# Membrane Interactions 

## Luca Cardelli

Microsoft Research
BioConcur, 2003-09-06

## Eukaryotic Cell

Membranes
everywhere


## Membrane-based Systems

- Many cellular processes operate on membranes, through membranes, via membrane transformations, and via active membrane transport. It's very far from a "chemical soup":
- For a cell to function properly, each of its numerous proteins must be localized to the correct cellular membrane or aqueous compartment. [MCB p.675]
- What is the dynamics of these complex configurations of membranes? (Still poorly understood in biology.)
- In modeling it, we must use abstractions, to avoid combinatorial explosion: 1 membrane $\approx \infty$ molecules.
- Emerging area of Systems Biology (~ above molecules, ~ study of biological processes).


## Membranes are Oriented 2D Surfaces



## Lipid Bilayer

Self-assembling Largely impermeable Asymmetrical (in real cells) Embedded proteins
A 2D fluid inside a 3D fluid!


## A Biological Algorithm

- LDL-Cholesterol Degradation
- A cast of many thousands (molecules) just to get one molecule from A to B.
- Membranes are key to the algorithm, we want to model them, not their individual molecules.
- How do people know all that?
- They take pictures, see all stages of the algorithm in the same snapshot.
- Stop genes, see what stages survive; build temporal sequence of stages.
- Identify key molecules. Model them and play with them to see what they do.
- Many steps still murky. Not possible to model them in detail even if wanted to.



## Receptor-Mediated Degradation Pathway

(Abstract view)


## Aims

- Describing biological processes
- Avoid informal diagrams.
- Write bioalgorithms in something close to a language.
- Abstraction options
- Start too low $\Rightarrow$ get lost in a mess of details.
- Start too high $\Rightarrow$ ignore too many details.
- Strategy (for now)
- 1) Start too high (but learn basic gameplay).
- 2) Move one or two levels down.
- Approaches considered here
- Algebras (Bitonal Algebra)
- Rewriting systems (BiGraphs, Gamma, P-Systems, etc.)
- Calculi (BioSPi, BioAmbients, and now Brane Calculi)


## Bitonal Systems

## Systems of Oriented Membranes

Membranes are closed non-intersecting curves, with an orientation ${ }^{(1)}$.


Each membrane has two faces. A cytosolic (~inner) face and an exoplasmic ( $\sim$ outer) face. Nested membranes alternate orientation. (E.g. cytosolic faces always face each other.)


This alternation is illustrated by using two tones: blue (cytosol ${ }^{(2)}$ ) and white (exosol ${ }^{(3)}$ ). Bitonal diagrams.

Double membranes (e.g. the nuclear membrane) can be used for blue-in-blue components.

## Bitonal Diagrams

## Bitonal Postulate

Blue and white areas alternate.

## Bitonal Invariant

Bitonality is preserved by reactions.

## Tonal Duality Postulate

The tone-dual of a reaction is a reaction.

## Tonal Stability Invariant

Reactions do not re-tone the background.
Reactions do not re-tone whole subsystems.


Evolutionary explanations of bitonality


## Bitonal Systems



A bitonal system $\mathbf{P}$ has proper tone alternation. The tonality of $\mathbf{P}$ is the tone of its background, also drawn as:
$\mathbf{P}$ a system $\mathbf{P}$ of blue tonality (" $\mathbf{P}$ swims in cytosol")
$\mathbf{P}$ a system $\mathbf{P}$ of white tonality ("P swims in exosol")

## Bitonal Reactions



# Directed reaction <br> $\mathbf{P}, \mathbf{Q}$ same tonality 

Reversible reaction $\mathbf{P}, \mathbf{Q}$ same tonality

## Dual Reactions



## Reactions in Context

$\mathbf{P} \quad \mathbf{Q} \quad \underset{\text { for any bitonal } \mathbf{R}}{ }$

implies

by duality



## $\checkmark$ Froth/Fizz Reaction

The spontaneous appearance/disappearance of empty bubbles (of the correct tonality).

Preserves bitonality

and is stable.

* Phospholipid molecules automatically assemble into closed membranes.
N.B. non-empty membranes should not "spontaneously" be created or deleted: usually only very deliberate processes cause that. However, spontaneous froth/fizz seems be harmless; it means that empty membranes are not observable.


## $\times$ Bad Bubbles

## Wrong bubbles:

Violates bitonality.



## Bubble catastrophe:

Violates bitonality in context.
Also, ill-toned reaction arrow.


## $\times$ Flooding

## Flooding

Violates bitonality in context. Also, ill-toned reaction arrow.


Flooding in context violates bitonality:


## * Ambients



## $\checkmark$ Endo/Exo Reaction



Preserves bitonality
and is stable: the tonality of $P$ and $Q$ does not change.

## Dual:



## $\checkmark$ Mito/Mate Reaction

Preserves bitonality
and is stable.

## Dual:



## $\checkmark$ Peel/Pad Reaction

Preserves bitonality
and is stable.


## Q

## Dual:



## Summary: Four Good Reactions

Froth/Fizz

Endo/Exo

Mito/Mate


Peel/Pad


Q

## Mito/Mate by 3 Endo/Exo



## Endo/Exo by Mito/Mate and Peel/Pad



Endo/Exo from Mito/Mate only?
No: depth of
nesting is
constant in
Mito/Mate.

## Peel/Pad by Froth/Fizz and Endo/Exo



## Ex: Clean Eating

(why Endo/Exo is "healthier" than Mito/Mate)


## (Real) Ex: Autophagic Process

Lysosome and target don't just merge.


Biologically, Mito/Mate clearly happens. However, weird sequences of Endo/Exo are also common.

## (Real) Ex: Viral Reproduction



## Bitonal Algebra



## Axioms Illustrated

$$
\diamond=D \bullet D
$$



## Bitonal Algebra v2



## Facts

## E/E:

$X \circ(Y D=(X X) D \circ(Y D=(\mathbb{X}) \cdot Y D$
$(X) \bullet Y=(X \circ(Y D)$ symmetrically

## F/F:

$(\bullet D=\diamond \circ(\bullet D=((\diamond) \bullet \bullet D=(\langle\diamond) D=\diamond$
$(\diamond)=$ symmetrically

## Ex: Viral Infection

(capsidDo(lendosome)•cytosolD $=$ Endo
( ( (capsidD) $\cdot\left(\right.$ endosome) $\bullet$ cytosol $=_{\text {Mate }}$
(《CcapsidDoendosome) $\bullet$ cytosol $=_{\text {Exo }}$
(《endosome)•capsid•cytosolD

Equivalent to a single Mate step, but that's not what "really happens". To explain what "really happens" a bit better, we need to move to a lower level of abstraction.

## Back to Postulates

## Locality Postulate

Interactions should be local to small membrane patches.
E.g., independent of global membrane properties such as overall curvature.

## Endo/Exo Violates Locality



Oops...

## $\checkmark$ Local-view Endo/Exo Reaction



## Global View

Both: and:


## Ah!

Local Endo/Exo = co-Mito/Mate

## $\checkmark$ Local-view Mito/Mate Reaction



## Locality is Not Violated

- Hence, even though Endo/Exo and Mito/Mate strictly violate locality, locality is indirectly preserved in a bigger system that includes them both and their duals.
- Problem: how to formally represent the localview reactions?


## Assessment

- High-level: Algebras
- Abstraction level still too high; we want to talk about "different sorts" of membranes.
- We need to be a bit more deterministic.
- Mid-level: Graph Rewriting
- Abstractly talk about the "sort" of a membrane, and how it changes into other abstract sorts.
- Lower-Level: Calculi
- Model individual membrane proteins.


## Part II (short)

## Different Kinds of Membranes

## Sorted Membranes

- Different kinds of membranes.
- Lipid bilayer is universal. All membranes can in principle merge, but the lipid compositions vary.
- The set of proteins bound to a membrane confer unique characteristics to it and its contents.
- Each membrane is uniform.
- Membrane proteins diffuse rapidly through the surface of a membrane; they are not localized (unless held together).
- Hence: sorts of membranes.
- A single name will characterize the collection of features of a membrane; its sort.
- Each sort is meant to be "implemented" by lower level mechanisms.



## Sorted Membrane Rewrites

- Rewriting systems
- We can describe sorted membrane reactions as labeled rewrites (such as labeled versions of endo/exo).
- E.g. as a special case of Milner's BiGraphs, where the "sort" is the "control". This is possible because each node in a bigraph has a single control. (However, extensions to multi-patch membranes may not fit easily in the BiGraph framework.)


## Receptor-Mediated Degradation Pathway



## Part III

## Brane Calculi

## What makes Endo happen?

- Moving down a level, to explain "why" certain reactions like endo/exo happen: they do not happen magically.
- Describe membranes as composed of independently active "patches" or membrane proteins (not characterized by a single sort).
- Can be formalized pretty much as action/coaction interactions in process calculi.
- But with actions "on" the membranes, not "inside" them!


## Brane Calculi

## systems

$$
P, Q::=\diamond|P \circ Q|!P \mid \sigma \mathbb{P D}
$$

branes
actions

$$
\begin{aligned}
& \sigma, \tau, \alpha, \beta::= \\
& \mathrm{a}::=1 \mid \ldots
\end{aligned}
$$

nests of membranes
combinations of actions
(a great variety of possibilities)

1D fluids $(\sigma)$ inside a 2D fluid $(P)$

N.B. Restriction (vn) could be added to both systems and branes. It usually originate in branes, but may extrude to whole systems.

## Structural Congruences

$$
\begin{array}{ll}
\mathrm{P} \circ \mathrm{Q} \equiv \mathrm{Q} \circ \mathrm{P} & \sigma|\tau \equiv \tau| \sigma \\
\mathrm{P} \circ(\mathrm{Q} \circ \mathrm{R}) \equiv(\mathrm{P} \circ \mathrm{Q}) \circ \mathrm{R} & \sigma|(\tau \mid \rho) \equiv(\sigma \mid \tau)| \rho \\
\mathrm{P} \circ \diamond \equiv \mathrm{P} & \sigma \mid 0 \equiv \sigma \\
!\mathrm{P} \equiv \mathrm{P} \circ!\mathrm{P} \text { etc. } & !\sigma \equiv \sigma \mid!\sigma \text { etc. } \\
0 \Omega \diamond \mathrm{D} \equiv \diamond & 1 . \sigma \equiv \sigma \\
\mathrm{P} \equiv \mathrm{Q} \Rightarrow \mathrm{P} \circ \mathrm{R} \equiv \mathrm{Q} \circ \mathrm{R} & \sigma \equiv \tau \Rightarrow \sigma|\rho \equiv \tau| \rho \\
\mathrm{P} \equiv \mathrm{Q} \Rightarrow!\mathrm{P} \equiv!\mathrm{Q} & \sigma \equiv \tau \Rightarrow!\sigma \equiv!\tau \\
\mathrm{P} \equiv \mathrm{Q} \wedge \sigma \equiv \tau \Rightarrow \sigma(\mathrm{PD} \equiv \tau \varangle \mathrm{QD} & \sigma \equiv \tau \Rightarrow \mathrm{a} . \sigma \equiv \mathrm{a} . \tau \\
& \\
\mathrm{P} \equiv \mathrm{P}^{\prime} \wedge \mathrm{P}^{\prime} \Rightarrow \mathrm{Q}^{\prime} \wedge \mathrm{Q}^{\prime} \equiv \mathrm{Q} \Rightarrow \mathrm{P} \Rightarrow \mathrm{Q}
\end{array}
$$

## Bitonal Mobility Actions

$$
a::=\ldots\left|\vartheta_{n}\right| \cup_{n}^{\perp}(\sigma)\left|\mho_{n}\right| \bigcup_{n}^{\perp} \mid \odot(\sigma)
$$



Old "spontaneous" endo splits into phagocytosis (phago, often still pronounced endo) and pinocytosis (pino).

## Bitonal Mobility Actions



ExO


Old "spontaneous" endo splits into phagocytosis (phago, often still pronounced endo) and pinocytosis (pino).

## Bitonal Mobility Actions

$$
\text { a : := ... }\left|\searrow_{n}\right| \searrow_{n}^{\perp}(\sigma)\left|\Xi_{n}\right| \bigcup_{n}^{\perp} \mid \odot(\sigma) \quad \text { phago 凶, exo ৩, pino ๑ }
$$



Exo


Old "spontaneous" endo splits into phagocytosis (phago, often still pronounced endo) and pinocytosis (pino).

Exo $\cup_{n} \cdot \beta\left|\tau \delta \Theta_{n} . \alpha\right| \sigma Q P D \circ Q D \Longrightarrow P \circ \alpha|\sigma| \beta \mid \tau Q Q D$
Pino $\quad \circ(\rho) \cdot \alpha|\sigma \Omega P D \Rightarrow \alpha| \sigma \Omega \rho \Omega \diamond D \circ P D$
N.B.: the parity of nesting of $P$ and $Q$ is preserved; this makes the reactions preserve bitonality.
N.B.: in Phago (and Pino), one could perhaps require $\rho$ to be, conservatively, a piece of $\tau$, by a non-linear rewrite:


## Abbreviations: Mate

Mate mate ${ }_{n} \cdot \alpha=\cup_{n} \cdot \cup_{n} \cdot \alpha$
mate $^{\perp}{ }_{n} \cdot \beta=\nu^{\perp}{ }_{n}\left(\mho^{\perp}{ }_{n^{\prime}} \cdot \mho_{n^{\prime \prime}}\right) \cdot \nu^{\perp}{ }_{n^{\prime \prime}} \cdot \beta$


Phago


## Abbreviations: Bud

Bud $\operatorname{bud}_{n} \cdot \alpha=\dot{\nu}_{n} \cdot \alpha$

$$
\operatorname{bud}^{\perp}{ }_{n}(\rho) \cdot \beta=\odot\left(v^{\perp}{ }_{n}(\rho) \cdot \cup_{n^{\prime}} \cdot \cdot \cup^{\perp}{ }_{n^{\prime}} \cdot \beta\right.
$$

A budding version of old
"spontaneous" mito, to avoid arbitrary splits. Follows the pattern of inverse-mate.


## (Real) Ex: Viral Reproduction



## Ex: Viral Infection



## Ex: Viral Progeny

capsid $\circ$ cytosol $\Longrightarrow \square$ !envelope-vesicle $\circ$ !capsid $\circ$ cytosol by available cellular machinery


## Ex: LDL Degradation Pathway

LigatedLdl = LdlLigand(ULDLD
Cell = CellBrane\!Lysosome $\circ$ !SortingVesicleD
Lysosome = LysoBrane (LysoBodyD
SortingVesicle $=$ SortingBrane $1 \diamond D$

Compartments
Membranes

LdILigand $=\vartheta_{\text {ldIReceptor }}$-bud xferVesicle
CellBrane $=!{ }^{\perp}{ }^{\perp}$ ldilReceptor $($ VesicleBrane $\left.) \mid!\right)^{\perp}{ }_{\text {recycle }}$
VesicleBrane $=$ mate $_{\text {sortingVesicle }} \mid$ cellPatch ${ }^{(1)}$
SortingBrane $=$ mate $^{\perp}{ }_{\text {sortingVesicle }}$. bud $^{\perp}{ }_{\text {xferVesicle }}$ (XferBrane). $\omega_{\text {recycle }}$
XferBrane $=$ mate $_{\text {lysosome }}$
LysoBrane $=$ !mate ${ }^{\perp}$ Iysosome
${ }^{(1)}$ whatever gets dragged by phago from the cell membrane, e.g. more LDL receptors.

## ... the critical Bud step



Bud


## Ex: LDL Degradation Pathway in BioAmbients

LigatedLdl = [LdlLigand | LDL]
Cell $=$ [CellBrane $\circ!$ Lysosome $\circ!$ SortingVesicle]
Vesicle( n ) $=$ [VesicleBrane $(\mathrm{n})$ ]
SortingVesicle = [SortingBrane | XferVesicle]
XferVesicle $=$ [XferBrane]
Lysosome = [LysoBrane | LysoBody]
LdILLigand $=s 2 s_{\mathrm{ldIlBind}^{1}}(\mathrm{n}) \cdot \mathrm{in}_{n} \cdot \mathrm{in}_{n} \cdot$ merge $_{\text {xervesicle }}$
LdIReceptor $=(\mathrm{vn}) \mathrm{s} 2 \mathrm{~s}_{\text {dalBind }}(\mathrm{n}) \cdot \mathrm{in}^{\perp}{ }_{\mathrm{n}} \mid$ Vesicle( n$)$
CellBrane $=$ !LdIReceptor $\mid$ ! $\mathrm{pop}^{\perp}$ recycle ${ }^{(1)}$
VesicleBrane( n$)=\mathrm{in}^{\perp}{ }_{\mathrm{n}}$. merge $_{\text {sortingVesicle }} \mid$ cellPatch ${ }^{(2)}$
SortingBrane $=$ merge $^{\perp}$ sortingVesicle $\cdot$ out ${ }^{\perp}$ bud $\cdot$ pop $_{\text {recycle }}$
XferBrane $=$ merge $^{\perp}{ }_{\text {xfervesicle }} \cdot$ out $_{\text {bud }} \cdot$ merge $_{\text {lysosome }}$
LysoBrane $=$ !merge ${ }^{\perp}$ |ysosome
${ }^{(1)}$ pop is out + merge. ${ }^{(2)}$ cellPatch is cell membrane to be recycled

## Encoding Brane Calculi?

$$
\sigma \varangle \mathrm{PD}^{\dagger} \triangleq \mathrm{s}\left[\sigma^{\dagger} \mid \mathrm{P}^{\dagger}\right] \quad ?
$$

This encoding confuses membrane with contents, so that the exo encoding is problematic:

That is, find $v^{\dagger}$ encodings such that:

$$
\mathrm{s}\left[\cup_{\mathrm{n}}^{\perp}{ }^{\dagger} \cdot \beta\left|\mathrm{s}\left[\cup_{\mathrm{n}}^{\dagger} . \alpha|\sigma| \mathrm{P}\right]\right| \tau \mid \mathrm{Q}\right] \Rightarrow \mathrm{P} \mid \mathrm{s}[\alpha|\sigma| \beta|\tau| Q]
$$

but the split $\sigma \mid \mathrm{P}$ is arbitrary here: some reactions could not be reflected back to legal brane calculus reactions $\left(\mathrm{P}^{\dagger} \rightarrow \mathrm{Q} \Rightarrow \exists \mathrm{R} . \mathrm{P} \rightarrow \mathrm{R} \wedge \mathrm{Q} \rightarrow{ }^{*} \mathrm{R}^{\dagger}\right.$ ), and it would be in any case difficult to define $v^{\dagger}$ so that it splits $\sigma$ from P .
One cannot easily represent the Exo reaction in (Bio)Ambients, nor can one easily add it as a new primitive!

For exo at least, we need to explicitly identify the membrane.

| either | $\sigma$ OPD ${ }^{\dagger} \triangleq \mathrm{s}\left[\mathrm{m}\left[\sigma^{\dagger}\right]\right.$ |
| :---: | :---: |
| or | $\sigma$ OPD ${ }^{\dagger} \triangleq \mathrm{s}\left[\sigma^{\dagger} \mid c\left[\mathrm{P}^{\dagger}\right]\right]$ |

The second option should be chosen to avoid crossing 4 brackets in s2s reactions, so:

Exo $\quad \cup^{\perp}{ }_{n} \cdot \beta\left|\tau đ \omega_{n} . \alpha\right| \sigma \mathbb{P D} \circ Q D \Rightarrow P \circ \alpha|\sigma| \beta \mid \tau \mathbb{Q D}$
$\mathrm{s}\left[{ }^{\perp}{ }_{\mathrm{n}} . \beta|\tau| \mathrm{s}\left[\nu_{\mathrm{n}} . \alpha|\sigma| \mathrm{c}[\mathrm{P}]\right] \mid \mathrm{c}[\mathrm{Q}]\right] \Rightarrow \mathrm{P} \mid \mathrm{s}[\alpha|\sigma| \beta|\tau| c[Q]]$
But this emulation interferes badly with concurrent Phago's (emulated by at least two "in" steps because of the double bracketing): neither emulations is atomic.

One cannot easily emulate atomic Phago/Exo in (Bio)Ambients.

Conversely, in (Bio)Ambients one can use an action to create a whole new filled-in membrane:

$$
\operatorname{a.s}[\sigma \mid P]=\mathrm{a} .(\sigma \backslash P D)
$$

this is not allowed, nor easily representable, in brane calculi.

This is a power that real membranes do not seem to have.

## BioAmbients-like Mobility Actions

actions $\quad$ a $::=\ldots \mid$ in $_{n} \mid$ in $^{\perp}{ }_{n} \mid$ out $_{n} \mid$ out $^{\perp}{ }_{n} \mid$ mate $_{n} \mid$ mate $^{\perp}{ }_{n}$


$$
\underset{\text { mate }_{n} \cdot \alpha}{\text { mate }^{\perp} \cdot \beta}
$$

Mate

$$
\frac{\stackrel{\sigma}{\tau}}{\alpha \boldsymbol{Q}}
$$



Mate mate $_{n} . \alpha \mid \sigma \Omega P D \circ$ mate ${ }^{\perp} \cdot{ }_{n} \cdot \beta|\tau \Omega Q D \Longrightarrow \alpha| \sigma|\beta| \tau \Omega P \circ Q D$
N.B.: out + mate gives a "melt" primitive that is a good membrane-preserving approximation of "open":
melt $^{-1} . \beta \mid \tau \Omega$ melt $_{n} \cdot \alpha|\sigma \Omega P D \circ Q D \Rightarrow \alpha| \sigma|\beta| \tau \mathbb{} \cdot \mathrm{PD}$

## Molecular Actions

systems

$$
\begin{array}{ll}
P, Q::=\ldots \mid m & m \in M \quad \text { molecules } \\
\mathrm{p}, \mathrm{q}::=\mathrm{m}_{1} \circ \ldots \circ \mathrm{~m}_{\mathrm{k}} & \text { molecule multisets }
\end{array}
$$

actions $a::=\ldots \mid p_{1}\left(p_{2}\right) \Rightarrow q_{1}\left(q_{2}\right)$ bind\&release

$B \& R \quad p_{1} \circ p_{1}\left(p_{2}\right) \Rightarrow q_{1}\left(q_{2}\right) \cdot \alpha\left|\sigma \circlearrowleft p_{2} \circ P D \Longrightarrow q_{1} \circ \alpha\right| \sigma \backslash q_{2} \circ P D$
(multiset rewriting, inside and outside membranes)

Special cases: " $\diamond(\diamond)$ " is omitted

$$
\begin{array}{llll}
\mathrm{m}(\diamond) \Rightarrow & \text { bind out } & \Rightarrow \mathrm{m}(\diamond) & \text { release out } \\
\diamond(\mathrm{m}) \Rightarrow & \text { bind in } & \Rightarrow \diamond(\mathrm{m}) & \text { release in }
\end{array}
$$

## Ex: A Specialized Membrane



Ion Channel


## Proton Antiporter

A membrane of sort "PlantVacuole" has all those things on it.

```
ProtonPump \(=!\) ATP \((\stackrel{\circ}{ }) \Rightarrow\) ADP \(\circ P_{i}\left(\mathrm{H}^{+} \circ \mathrm{H}^{+}\right)\)
lonChannel \(=!\mathrm{Cl}^{-}\left(\mathrm{H}^{+}\right) \Rightarrow \diamond\left(\mathrm{H}^{+} \circ \mathrm{Cl}^{-}\right)\)
ProtonAntiporter \(=!\mathrm{Na}^{+}\left(\mathrm{H}^{+}\right) \Rightarrow \mathrm{H}^{+}\left(\mathrm{Na}^{+}\right)\)
```

PlantVacuole =
ProtonPump | IonChannel | ProtonAntiporter $1 \otimes$ D

## Diffusion (CCS-Iike channels)

actions

$$
\mathrm{a}::=\ldots\left|\mathrm{df}_{\mathrm{n}}(\mathrm{~m})\right| \mathrm{df}^{\perp}{ }_{\mathrm{n}}(\mathrm{~m})
$$

diffusion (within membrane)

$$
d f_{n}(\mathrm{~m}) \cdot \alpha\left|\mathrm{df}^{+}{ }_{n}(\mathrm{p}) \cdot \beta\right| \sigma \mathbb{P} D \Rightarrow \alpha|\beta\{\mathrm{p} \leftarrow \mathrm{~m}\}| \sigma \Omega P D
$$

## BioAmbients-like Channels

$$
\text { actions } \quad \begin{aligned}
a::= & \ldots\left|s 2 s_{n}(m)\right| s 2 s^{\perp}{ }_{n}(m) \\
& \left|p 2 c_{n}(m)\right| p 2 c^{+}{ }_{n}(m) \\
& \left|c 2 p_{n}(m)\right| c 2 p^{\perp}{ }_{n}(m)
\end{aligned}
$$

$$
\begin{gathered}
c 2 p^{\perp} \perp_{n}(p) \cdot \beta\left|\tau \llbracket c 2 p_{n}(m) \cdot \alpha\right| \sigma \Omega Q D \circ P D \\
\quad \Rightarrow \beta\{p \leftarrow m\}|\tau \| \alpha| \sigma \Omega Q D \circ P D
\end{gathered}
$$

$$
\begin{aligned}
& \mathrm{s} 2 \mathrm{~s}_{\mathrm{n}}(\mathrm{~m}) \cdot \alpha \mid \sigma\left(P D \circ \mathrm{~s} 2 \mathrm{~s}^{\perp}{ }_{\mathrm{n}}(\mathrm{p}) \cdot \beta \mid \tau \Omega Q D\right. \\
& \Rightarrow \alpha|\sigma Q P D \circ \beta\{p \leftarrow \mathrm{~m}\}| \tau \mathbb{Q D} \\
& \mathrm{p} 2 \mathrm{c}_{\mathrm{n}}(\mathrm{~m}) \cdot \alpha \mid \sigma\left(\mathrm{p} 2 \mathrm{c}_{\mathrm{n}}{ }_{\mathrm{n}}(\mathrm{p}) \cdot \beta \mid \tau \Omega Q D \circ \mathrm{PD}\right. \\
& \Rightarrow \alpha \mid \sigma(\beta\{p \leftarrow m\} \mid \tau \Omega Q D \circ P D
\end{aligned}
$$

sibling to sibling
parent to child
child to parent

## Implementabilty?

- An implementable "instruction set" could consist of:
- Bitonal mobility operators, including bud/mate (possibly restricting the $\rho$ in $\searrow^{\perp}(\rho)$ and $\odot(\rho)$ ).
- Selected bind\&release pumps.
- Selected s2s/p2c/c2p operators.
- N.B. BioAmbients in/out do not seem as likely to be directly implementable.


## Bitonal Calculi?

- Oriented actions:

$Q \leqslant P$
white-pointing receptor on oriented membrane may interact with P on white but not with Q on blue

That is, $\sigma(P D$ should have different reactions than $\sigma(P)$.
Bitonal calculi TBD.

## Conclusions

- What's different about "bio"-calculi?
- Orientability and bitonality invariants inspire new, and possibly more bio-realistic, operators.
- Low-dimensional fluids inside high-dimensional fluids: two commutative monoids.
- Computing on the membrane, not inside of it.


## References

[MCB] Molecular Cell Biology, Freeman.
[MBC] Molecular Biology of the Cell, Garland.


