
Talk August 11, 2000 10:54 am 1

Secrecy and Group Creation
Luca Cardelli
Microsoft Research

with Giorgio Ghelli (University of Pisa)
and Andrew Gordon (Microsoft Research)

Cork, 2000-07-20

Talk August 11, 2000 10:54 am 2

Introduction

• Group creation is a new general construct that can be added to vir-
tually any language of formalism.

• In its simplest form, it is a natural extension of the sort-based type
systems developed for the π-calculus:

(νG) (νn:G) (νm:G) ...
create a new group (i.e., unstructured type or collection) G,
and populate it with new elements n, m, ...

• While studying it for other purposes (control of mobility), we no-
ticed an interesting and subtle connection with secrecy. A secret
like n can never escape from the initial scope of G, as a simple mat-
ter of typechecking.

Talk August 11, 2000 10:54 am 3

Leaking Secrets

• Consider a configuration, with a player P and an opponent O:

O | P

• P wants to create a fresh secret x not shared by the opponent. In the
π-calculus this is obtained by letting P evolve into a configuration:

O | (νx)P’

which means: create a new x to be used in the scope of P’; with the
intent that x should remain forever private to P’.

• Such a privacy policy is violated if the system then evolves into a
situation such as this, for a public channel p:

p(y)O’ | (νx)(pjxk | P”)

where pjxk may happen accidentally or maliciously.

Talk August 11, 2000 10:54 am 4

• For the actual communication, and leakage, to happen, the π-calcu-
lus provides extrusion rules for (νx), so that the system “automati-
cally” becomes:

(νx) (p(y)O’ | pjxk | P”)

• After which, the opponents obtains the secret:

(νx) (O’{ y←x} | P”)

Talk August 11, 2000 10:54 am 5

Preventing Leakage

• The secret x has been leaked by a combination of an output pjxk
(possibly a bug) and extrusion of (νx). Can leakage be prevented?

– Restricting output: it is not easy to say that pjxk should not hap-
pen because p could be obtained dynamically. (Flow analysis...)

– Restricting extrusion: technically difficult, because extrusion is
needed for legitimate communication.

• One can look for solutions based on typed π-calculi:

– Declare x to be Private. Unfortunately, in standard sorting sys-
tems all sorts are global, so the opponent can be typechecked:

p(y:Private).O’ | (νx:Private) (pjxk | P”)

– Hint: we want the secret x to belong to a sort G which is itself
secret...

Talk August 11, 2000 10:54 am 6

Group Creation

• In general, we want the ability to create fresh groups (sorts) on de-
mand, and then to create fresh elements of those groups.

– Creating arbitrary new groups does not restrict us to a rigid dis-
tinction between public and private groups, which works only
between two parties.

• We extend the sorted π-calculus with an operator, (νG)P, to dy-
namically create new a new group G in a scope P. This is a dynamic
operator; it can be used to create a fresh group after an input:

q(z:T).(νG)P.

Still, the group information can be tracked statically to ensure that
names of different groups are not confused.

• N.B.: (νG) extrudes very much like (νx:T), for the same reasons.

Talk August 11, 2000 10:54 am 7

• Leakage to a well-typed opponent is now prevented simply lexical
scoping and typing rules (where G[] is the type of channels of group
G that carry no values):

p(y:T).O’ | (νG) (νx:G[]) (pjxk | P”)

This term cannot be typed: the type T would have to mention G,
which is out of scope.

Talk August 11, 2000 10:54 am 8

Untyped Opponents

• Problem: opponents cheat. Suppose the opponent is untyped, or not
well-typed (e.g.: running on an untrusted machine):

(νp:U) (p(y).O’ | (νG) (νx:G[]) (pjxk | P”))
untrusted | untrusted | trusted locally typechecked
name server | opponent | player

Will an untyped opponent, by cheating on the type of the public
channel p, be able to acquire secret information?

• Fortunately, no. The fact that the player is well-typed is sufficient
to ensure secrecy, even in presence of untyped opponents. Essen-
tially because pjxk must be locally well-typed.

• We do not even need to trust the type of the public channel p, ob-
tained from a potentially untrusted name server.

Talk August 11, 2000 10:54 am 9

Secrecy

• Summary: a player creating a fresh group G cannot communicate
channels of group G to an opponent outside of the initial scope of G:

– either because a (well-typed) opponent cannot name G to receive
the message,

– or because a well-typed player cannot use public channels to
communicate G information to an (untyped) opponent.

• Programmer’s reference manual:

Channels of group G remain secret, forever,
outside the initial scope of (νG).

Talk August 11, 2000 10:54 am 10

• Thus, secrecy is reduced to scoping and typing restrictions. But the
situation is still fairly subtle because of

– the extrusion rules associated with scoping,

– the fact that scoping restrictions in the ordinary π-calculus do not
prevent leakage,

– and the possibility of untyped opponents.

• The only essential requirement is that the player must be
typechecked with respect to a global (untrusted) environment with-
in a trusted context. This seems reasonable. This is all our secrecy
theorem needs to assume.

Talk August 11, 2000 10:54 am 11

A Typed Pi-Calculus with Groups

Good Environments

Good Types

Good Messages

E � T xÑdom(E) E � / GÑdom(E)

Ô ��/ E, x:T ��/ E’, G � /

GÐdom(E) E � T1 ... � E � Tk

E ��G[T1, ..., Tk]

E’, x:T, E” � /

E’, x:T, E” � x : T

Talk August 11, 2000 10:54 am 12

Good Processes

E, G � P E, x:T � P

E � (νG)P E � (νx:T)P

E ��/ E � P E � Q E � P

E � 0 E � P | Q E � !P

E � x : G[T1, ..., Tk] E, y1:T1, ..., yk:Tk � P

E � x(y1:T1, ..., yk:Tk).P

E � x : G[T1, ..., Tk] E � y1:T1 ... E � yk:Tk

E � xjy1, ..., ykk

Talk August 11, 2000 10:54 am 13

Structural Congruence and Reduction

P � P
P � Q ⇒ Q � P
P � Q, Q � R ⇒ P � R

(Struct Refl)
(Struct Symm)
(Struct Trans)

P � Q ⇒ (νG)P � (νG)Q
P � Q ⇒ (νx:T)P � (νx:T)Q
P � Q ⇒ P | R � Q | R
P � Q ⇒ !P � !Q
P � Q ⇒
 x(y1:T1, ..., yk:Tk).P � x(y1:T1, ..., yk:Tk).Q

(Struct GRes)
(Struct Res)
(Struct Par)
(Struct Repl)
(Struct Input)

P | 0 � P
P | Q � Q | P
(P | Q) | R � P | (Q | R)
!P � P | !P

(Struct Par Zero)
(Struct Par Comm)
(Struct Par Assoc)
(Struct Repl Par)

Talk August 11, 2000 10:54 am 14

(νx:T)(νx’:T’)P � (νx’:T’)(νx:T)P if x ! x’
(νx:T)(P | Q) � P | (νx:T)Q if x Ñ fn(P)

(Struct Res Res)
(Struct Res Par)

(νG)(νG’)P � (νG’)(νG)P
(νG)(νx:T)P � (νx:T)(νG)P if G Ñ fn(T)
(νG)(P | Q) � P | (νG)Q if G Ñ fn(P)

(Struct GRes GRes)
(Struct GRes Res)
(Struct GRes Par)

xjz1, ..., zkk | x(y1:T1, ..., yk:Tk).P xyyz P{ y1←z1, ..., yk←zk}
P xyyz Q ⇒ P | R xyyz Q | R
P xyyz Q ⇒ (νG)P xyyz (νG)Q
P xyyz Q ⇒ (νx:T)P xyyz (νx:T)Q
P’ � P, P xyyz Q, Q � Q’ ⇒ P’ xyyz Q’

Talk August 11, 2000 10:54 am 15

Secrecy by Subject Reduction

• For well-typed opponents, subject reduction already has secrecy
implications.

Theorem (Subject Reduction)
If E � P and P � Q then E � Q.
If E � P and P xyyz Q then E � Q.

Corollary (No Leakage)
Let P = (νG)(νx:G[T1, ..., Tk])P’. If E � P for some E then
there is no Q’, Q", C{-} such that P � (νG)(νx:G[T1, ...,
Tk])Q’ and Q’ xyyz Q" and Q" � C{ pjxk} where p and x are not
bound by C{-}.

• But we need to consider also untyped opponents.

Talk August 11, 2000 10:54 am 16

A Secrecy Theorem

Theorem (Secrecy):

Suppose that E � (νG)(νx:T)P where GÐfg(T). Let S be the names
occurring in dom(E). Then the type erasure (νx)erase(P) of
(νG)(νx:T)P preserves the secrecy of the restricted name x from S.

Where “preserves the secrecy of x from the environment S” is defined
in terms of a relation that traces the execution of the process, keeping
track of the names that the process exchanges with the environment.
(Similar to Abadi’s definition.) The opponent process here is idealized
as a set of names known to the environment. See paper for details.

Talk August 11, 2000 10:54 am 17

Instances and Applications

• The notion of group creation has surfaced in many places. We think
we have identified a particularly pure version of this notion. Many
connections are still vague:

– type generativity in languages such as SML.

– newlock in Flanagan and Abadi’s types for safe locking.

– runST in Lauchbury and Peyton Jones’ state threads.

• At least a couple of applications have been worked out in detail:

– Groups model Tofte and Talpin’s regions. Andy Gordon and Sil-
vano Dal-Zilio offer an embedding of a typed λ-calculus with re-
gions into a typed π-calculus with groups and effects.

– Groups are used in a type system for the Ambient Calculus to
statically restrict mobility (L.Cardelli, G.Ghelli, A.D.Gordon).

Talk August 11, 2000 10:54 am 18

Conclusions

• A new programming construct that allows programmers to easily
state some secrecy intentions, as well as other intentions of the kind
“this will not escape” (e.g.: pointers).

• Most suitable for groups of “unstructured” entities with little more
than equality on them: channels, keys, nonces, pointers.

• While groups are similar to the sorts used in typed versions of the
π-calculus, a new sort operator does not seem to have been consid-
ered in the π-calculus literature.

• The basic idea can be adapted to any language: concurrent, func-
tional or imperative.

• Easily statically checkable by routine typechecking (no flow anal-
ysis, information flow, etc.).

