Part 3
Ambient Types

Luca Cardelli
Giorgio Ghelli
Andy Gordon

Types for Exchange Control

* Ambients exchange information by reading an writing to
the “local ether”. In an untyped system, the ether can be
full of garbage.

 How do we make sure that ether interactions are well
typed? We need to track the exchanges of messages
between processes.

Like Typing a File System

* n: Fol[T] means that n 1s a name for folders that can contain only
files of type 7. E.g.: ps : Fol|Postscript].

* Nothing is said about the subfolders of folders of name n: they
can have any name and any type (and can come and go).

e Hierarchy rearrangements are totally unconstrained.

will contain file

contains of type Fol[-]

' no files
msg : Fol[Fol[-]] / a_\
b : Fol|Foll-]]
x : Foll[-]

contains file of
type Fol[-]

Need for Distinctions

The ambients syntax does not distinguish between names
and capabilities, therefore 1t permits strange terms like:
in n[P] (stuck)
n.P (stuck)

This cannot be avoided by a more precise syntax, because
such terms may be generated by interactions:

(inn) | (m).m|P] — in n|[P]

(n) | (m).m.P — n.P

(m) (m.P | m[Q]) (tests whether m is a name or a capability!)

We have two sorts of things (ambient names and
capabilities) that we want to use consistently. A type
system should do the job.

Desired property: a well-typed program does not produce
insane terms like in n[P] and n.P.

Exchange Types

W= message types
Amb[T) ambient name allowing 7" exchanges
Cap|T] capability unleashing 7 exchanges
T:= process types
Shh no exchange
W .. xW, tuple exchange (1 is the null product)

A quiet ambient: Amb[Shh]
A harmless capability: Cap|[Shh]
* A synchronization ambient: Amb|[1]

Ambient containing harmless capabilities: Amb|[Cap|Shhl]]

* A capability that may unleash the exchange of names for quiet
ambients: Cap|Amb|Shh]]

Polyadic Ambient Calculus

P»Q sem /:typed binder ’ MN ‘o

(Vn: W)P n
0 in M
PlO out M

P typed binders opeén M
M[P] g
M.P M.N

. ° //
(n1~ Wp sesy nk~Wk)~P | polyadic input ’

M,, ..., M)
ﬁpolyadic output ’

Reduction

nlinm. P| QO] | m[R] — m[n[P | O] | R]

m[nlout m. P| Q] | R] — n[P | O] | m[R] type oblivious
openn. P\l n[Q] = P| QO
(W, ..., nzW).Pl (M, ..., M,) = P{n<M,, ..., n<—M,}

P— Q = (VnW)P —_— (VnW)Q %type oblivious ’
P— Q0 = n[P]—n[0]

P—Q0 = PIR—OQOIR
P’EP,PéQ»QEQ’: P’%Q’

Structural Congruence
e As usual (polyadic).

Intuitions: Typing of Processes

It M 1s a W, then (M) 1s a process that exchanges W.
M- W=M): W

If P 1s a process that may exchange W, then (n:W).P 1s too.
P-W=mW).P:W

If P and Q are processes that may exchange 7, then P | Q 1s
too. (Similarly for !P.)
P:T, Q. T=PI|1Q:T

Both 0 and n[P] exchange nothing at the current level, so
they can have any exchange type, and can be added 1n
parallel freely.

Therefore, W-inputs and W-outputs are tracked so that they
match correctly when placed in parallel.

Intuitions: Typing of Open
We have to worry about open, which might open-up a 7-
ambient and unleash 7-exchanges inside an S-ambient.

We decorate each ambient name with the T that can be

exchanged in ambients of that name. Different ambients

may permit internal exchanges of different types.
n.:Amb|T], P: T = n|P] islegal and n|[P]: S

If n permits T-exchanges, then open n may unleash 7-
exchanges 1n the current location.
n:Amb|T] = openn: Cap|T]

Any process that uses a Cap|[T] had better be a process that
already exchanges T, because new T-exchanges may be
unleashed.

M:Cap|T|,P:T = MP:T

Judgments

EF ¢ good environment
E-M:W good message of type W
ER-P:T good process that exchanges T

Rules

(Envg) (Envan) (Exp n)
EF O né¢dom(E) E’nW,E”} ¢
gt o E nWk ¢ E'XnW, E’Fn:W

(Exp ¢€) (Exp .)
ER O E-M: Cap|T] EWRM’: Cap|T)
Et€: Cap[T] EF MM’ : Capl[T]
(Exp In) (Exp Out) (Exp Open)
E+ M : Amb|S] E+ M : Amb[S] E+M: Amb|T)
EFinM:Cap|[T] EVvoutM:Cap|T] EV openM : Cap|T]
(Proc Action) (Proc Amb)
E-M:Cap|T) ERP:T Ev-M:AmblT]| EVRP:T
EF-FMP:T E+ M[P]:S
(Proc Input) (Proc Output)

E n:W,..puW,EP:.Wx.xW, EFM:W, .. EFM:W,
EF W, ... :W).P:Wx.xW, EFM,,.. M): Wx.xW,

(Proc Res) (Proc Zero)
E, n:Amb[T|-P:S ERO
EtF (viiAmb[T)P:S ERO:T

(Proc Par) (Proc Repl)
E-P:T EFQO:T ERP:T
E-PIO:T ERP:T

e Ex.: A capability that may unleash S-exchanges:
n:Amb|T), m:Amb|[S] I in n. open m : Cap|S]

e Ex.: A process that outputs names of quiet ambients:
E F Y(vn:Amb){n) : Amb

e Proposition (Subject Reduction)
IfEFP:TandP— QthenEFQ:T.

Exercise

e Construct a typing derivation for the message example:

(v a: Amb|Shh))

(v b: Amb|Amb|Shh]])

(v msg: Amb[Amb|[Shh]))
almsg[{M) | out a. in b]] |
blopen msg. (n:Amb|Shh]). P]

Typed Polyadic Asynchronous m-calculus

[EF-P] =2 [E]JF[P]: Shh
(@, n;:W,, ..., W] 2 @, n: (W], 02 IW,], ..., n[W,], n?:[W,]

[CAIW,, ... WD & Amb[[W XWX X[W, IX[W,]] @;@

[(V*n:Ch[W,, ..., W.DP] £ (vn,n?:[Ch[W,, ..., W.]]) n[lopen n] | [P]
create an n packet ’
[nin,, ..., n)] £ n’linn. (n,, n’,, ..., n, nP,)]
n(n:W,, ..., n:W,).P] Ehen it |
(vq:Amb[Shh)) (open g |
nPlin n. (n,n? (Wil ..., n,n? (W, D). glout n. [P]]])

P1o] 2 [P]I[O] m
the n buffer
ne] 2 1P

e The previous encoding emulates the m-calculus, but:

e Channel buffers are generated at v occurrences.

 If freely embedded within ambients, channel I/0 may then fail if
the channel buffer 1s not where the I/0 happens, even if I and O
are 1n the same place. (I.e., extrusion across ambient boundaries
1s not implemented by this encoding.)

e Using 2 ambient names for 1 T name 1s a bit awkward.

e Georges Gonthier devised a different encoding:
e Uses 1 ambient name for 1 T name.
 New buffers are generated whenever needed to do 1/0.

* Encoding can be freely merged with ambient operations (I’s and
O’s on a channel n interact when they are in the same ambient.)

e Buffers must be coalesced to allow I/0O interactions.

Gonthier’s Coalescing Encoding

[Ch[W,, ..., W,]] & Amb[[W,]X..X[W,]] %no buffers
[(V*n:Ch[W,, ..., WP] & (vn:[Ch[W,, ..., W) [P]

‘ create an n@ wbuffer that enters ’

[n{n,, ..., n,)] 2 pllopennlinnl(n, ..., ny)l
mny n buffer | climb out of
Tn(n,:W n,:W.).P] A coalescing towers
RS LI I SRAN 74 — of n buffers
(vg:Amb[Shh]) (open q.q[] |

nllopennlinnl (n:[W,l, ..., n:[W. D). gllout nl open q. [Pl]])

[P1Q] 2 [P]I[O]
P] 2 I[P

Typed Call-by-Value A-calculus

[EFb:T] & [E]F (Vk:ChI[T])) [b]), : Shh
[A—B] & Chl[[A], Ch[[B]I]

[zl 2 kx)

[[MA bA—)B]Ik £
(v A—B]) (kin) | n(e[Al k' ChIIBIY). [bg);)

[b4-5(a)]; =
(V. Chl[[[A—B]], k”:Ch[[A]l)

(16 | k°(x:[A—=BD). (lal- | K (3:[AD. x(y, k)

[x:TF x:T]
= [x:T]F (v*k:Ch[[T]]) k{x) : Shh
= x:[T], x*:[T] = (Vk:Amb[[TTX[TT]) k['open k] | k’[in k.x, x”)] : Shh

Generalizations

e The Amb-Cap style of types and rules is very robust and
extensible to many situations.
It works for all kinds of effects (not just exchanges).
e Amb types for names.
e Cap types for capabilities (to deal with open).

e Sketch of possible extensions:

 Instead of a single type Amb|[T] for all ambient names that allow
T exchanges, we can allow types G|[T], for distinct groups G from
a fixed collection. (Akin to Milner’s sort system for).

* Further, we can allow a subgroup hierarchy G’'<:G, with Amb as
the top group, inducing a subtype hierarchy.

* Further, we can allow the creation of new groups G, as in (VG)
(vn:G) P or (VG'<:G) (vn:G"’) P.

Types for Mobility Control

e Effects

An effect 1s anything a process can do that we may want to track.

Then, E = P : F is interpreted to mean that P may have at most
effects F. Works well for composition.

And Amb|F] 1s an ambient that allows at most effects F.
And Cap|F] 1s a capability that can unleash at most effects F.

e Applications

We have seen the case where an effect 1s an input or output
operation of a certain type.

We can also consider in and out operations as effects. We can
then use a type system to statically prevent certain movements.

We can also consider open operations as effects. We can then use
a type system to statically prevent such operations.

To do all this without dependent types, we use groups.

Name Groups
* Name Groups have a variety of uses:

* We would like to say, within a type system, something like:
The ambient named n can enter the ambient named m.
But this would bring us straight into dependent types, since names
are value-level entities. This 1s no fun at all.

 Instead, we introduce type-level name groups G,H, and we say:
Ambients of group G can enter ambients of group H.

e Groups are akin to m-calculus sorting mechanisms. We call them
groups 1n the Unix sense of collections of principals.

Crossing Control

G H groups
Hs = {H,.H,} sets of groups
W= message types
G[—Hs,T)] ambient name in group G, containing
processes that may cross Hs and exchange T
Cap|—Hs,T)] capability unleashing Hs crossings

and T exchanges

EF P :~HsT process that exchanges 7 and crosses Hs

vn:G[~{},T] a name for immobile ambients

Opening Control

W= message types
G[°Hs,T) ambient name in group G, containing

processes that may open Hs and exchange T
Cap|°Hs,T] capability unleashing Hs openings and 7 exchanges

EFP:°Hs T process that exchanges 7 and opens Hs
vn:G[°{ },T] a name for locked ambients (where G¢{ })

(Here n cannot be opened, because we require Ge€ Hs for open n
to be typeable, when n:G[°Hs,T]. This 1s because the opening of
G may unleash further openings of Hs. With this rule the
transitive closure of possible openings must be present already 1n
the given types. It also makes n above unopenable.)

Types for Secrecy Control

e In addition to static groups, we add group creation.
e This i1s a new construct for generating type-level names.

It can be studied already in -calculus:
(VG)(vx:G)(vy:G)...
Create a new group (collection of names) G
and populate it with new elements x and y
* Simply by type-checking, we can guarantee that a fresh x

cannot escape the scope of G.

* It can statically block certain communications that would be
allowed by scope extrusion.

* We can therefore prevent the “accidental” escape of
capabilities that 1s a major concern in practical systems.

* In ambient calculus, it further allows the safe sharing of secret
between mobile processes.

Making Secrets

Consider a player P and an opponent O:
Ol|P

In the m-calculus, if P 1s to create a fresh secret not shared
with O, we program it to evolve into:

Ol (vx)P’

Name creation (vx)P’ makes a fresh name x, whose scope
1s the process P’

Leaking Secrets

* Now, if the system were to evolve into this, the privacy of
x would be violated:

p().0" | (vx)(px) | P*)

(Output p(x) may be accidental or malicious.)

e By extrusion, this 1s (vx)(p(y).O’ | p(x) | P’")
which evolves to (vx)(O’{y<x} | P")

e So, the secret x has leaked to the opponent.

Trying to Prevent Leakage

 How might we prevent leakage?

e Restrict output: not easy to prevent p(x) as p may have arisen
dynamically

e Restrict extrusion: again difficult, as 1t’s needed for legitimate
communication

e Can we exploit a sorted 1-calculus?

* Declare x to be of sort Private. But sorts are global, so the
opponent can be type-checked.

p(y:Private).O’ | (vx:Private)(px) | P’’)

Group Creation

 We want to be able to create fresh groups (sorts) on
demand, and to create fresh elements of these groups on
demand.

* We extend the sorted 1-calculus with group creation
(vG)P, which makes a new group G with scope P.

e Group creation obeys scope extrusion laws analogous to
those for name creation.

Preventing Leakage

 We can now prevent leakage to a well-typed opponent by
type-checking and lexical scoping (where G[] 1s the type of
nullary channels of group G):

p(y:D).0O° | (vG)(vx:G[)(p{x) | P*7)

e The opponent p(y:7).0O’ cannot be typed: the type 7 would
need to mention G, but G 1s out of scope.

Untyped Opponents

* We cannot realistically expect the opponent to be well-
typed.

e Can an untyped opponent, by cheating about the type of
the channel p, somehow acquire the secret x?

* No, provided the player is typed; in particular, provided
p(x) 1s typed.

Secrecy

» A player creating a fresh G cannot export elements of G
outside the 1nitial scope of G,

* either because a well-typed opponent cannot name G to receive a
message,

* or because a well-typed player cannot use public channels to
transmit G elements.

e In sum: channels of group G remain secret, forever,
outside the initial scope of (VG).

Summary

 We have reduced secrecy of names to scoping and typing;
subtleties include:
 extrusion rules associated with scoping
» leakage allowed by name extrusion
* the possibility of untyped opponents

e A reasonable precondition of our results is that the player
(but not the opponent) be type-checked in some global
environment.

2003-03-17 16:42

Talk 33

Secrecy in Typed Contexts

* For well-typed opponents, subject reduction alone has
secrecy implications.

Theorem (Subject Reduction)
IfEF-Pand P=Qthen E Q.
IfEF-Pand P — Q then E + O.

Corollary (No Leakage)

Let P=p(y:T).0’ | (VG)(vx:G[T))P’. If E |- P for some E then there
are no Q’, O’’, C{-} such that P = (vG)(vx:G[T])O’ and O’ — O’’’ and
Q’’ = C{plix[1} where p and x are not bound by C{-}.

Secrecy in Untyped Contexts

Theorem (Secrecy)

Suppose that (vG)(vx:T)P where G free in 7. Let S be the names
occurring in dom(E). Then the type erasure (vx)erase(P) of
(vG)(vx:T)P preserves the secrecy of the restricted name x from S.

Where “preserves the secrecy” i1s defined (in the paper) in
terms of interactions with an opponent idealized as a set of
names. Itis similar to Abadi’s definition for spi.

Instances and Applications

e There seems to be a link between group creation and
several unusual type systems:
 letregion in Tofte and Talpin’s region analysis
* newlock in Flanagan and Abadi’s lock types

e runST 1n Launchbury and Peyton Jones’ lazy functional state
threads

 Elsewhere, Dal Zilio and Gordon formalize the link with
regions, and Cardelli, Ghelli and Gordon apply (VG) to
regulate mobility.

Typed Ambient Calculus with Group Creation
Start with exchange types.
Just one new process construct:

(vG)P
to create a new group G with scope P.

Just one modified type construct:

G[T]

as the type of names of group G that name ambients that
contain 7" exchanges.

The construct G[T] replaces Amb|[T]|, where Amb can now
be seen as the group of all names. So we can now write:

(VG) (vn:GlInt]) n[(3) | (x:Int). P]

Types

W= message types
Gl ambient name in group G with T exchanges
Cap|T] capability unleashing 7 exchanges
T:= process types
Shh no exchange
W x..xW, tuple exchange (1 is the null product)

A quiet ambient: G[Shh]
A harmless capability: Cap|[Shh]
e A synchronization ambient: G[1]

Ambient containing harmless capabilities: G[Cap|[Shh]]

* A capability that may unleash the exchange of names for quiet
ambients: Cap|G[Shh]]

Processes and Messages

P’Q = new grou M,N ::=
(VG)P = _new group | -
(va:W)P in M
0 out M
PlQ open M
P €
M[P] M.N
M.P
(n, W, ..., n,.W,).P
(M,, ..., M,)

VG 1s static: type rules handle such G’s.

VG 1s dynamic/generative: (VG)P not the same as (VG)!P.

Reduction

nlinm. P| QO] | m[R] — m[n[P | O] | R]

m[nlout m. P| Q] | R] — n[P | O] | m[R]

openn. P\l n[Q] = P| QO

(W, ..., nzW).Pl (M, ..., M,) = P{n<M,, ..., n<—M,}

(VG)P — (VG)0 % new group |

P— 0 = (va:-W)P — (va:W)Q
P—Q = n[P]l— n[Q]
P—Q = PIR—QIR

P'=P,P—0,0=Q = P'—Q’

Structural Congruence
e A usual.

* (VG)P 1s similar to (van: W)P, including scope extrusion.

P=0 = (VG)P=((G)O

(VG)(VG)P = (vG')(VG)P

(vG)(vau:W)P = (vi:W)(VG)P 1if G ¢ fg(W)
(VG)(P1Q)=PI(VG)Q if G ¢ fg(P)
(VG)(m[P]) = m[(vG)P]

vG)0=0

e Extrusion of (vG) allows ambients to establish shared
secrets, then go arbitrarily far away, and then come back to
share the secrets. Without been able to give them away.

Judgments

EF ¢ good environment

EFT good type

E-M:W good message of type W
ER-P:T good process that exchanges T

Rules

(Envg) (Envna) (Env G) *
E+-W nédom(E) EF ¢ Gé¢dom(E)
[E,nWkE O E,GFO
(Type G) * (Type Cap) * (Type Shh) * (Type Tuple) *
Gedom(E) EvRT EWT EWT EFW, .. EFW,
EV+ G[T] EV Cap|T] E - Shh E+ W x..xW,

(Exp n) (Exp €) (Exp .)

E’.nW, E”F ¢ EvF Cap|lT)! EVFM:Cap|T] EVRM’: Cap|T]
E . nW,E”Fn:W EFe&: Capl[T] EF- MM’ : Cap[T]
(Exp In) (Exp Out) (Exp Open)

Etbn:G[S] EFT EFn:G[S] ERT EtFn: G[T)

EFinn: Cap|T] EV out n: Cap|[T] EV open n : Cap|[T]

(Proc Action) (Proc Amb)

E-M:CaplT] E-P:T E+-M:G[S] EFP:S EFT
E-MP:T E-M[P]: T

(Proc Input) (Proc Output)
E n:W,..npuW,EP:Wx.xW, EFM:W, .. EFM:W,
EFmg W, ..., W).P:Wx.xW, EFM,,.. M):Wx.xW,

(Proc GRes) * (Proc Res) (Proc Zero)
E,GFP:T G¢fe(T) E,nG[SIFP:T EFO
E-(VG)P:T EF(vn:G[SHDP:T ERO:T
(Proc Par) (Proc Repl)
E-P:T EFQO:T ERP:T
E-PIO:T ERP:T

* Prop (Subject Reduction)
IfEFP:Tand P — Q
then there exists Gs such that Gs, EF Q : T.

Conclusions

A new programming construct for expressing secrecy

1ntentions.

Good for “pure names”
nonces, keys.

like channels, heap references,

Groups are like sorts, but no “new sort” construct has

previously been studied.

Basic 1dea could be adc

ed to any language, and 1s easily

checked statically (no f

low analysis...).

