Anytime, Anywhere
Modal Logics for Mobile Ambients

Luca Cardelli
Andy Gordon
Microsoft Research

POPL 2000
Introduction

- We want to describe mobile behaviors. The *ambient calculus* provides an operational model, where spatial structures (agents, networks, etc.) are represented by nested locations.

- We also want to specify mobile behaviors. To this end, we devise an *ambient logic* that can talk about spatial structures.

Processes

- 0 (void)
- $n[P]$ (location)
- $P \mid Q$ (composition)

Formulas

- 0 (there is nothing here)
- $n[A]$ (there is one thing here)
- $A \mid B$ (there are two things here)

Trees

- (void)
- (location)
- (composition)
Spatial Structures

- Our basic model of space is going to be finite-depth edge-labeled unordered trees; for short: spatial trees, represented by a syntax of spatial expressions. Unbounded resources are represented by infinite branching:

```
Cambridge
  Eagle
  chair chair glass glass glass ...
  pint pint pint pint ...
```

`Cambridge[Eagle[chair[0] | chair[0] | !glass[pint[0]]]] | ...)`
Spatial expressions/trees are a subset of ambient expressions/trees, which can represent both the spatial and the dynamic aspects of mobile computation.

An ambient tree is a spatial tree with, possibly, threads at each node that can locally change the shape of the tree.

\[a[c[\text{out a. in b. P}]] \mid b[0] \]
Mobility

- *Mobility* is change of spatial structures over time.

\[a[Q \parallel c[\text{out } a. \text{ in } b. \ P]] \parallel b[R] \]
Mobility

- **Mobility** is change of spatial structures over time.

\[
a[Q] \quad \mid \quad c[\text{in } b. \ P] \quad \mid \quad b[R]
\]
Mobility

- **Mobility** is change of spatial structures over time.
Restriction-Free Ambient Calculus

\[
P \in \Pi ::= \begin{align*}
P & \mid 0 \quad \text{inactivity} \\
\ & \mid P \mid P' \quad \text{parallel} \\
\ & \mid !P \quad \text{replication} \\
\ & \mid M[P] \quad \text{ambient} \\
\ & \mid M.P \quad \text{exercise a capability} \\
\ & \mid (n).P \quad \text{input locally, bind to } n \\
\ & \mid \langle M \rangle \quad \text{output locally (async)}
\end{align*}
\]

\[
M ::= \begin{align*}
\ & \mid n \quad \text{name} \\
\ & \mid in M \quad \text{entry capability} \\
\ & \mid out M \quad \text{exit capability} \\
\ & \mid open M \quad \text{open capability} \\
\ & \mid \epsilon \quad \text{empty path} \\
\ & \mid M.M' \quad \text{composite path}
\end{align*}
\]

\[
\begin{align*}
n[] & \triangleq n[0] \\
M & \triangleq M.0 \quad (\text{where appropriate})
\end{align*}
\]
Reduction Semantics

• A structural congruence relation $P \equiv Q$:
 • On spatial expressions, $P \equiv Q$ iff P and Q denote the same tree.
 • On full ambient expressions, $P \equiv Q$ if in addition the respective threads are “trivially equivalent”.
 • Prominent in the definition of the logic.

• A reduction relation $P \rightarrow^* Q$:
 • Defining the meaning of mobility and communication actions.
 • Closed up to structural congruence:
 \[P \equiv P', \quad P' \rightarrow^* Q', \quad Q' \equiv Q \quad \Rightarrow \quad P \rightarrow^* Q \]
Space-Time Modalities

• In a modal logic, the truth of a formula is relative to a state (called a *world*).

• In our case, the truth of a space-time modal formula is relative to the *here and now* of a process.
 • The formula $n[0]$ is read:

 there is here and now an empty location called n
 • The operator $n[A]$ is a single step in space (akin to the temporal next), which allows us talk about that place one step down into n.
 • Other modal operators can be used to talk about undetermined times (in the future) and undetermined places (in the location tree).
Logical Formulas

\[\forall x.A \]

Formulas

- \(T \) (true)
- \(\neg A \) (negation)
- \(A \lor A' \) (disjunction)
- \(0 \) (void)
- \(\eta[A] \) (location)
- \(A \mid A' \) (composition)
- \(\Diamond A \) (somewhere modality)
- \(\Box A \) (sometime modality)
- \(A @ \eta \) (location adjunct)
- \(A \rightarrow A' \) (composition adjunct)
- \(\forall x. A \) (universal quantification over names)

(\(\eta \) is a name or a variable)
Satisfaction Relation

\[P \models T \]
\[P \models \neg A \quad \triangleq \quad \neg P \models A \]
\[P \models A \lor B \quad \triangleq \quad P \models A \lor P \models B \]
\[P \models 0 \quad \triangleq \quad P \equiv 0 \]
\[P \models n[A] \quad \triangleq \quad \exists P' \in \Pi. \quad P \equiv n[P'] \land P' \models A \]
\[P \models A \triangledown B \quad \triangleq \quad \exists P', P'' \in \Pi. \quad P \equiv P' \rightarrow P'' \land P' \models A \land P'' \models B \]
\[P \models \bigotimes A \quad \triangleq \quad \exists P' \in \Pi. \quad P \downarrow * P' \land P' \models A \]
\[P \models \bigcirc A \quad \triangleq \quad \exists P' \in \Pi. \quad P \rightarrow * P' \land P' \models A \]
\[P \models A@n \quad \triangleq \quad n[P] \models A \]
\[P \models A @ B \quad \triangleq \quad \forall P' \in \Pi. \quad P' \models A \Rightarrow P \downarrow P' \models B \]
\[P \models \forall x. A \quad \triangleq \quad \forall m \in \Lambda. \quad P \models A \{x \leftarrow m\} \]

\[P \downarrow P' \quad \text{iff} \quad \exists n, P''. \quad P \equiv n[P'] \downarrow P'' \]
\[\downarrow \ast \quad \text{is the reflexive and transitive closure of} \quad \downarrow \]
Satisfaction Relation for Trees

- \[P \vdash 0 \]

\[\vdash n[A] \quad \text{if} \quad P \vdash A \]

\[P \quad Q \quad \vdash A \mid B \quad \text{if} \quad P \vdash A \quad \text{and} \quad Q \vdash B \]

\[P \quad \vdash \ast[A] \quad \text{if} \quad Q \vdash A \]

\[P \quad \vdash \diamond A \quad \text{if} \quad P \rightarrow^* Q \quad \text{and} \quad Q \vdash A \]
Basic Fact: satisfaction is invariant under structural congruence:

\[P \models A \land n \quad \text{if} \quad n \models A \]

\[P \models A \rightarrow B \quad \text{if for all} \quad Q \models A \quad \text{we have} \quad P \land Q \models B \]

- I.e.: \(\{ P \in \Pi \mid P \models A \} \) is closed under \(\equiv \).

Hence, formulas describe only congruence-invariant properties.
Some Derived Connectives

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>≡ ¬T</td>
<td>false</td>
</tr>
<tr>
<td>A ∧ B</td>
<td>≡ ¬(¬A ∨ ¬B)</td>
<td>conjunction</td>
</tr>
<tr>
<td>A ⇒ B</td>
<td>≡ ¬A ∨ B</td>
<td>implication</td>
</tr>
<tr>
<td>□ A</td>
<td>≡ ¬◊¬A</td>
<td>everytime modality</td>
</tr>
<tr>
<td>◊ A</td>
<td>≡ ¬¬◊¬A</td>
<td>everywhere modality</td>
</tr>
<tr>
<td>∃ x. A</td>
<td>≡ ¬∀x.¬A</td>
<td>existential quantification</td>
</tr>
<tr>
<td>A ∽ B</td>
<td>≡ ¬(B ⊳ ¬A)</td>
<td>fusion</td>
</tr>
<tr>
<td>A ⊳ B</td>
<td>≡ ¬(A</td>
<td>¬B)</td>
</tr>
<tr>
<td>A</td>
<td>≡ ¬(¬A</td>
<td>¬B)</td>
</tr>
<tr>
<td>A</td>
<td>≡ A ─ F</td>
<td>every component satisfies A</td>
</tr>
<tr>
<td>A</td>
<td>≡ A</td>
<td>T</td>
</tr>
<tr>
<td>A</td>
<td>≡ A</td>
<td>□ F</td>
</tr>
</tbody>
</table>
Claims

• The satisfaction relation looks natural (to us):
 • The definitions of 0, $n[A]$, and $A \parallel B$ seem inevitable, once we accept that formulas should be able to talk about the tree structure of locations (up to \equiv).
 • The connectives $A@n$ and $A\triangleright B$ have security motivations.
 • The modalities $\Diamond A$ and $\Diamond A$ talk about process evolution and structure in an undetermined way (good for specs).
 • The fragment $T, \neg A, A \lor B, \forall x.A$, is classical: why not?

• The logic is induced by the satisfaction relation.
 • We did not have any preconceptions about what kind of logic this ought to be. We didn’t invent this logic, we discovered it!
From Satisfaction to (Propositional) Logic

- Propositional validity
 \[\text{vld } \mathcal{A} \equiv \forall P \in \Pi. P \vdash \mathcal{A} \]
 \(\mathcal{A} \) (closed) is valid

- Sequents
 \[\mathcal{A} \vdash B \equiv \forall P \in \Pi. P \vdash \mathcal{A} \Rightarrow P \vdash B \]

- Rules
 \[\mathcal{A}_1 \vdash B_1; \ldots; \mathcal{A}_n \vdash B_n \{ \{ \} \} \mathcal{A} \vdash B \equiv (n \geq 0) \]
 \[\mathcal{A}_1 \vdash B_1 \land \ldots \land \mathcal{A}_n \vdash B_n \Rightarrow \mathcal{A} \vdash B \]
 (N.B.: all the rules shown later are validated accordingly.)

- Conventions:
 - \(\vdash \) means \(\vdash \) in both directions
 - \{ \} means \{ \} in both directions
Logical Adjunctions

- This is a logic with multiple logical adjunctions (3 of them!):

 \(\land / \Rightarrow \) (classical)

 \[\mathcal{A} \land C \vdash B \iff \mathcal{A} \vdash C \Rightarrow B \]

- 1 / \(\triangleright \) (linear, \(\otimes / \leftarrow \))

 \[\mathcal{A} \triangleright C \vdash B \iff \mathcal{A} \vdash C \triangleright B \]

- \(n[-] / \sim \bowtie n \)

 \[n[\mathcal{A}] \vdash B \iff \mathcal{A} \vdash B \bowtie n \]

- Which one should be taken as the logical adjunction for sequents? I.e., what should "","" mean in a sequent?
“Neutral” Sequent

Our logic is formulated with single-premise, single-conclusion sequents. We don’t pre-judge “,”.

• By taking \land on the left and \lor on the right of \vdash as structural operators, we can derive all the standard rules of sequent and natural deduction systems with multiple premises/conclusions.

• By taking $|$ on the left of \vdash as a structural operator, we can derive all the rules of intuitionistic linear logic (by appropriate mappings of the ILL connectives).

• By taking nestings of \land and $|$ on the left of \vdash as structural “bunches”, we obtain a bunched logic, with its two associated implications, \Rightarrow and \triangleright.

• This is convenient. We do not know much, however, about the meta-theory of this presentation style.
Rules: Propositional Calculus

(A-L) $\mathcal{A} \land (\mathcal{C} \land \mathcal{D}) \vdash B \quad \{ \} \quad (\mathcal{A} \land \mathcal{C}) \land \mathcal{D} \vdash B$

(A-R) $\mathcal{A} \vdash (\mathcal{C} \lor \mathcal{D}) \lor B \quad \{ \} \quad \mathcal{A} \vdash \mathcal{C} \lor (\mathcal{D} \lor B)$

(X-L) $\mathcal{A} \land \mathcal{C} \vdash B \quad \{ \} \quad \mathcal{C} \land \mathcal{A} \vdash B$

(X-R) $\mathcal{A} \vdash \mathcal{C} \lor B \quad \{ \} \quad \mathcal{A} \vdash \mathcal{B} \lor \mathcal{C}$

(C-L) $\mathcal{A} \land \mathcal{A} \vdash B \quad \{ \} \quad \mathcal{A} \vdash B$

(C-R) $\mathcal{A} \vdash \mathcal{B} \lor \mathcal{B} \quad \{ \} \quad \mathcal{A} \vdash \mathcal{B}$

(W-L) $\mathcal{A} \vdash B \quad \{ \} \quad \mathcal{A} \land \mathcal{C} \vdash B$

(W-R) $\mathcal{A} \vdash B \quad \{ \} \quad \mathcal{A} \vdash \mathcal{C} \lor B$

(Id) $\{ \} \quad \mathcal{A} \vdash \mathcal{A}$

(Cut) $\mathcal{A} \vdash \mathcal{C} \lor B; \mathcal{A} \land \mathcal{C} \vdash B' \quad \{ \} \quad \mathcal{A} \land \mathcal{A} \vdash B \lor B'$

(T) $\mathcal{A} \land \mathcal{T} \vdash B \quad \{ \} \quad \mathcal{A} \vdash B$

(F) $\mathcal{A} \vdash \mathcal{F} \lor \mathcal{B} \quad \{ \} \quad \mathcal{A} \vdash \mathcal{B}$

(\neg-L) $\mathcal{A} \vdash \mathcal{C} \lor \mathcal{B} \quad \{ \} \quad \mathcal{A} \land \neg \mathcal{C} \vdash \mathcal{B}$

(\neg-R) $\mathcal{A} \land \mathcal{C} \vdash \mathcal{B} \quad \{ \} \quad \mathcal{A} \vdash \neg \mathcal{C} \lor \mathcal{B}$
Rules: Composition

(\| 0) \{ \mathcal{A} \| 0 \rightarrow \mathcal{A} \} \quad 0 \text{ is nothing}

(\| \neg 0) \{ \mathcal{A} \| \neg 0 \rightarrow \neg 0 \} \quad \text{if a part is non-} 0, \text{ so is the whole}

(A \|) \{ \mathcal{A} \| (B \| C) \rightarrow (\mathcal{A} \| B) \| C \} \quad \text{\| associativity}

(X \|) \{ \mathcal{A} \| B \rightarrow B \| \mathcal{A} \} \quad \text{\| commutativity}

(\| \vdash) \{ \mathcal{A}' \vdash B'; \mathcal{A}'' \vdash B'' \} \quad \mathcal{A}' \| \mathcal{A}'' \vdash B' \| B'' \} \quad \text{\| congruence}

(\| \lor) \{ (\mathcal{A} \lor B) \| C \rightarrow \mathcal{A} \| C \lor B \| C \} \quad \text{\|\lor distribution}

(\| \land) \{ \mathcal{A}' \| \mathcal{A}'' \vdash \mathcal{A}' \| B' \lor \mathcal{A}'' \lor \neg B' \| \neg B'' \} \quad \text{decomposition}

(\| \rightarrow) \{ \mathcal{A} \| C \rightarrow B \} \{ \{ \mathcal{A} \rightarrow C \rightarrow B \} \quad \text{\|\rightarrow adjunction}

(\triangleright F \rightarrow) \{ \mathcal{A}^F \rightarrow \mathcal{A}^\neg \} \quad \text{if } \mathcal{A} \text{ is unsatisfiable then } \mathcal{A} \text{ is false}

(\neg \triangleright F) \{ \mathcal{A}^F \rightarrow \mathcal{A}^{FF} \} \quad \text{if } \mathcal{A} \text{ is satisfiable then } \mathcal{A}^F \text{ is unsatisfiable}

\text{where } \mathcal{A}^\neg \triangleq \neg \mathcal{A} \text{ and } \mathcal{A}^F \triangleq \mathcal{A} \triangleright F
The Decomposition Operator

• Consider the De Morgan dual of $|$:

$A \parallel B \triangleq \neg (\neg A \lor \neg B)$

$P \models - \iff \forall P', P'' \in \Pi. P \equiv P' \mid P'' \Rightarrow$

$P' \models A \lor P'' \models B$

$A^\forall \triangleq A \parallel \bot$

$P \models - \iff \forall P', P'' \in \Pi. P \equiv P' \mid P'' \Rightarrow P' \models A$

$A^\exists \triangleq A \parallel \top$

$P \models - \iff \exists P', P'' \in \Pi. P \equiv P' \mid P'' \land P' \models A$

$A \parallel B$ for every partition, one piece satisfies A
or the other piece satisfies B

$A^\forall \iff \neg ((\neg A)^\exists)$ every component satisfies A

$A^\exists \iff \neg ((\neg A)^\forall)$ some component satisfies A

Examples:

$(p[T] \Rightarrow p[q[T]^\exists])^\forall$ every p has a q child

$(p[T] \Rightarrow p[q[T] \mid (\neg q[T])^\forall])^\forall$ every p has a unique q child
The Decomposition Axiom

\[(1 \|) \quad \{(A' | A'') \vdash (A' | B'') \lor (B' | A'') \lor (\neg B' | \neg B'')\]

- **Alternative formulations and special cases:**

 \[\{(A' | A'') \land (B' \| B'') \vdash (A' | B'') \lor (B' | A'')\]

 “If \(P\) has a partition into pieces that satisfy \(A'\) and \(A''\), and every partition has one piece that satisfies \(B'\) or the other that satisfies \(B''\), then either \(P\) has a partition into pieces that satisfy \(A'\) and \(B''\), or it has a partition into pieces that satisfy \(B'\) and \(A''\).”

\[\neg(A | B) \vdash (A | T) \Rightarrow (T | \neg B)\]

“If \(P\) has no partition into pieces that satisfy \(A\) and \(B\), but \(P\) has a piece that satisfies \(A\), then \(P\) has a piece that does not satisfy \(B\).”

\[\neg(T | B) \vdash T | \neg B\]

\[\neg(A | B) \vdash (\neg A | T) \lor (T | \neg B)\]
The Composition Adjunct

\[(\triangleright) \quad \mathcal{A} \triangleright \mathcal{C} \vdash \mathcal{B} \quad \text{iff} \quad \mathcal{A} \vdash \mathcal{C} \triangleright \mathcal{B} \]

“Assume that every process that has a partition into pieces that satisfy \(\mathcal{A} \) and \(\mathcal{C} \), also satisfies \(\mathcal{B} \). Then, every process that satisfies \(\mathcal{A} \), together with any process that satisfies \(\mathcal{C} \), satisfies \(\mathcal{B} \). (And vice versa.)” (c.f. \(\neg \triangleright \mathcal{R} \))

- **Interpretations of \(\mathcal{A} \triangleright \mathcal{B} \):**
 - \(P \) provides \(\mathcal{B} \) in any context that provides \(\mathcal{A} \)
 - \(P \) ensures \(\mathcal{B} \) under any attack that ensures \(\mathcal{A} \)

That is, \(P \vdash \mathcal{A} \triangleright \mathcal{B} \) is a context-system spec (a concurrent version of a pre-post spec).

Moreover \(\mathcal{A} \triangleright \mathcal{B} \) is, in a precise sense, linear implication: the context that satisfies \(\mathcal{A} \) is used exactly once in the system that satisfies \(\mathcal{B} \).
Some Derived Rules

\{(A \triangleright B) | A \vdash B\}

“If \(P\) provides \(B\) in any context that provides \(A\), and \(Q\) provides \(A\), then \(P\) and \(Q\) together provide \(B\).”

- Proof: \(A \triangleright B \vdash A \triangleright B \{ (A \triangleright B) | A \vdash B \) by (Id), (|>)

\[D \vdash A; \ B \vdash C \{ D | (A \triangleright B) \vdash C \] (c.f. (\(\neg\) L))

“If anything that satisfies \(D\) satisfies \(A\), and anything that satisfies \(B\) satisfies \(C\), then: anything that has a partition into a piece satisfying \(D\) (and hence \(A\)), and another piece satisfying \(B\) in a context that satisfies \(A\), it satisfies \((B\) and hence\() C\).”

- Proof:
 \[D \vdash A; \ A \triangleright B \vdash A \triangleright B \{ D | A \triangleright B \vdash A | A \triangleright B \] assumption, (Id), (|\(\leftarrow\))
 \[A | A \triangleright B \vdash B\] above
 \[B \vdash C\] assumption
More Derived Rules

\{ A \vdash T \mid A \}
\{ F \mid A \vdash F \}
\{ 0 \vdash \neg(\neg 0 \mid \neg 0) \}
\{ A \mid B \land 0 \vdash A \}

\{ A \vdash A ; B \vdash B' \}
\{ A \rightarrow B \vdash A \rightarrow B' \}
\{ A \rightarrow B \mid B \rightarrow C \vdash A \rightarrow C \}
\{ (A \mid B) \rightarrow C \vdash A \rightarrow (B \rightarrow C) \}
\{ A \rightarrow (B \rightarrow C) \vdash B \rightarrow (A \rightarrow C) \}

\{ T \vdash T \rightarrow T \}
\{ T \vdash F \rightarrow A \}
\{ T \rightarrow A \vdash A \}

you can always add more pieces (if they are 0)

if a piece is absurd, so is the whole

0 is single-threaded

you can split 0 (but you get 0). Proof uses (||)

\(\rightarrow \) is contravariant on the left

\(\rightarrow \) is transitive

\(\rightarrow \) curry/uncurry

contexts commute

truth can withstand any attack

anything goes if you can find an absurd partner

if A resists any attack, then it holds
Rules: Location

- **Locations exist**
 - $(n[] \dashv 0)$ \Rightarrow $n[\overline{A}] \vdash \neg 0$
 - $(n[] \dashv \neg 1)$ \Rightarrow $n[\overline{A}] \vdash \neg (\neg 0 \mid \neg 0)$

- **Are not decomposable**
 - $(n[] \vdash)$ $\overline{A} \vdash B$ \Rightarrow $n[\overline{A}] \vdash n[B]$
 - $(n[] \land)$ $\Rightarrow n[\overline{A}] \land n[C] \vdash n[\overline{A} \land C]$
 - $(n[] \lor)$ $\Rightarrow n[C \lor B] \vdash n[C] \lor n[B]$

- **$n[]$ congruence**
 - $(n[] @)$ $n[\overline{A}] \vdash B$ \Rightarrow $\overline{A} \vdash B@n$

- **$n[]$-\land distribution**
 - $(\neg @)$ $\overline{A}@n \dashv \neg ((\neg A)@n)$

- **$n[]$-\lor distribution**
 - $\overline{A}@n$ is self-dual
Rules: Time and Space Modalities

<table>
<thead>
<tr>
<th>Rule Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(◊)</td>
<td>◊A ⊨ ¬□¬A</td>
</tr>
<tr>
<td>(□K)</td>
<td>□(A⇒B) ⊨ □A⇒□B</td>
</tr>
<tr>
<td>(□T)</td>
<td>□A ⊨ A</td>
</tr>
<tr>
<td>(□4)</td>
<td>□A ⊨ □□A</td>
</tr>
<tr>
<td>(□T)</td>
<td>T ⊨ □T</td>
</tr>
<tr>
<td>(□⊥)</td>
<td>A ⊨ B ⊨ □A⇒□B</td>
</tr>
<tr>
<td>(◊n[])</td>
<td>n[◊A] ⊨ ◊n[A]</td>
</tr>
<tr>
<td>(◊⊥)</td>
<td>A ⊨ B ⊨ □A⇒□B</td>
</tr>
<tr>
<td>(◊◊)</td>
<td>◊◊A ⊨ ◊◊A</td>
</tr>
</tbody>
</table>

S4, but not S5: \(\neg \vDash \) ◊A ⊨ □◊A \(\neg \vDash \) ◊◊A ⊨ □◊◊A

(◊◊): if somewhere sometime A, then sometime somewhere A
Some Derived Rules

$A \vdash B \} A@n \vdash B@n$ \hspace{1cm} \@ congruence

\{ $n[A@n] \vdash A$
\{ $A \vdash n[A]@n$

\{ $n[\neg A] \vdash \neg n[A]$
\{ $\neg n[A] \vdash \neg n[T] \lor n[\neg A]$
Examples

- \(an\ n \triangleq n[T] \mid T \) there is now an \(n \) here
- \(no\ n \triangleq \neg an\ n \) there is now no \(n \) here
- \(one\ n \triangleq n[T] \mid no\ n \) there is now exactly one \(n \) here
- \(\forall \triangleq \neg (\neg \forall \mid T) \) everybody here satisfies \(\forall \)
- \((n[T] \Rightarrow n[\forall]) \forall \) every \(n \) here satisfies \(\forall \)
- \(\Box ((n[T] \Rightarrow n[\forall]) \forall) \) every \(n \) everywhere satisfies \(\forall \)
Ex: Immovable Object vs. Irresistible Force

\[Im \cong T \triangleright \Box (\text{obj}[0] \mid T) \]
\[Ir \cong T \triangleright \Box \Diamond \neg (\text{obj}[0] \mid T) \]

\[Im \mid Ir = (T \triangleright \Box (\text{obj}[0] \mid T)) \mid Ir \]
\[\vdash \Box (\text{obj}[0] \mid T) \]
\[\vdash \Diamond \text{P}(\text{obj}[0] \mid T) \]

\[Im \mid Ir = Im \mid (T \triangleright \Box \Diamond \neg (\text{obj}[0] \mid T)) \]
\[\vdash \Box \neg \text{P}(\text{obj}[0] \mid T) \]
\[\vdash \neg \Diamond \text{P}(\text{obj}[0] \mid T) \]

Hence: \[Im \mid Ir \vdash F \]
Model Checking

- If P is $!$-free and \mathcal{A} is \triangleright-free, then $P \models \mathcal{A}$ is decidable.

- This provides a way of mechanically checking (certain) assertions about (certain) mobile processes.

- Potential application: checking (the bytecode of) mobile agents against the internal mobility policies of receiving sites. (I.e.: conferring more flexibility than just sandboxing the agent.)
Connections with Intuitionistic Linear Logic

- Weakening and contraction are not valid rules: principle of conservation of space.

- Semantic connection: sets of processes closed under \equiv and ordered by inclusion form a quantale (a model of ILL).

- Multiplicative intuitionistic linear logic (MILL) can be faithfully embedded in our logic:

$$
\begin{align*}
1_{\text{MILL}} & \triangleq 0 \\
A \otimes_{\text{MILL}} B & \triangleq A \mid B \\
A \rightarrow_{\text{MILL}} B & \triangleq A \triangleright B
\end{align*}
$$

MILL rules and our rules are interderivable ("our rules" means the rules involving only 0, \mid, \triangleright, plus a derivable cut rule for \mid).
• Full intuitionistic linear logic (ILL) can be embedded:

| 1_{\text{ILL}} | \equiv | 0 | \quad A \oplus B | \equiv | A \lor B |
|-------------|---------|-------------|-----------------|---------|
| \bot_{\text{ILL}} | \equiv | F | \quad A & B | \equiv | A \land B |
| \top_{\text{ILL}} | \equiv | T | \quad A \otimes B | \equiv | A \mid B |
| 0_{\text{ILL}} | \equiv | F | \quad A \rightarrow B | \equiv | A \triangleright B |
| !A | \equiv | 0 \land (0 \Rightarrow A)^\neg F |

• The rules of ILL can be logically derived from these definitions. (E.g.: the proof of \(!A \vdash !A \otimes !A\) uses the decomposition axiom.)

• So, \(A_1, \ldots, A_n \vdash_{\text{ILL}} B\) implies \(A_1 \mid \ldots \mid A_n \vdash B\).

• Some discrepancies: \(\bot_{\text{ILL}} = 0_{\text{ILL}}\); the additives distribute; \(!A\) is not “replication”; \(!A \rightarrow B\) is not so interesting; \(A^\bot / A^0\) is unusually interesting.
Connection with Relevant Logic

• (Noted after the fact [O’Hearn, Pym].) The definition of the satisfaction relation is very similar to Urquhart’s semantics of relevant logic. In particular $\mathcal{A} \mid \mathcal{B}$ is defined just like intensional conjunction, and $\mathcal{A} \supset \mathcal{B}$ is defined just like relevant implication in that semantics.

• Except:
 • We do not have contraction. This does not make sense in process calculi, because $P \mid P \neq P$. Urquhart semantics without contraction does not seem to have been studied.
 • We use an equivalence \equiv, instead of a Kripke-style partial order \varnothing as in Urquhart’s general case. (We may have a need for a partial order in more sophisticated versions of our logic.)
Connections with Bunched Logic

• Peter O’Hearn and David Pym study *bunched logics*, where sequents have two structural combinators, instead of the standard single “,” combinator (usually meaning \land or \otimes on the left) found in most presentations of logic. Thus, sequents are *bunches* of formulas, instead of lists of formulas. Correspondingly, there are two implications that arise as the adjuncts of the two structural combinators.

• The situation is very similar to our combinators $|$ and \land, which can combine to irreducible bunches of formulas in sequents, and to our two implications \Rightarrow and \triangleright. However, we have a classical and a linear implication, while bunched logics have so far had an intuitionistic and a linear implication.
Conclusions

• The novel aspects of our logic lie in its explicit treatment of space and of the evolution of space over time (mobility). The logic has a linear flavor in the sense that space cannot be instantly created or deleted, although it can be transformed over time.

• These ideas can be applied to any process calculus that embodies a distinction between topological and dynamic operators.

• Our logical rules arise from a particular model. This approach makes the logic very concrete, but raises questions of logical completeness, which are being investigated.

• We are now working on generalizing the logic to the full ambient calculus (including restriction), in order to talk about properties of hidden/secret locations.
Ambient Calculus: Example

The packet \textit{msg} moves from \textit{a} to \textit{b}, mediated by the capabilities \textit{out a} (to exit \textit{a}), \textit{in b} (to enter \textit{b}), and \textit{open msg} (to open the \textit{msg} envelope).

\[
\begin{align*}
\text{location } a & \quad \text{location } b \\
\text{send } M \text{ from } a \text{ to } b & \quad \text{receive } n; \text{ do } P \\
\textit{a[msg[\langle M \rangle \mid \text{out a. in b. } P]]} & \quad \textit{b[open msg. (n). P]}
\end{align*}
\]
Reduction

- Four basic reductions plus propagation, rearrangement (composition with structural congruence), and transitivity.

\[
\begin{align*}
\text{Red In} & : n[\text{in } m. \, P \mid Q] \mid m[R] \rightarrow m[n[P \mid Q] \mid R] \\
\text{Red Out} & : m[n[\text{out } m. \, P \mid Q] \mid R] \rightarrow n[P \mid Q] \mid m[R] \\
\text{Red Open} & : \text{open } m. \, P \mid m[Q] \rightarrow P \mid Q \\
\text{Red Comm} & : (n).P \mid \langle M \rangle \rightarrow P\{n \leftarrow M\}
\end{align*}
\]

\[
\begin{align*}
P \rightarrow Q & \Rightarrow n[P] \rightarrow n[Q] \quad \text{(Red Amb)} \\
P \rightarrow Q & \Rightarrow P \mid R \rightarrow Q \mid R \quad \text{(Red Par)} \\
P' \equiv P, \, P \rightarrow Q, \, Q \equiv Q' & \Rightarrow P' \rightarrow Q' \quad \text{(Red } \equiv \text{)}
\end{align*}
\]

\[\rightarrow^* \text{ is the reflexive-transitive closure of } \rightarrow\]
Structural Congruence

- Routine definition, but used heavily in the logic and semantics.

\[
P \equiv P
\]

\[
P \equiv Q \Rightarrow Q \equiv P
\] (Struct Refl)

\[
P \equiv Q, Q \equiv R \Rightarrow P \equiv R
\] (Struct Symm)

\[
P \equiv Q \Rightarrow P \parallel R \equiv Q \parallel R
\] (Struct Trans)

\[
P \equiv Q \Rightarrow !P \equiv !Q
\] (Struct Par)

\[
P \equiv Q \Rightarrow M[P] \equiv M[Q]
\] (Struct Repl)

\[
P \equiv Q \Rightarrow M.P \equiv M.Q
\] (Struct Amb)

\[
P \equiv Q \Rightarrow (n).P \equiv (n).Q
\] (Struct Action)

\[
\varepsilon.P \equiv P
\] (Struct Input)

\[
(M.M').P \equiv M.M'.P
\] (Struct .)
\begin{align*}
 P \parallel Q & \equiv Q \parallel P \\
 (P \parallel Q) \parallel R & \equiv P \parallel (Q \parallel R) \\
 P \parallel 0 & \equiv P \\
 ! (P \parallel Q) & \equiv !P \parallel !Q \\
 !0 & \equiv 0 \\
 !P & \equiv P \parallel !P \\
 !P & \equiv !!P
\end{align*}

(Struct Par Comm) \\
(Struct Par Assoc) \\
(Struct Par Zero) \\
(Struct Repl Par) \\
(Struct Repl Zero) \\
(Struct Repl Copy) \\
(Struct Repl Repl)

- These axioms (particularly the ones for !) are sound and complete with respect to equality of spatial trees: edge-labeled finite-depth unordered trees, with infinite-branching but finitely many distinct labels under each node.