
Wide Area Computation

Luca Cardelli
Microsoft Research

Joint work with Andrew D. Gordon
and occasional others

Talk 2
September 7, 2000 1:14 pm

WIDE AREA COMPUTATION

Talk 3
September 7, 2000 1:14 pm

Three Mental Pictures

Three views of computation:

Local area networks

Wide area networks

Mobile networks

Talk 4
September 7, 2000 1:14 pm

LANs and (Traditional) Distributed Computing

Administrative Domain

Talk 5
September 7, 2000 1:14 pm

The Web

Talk 6
September 7, 2000 1:14 pm

WAN Characteristics

Internet/Web: a federated WAN infrastructure that spans the planet.
We would like to program it.

Unfortunately, federated WANs violate many familiar assumptions
about the behavior of distributed systems.

Three phenomena that remain largely hidden in LANs become
readily observable:

Virtual locations.

Physical locations.

Bandwidth fluctuations.

Another phenomenon becomes unobservable:

Failures.

Talk 7
September 7, 2000 1:14 pm

A WAN is not a big LAN

To emulate a LAN on top of a WAN we would have to:

(A) Hide virtual locations. By semi-transparent security. But is
it possible to guarantee the integrity of mobile code?

(B) Hide physical locations. Cannot “hide” the speed of light,
other than by slowing down the whole network.

(C) Hide bandwidth fluctuations. Service guarantees eliminate
bandwidth fluctuations, but introduce access failures.

(D) Reveal failures. Impossible in principle, since the Web is an
asynchronous network.

Hard problems: (A) may be unsolvable for mobile code; (B) is only
solvable (in full) by introducing unacceptable delays; (C) can be
solved in a way that reduces it to (D); (D) is unsolvable in principle,
while probabilistic solutions run into (B).

Talk 8
September 7, 2000 1:14 pm

Observables

WAN observables are different (and not reducible to) LAN observ-
ables.

Observables determine programming constructs, and therefore in-
fluence programs and programming languages.

We need a complete set of programming constructs that can detect
and react to the available observables and, of course, we do not
want programming constructs that attempt to detect or react to non-
observables.

Talk 9
September 7, 2000 1:14 pm

Mobile Computation

Mobile computation can cope with the observables characteristic of
a wide-area network such as the Web.

Virtual locations. Trust mechanisms to cross virtual barriers.

Physical locations. Mobility to optimize placement.

Bandwidth fluctuations. Mobility to split applications and es-
tablish optimized communication protocols.

Failures. Running around or away from failures.

Talk 10
September 7, 2000 1:14 pm

Mobile Computing

Mobile devices also move computations. In this sense, we cannot
avoid the issues raised by mobile computation.

US

NSASFO

AF 81

EU
CDG

Talk 11
September 7, 2000 1:14 pm

Mobility Postulates

Separate locations exist. They may be difficult to reach.

Since different locations have different properties, both people and
programs (and sublocations!) will want to move between them.

Barriers to mobility will be erected to preserve certain properties of
certain locations.

Some people and some programs will still need to cross those bar-
riers.

This is the situation wide area computing has to cope with.

Talk 12
September 7, 2000 1:14 pm

Related Work

Broadly classifiable in two categories:

Agents (Actors, Process Calculi, Telescript, etc.)

Spaces (Linda, Distributed Lindas, JavaSpace, etc.)

With our work on Ambients, we aim to unify and extend those basic
concepts.

Talk 13
September 7, 2000 1:14 pm

MODELING MOBILITY

Talk 14
September 7, 2000 1:14 pm

Modeling Wide Area Computation

Locality: Barrier topology.

Cf. failure semantics, named processes.

Process mobility: Barrier crossing.

Cf. name passing (π), process passing (CHOCS).

Security: (In)ability to cross barriers.

Cf. cryptography (Spi), flow control (SLAM)

Interaction: Shared ether within a barrier.

No action at a distance. No global channels. No preservation of
connectivity (channels, tethers) across barriers.

Talk 15
September 7, 2000 1:14 pm

FOLDER CALCULUS

Talk 16
September 7, 2000 1:14 pm

The Folder Calculus

A graphical office metaphor to explain the ambient calculus.

A precise metaphor, isomorphic to the formal ambient calculus.

Based on wide-area computation principles: locality, mobility,
nested domains, asynchronous communication, authentication.

Talk 17
September 7, 2000 1:14 pm

Folders (Nested Domains)

A folder name n.

Active contents P:

hierarchical data and “gremlins”.

computational primitives for mobility and communication.

n

P

Talk 18
September 7, 2000 1:14 pm

Enter Reduction (Mobility)

n

R

n

mm

→
R

Q
P
Q

Pin m

Talk 19
September 7, 2000 1:14 pm

Exit Reduction (Mobility)

→
R

m

n

Q

m

R

n

P
Q

Pout m

Talk 20
September 7, 2000 1:14 pm

Open Reduction (Assimilation)

n

Q → QPPopen n

Talk 21
September 7, 2000 1:14 pm

Copy Reduction (Iteration/Recursion)

→P P
P

Talk 22
September 7, 2000 1:14 pm

Rubber Stamps (Authentication)

Give authenticity to folders.

Copiers are unable to accurately duplicate rubber stamps.

n

P

n

P

m

allowed

n

P

n

forbidden

Talk 23
September 7, 2000 1:14 pm

Post-It Notes (Local Communication)

A Post-It Note (Nameless file / Asynchronous message).

A gremlin grabbing (reading and removing) a note.

Read reduction

M

P{x}x

→M P{M}P{x}x

Talk 24
September 7, 2000 1:14 pm

Messages (Names or Capabilities)

A message M can be either:

The name of a folder (danger: spoofing, killing):

A capability (no danger of recovering the name):

→n x x

P

n

P

→n x Popen x Popen n

→in n x m m

Px Pin n

Talk 25
September 7, 2000 1:14 pm

Leaves of the Syntax

Inactive gremlin

n n
=

=

Talk 26
September 7, 2000 1:14 pm

Example: Message from A to B

msg

a

b

→
Exitopen msg

x P
out a. in b

a

msg

a

in ba

b

open msg

x P
→
Enter

Talk 27
September 7, 2000 1:14 pm

a

b

open msg

x P →
Open

msg

a

→
Reada

b

x Pa

Talk 28
September 7, 2000 1:14 pm

a b

P{a/x}

Talk 29
September 7, 2000 1:14 pm

Same Example, with scoping

msg b

msg

a

b

→
Exitopen msg

x P
out a. in b

a a

msg b
msg

a

a

a b

open msg

x P
→
Enterin b

Talk 30
September 7, 2000 1:14 pm

a

a
b

open msg

x P →
Open

msg

a

msg b

→
Reada

a

b

x Pa

b

Talk 31
September 7, 2000 1:14 pm

a

a

b

P{a/x}

b

Talk 32
September 7, 2000 1:14 pm

Example: Agent Authentication

home

open n

g

x

Pout g

out home.
in home

n x

n

Talk 33
September 7, 2000 1:14 pm

Example: A Distiller Server

distiller

inbox

input

outbox

open input

output

%!PS... in distiller. in inbox

distill(x)

x

out inbox. in outbox

Talk 34
September 7, 2000 1:14 pm

Example: Keys

k encryption:

open k
P

generation of a fresh key k

decryption:
opening a k-envelope and reading

plaintext M inside a k-envelope

k

x

the contents

M

Talk 35
September 7, 2000 1:14 pm

TYPE SYSTEMS FOR MOBILITY

Talk 36
September 7, 2000 1:14 pm

A Flexibly-Typed "File System"

n : Fol[T] means that n is a name for folders that can contain (or
exhange) files (or messages) of type T.

All folders named n can contain only T files/messages.

Nothing is said about the subfolders of folders of name n: they
can have any name and any type (and can come and go).

Mobility is totally unconstrained by this type system.

b :

msg

a

b

open msg

x:Fol[Shh]

P

out a. in b

a

a :
Fol[Shh]

Fol[Fol[Shh]]

msg :
Fol[Fol[Shh]]

Talk 37
September 7, 2000 1:14 pm

Expressiveness

Seems simple-minded, but it is very expressive:

Channel types: Ch[T] @ Fol[T]×Fol[T]
A channel name is a pair of folder names ("buffer" foldes and
"packet" folders respectively).

Function types: A→B @ Ch[A×Ch[B]]
A function from A to B is (used through) a channel to which we give
an argument of type A and the name of a channel in which to deposit
the result of type B.

Agent types:
An agent is a mobile process that performs well-typed I/O on chan-
nels at different locations.

Talk 38
September 7, 2000 1:14 pm

Mobility Types

The previous type system can be refined with additional informa-
tion, in order to constrain mobility.

A folder may be declared immobile (cannot move on its own), or
locked (cannot be opened). This information can be tracked stati-
cally.

Application: make sure, at compile-time or a load-time, that applets
cannot move around, or that dangerous packages cannot be acci-
dentally opened.

Talk 39
September 7, 2000 1:14 pm

Mobility Group Types

G[T] (generalizing Fol[T]) is the type of the names of group G,
which name foders that can contain messages of type T.

Assert that folders of group G can enter/exit only folders of
group G1...Gn (generalizing sandboxing).

Assert that a process can open only packages of group G (gener-
alazing locking).

New groups can be dynamically created; e.g.: private groups.
This has the effect of statically preventing the accidental escape
of capabilities to third parties.

Application: enforcement, at compile-time or load-time, of "mobil-
ity policies" and "assimilation policies" for applets.

Talk 40
September 7, 2000 1:14 pm

LOGICS FOR MOBILITY

Talk 41
September 7, 2000 1:14 pm

A Spatial Logic

We have been looking for ways to express properties of mobile
computations and of mobility protocols. E.g.:

"Here today, gone tomorrow."

"Eventually the agent crosses the firewall."

"Every agent carries a suitcase."

"Somewhere there is a virus."

"There is always at most one folder called n here."

Solution: devise a process logic that can talk about space (as well
as time).

This can be seen as a generalization of the mobility types to less
easily checkable (but more interesting) mobility properties.

Talk 42
September 7, 2000 1:14 pm

Examples of Formulas

The folder calculus has a spatial structure given by the nesting of
folder: we want a logic that can talk about that structure:

Ex., p parents q: "(p[q[T] | T] | T)

Ex., m may exit n: n["m[T]] ∧ N(n[0] | m[T])

Formulas
0 (there is nothing here)
n[A] (there is one thing here)
A | B (there are two things here)
T (there is anything you want here)
"A (somewhere down here A holds)
NA (sometime in the future A may hold)
A≈B (B is satisfied even under an A attack)

Talk 43
September 7, 2000 1:14 pm

Satisfaction

The logic is defined explicitly via a satisfaction relation:

P ª A

meaning that the configuration (model) P satisfies the formula A.

For a subset of this relation we have a model-checking algorithm
(i.e., a decision procedure).

Applications:

compile-time or load-time checking of interesting properties of
mobile code.

Enforcement of mobility and/or security policies of mobile code.
Easier properties may be checked by model-checking, harder
ones by theorem-proving or theorem-checking (e.g., proof-car-
rying code).

Talk 44
September 7, 2000 1:14 pm

AMBIENT CALCULUS EXPRESSIVENESS

Talk 45
September 7, 2000 1:14 pm

Expressiveness: Old Concepts

Synchronization and communication mechanisms.

Turing machines. (Natural encoding, no I/O required.)

Arithmetic. (Tricky, no I/O required.)

Data structures.

π-calculus. (Easy, channels are ambients.)

λ-calculus. (Hard, different than encoding λ in π.)

Spi-calculus concepts.

Talk 46
September 7, 2000 1:14 pm

Expressiveness: New Concepts

Named machines and services on complex networks.

Agents, applets, RPC.

Encrypted data and firewalls.

Data packets, routing, active networks.

Dynamically linked libraries, plug-ins.

Mobile devices.

Public transportation.

Talk 47
September 7, 2000 1:14 pm

Expressiveness: New Challenges

The combination of mobility and security in the same formal frame-
work is novel and intriguing.

E.g., we can represent both mobility and security aspects of “cross-
ing a firewall”.

The combination of mobility and local communication raises ques-
tions about suitable synchronization models and programming con-
structs.

Talk 48
September 7, 2000 1:14 pm

WAN LANGUAGES

Talk 49
September 7, 2000 1:14 pm

WAN Observable Phenomena

Physical Locations

Observable because of the speed of light limit

Preclude instantaneous actions

Require mobile code

Virtual Locations

Observable because of administrative domains

Preclude unfettered actions

Require security model and disconnected operation

Talk 50
September 7, 2000 1:14 pm

Variable Connectivity

Observable because of free-will actions, physical mobility

Precludes purely static networks

Requires bandwidth adaptability

Failures

Unobservable because of asynchrony, domain walls

Preclude reliance on others

Require blocking behavior, transaction model

Talk 51
September 7, 2000 1:14 pm

Wide Area Languages

Languages for Wide Area Networks:

WAN-sound

No action-at-a-distance assumption

No continued connectivity assumption

No security bypasses

WAN-complete

Able to emulate surfer/roamer behavior

Some steps towards Wide Area Languages:

Ambient Calculus (with Andy Gordon)

Service Combinators (with Rowan Davies)

Talk 52
September 7, 2000 1:14 pm

Summary of WAL Features

No “hard” pointers.

Remote references are URLs, symbolic links, or such.

Migration/Transportation

Thread migration.

Data migration.

Whole-application migration.

Dynamic linking.

A missing library or plug-in may suddenly show up.

Patient communication.

Blocking/exactly-once semantics.

Built-in security primitives.

Talk 53
September 7, 2000 1:14 pm

CONCLUSIONS: AMBIENTS

Talk 54
September 7, 2000 1:14 pm

Current Status

Concepts

An informal paper describing wide-area computation, the Folder
Calculus, and ideas for wide-area languages.

Semantics (with Andy Gordon)

Semantics of the basic Ambient Calculus.

Techniques for proving equational properties of Ambients.

Type Systems (with Andy Gordon and Giorgio Ghelli)

A type systems for Ambients, regulating communication.

Type systems for constraining the diffusion of capabilities and
for regulating mobility.

Logics (with Andy Gordon)

Describing spatial and temporal Ambient properties.

Talk 55
September 7, 2000 1:14 pm

Implementation (Multiple strategies)

A Java applet implementation of the Ambient Calculus, and a
tech report about its thread synchronization algorithm.

(With Leaf Petersen) Stopping, linearizing, and restarting Ambi-
ent configurations.

(With Mads Torgesen) Design and implementation of a "large-
scale" Ambient-based programming language.

(Simon Peyton Jones) Experiments in implementing Ambient
primitives in Concurrent Haskell.

(Cédric Fournet, Alan Schmitt - INRIA) A distributed imple-
mentation of Ambients in JoCaml.

Talk 56
September 7, 2000 1:14 pm

Conclusions

The notion of named, hierarchical, mobile entities captures the
structure and properties of computation on wide-area networks.

The ambient calculus (exemplified by the folder calculus) formal-
izes these notions simply and powerfully.

It is no more complex than common process calculi.

It supports reasoning about mobility and security.

We believe we have a solid basis for envisioning new programming
methodologies, libraries, and languages for wide-area computation.

