysoBrane &= !merge_{lysosome}^{\perp} \end{split}$$

⁽¹⁾pop is out + merge. ⁽²⁾cellPatch is cell membrane to be recycled

Compartments Processes

Encoding Brane Calculi?

 $\sigma \mathbb{Q} \mathsf{P} \mathbb{D}^{\dagger} \triangleq \mathbf{s}[\sigma^{\dagger} \mid \mathsf{P}^{\dagger}]$?

This encoding confuses membrane with contents, so that the exo encoding is problematic:

Exo $\mathfrak{S}_{n}^{\perp}.\beta|\tau\mathfrak{Q}_{n}.\alpha|\sigma\mathfrak{Q}_{p}\mathfrak{O} \mathfrak{Q} \mathfrak{D} \Longrightarrow \mathfrak{P} \circ \alpha|\sigma|\beta|\tau\mathfrak{Q}_{p}\mathfrak{Q}$

That is, find ৩⁺ encodings such that:

 $\mathbf{s}[\mathfrak{S}_{n}^{+},\beta \mid \mathbf{s}[\mathfrak{S}_{n}^{+},\alpha \mid \sigma \mid \mathsf{P}] \mid \tau \mid \mathsf{Q}] \longrightarrow \mathsf{P} \mid \mathbf{s}[\alpha \mid \sigma \mid \beta \mid \tau \mid \mathsf{Q}]$

but the split $\sigma \mid P$ is *arbitrary* here: some reactions could not be reflected back to legal brane calculus reactions $(P^+ \rightarrow Q \Rightarrow \exists R. P \rightarrow R \land Q \rightarrow^* R^+)$, and it would be in any case difficult to define \mathfrak{S}^+ so that it splits σ from P.

One cannot easily represent the Exo reaction in (Bio)Ambients, nor can one easily add it as a new primitive!

For exo at least, we need to explicitly identify the membrane.

either	σ (P) †	$s[m[\sigma^{\dagger}] P^{\dagger}]$
or	σ (P) †	s[σ† c[P†]]

The second option should be chosen to avoid crossing 4 brackets in s2s reactions, so:

Exo $\mathfrak{S}_{n}^{\perp}.\beta|\tau\mathfrak{S}_{n}.\alpha|\sigma\mathfrak{P}\mathfrak{O}\circ Q\mathfrak{D} \longrightarrow P \circ \alpha|\sigma|\beta|\tau\mathfrak{Q}\mathfrak{D}$

 $\mathbf{s}[\mathfrak{S}_{n}^{\perp},\beta \mid \tau \mid \mathbf{s}[\mathfrak{S}_{n},\alpha \mid \sigma \mid \mathbf{c}[\mathsf{P}]] \mid \mathbf{c}[\mathsf{Q}]] \longrightarrow \mathsf{P} \mid \mathbf{s}[\alpha \mid \sigma \mid \beta \mid \tau \mid \mathbf{c}[\mathsf{Q}]]$

But this emulation interferes badly with concurrent Phago's (emulated by at least two "in" steps because of the double bracketing): neither emulations is atomic.

One cannot easily emulate atomic Phago/Exo in (Bio)Ambients.

Conversely, in (Bio)Ambients one can use an action to create a whole new filled-in membrane:

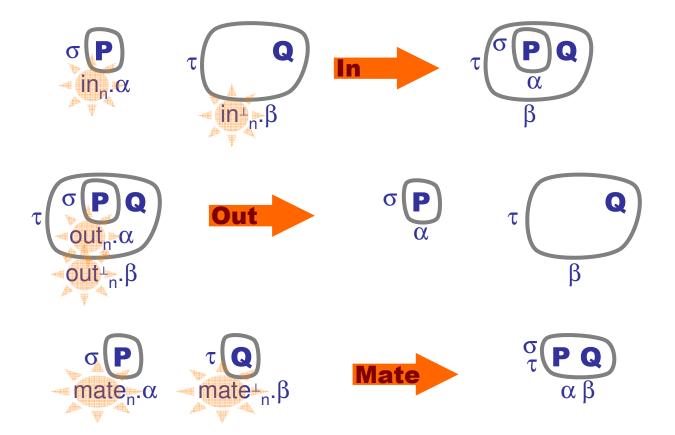
 $a.s[\sigma | P] = a.(\sigma QPD)$

this is not allowed, nor easily representable, in brane calculi.

This is a power that real membranes do not seem to have.

BioAmbients-like Mobility Actions

actions a ::= ... | in_n | in⁺_n | out_n | out⁺_n | mate_n | mate⁺_n



N.B.: out + mate gives a "melt" primitive that is a good membrane-preserving approximation of "open":

 $\underbrace{\operatorname{melt}_{n}}_{n}\beta|\tau\operatorname{melt}_{n}\alpha|\sigma(\mathsf{PD}\circ\mathsf{QD}) \rightarrow \alpha|\sigma|\beta|\tau(\mathsf{P}\circ\mathsf{QD})$

Molecular Actions

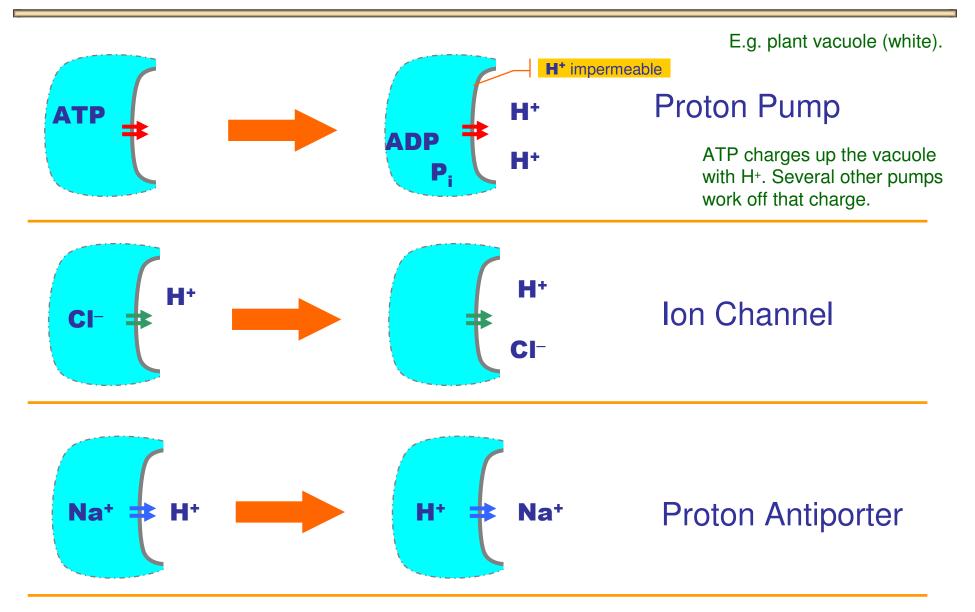
systemsP,Q ::= ... | mm $m \in M$ moleculesp,q ::= $m_1 \circ ... \circ m_k$ molecule multisetsactionsa ::= ... | $p_1(p_2) \Rightarrow q_1(q_2)$ bind&release

B&R
$$p_1 \circ p_1(p_2) \Rightarrow q_1(q_2) \cdot \alpha | \sigma (p_2 \circ P) \rightarrow q_1 \circ \alpha | \sigma (q_2 \circ P)$$

(multiset rewriting, inside and outside membranes)

Special cases: " \diamond (\diamond)" is omitted $m(\diamond) \Rightarrow$ bind out $\Rightarrow m(\diamond)$ release out $\diamond(m) \Rightarrow$ bind in $\Rightarrow \diamond(m)$ release in

Ex: A Specialized Membrane



A membrane of sort "PlantVacuole" has all those things on it.

ProtonPump = $! ATP(\diamond) \Rightarrow ADP \circ P_i(H^+ \circ H^+)$ IonChannel = $! CI^-(H^+) \Rightarrow \diamond (H^+ \circ CI^-)$ ProtonAntiporter = $! Na^+(H^+) \Rightarrow H^+(Na^+)$

PlantVacuole = ProtonPump | IonChannel | ProtonAntiporter (>)

Diffusion (CCS-like channels)

actions a ::= ... $|df_n(m)| df_n(m)$ diffusion (within membrane)

$$df_n(m).\alpha df_n(p).\beta | \sigma (P) \rightarrow \alpha | \beta \{p \leftarrow m\} | \sigma (P)$$

BioAmbients-like Channels

actions a ::= ... | $s2s_n(m)$ | $s2s_n^{\perp}(m)$ | $p2c_n(m)$ | $p2c_n^{\perp}(m)$ | $c2p_n(m)$ | $c2p_n^{\perp}(m)$ sibling to sibling parent to child child to parent

 $s2s_n(m).\alpha|\sigma$ (PD ∘ $s2s_n(p).\beta|\tau$ (QD → α|σ(PD ∘ β{p←m}|τ(QD)

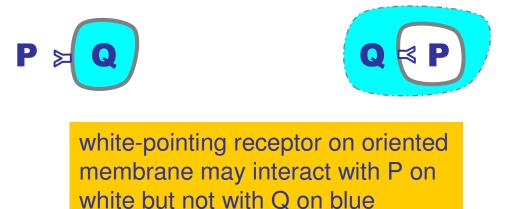
 $p_{\alpha|\sigma}(m).\alpha|\sigma(p_{\alpha+n}(p).\beta|\tau(Q) \circ P) \rightarrow \alpha|\sigma(\beta\{p\leftarrow m\}|\tau(Q) \circ P)$

Implementabilty?

- An implementable "instruction set" could consist of:
 - Bitonal mobility operators, including bud/mate (possibly restricting the ρ in $\mathfrak{S}_n^{\perp}(\rho)$ and $\mathfrak{O}(\rho)$).
 - Selected bind&release pumps.
 - Selected s2s/p2c/c2p operators.
- N.B. BioAmbients in/out do not seem as likely to be directly implementable.

Bitonal Calculi?

• Oriented actions:



That is, σ (P) should have different reactions than σ (P).

Bitonal calculi TBD.

Conclusions

- What's different about "bio"-calculi?
 - Orientability and bitonality invariants inspire new, and possibly more bio-realistic, operators.
 - Low-dimensional fluids inside high-dimensional fluids: two commutative monoids.
 - Computing on the membrane, not inside of it.

References

[MCB] Molecular Cell Biology, Freeman. [MBC] Molecular Biology of the Cell, Garland.

