
Talk July 20, 1999 12:27 pm 1

Mobility and Security

Luca Cardelli
Microsoft Research 

Marktoberdorf
"Foundations of Secure Computation"

July 28 - August 7, 1999



Talk July 20, 1999 12:27 pm 2

OUTLINE

• Wide Area Computation

• The Ambient Calculus (with Andrew Gordon)

• Equivalences (with Andrew Gordon)

• Types (with Giorgio Ghelli and Andrew Gordon)

• Logics (with Andrew Gordon)



Talk June 14, 1999 11:38 am 3

WIDE AREA COMPUTATION
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Three Mental Pictures

Three views of computation:

• Local area networks

• Wide area networks

• Mobile networks
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1: LANs and (Traditional) Distributed Computing

Administrative Domain
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 LAN Characteristics

• Static and often trivial topology (everything 1 logical step apart).

• Immobility (initially) of software, computers, and links.

• Software evolution: control mobility, data mobility, link mobility.

• Hardware evolution: laptops, wireless LANs.

• Traditional Distributed Object Systems: RPC/RMI. 
(CORBA, OLE, Modula-3 Network Objects, Java RMI.)

• Traditionally, no code mobility, no thread/process mobility.

• More recently, pre-Web: code mobility (Tcl), agent mobility (Tele-
script), closure mobility (Obliq).
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2: The Web
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WAN Characteristics

• Internet/Web: a federated WAN infrastructure that spans the planet.
We would like to program it.

• Unfortunately, federated WANs violate many familiar assumptions
about the behavior of distributed systems.

• Three phenomena that remain largely hidden in LANs become
readily observable:

– Virtual locations. 

– Physical locations. 

– Bandwidth fluctuations.

• Another phenomenon becomes unobservable:

– Failures.
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A WAN is not a big LAN

• To emulate a LAN on top of a WAN we would have to:

– (A) Hide virtual locations. By semi-transparent security. But is
it possible to guarantee the integrity of mobile code?

– (B) Hide physical locations. Cannot “hide” the speed of light,
other than by slowing down the whole network.

– (C) Hide bandwidth fluctuations. Service guarantees eliminate
bandwidth fluctuations, but introduce access failures.

– (D) Reveal failures. Impossible in principle, since the Web is an
asynchronous network.

• Hard problems: (A) may be unsolvable for mobile code; (B) is only
solvable (in full) by introducing unacceptable delays; (C) can be
solved in a way that reduces it to (D); (D) is unsolvable in principle,
while probabilistic solutions run into (B).
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Observables

• WAN observables are different (and not reducible to) LAN observ-
ables.

• Observables determine programming constructs, and therefore in-
fluence programs and programming languages.

• We need a complete set of programming constructs that can detect
and react to the available observables and, of course, we do not
want programming constructs that attempt to detect or react to non-
observables.

• Something has already emerged to cope with these observables:
Mobile Computation.
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Mobile Computation

• Mobile computation can cope with the observables characteristic of
a wide-area network such as the Web.

– Virtual locations. Trust mechanisms to cross virtual barriers.

– Physical locations. Mobility to optimize placement.

– Bandwidth fluctuations. Mobility to split applications and es-
tablish optimized communication protocols.

– Failures. Running around or away from failures.

• Code mobility, post-Web.

– Basic Java Applets.

– Countless Tcl-based and Java-based ongoing projects.

– Still no (native) thread mobility. 
(Many attempts; see Agent Mobility meetings)
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3: Mobile Computing

• Mobile devices also move computations. In this sense, we cannot
avoid the issues raised by mobile computation.

US

NSASFO

AF 81

EU
CDG
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Hardware Mobility

• Lots of gadgets

   Smart cards (wired).
   Active badges, pagers (wireless).
   Cellphones, GPS receivers (wireless).
   Palm/Laptops (wired, wireless).

• Nested gadgets and networks, some mobile:

   Personal gadgets
   Personal Area Networks
   Car, train, ship, airplane local networks
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Two Overlapping Views of Mobility

• Mobile Computing.

– I.e. mobile hardware, physical mobility.

• Mobile Computation.

– I.e. mobile software, virtual mobility.

• But the borders are fuzzy:

– Agents may move by traversing a network (virtually), or by be-
ing carried on a laptop (physically).

– Computers may move by lugging them around (physically), or
by telecontrol software (virtually).

– Boundaries may be physical (buildings) or virtual (firewalls).
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A Unifying Difficulty: Security Barriers

• A (nasty) fundamental change in the way we compute.

– Bye bye, flat IP addressing, transparent routing.

– Bye bye, single universal address space.

– Bye bye, transparent distributed object systems.

– Bye bye, roaming agents.

– Bye bye, action-at-a-distance computing.

• Big firewalls (for intranets), small firewalls (for applets).
Becoming pervasive: 1 PC Firewall = $99.95.

• Firewall are designed impede access. But we need to make rightful
access simple.
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Mobility Postulates

• Separate locations exist. They may be difficult to reach.

• Since different locations have different properties, both people and
programs (and sublocations!) will want to move between them.

• Barriers to mobility will be erected to preserve certain properties of
certain locations.

• Some people and some programs will still need to cross those bar-
riers.

This is the situation wide area computing has to cope with.
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Related Work

• Broadly classifiable in two categories:

– Agents (Actors, Process Calculi, Telescript, etc.)

– Spaces (Linda, Distributed Lindas, JavaSpace, etc.)

• With our work on Ambients, we aim to unify and extend those basic
concepts.
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MODELING  MOBILITY
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Modeling Mobility

• It’s all about barriers:

– Locality = barrier topology.

– Process mobility = barrier crossing.

– Security = (In)ability to cross barriers.

– Interaction by shared position within a barrier, 
with no action at a distance.
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Formalisms for Concurrency/Distribution

• CSP/CCS. (Static/immutable connectivity.)

• π-calculus. (Channel mobility.)
N.B. "mobility" in this context is not process mobility.

• Process mobility is reduced to channel mobility.

• Ambient Calculus:
Process mobility = Barrier crossing.
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... in particular, π

• In the π-calculus (our starting point):

– processes exist in a single contiguous location

– interaction is by shared names, used as I/O channels

– there is no direct account of access control

• In our ambient calculus:

– processes exist in multiple disjoint  locations

– interaction is by shared position, with no action at a distance

– capabilities, derived from ambient names, regulate access
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Formalisms for Locality

• Join calculus. (Channel mobility and locality.)

• Various calculi with failure. (Locality = Partial Failure.)

• Ambient calculus:
Locality = Barrier topology.
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Formalisms for Security

• (BAN logic, etc.)

• Spi-calculus. (Channel mobility and cryptography)

• Ambient calculus:
Security = (In)ability to cross barriers.
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AMBIENT  CALCULUS
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Approach

• We want to capture in an abstract way, notions of locality, of mo-
bility, and of ability to cross barriers. 

• An ambient is a place, delimited by a boundary, where computation
happens.

• Ambients have a name, a collection of local processes, and a col-
lection of subambients.

• Ambients can move in an out of other ambients, subject to capabil-
ities that are associated with ambient names.

• Ambient names are unforgeable (as in π and spi).
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The Ambient Calculus
P ::= (νn) P new name n in a scope

0 inactivity
P | P parallel
!P replication
M[P] ambient
M.P exercise a capability
(n).P input locally, bind to n
jMk output locally (async)

M::= n name
in M entry capability
out M exit capability
open M open capability
ε empty path
M.M’ composite path

standard in
process calculi

ambient-specific

ambient I/O

data structures

actions

scoping

useful with I/O

basic capabilities
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Semantics

• Behavior

– The semantics of the ambient calculus is given in non-determin-
istic “chemical style” (as in Berry&Boudol’s Chemical Abstract
Machine, and in Milner’s π-calculus).

– The semantics is factored into a reduction relation P xyyz P’ de-
scribing the evolution of a process P into a process P’, and a pro-
cess equivalence indicated by Q � Q’.

– Here, xyyz is real computation, while � is “rearrangement”.

• Equivalence

– On the basis of behavior, a substitutive observational equiva-
lence, P � Q, is defined between processes.

– Standard process calculi reasoning techniques (context lemmas,
bisimulation, etc.) can be adapted.
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Parallel

• Parallel execution is denoted by a binary operator:

P | Q

•  It is commutative and associative:

P | Q � Q | P

(P | Q) | R � P | (Q | R)

• It obeys the reduction rule:

P xyyz Q ⇒ P | R xyyz Q | R
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Replication

• Replication is a technically convenient way of representing itera-
tion and recursion.

!P

• It denotes the unbounded replication of a process P.

!P � P | !P

• There are no reduction rules for !P; in particular, the process P un-
der ! cannot begin to reduce until it is expanded out as P|!P.
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Restriction

• The restriction operator creates a new (forever unique) ambient
name n within a scope P.

(νn)P

• As in the π-calculus, the (νn) binder can float as necessary to extend
or restrict the scope of a name. E.g.:

(νn)(P | Q) � P | (νn)Q if n Ñ fn(P)

• Reduction rule:

P xyyz Q ⇒ (νn)P xyyz (νn)Q
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Inaction

• The process that does nothing:

0

•  Some garbage-collection equivalences:

P | 0 � P

!0 � 0
(νn)0 � 0

•  This process does not reduce.
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Ambients

• An ambient is written as follows, where n is the name of the ambi-
ent, and P is the process running inside of it.

n[P]

• In n[P], it is understood that P is actively running:

P xyyz Q ⇒ n[P] xyyz n[Q]

• Multiple ambients may have the same name, (e.g., replicated serv-
ers).
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Actions and Capabilities

• Operations that change the hierarchical structure of ambients are
sensitive. They can be interpreted as the crossing of firewalls or the
decoding of ciphertexts. 

• Hence these operations are restricted by capabilities. 

M. P

This executes an action regulated by the capability M, and then con-
tinues as the process P. 

• The reduction rules for M. P depend on M.
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Entry Capability

• An entry capability, in m, can be used in the action:

in m. P

• The reduction rule (non-deterministic and blocking) is:

n[in m. P | Q] | m[R] xyyz m[n[P | Q] | R]

in m.P | Q

n

R

m

| xyyz P | Q

n

 | R

m
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Exit Capability

• An exit capability, out m, can be used in the action:

out m. P

• The reduction rule (non-deterministic and blocking) is:

m[n[out m. P | Q] | R] xyyz n[P | Q] | m[R]

xyyzout m. P | Q

n

 | R

m

P | Q

n

R

m

|
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Open Capability

• An opening capability, open m, can be used in the action:

open n. P

• The reduction rule (non-deterministic and blocking) is:

open n. P | n[Q] xyyz P | Q

xyyzQ

n

open n. P | P | Q
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• An open operation may be upsetting to both P and Q above. 

– From the point of view of P, there is no telling in general what
Q might do when unleashed. 

– From the point of view of Q, its environment is being ripped
open. 

• Still, this operation is relatively well-behaved because: 

– The dissolution is initiated by the agent open n. P, so that the ap-
pearance of Q at the same level as P is not totally unexpected; 

– open n is a capability that is given out by n, so n[Q] cannot be
dissolved if it does not wish to be.
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Design Principle

• An ambient should not get killed or trapped unless:

– It talks too much. (By making its capabilities public.)

– It poisons itself. (By opening an untrusted intruder.)

– It steps into quicksand. (By entering an untrusted ambient.)

• Some natural primitives violate this principle. E.g.:

n[burst n. P | Q] xyyz P | Q

Then a mere in capability gives a kidnapping ability:

entrap(M) $ (ν k m) (m[M. burst m. in k] | k[])

entrap(in n) | n[P] xyyz* (νk) (n[in k | P] | k[])
 xyyz* (νk) k[n[P]]



Talk July 21, 1999 4:33 pm 39

• Moral

– One can imagine lots of different mobility primitives.

– But one must think hard about the "security" implications of
combinations of these primitives.
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Ambient I/O

• Local anonymous communication within an ambient:

(x). P input action
jMk async output action

• We have the reduction:

(x). P | jMk xyyz P{ x←M}

• This mechanism fits well with the ambient intuitions.

– Long-range communication, like long-range movement, should
not happen automatically because messages may have to cross
firewalls and other obstacles. (C.f., Telescript.)

– Still, this is sufficient to emulate communication over named
channels, etc.
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Reduction Summary

In addition, we identify terms up to renaming of bound names:
(νn)P = (νm)P{ n←m} if m Ñ fn(P)
(n).P = (m).P{ n←m} if m Ñ fn(P)

n[in m. P | Q] | m[R] xyyz m[n[P | Q] |R]
m[n[out m. P | Q] | R] xyyz n[P | Q] | m[R]
open n. P | n[Q] xyyz P | Q

(Red In)
(Red Out)
(Red Open)

(n). P | jMk xyyz P{ n←M} (Red Comm)

P xyyz Q ⇒ (νn)P xyyz (νn)Q
P xyyz Q ⇒ n[P] xyyz n[Q]
P xyyz Q ⇒ P | R xyyz Q | R

(Red Res)
(Red Amb)
(Red Par)

P’ � P, P xyyz Q, Q � Q’ ⇒ P’ xyyz Q’ (Red �)

xyyz* reflexive and transitive closure of xyyz
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Structural Congruence Summary

P � P
P � Q ⇒ Q � P
P � Q, Q � R ⇒ P � R

(Struct Refl)
(Struct Symm)
(Struct Trans)

P � Q ⇒ (νn)P � (νn)Q
P � Q ⇒ P | R � Q | R
P � Q ⇒ !P � !Q
P � Q ⇒ M[P] � M[Q]
P � Q ⇒ M.P � M.Q
P � Q ⇒ (n).P � (n).Q

(Struct Res)
(Struct Par)
(Struct Repl)
(Struct Amb)
(Struct Action)
(Struct Input)
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P | Q � Q | P
(P | Q) | R � P | (Q | R)
!P � P | !P
(νn)(νm)P � (νm)(νn)P
(νn)(P | Q) � P | (νn)Q if n Ñ fn(P)
(νn)(m[P]) � m[(νn)P] if n ≠ m

(Struct Par Comm)
(Struct Par Assoc)
(Struct Repl Par)
(Struct Res Res)
(Struct Res Par)
(Struct Res Amb)

P | 0 � P
(νn)0 � 0
!0 � 0

(Struct Zero Par)
(Struct Zero Res)
(Struct Zero Repl)

ε.P � P
(M.M’ ).P � M.(M’ .P)

(Struct ε)
(Struct .)
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Example

A[msg[jMk|out A. in B]] | B[open msg. (x). P]
xyyz A[] | msg[jMk|in B] | B[open msg. (x). P]
xyyz A[] | B[msg[jMk]|open msg. (x). P]
xyyz A[] | B[jMk|(x). P]
xyyz A[] | B[P{ x←M}]

A[msg[jMk|out A. in B]] | B[open msg. (x). P]

send M : A=>B receive x; P

Principal A Principal B
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Noticeable Inequivalences

• Replication creates new names:

!(νn)P # (νn)!P

• Multiple n ambients have separate identity:

n[P] | n[Q] # n[P | Q]
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FOLDER CALCULUS
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The Folder Calculus

• A graphical office metaphor to explain the ambient calculus.

• A precise metaphor, isomorphic to the formal ambient calculus.

• Based on wide-area computation principles: locality, mobility,
nested domains, asynchronous communication, authentication.
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Folders (Nested Domains)

• A folder name n.

• Active contents P: 

– hierarchical data and “gremlins”.

– computational primitives for mobility and communication.

n

P
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Enter Reduction (Mobility)

n

R

n

mm

→
R

Q
P
Q

Pin m
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Exit Reduction (Mobility)

→
R

m

n

Q

m

R

n

P
Q

Pout m
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Open Reduction (Assimilation)

n

Q → QPPopen n
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Copy Reduction (Iteration/Recursion)

→P P
P
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Rubber Stamps (Authentication)

• Give authenticity to folders.

• Copiers are unable to accurately duplicate rubber stamps.

n

P

n

P

m

a llow ed

n

P

n

fo rb idden
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Post-It Notes (Local Communication)

• A Post-It Note (Nameless file / Asynchronous message).

• A gremlin grabbing (reading and removing) a note.

• Read reduction

M

P{ x}x

→M P{ M}P{ x}x
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Messages (Names or Capabilities)

A message M can be either:

• The name of a folder (danger: spoofing, killing):

• A capability (no danger of recovering the name):

→n x x

P

n

P

→n x Popen x Popen n

→in n x m m

Px Pin n
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Leaves of the Syntax

Inac tive  grem lin

n n
=

=
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Example: Message from A to B

msg

a

b

→
E xitopen msg

x P
out a. in b

a

msg

a

 in ba

b

open msg

x P
→
Enter
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a

b

open msg

x P →
Open

msg

a

→
Reada

b

x Pa



Talk July 20, 1999 12:33 pm 59

a b

P{ a/x}
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Same Example, with scoping

msg b

msg

a

b

→
Exitopen msg

x P
out a. in b

a a

msg b
msg

a

a

a b

open msg

x P
→
Enter in b
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a

a
b

open msg

x P →
Open

msg

a

msg b

→
R eada

a

b

x Pa

b
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a

a

b

P{ a/x}

b
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Example: Agent Authentication

home

open n

g

x

Pout g

out home. 
in home

n  x

n
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Example: A Distiller Server

d istil le r

inbox

inpu t

ou tbox

open input

ou tpu t

%!PS... in distiller. in inbox

d istill(x )

x

ou t inbox. in  ou tbox
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Example: Keys

k encryp tion : 

open k
P

genera tion  o f a  fresh  key  k

decryp tion :
open ing  a  k-enve lope and  read ing  

p la in tex t M  ins ide  a  k-enve lope

k

 x

the  con ten ts

M
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AMBIENT  CALCULUS  
EXPRESSIVENESS
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Expressiveness

• Some new features

– The primitives invented for process mobility end up being mean-
ingful for security.

– The combination of mobility and security in the same formal
framework seems novel and intriguing. 

– E.g., we can represent both mobility and (some) security aspects
of “crossing a firewall”.
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Old Concepts

• Old concepts that can be represented:

– Synchronization and communication mechanisms.

– Turing machines. (Natural encoding, no I/O required.)

– Arithmetic. (Tricky, no I/O required.)

– Data structures.

– π-calculus. (Easy, channels are ambients.)

– λ-calculus. (Hard, different than encoding λ in π.)

– Spi-calculus concepts. (Being debated.)
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New Concepts

• Net-centric concepts that can be represented:

– Named machines and services on complex networks.

– Agents, applets, RPC.

– Encrypted data and firewalls.

– Data packets, routing, active networks.

– Dynamically linked libraries, plug-ins.

– Mobile devices.

– Public transportation.
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Ambients as Locks

• We can use open to encode locks:

release n. P $ n[]  | P

acquire n. P $ open n. P

• This way, two processes can “shake hands” before proceeding with
their execution:

acquire n. release m. P | release n. acquire m. Q
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Turing Machines

end[extendLft | S0 |
square[S1 |

square[S2 |
...

square[Si | head |
...

square[Sn-1 |
square[Sn | extendRht]] .. ] .. ]]]
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Ambients as Mobile Processes

tourist   $   (x). joe[x. enjoy]
ticket-desk   $   ! jin AF81SFO. out AF81CDGk

SFO[ticket-desk | tourist | AF81SFO[route]]

 xyyz* SFO[ticket-desk |  
joe[in AF81SFO. out AF81CDG. enjoy] |
AF81SFO[route]]

 xyyz* SFO[ticket-desk |  
AF81SFO[route | joe[out AF81CDG. enjoy]]]
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Ambients as Firewalls (buggy)

• Assume that the shared key k is already known to the firewall and
the client.

Wally   $   (ν w r) (jin rk | r[open k. in w] | w[open r. P])
Cleo   $   (x). k[x. C]

Cleo | Wally
xyyz* (ν w r) ( (x). k[x. C] | jin rk | r[open k. in w] | w[open r. P] )
xyyz* (ν w r) ( k[in r. C] | r[open k. in w] | w[open r. P] )
xyyz* (ν w r) ( r[k[C] | open k. in w] | w[open r. P] )
xyyz* (ν w r) ( r[C | in w] | w[open r. P] )
xyyz* (ν w r) ( w[r[C] | open r. P] )
xyyz* (ν w)   ( w[C | P] )
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Ambients as Firewalls

• Assume that the shared key k is already known to the firewall and
the client.

Wally   $   (νw) (k[in k. in w] | w[open k. P])
Cleo   $   k[open k. C]

Cleo | Wally
xyyz* (νw) ( k[open k. C] | k[in k. in w] | w[open k. P] )
xyyz* (νw) ( k[k[in w] | open k. C] | w[open k. P] )
xyyz* (νw) ( k[in w | C] | w[open k. P] )
xyyz* (νw)   w[k[C] | open k. P]
xyyz* (νw)   w[C | P] 
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Comments

• One secret names is introduced: w is the secret name of the firewall. 

• We want to verify that Cleo knows the key k: this is done by in k.
After that, Cleo gives control to in w to enter the firewall.
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The Asynchronous π-calculus

• A named channel is represented by an ambient.

– The name of the channel is the name of the ambient.

– Communication on a channel is becomes local I/O inside a chan-
nel-ambient.

– A conventional name, io, is used to transport I/O requests into
the channel.

• These definitions satisfy the expected reduction in presence of a
channel for n:

n(x).P | njMk xyyz* P{ x←M} 

(ch n)P $ (νn) (n[!open io] | P)
n(x).P $ (νp) (io[in n. (x). p[out n. P]] | open p)
njMk $ io[in n. jMk]
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• Therefore:

n(νn)Po $ (νn) (n[!open io]|nPo)
nn(x).Po $ (νp) (io[in n. (x). p[out n. nPo]]|open p)
nnjmko $ io[in n. jmk]
nP|Qo $ nPo|nQo
n!Po $ !nPo

– The choice-free synchronous π-calculus, can be encoded within
the asynchronous π-calculus.

– The λ-calculus can be encoded within the asynchronous π-calcu-
lus.
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WAN L ANGUAGES
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From Calculi to Languages

• The ambient/folder calculus is a minimal formalism designed for
theoretical study. As such, it is not a “programming language”.

• Still, the ambient calculus is designed to match fundamental WAN
characteristics.

• By building languages on top of a well-understood WAN seman-
tics, we can be confident that languages will embody the intended
semantics.

• We now discuss how ambient characteristics might look like when
extrapolated to programming languages.
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WAN Phenomena

• Physical Locations

– Observable because of the speed of light limit

– Preclude instantaneous actions

– Require mobile code

• Virtual Locations

– Observable because of administrative domains

– Preclude unfettered actions

– Require security model and disconnected operation
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• Variable Connectivity

– Observable because of free-will actions, physical mobility

– Precludes purely static networks

– Requires bandwidth adaptability

• Failures

– Unobservable because of asynchrony, domain walls

– Preclude reliance on other parts of the system

– Require blocking behavior, transaction model
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Mobility and Barriers

• Mobility is all about barriers:

– Locality = barrier topology.

– Process mobility = barrier crossing.

– Security = (in)ability to cross barriers.

– Communication = interaction within a barrier.

– No immediate action at a distance (= across barriers).

• Ambients embed this barrier-based view of mobility, which is
grounded on WAN observables.

• A “wide-area language” is one that does not contain features violat-
ing this view of computation.
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Wide Area Languages

• WAN-sound

– No action-at-a-distance assumption

– No continued connectivity assumption

– No security bypasses

• WAN-complete

– Able to emulate and support surfer/roamer/road-warrior 
behavior

• Some steps towards Wide Area Languages:

– Agent languages (although many are effectively LAN-bound)

– Ambit (with Mads Torgesen)

– Service Combinators (with Rowan Davies) 
WebL (Hannes Marais)
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Ambients as a Programming Abstraction

• Our basic abstraction is that of mobile computational ambients. 

• The ambient calculus brings this abstraction to an extreme, by rep-
resenting everything in terms of ambients at a very fine grain. 

• In practice, ambients would have to be medium or large-grained en-
tities. Ambient contents should include standard programming sub-
systems such as modules, classes, objects, and threads. 

• But: the ability to smoothly move a collection of running threads is
almost unheard of in current software infrastructures. Ambients
would be a novel and non-trivial addition to our collection of pro-
gramming abstractions.
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Names vs. Pointers

• The only way to denote an ambient is by its name. 

– One may possess a name without having immediate access to
any ambient of that name (unlike pointers).

– Name references are never “broken” but may be “blocked” until
a suitable ambient becomes available. 

• Uniformly replace pointers (to data structures etc.) by names.

– At least across ambient boundaries.

– This is necessary to allow ambients to move around freely with-
out being restrained by immobile ties.
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Locations

• Ambients can be used to model both physical and virtual locations. 

– Some physical locations are mobile (such as airplanes) while
others are immobile (such as buildings). 

– Similarly, some virtual locations are mobile (such as agents)
while others are immobile (such as mainframe computers). 

• Mobility distinctions are not part of the basic semantics of ambi-
ents.

– Can be added as a refinement of the basic model, or 

– Can be embedded in type systems that restrict the mobility of
certain ambients.
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Migration and Transportation

• Ambients offer a good paradigm for application migration.

– If an ambient encloses a whole application, then the whole run-
ning application can be moved without need to restart it or rein-
itialize it. 

– In practice, an application will have ties to the local window sys-
tem, the local file system, etc. These ties, however, should only
be via ambient names. 

– After movement the application can smoothly move and recon-
nect its bindings to the new local environment. (Some care will
still be needed to restart in a good state).
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Communication

• The communication primitives of the ambient calculus (local to an
ambient) do not support global consensus or failure detection. 

• These properties should be preserved by any higher-level commu-
nication primitives that may be added to the basic model, so that the
intended semantics of communication over a wide-area networks is
preserved.

– RPC, interpreted as mobile packets that transport and deposit
messages to remote locations.

– Parent-child communication

– Communication between siblings.
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Synchronization

• The ambient calculus is highly concurrent.

– It has high-level synchronization primitives that are natural and
effective (as shown in the examples).

– It is easy to represent basic synchronization constructs, such as
mutexes:

• Still, additional synchronization primitives are desirable.

– A useful technique is to synchronize on the change of name of
an ambient:

– (See also the Seal calculus by Castagna and Vitek.)

   release n; P $ n[] | P release a mutex called n, and do P
   acquire n; P $ open n. P acquire a mutex called n, then do P

n[be m.P | Q] → m[P | Q]
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Static and Dynamic Binding

• The names of the ambient calculus represent an unusual combina-
tion of static and dynamic binding. 

– The names obey the classical rules of static scoping, including
consistent renaming, capture-avoidance, and block nesting. 

– The navigation primitives behave by dynamically binding/link-
ing a name to any ambient that has the right name.

• Definitional facilities can similarly be derived in static or dynamic
binding style. E.g.:

– Statically bound function definitions.

– Dynamically bound resource definitions.
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Modules

• An ambient containing definitions is similar to a module/class.

– Remote invocation is like qualified module access.

– open is like inheritance.

– copy is like object generation from a prototype.

• Unusual “module” features:

– Ambients are first class modules: one can choose at run time
which particular instance of a module to use.

– Ambients support dynamic linking: missing subsystems can be
added to a running system by placing them in the right spot. 

– Ambients support dynamic reconfiguration. Module identity is
maintained at run time. The blocking semantics allows smooth
suspension and reactivation. The dynamic hierarchical structure
allows replacement of subsystems.
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Security

• Ambient security is based on boundaries and capabilities, as op-
posed to a cryptography, or access-control. 

• These three models are all interdefinable. In our case:

– Access control is obtained by using ambients to implement RPC-
like invocations that have to cross boundaries and authenticate
every time. 

– Cryptography is obtained by interpreting ambient names (by as-
sumption unforgeable) as encryption keys.

• The ambient security model is high level.

– It maps naturally to administrative domains and sandboxes.

– It allows the direct discussion of virus, trojan horses, infection of
mobile agents, firewall crossing, etc.
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Summary of WAL Features

• No “hard” pointers. 

Remote references are URLs, symbolic links, or such.

• Migration/Transportation

Thread migration.

Data migration.

Whole-application migration.

• Dynamic linking.

A missing library or plug-in may suddenly show up.

• Patient communication.

Blocking/exactly-once semantics.

• Built-in security primitives.
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EQUIVALENCE
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Contextual Equivalence

• A standard semantic equivalence: P � Q iff the observable behavior
of a system with component P is unaffected by replacing P with Q.

• In the ambient calculus:

– P↓n means that process P exhibits n (observable by open n).

P↓n   ⇔   P � (νn1...np)(n[Q] | R)  ∧  nÑ{ n1...np}

– P⇓n means that process P converges n, i.e., it evolves into a pro-
cess that exhibits n.

P⇓n   ⇔   P xyyz* Q ∧ Q↓n

– A context C(�) is a process with a hole. Ex.: �, n[�], in n.�, !�.

– Contextual Equivalence:

P � Q ⇔ Òn. ÒC(�). C(P)⇓n ⇔ C(Q)⇓n
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Example: Some Basic Equations

• Some easy inequivalences:

– p[]  and q[]  distinguished by �.

– open p.0 and open q.0 distinguished by p[n[]] | �.

– in p.0 and out p.0 distinguished by m[n[� | out p. out m] | p[]] .

• As in most process calculi, reduction does not imply equivalence:

– n[] | open n.0 xyyz 0 but n[] | open n.0   0.

• A general law:

(νn)(n[] | open n.P) � (νn)P
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Example: Perfect Firewalls

• An ambient n[P] can abstractly model an internet firewall named n
enclosing a group of machines P (or a sandbox named n enclosing
a group of applets P).

The Perfect Firewall Equation:

If nobody inside or outside an ambient knows its name, then it
forms a perfect boundary between its inside and outside:

n Ñ�fn(P)   ⇒   (νn)n[P] � 0

(Alternatively: (νn)n[(νn)P] � 0.)
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Example: Perfect Encryption

• An ambient k[jMk] abstractly models a ciphertext { M} k obtained by
encrypting a plaintext M with a key k.

The Perfect Encryption Equation:

(νk)k[jMk] � (νk)k[jM’ k]

(Follows from the Perfect Firewall Equation if k Ñ�fn(M).)

Compare with (νk)cj{ M} kk � (νk)cj{ M’ } kk from spi.
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Example: Piloting an Agent Across a Firewall

• Pre-arranged passwords k, k’, k" allow an agent to cross a firewall:

Firewall $�(νw)w[k[out w. in k’. in w] | open k’. open k".P] 
Agent $�k’[open k.k"[C]]  

Assuming k, k’, k" do not occur in C or P and w does not occur in
C, we get the safety property:

(νk k’ k") (Agent | Firewall) � (νw)w[C | P]

• Contextual equivalence here means that:

– The agent may successfully cross the firewall. In addition:

– The agent will successfully cross the firewall under any attack
(since "in every context" includes both "in parallel with any at-
tacking process" and "inside any attacking environment").

– Caveat: only ambient-level attacks. E.g. applet-to-applet.
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Problem 1: Chemical Soups

• Structural congruence [Berry & Boudol, Milner] allows for:

– rearrangement: P | (νn)Q � (νn)(P | Q) if n Ñ�fn(P), ...

– garbage collection: P | 0 � 0, ...

– replication: !P � P | !P, !0 � 0, ...

– reduction factored by congruence, based on the rule:

P � P’  ∧  P’ xyyz Q’  ∧  Q’ � Q   ⇒   P xyyz Q

• This is great for many purposes!

– Calculating reductions, validating type systems, obeying page
limits...

• But it’s dreadful for others.

– Try proving that if C(0)⇓n then C(P)⇓n.
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Solution: Hardenings and Labelled Transitions

• A concretion is a phrase (νp)jP’kP" [Milner].

• New idea: a hardening P > (νp)jP’kP" identifies a top-level process
P’ of P, the residue P", and the bindings p they share.

• For example:

P = (νp)(νq)(n[p[]] | q[])

has two hardenings:

P > (ν) j(νp)n[p[]] k�(νq)(0 | q[])
P > (νq) jq[] k�(νp)(n[p[]] | 0)
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Definition of Hardening

Hardening P > (νp)jP’kP"

MÐ{ in n, out n, open n}

M.P >�(ν)jM.Pk0 n[P] >�(ν)jn[P]k0

P > (νp)jP’kP"    {p} ∩ fn(Q) = Ô P > (νp)jP’kP"

P | Q >�(νp)jP’k(P" | Q) (νn)P > (νn)(νp)jP’kP"

Q > (νq)jQ’kQ"    {q} ∩ fn(P) = Ô P > (νp)jP’kP"

P | Q >�(νq)jQ’k(P | Q") !P > (νp)jP’k(P" | !P)



Talk June 14, 1999 12:25 pm 103

Definition of Labelled Transitions

• First, a labelled transition P xyyz
M

P’ for MÐ{ in n, out n, open n},
means that P has effect M on parent of sibling n, and evolves to P’.

M-transitions, where MÐ{ in n, out n, open n} :

P > (νp)jM.P’kP"    {p} ∩ fn(M) = Ô

P xyyz
M (νp)(P’ | P")

Ex: out a.in b.jMk  > (ν)jout a.in b.jMkk0

out a.in b.jMk� xyyz
out a in b.jMk | 0
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• Second, a labelled transition P xyyz
τ 

P’ means that P internally
evolves in one step to P’.:

τ-transitions:

Ex:

P > (νp)jn[Q]kP’    Q > (νq)jm[R]kQ’    R� xyyz
out n R’ nÑ{ q}

P xyyz
τ 

(νp)((νq)(m[R’] | n[Q’]) | P’)

a[msg[out a.in b.jMk]]  > (ν)ja[msg[out a.in b.jMk]] k0
msg[out a.in b.jMk]]  > (ν)jmsg[out a.in b.jMk]k0

out a.in b.jMk� xyyz
out a in b.jMk | 0

a[msg[out a.in b.jMk]] xyyz
τ 

msg[in b.jMk | 0] | a[0] | 0
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Theorems about Hardening and Labelled Transitions

• If P > (νp)jP’kP" then P � (νp)(P’ | P").

• If P � Q and Q > (νr)jQ’kQ" then there are P’ and P" with 
P > (νr)jP’kP", P’ � Q’, and P" � Q".

• P xyyz Q if and only if P xyyz
τ 
�Q .

• P⇓n if and only if there are Q, q, Q’, Q" such that 
P xyyz

τ * Q,  Q > (νq)jn[Q’]kQ", and nÑ{ q} .

Hence, we solve the problem of proving C(0)⇓n implies C(P)⇓n.
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Problem 2: The Trouble with Contexts

• General contexts C(�) possess neither the desirable properties:

– they have a unique hole, preserved by reduction.

– they are identified up to alpha-conversion.

• Usual solution: identify a limited set of contexts satisfying those
properties, and:

– a Context Lemma: P � Q if and only if for all limited context H
and names n, that H{ P} ⇓n ⇔ H{ Q} ⇓n.

• In CCS and the π-calculus, the limited contexts are simply parallel
observers; H ::= ��| R. [De Nicola and Hennessy]
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Parallel Observers in the Ambient Calculus

• Let P = out p.0 and Q =0.

– We have P�| R ⇓ n ⇔ Q�| R ⇓ n for all n and R,

– while if  C(�) = p[m[�]]  we have C(P)⇓m but not C(Q)⇓m.

• Therefore, the set of parallel observers does not satisfy a context
lemma in the ambient calculus.
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Solution: Harnesses

• Our solution is to augment parallel observers with ambients:

Harnesses:

H ::= harnesses
� unique hole
(νn)P restriction
P | H left composition
H | Q right composition
n[H] ambient

• We identify harnesses up to alpha-conversion:
if H = (νn)� , its instantiation H{ n[]}  is (νn’)n[] .

• By a careful analysis, we have proved that harnesses satisfy the de-
sired context lemma.
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Problem 3: Analyzing H{P} xyyz Q

• In lots of proofs that appeal to our context lemma, we have the
problem of analyzing reductions like H{ P}  xyyz Q.

• Intuitively, either P or H evolves on its won, or they interact. The
best formalization we have found of this is:

– An Activity Lemma: H{ P}  xyyz R if and only if:

(Act Proc) P xyyz P’ with R � H{ P’} , or
(Act Har) H xyyz H’  with R � H’{ P} , or
(Act Inter) H ��R Õz�P

(large case analysis of all possible labeled-transition
         interactions of a process with a harness)

• Although the formulation of the activity lemma is very complex
(due to numerous ways in which ambients may interact), the activ-
ity lemma can be used comfortably in specific proofs.
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Summary: Difficulty of Deriving Ambient Equations

• Problem 1: Reduction defined using structural congruence.

– Solution: use P > (νp)jP’kP"  and P xyyz
τ 

P’ instead.

Thm 1:  P xyyz Q   ⇔   P xyyz
τ 
�  Q

• Problem 2: Equivalence defined using arbitrary contexts.

– Solution: use a context lemma for limited contexts.

Thm 2:  P � Q   ⇔   ÒH,n. H{ P} ⇓n ⇔ H{ Q} ⇓n

• Problem 3: Analyzing the reductions of a process in harness.

– Solution: use an activity lemma.

Thm 3:  H{ P}  xyyz R   ⇔   (P xyyz P’ ∧ R � H{ P’}) ∨ 
(H xyyz H’  ∧ R � H’{ P}) ∨ (H ��R Õz�P)

• Examples: Perfect firewall and cipher equations; firewall crossing.
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Assessment

• We wanted to prove equations asserting simple security properties
of ambients, and we succeeded. But:

• Reasoning about higher-order hierarchical processes is difficult
(others have found similar difficulties). Is there an alternative?

• Defining reduction from structural congruence is a mixed blessing.
Laws P | 0 � 0 and !0 � 0, are not so innocent!

• Defining labeled transitions from hardening works well.

• Activity lemma is useful but suspicious. Is there a less monolithic
definition?
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TYPES FOR MOBILE  AMBIENTS
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Need for Distinctions

The syntax does not distinguish between names and capabilities,
therefore it permits strange terms like:

This cannot be avoided by a more precise syntax, because such terms
may be generated by interactions:

We have two sorts of things (ambient names and capabilities) that we
want to use consistently. A type system should do the job. 
Desired property: a well-typed program does not produce insane terms
like in n[P] and n.P.

in n[P] (stuck)
n.P (stuck)

jin nk | (m).m[P] xyyz in n[P]
jnk | (m).m.P xyyz n.P
(m). (m.P| m[Q]) (tests whether m is a name or a capability!)
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Exchange Types

• A quiet ambient: Amb $ Amb[Shh]

• A harmless capability: Cap $ Cap[Shh]

• A synchronization ambient: Amb[1]

• Ambient containing harmless capabilities: Amb[Cap[Shh]] 

• Ex.: A capability that may unleash the exchange of names for quiet
ambients: Cap[Amb[Shh]]

W ::=
Amb[T]
Cap[T]

message types
ambient name allowing T exchange
capability unleashing T exchange

T ::=
Shh
W1×...×Wk

exchange types
no exchange
tuple exchange (1 is the null product)
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Polyadic Ambient Calculus

P,Q ::=
(νn:W)P
0
P|Q
!P
M[P]
M.P
(n1:W1, ..., nk:Wk).P
jM1, ..., Mkk

M,N ::=
n
in M
out M
open M
ε
M.N
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Reduction

n[in m. P | Q] | m[R] xyyz m[n[P | Q] | R]
m[n[out m. P | Q] | R] xyyz n[P | Q] | m[R]
open n. P | n[Q] xyyz P | Q
(n1:W1, ..., nk:Wk).P | jM1, ..., Mkk xyyz P{ n1←M1, ..., nk←Mk}

P xyyz Q ⇒ (νn:W)P xyyz (νn:W)Q
P xyyz Q ⇒ n[P] xyyz n[Q]
P xyyz Q ⇒ P | R xyyz Q | R
P’ � P, P xyyz Q, Q � Q’ ⇒ P’ xyyz Q’
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Intuitions: Typing of Processes

• If M is a T, then jMk is a process that exchanges T.

M : W ⇒ jMk : W

• If P is a process that may exchange T, then (n:T).P is too.

P : W ⇒ (n:W).P : W

• If P and Q are processes that may exchange T, then P|Q is too. (Sim-
ilarly for !P.)

P : T, Q : T ⇒ P|Q : T

• Both 0 and n[P] exchange nothing at the current level, so they can
have any exchange type, and can be added in parallel freely.

• Therefore, W-inputs and W-outputs are tracked so that they match
correctly when placed in parallel. 
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Intuitions: Typing of Open

• We have to worry about open, which might open-up a T-ambient
and unleash T-exchanges inside an S-ambient.

• We decorate each ambient name with the T that can be exchanged
in ambients of that name. Different ambients may permit internal
exchanges of different types.

n : Amb[T], P : T ⇒ n[P] is legal and n[P] : S

• If n permits T-exchanges, then open n may unleash T-exchanges in
the current location.

n : Amb[T] ⇒ open n : Cap[T]

• Any process that uses a Cap[T] had better be a process that already
exchanges T, because new T-exchanges may be unleashed.

M : Cap[T], P : T ⇒ M.P : T
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Judgments

E ��/ good environment
E � M�: W good expression of type W
E � P�:�T good process that exchanges T
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Rules

E � / nÑdom(E) E’, n:W, E” � /

Ô ��/ E, n:W ��/ E’, n:W, E” � n : W

E ��/ E � M : Cap[T] E � M’  : Cap[T]

E � ε : Cap[T] E � M.M’  : Cap[T]

E � M : Amb[S] E � M : Amb[S] E � M : Amb[T]

E � in M : Cap[T] E � out M : Cap[T] E � open M : Cap[T]

E � M : Cap[T] E � P : T E � M : Amb[T] E � P : T

E � M.P : T E � M[P] : S

E, n1:W1, ..., nk:Wk � P : W1×...×Wk E � M1:W1 ... E � Mk:Wk

E � (n1:W1, ..., nk:Wk).P : W1×...×Wk E � jM1, ..., Mkk : W1×...×Wk



Talk August 5, 1999 1:57 pm 121

• Ex.: A process that outputs names of quiet ambients:

E � !(νn:Amb)jnk :�Amb

• Ex.: A capability that may unleash S-exchanges:

n:Amb[T], m:Amb[S] � in n. open m :�Cap[S]

Prop (Subject Reduction)
If E � P�:�U and P xyyz Q then E � Q�:�U.

E, n:Amb[T] � P : S E ��/

E � (νn:Amb[T])P : S E � 0 : T

E � P : T E � Q : T E � P : T

E � P|Q : T E � !P : T
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Typed Polyadic Asynchronous π-calculus 

nCh[T1, ..., Tk]o $
Amb[nT1o×nT1o×...×nTko×nTko]

n(νπn:Ch[T])Po $
(νn:nCh[T]o) (νnp:nCh[T]o) n[!open np] | nPo

nn(x1:T1, ..., xk:Tk).Po $
(νp:Amb) (open p |

np[in n. (x1,xp
1:nT1o, ..., xk,xp

k:nTko). p[out n. nPo]])

nnjn1, ..., nkko $
np[in n. jn1, np

1, ..., nk, np
kk]

nP|Qo $ nPo|nQo

n!Po $ !nPo
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Derived Rules

nE � Po $ nEo � nPo : Shh

nÔ, n1:W1, ..., nk:Wko $
Ô, n1:nW1o, n1

p:nW1o, ..., nk:nWko, nk
p:nWko

nE,n:Ch[W1, ..., Wk] � Po ⇒ nE � (νπn:Ch[W1, ..., Wk])Po
nE � n : Ch[W1, ..., Wk]o, nE � n1 : W1o, ..., nE � nk : Wko 

⇒ nE � njn1, ..., nkko
nE � n : Ch[W1, ..., Wk]o, nE, n1:W1, ..., nk:Wk � Po

⇒ nE � n(n1:W1, ..., nk:Wk).Po
nE � Po, nE � Qo ⇒ nE � P | Qo
nE � Po ⇒ nE � !Po
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Typed Call-by-Value λ-calculus

?x:T � x:TA��= ?x:TA � (νπk:Ch[?TA]) kjxk : Shh
= x:?TA, xp:?TA � (νk:Amb[?TA×?TA]) k[!open kp] | kp[in k.jx, xpk] : Shh

?A→BA $ Ch[?AA, Ch[?BA]]

?E � b:TA $ ?EA � (νπk:Ch[?TA]) ?bAk : Shh

?xTAk $   kjxk

?λx:A.bA→BAk $
(νπn:?A→BA) (kjnk | !n(x:?AA, k’:Ch[?BA]). ?bBAk’)

?bA→B(aA)Ak $

(νπk’:Ch[?A→BA], k”:Ch [?AA]) 
(?bAk’ | k’(x:?A→BA). (?aAk”  | k” (y:?AA). xjy, kk))
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Records

A record r containing cells ci has the general structure r[ ... | ci
buf[jMik

| !open ci
ip] | ... ], where r is the cell container, ci

buf are the value con-
tainers for each cell, ci

ip are input packets for reading and writing cell
contents, and Mi are the cell contents. 
nrecord ro $ r[]
nadd r c Mo $ cbuf[!open cip | in r. jMk]
nget r c (x:W). PSo $

(νop:Amb[S]) (open op. op[]  | 
cip[in r. in cbuf. (x:W). 

(jxk | op[out cbuf. out r. open op. nPo])])
nset r c jMWk. PSo $

(νop:Amb[S]) (open op. op[]  | 
cip[in r. in cbuf. (x:W). 

(jMk | op[out cbuf. out r. open op. nPo])])
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Field Types

The type of names of a record field holding W may be denoted by: 
Field[W]

This notation can be translated to the ambient calculus by mapping
each environment name n : Field[W] to two environment names nbuf,
nip : Amb[W], and by mapping each restriction (νn:Field[W]) P to the
restrictions (νnbuf:Amb[W]) (νnip:Amb[W]) P.
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Telestrip’d

?Agent[W1, ..., Wk]A $ Amb[?W1A×...×?WkA]

Typing: each agent can welcome only agents talking about a single 
type, but can meet different agents that talk about different types.

?NetA ::=  : Shh

?noplaceA $ 0
?place p[Arena]A $ p[?ArenaAp]   (if p:Amb[Shh])
?Net | NetA $ ?NetA | ?NetA
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?ArenaAp ::= : Shh   (if p:Amb[Shh])

?emptyAp $ 0
?agent (a:Agent[W1, ..., Wk])[Code]Ap $

(νa:?Agent[W1, ..., Wk]A) 
a[record sut | add sut at p | ?CodeAn]

?Arena | ArenaAp $ ?ArenaAp | ?ArenaAp

(Built-in "resources" of places can be modeled as static agents.)
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?CodeAa ::= : ?W1A×...×?WkA   (if a : ?Agent[W1, ..., Wk]A)

?stopAa $ 0

?go p. CodeAa $
get sut at(q:Amb[Shh]). set  sut atjpk. out q. in p. ?CodeAa

?spawn (a’:Agent[W1, ..., Wk])[Code’]. CodeAa $ (for a’≠a)
get sut at(p:Amb[Shh]). (νa’,u:nAgent[W1, ..., Wk]o) 

(a’[record sut | add sut at p | out a. open u. nCode’oa’] 
�| open u. nCodeoa

�| (νt:Amb[Shh]) t[out a. in a’. out a’. 
(u[out t. in a’] | u[out t. in a])])
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?meet njn1, ..., nkk. CodeAa $
(νz:nAgent[W1, ..., Wk]o) 

z[out a. in n. n[out z. open z. jn1, ..., nkk]]  | nCodeoa

?welcome (x1, ..., xm). CodeAa $
open a | (n1:nW1o, ..., nk:nWko). nCodeoa

?folder n m. CodeAa $ (νn:Field[nWo]) (add sut n m| nCodeoa)

?get n(x:W). CodeAa $ get sut n(x:nWo). nCodeoa

?set njmk. CodeAa $ set sut njmk. nCodeoa

...
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STATIC  CONSTRAINTS ON MOBILITY
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Introduction

• The Ambient Calculus is a process calculus based on:

– Local communication.

– Mobility regulated by capabilities.

• The calculus can be decorated with static information to restrict ei-
ther aspect (or both):

– Exchange control systems to restrict communication.

– Access control systems to restrict mobility. 
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• In [Cardelli-Gordon POPL’99] we have investigated exchange
types (which subsume type systems for processes and functions).

• In [Cardelli-Ghelli-Gordon ICALP’99] we investigate immobility
and locking annotations, which are simple predicates about mobil-
ity.

• Here we consider further static predicates about mobility.
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Name Groups (Sorts)

• We would like to say, within the type system, something like:

The ambient named n can enter the ambient named m.

But this would bring us straight into dependent types, since names
are value-level entities. This is no fun.

• Instead, we introduce type-level name groups G,H, and we say:

Ambients of group G can enter ambients of group H.

• Groups can be seen as related to π-calculus sorting mechanisms.
We add group creation.

• Group creation is surprisingly interesting. For example, it has the
effect of statically blocking certain communications, and can there-
fore prevent the “accidental” escape of capabilities that is a major
concern in practical systems.
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Grand Plan

• Investigate the notion of name groups and group creation. (This can
be applied directly to the π-calculus as well.)

• Study the judgment “process P may cross ambients of group G”.
(This reduces to immobility annotations when a process can cross
no groups.)

• Study the predicate “process P may open ambients of group G”.
(This reduces to locking annotations, when a group can be opened
by no processes.)

• Recursive types. (To capture mutually-recursive sorting, π-calculus
style.)

• Mix and stir well.
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Typed Ambient Calculus with Groups

• Just one new process construct:

(νG)P

to create a new group G with scope P.

• Just one new type construct:

G[T]

as the type of names of group G that name ambients that contain T
exchanges. 

The construct G[T] replaces Amb[T], where Amb can now be seen
as the group of all names.

• So we can now write, e.g.: (νG) (νn:G[Int]) n[j3k | (x:Int). P]
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Types

• A quiet ambient: G[Shh]

• A harmless capability: Cap[Shh]

• A synchronization ambient: G[1]

• Ambient containing harmless capabilities: G[Cap[Shh]] 

• A capability that may unleash the exchange of names for quiet am-
bients: Cap[G[Shh]]

W ::=
G[T]
Cap[T]

message types
ambient name in group G with T exchanges
capability unleashing T exchanges

T ::=
Shh
W1×...×Wk

exchange types
no exchange
tuple exchange (1 is the null product)
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Processes and Messages

P,Q ::=
(νG)P
(νn:W)P
0
P|Q
!P
M[P]
M.P
(n1:W1, ..., nk:Wk).P
jM1, ..., Mkk

M,N ::=
n
in M
out M
open M
ε
M.N
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Reduction

n[in m. P | Q] | m[R] xyyz m[n[P | Q] | R]
m[n[out m. P | Q] | R] xyyz n[P | Q] | m[R]
open n. P | n[Q] xyyz P | Q
(n1:W1, ..., nk:Wk).P | jM1, ..., Mkk xyyz P{ n1←M1, ..., nk←Mk}

P xyyz Q ⇒ (νG)P xyyz (νG)Q
P xyyz Q ⇒ (νn:W)P xyyz (νn:W)Q
P xyyz Q ⇒ n[P] xyyz n[Q]
P xyyz Q ⇒ P | R xyyz Q | R
P’ � P, P xyyz Q, Q � Q’ ⇒ P’ xyyz Q’
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Structural Congruence

P � P
P � Q ⇒ Q � P
P � Q, Q � R ⇒ P � R

(Struct Refl)
(Struct Symm)
(Struct Trans)

P � Q ⇒ (νG)P � (νG)Q
P � Q ⇒ (νn:W)P � (νn:W)Q
P � Q ⇒ P | R � Q | R
P � Q ⇒ !P � !Q
P � Q ⇒ M[P] � M[Q]
P � Q ⇒ M.P � M.Q
P � Q ⇒
   (n1:W1, ..., nk:Wk).P � (n1:W1, ..., nk:Wk).Q

(Struct GRes)
(Struct Res)
(Struct Par)
(Struct Repl)
(Struct Amb)
(Struct Action)
(Struct Input)
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P | Q � Q | P
(P | Q) | R � P | (Q | R)
!P � P | !P
(νn:W)(νm:W’)P � (νm:W’)(νn:W)P if n ! m
(νn:W)(P | Q) � P | (νn:W)Q if n Ñ fn(P)
(νn:W)(m[P]) � m[(νn:W)P] if n ≠ m

(Struct Par Comm)
(Struct Par Assoc)
(Struct Repl Par)
(Struct Res Res)
(Struct Res Par)
(Struct Res Amb)

(νG)(νG’)P � (νG’)(νG)P
(νG)(νn:W)P � (νn:W)(νG)P if G Ñ fn(W)
(νG)(P | Q) � P | (νG)Q if G Ñ fn(P)
(νG)(m[P]) � m[(νG)P]

(Struct GRes GRes)
(Struct GRes Res)
(Struct GRes Par)
(Struct GRes Amb)

(νG)0 � 0
(νn:W)0 � 0
P | 0 � P
!0 � 0

(Struct Zero GRes)
(Struct Zero Res)
(Struct Zero Par)
(Struct Zero Repl)
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ε.P � P
(M.M’ ).P � M.(M’ .P)

(Struct ε)
(Struct .)
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Judgments

E ��/ good environment
E � T good type
E � M�: W good message of type W
E � P�:�T good process that exchanges T
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Rules

Good Environments  

Good Types   

E � W nÑdom(E) E � / GÑdom(E)

Ô ��/ E, n:W ��/ E’, G � /

GÐdom(E) E � T E � T

E ��G[T] E � Cap[T]

E � / E � W1 ... E � Wk

E ��Shh E � W1×...×Wm
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Good Messages     

E’, n:W, E” � /

E’, n:W, E” � n : W

E ��Cap[T] E � M : Cap[T] E � M’  : Cap[T]

E � ε : Cap[T] E � M.M’  : Cap[T]

E � M : G[S] E � Cap[T] E � M : G[S] E � Cap[T]

E � in M : Cap[T] E � out M : Cap[T]

E � M : G[T]

E � open M : Cap[T]
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Good Processes          

E, G � P : S GÑfn(S) E, n:G[T] � P : S

E � (νG)P : S E � (νn:G[T])P : S

E � M : Cap[T] E � P : T E � M : G[T] E � P : T E � S

E � M.P : T E � M[P] : S

E ��T E � P : T E � Q : T E � P : T

E � 0 : T E � P | Q : T E � !P : T

E, n1:W1, ..., nk:Wk � P : W1×...×Wk E � M1:W1 ... E � Mk:Wk

E � (n1:W1, ..., nk:Wk).P : W1×...×Wk E � jM1, ..., Mkk : W1×...×Wk
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Prop (Subject Reduction)
If E � P�:�T and P xyyz Q then there exists Gs such that Gs, E � Q
:�T.

1
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Scope Extrusion

Consider:

(νG) (νn:G[Shh]) jnk

It cannot be typed, because G escapes along with the messages n:

G, n:G[Shh] � jnk�: G[Shh]
~�� G � (νn:G[Shh]) jnk�: G[Shh]
~�� � (νG) (νn:G[Shh]) jnk�: G[Shh]       (G Ð fn(G[Shh]))

Similarly, 

(νm:W) m[(νG) (νn:G[Shh]) jnk]

cannot be typed, because it contains an untypable term. But can we
type this one, which is equivalent by extrusion:

(νm:W) (νG) m[(νn:G[Shh]) jnk]
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Again:

(νm:W) (νG) m[(νn:G[Shh]) jnk]

This looks like it may be typable (breaking subject reduction) because
the message jnk�: G[Shh] is confined to the ambient m, and m[...] can
have an arbitrary type, e.g. Shh, that does not contain G. Therefore
(νG) would not “see” any message escaping.

However, consider the type of m: it must have the form H[T], where H
is some group, and T is the type of messages exchanged inside m.
Hmmm..., but that’s G[Shh]. So we would have:

(νm:H[G[Shh]]) (νG) m[(νn:G[Shh]) jnk]

which is not typable. Good.
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Finally, this variation (not equivalent to the previous one) is typable:

(νG) (νm:H[G[Shh]]) m[(νn:G[Shh]) jnk]

Therefore, we can create a new group G, and then ambients in
which names of that group are exchanged. 

We are guaranteed that names of group G can never be communi-
cated to processes outside of the initial scope of G, simply because
those processes cannot name G to receive the messages.
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Secrecy

Therefore:

         Names of group G are secret (forever) within the scope of νG.

This is in contrast with the situation with ordinary name restriction,
where a name that is initially held secret (e.g. a key) may accidentally
be given away and misused (e.g. to decrypt previous messages).

• Scoping of names can be extruded too far, inadvertently. 

• Scoping of groups offers better protection. Still, it too can be ex-
truded arbitrarily, so it does not impede the mobility of processes
that carry secrets. It just prevents those processes from giving away
the secrets.

Speculation: groups might help in establishing “forward secrecy”
properties.
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Crossing Control

E � P�:��Hs,T process that exchanges T and crosses Hs

νn:G[�{}, T] a name for immobile ambients

W ::=
G[�Hs,T]

Cap[�Hs,T]

message types
ambient name in group G, containing 

processes that may cross Hs and exchange T
capability unleashing Hs crossings and 

T exchanges 
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Opening Control

E � P�:�°Hs,T process that exchanges T and opens Hs

νn:G[°Hs,T] a name for locked ambients, where GÑHs

(We require GÐHs for open n to be typeable, because the opening of
G may unleash further openings of Hs. With this rule the transitive clo-
sure of possible openings must be present already in the types.)

W ::=
G[°Hs,T]

Cap[°Hs,T]

message types
ambient name in group G, containing processes 

that may open Hs and exchange T
capability unleashing Hs openings and 

T exchanges 
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MODAL  LOGICS
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Introduction

• We have been looking for ways to express properties of mobile
computations, E.g.:

– "Here today, gone tomorrow."

– "Eventually the agent crosses the firewall."

– "Every agent carries a suitcase."

– "Somewhere there is a virus."

– "There is always at most one ambient called n here."

• Options include equational reasoning, reasoning on traces, or...
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Spatial Logic

• Devise a process logic that can talk about space as well as time.

• The ambient calculus has a spatial structure given by the nesting of
ambients: we want a logic that can talk about that structure:

• Could not find much of close relevance in the literature, except for
Mads Dam’s thesis and Urquhart’s semantics, but we quickly di-
verge from both.

Process
0 (void)
n[P] (location)
P | Q (composition)

Formula
0 (there is nothing here)
n[$] (there is one thing here)
$ | % (there are two things here)
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Restriction-free Ambient Calculus

P,Q : Π ::=
0
P | Q
!P
M[P]
M.P
(n).P
jMk

M ::=
n
in M
out M
open M
ε
M.M’

n[in m. P | Q] | m[R] xyyz m[n[P | Q] | R]
m[n[out m. P | Q] | R] xyyz n[P | Q] | m[R]
open m. P | m[Q] xyyz P | Q
(m).P | jMk xyyz P{ m←M}

(enter reduction)
(exit reduction)
(open reduction)
(read reduction)
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Structural Congruence
P � P
P � Q ⇒ Q � P
P � Q, Q � R ⇒ P � R

(Struct Refl)
(Struct Symm)
(Struct Trans)

P � Q ⇒ P | R � Q | R
P � Q ⇒ !P � !Q
P � Q ⇒ M[P] � M[Q]
P � Q ⇒ M.P � M.Q
P � Q ⇒ (x).P � (x).Q

(Struct Par)
(Struct Repl)
(Struct Amb)
(Struct Action)
(Struct Input)

ε.P � P
(M.M’ ).P � M.M’ .P

(Struct ε)
(Struct .)

P | Q � Q | P
(P | Q) | R � P | (Q | R)
P | 0 � P

(Struct Par Comm)
(Struct Par Assoc)
(Struct Par Zero)



Talk August 7, 1999 1:42 pm 159

These axioms (particularly the ones for !) are sound and complete with
respect to equality of spatial trees: edge-labeled finite-depth unor-
dered trees, with infinite-branching but finitely many distinct labels
under each node.

!(P | Q) � !P | !Q
!0 � 0
!P � P | !P
!P � !!P

(Struct Repl Par)
(Struct Repl Zero)
(Struct Repl Copy)
(Struct Repl Repl)
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Reduction

n[in m. P | Q] | m[R] xyyz m[n[P | Q] | R]
m[n[out m. P | Q] | R] xyyz n[P | Q] | m[R]
open n. P | n[Q] xyyz P | Q
(n).P | jMk xyyz P{ n←M}

(Red In)
(Red Out)
(Red Open)
(Red Comm)

P xyyz Q ⇒ n[P] xyyz n[Q]
P xyyz Q ⇒ P | R xyyz Q | R

(Red Amb)
(Red Par)

P’ � P, P xyyz Q, Q � Q’ ⇒ P’ xyyz Q’ (Red �)

xyyz* refl-tran closure of xyyz
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Why a Logic?

A recurring issue for us was how to state behavioral properties of
ambients. E.g., protocol specifications.

We have formal tools for establishing equational properties. But
many properties cannot easily be formulated as equations.

For example, type systems for ambients guarantee certain proper-
ties, such as that some ambients are immobile, some are persistent.
It’s hard to write down equations for immobility and persistence!

Our solution: use a (modal) logic tailored for ambients.
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Modal Formulas

In a modal logic, the truth of a formula is relative to a state (world).

In our case, the truth of a space-time modal formula is relative to
the here and now of a process. Each formula talks about the current
time (before further evolution of the process) and the current place
(the top-level of the process).

Therefore, the formula n[0] is read: 

there is here and now an empty location called n

The operator n[$] is a single step in space (akin to the temporal
next), which allows us talk about that place one step down into n.

Other modal operators can be used to talk about undetermined
times (in the future) and undetermined places (in the location tree).
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Logical Formulas

where η is a name n or a (quantifiable) variable x.

$, % : Φ ::=
T
¬$

$ ∨ %
0
η[$]
$ | %
Òx.$
2$
�$

$@η
$©%

true
negation (also $¬)
disjunction
void
location
composition
universal quantification over names
sometime modality (temporal)
somewhere modality (spatial)
location adjunct
composition adjunct
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Satisfaction Relation

P�P’ iff Ón, P”.  P � n[P’] | P”
�* is the reflexive and transitive closure of �

P � T
P � ¬$

P � $∨%
P � 0
P � n[$]
P � $ | %
P � Òx.$
P � 2$
P � �$

P � $@n
P � $©%

$ ¬ P � $
$ P � $ ∨ P � %
$ P � 0
$ ÓP’:Π. P � n[P’] ∧ P’ � $
$ ÓP’,P” :Π. P � P’|P”  ∧ P’ � $ ∧ P” � %
$ Òm:Λ. P � ${ x←m}
$ ÓP’:Π. Pxyz*P’ ∧ P’ � $
$ ÓP’:Π. P�*P’ ∧ P’ � $
$ n[P] � $ 
$ ÒP’:Π. P’ � $ ⇒ P|P’ � % 
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Claims

• The satisfaction relation is "utterly natural" (to us):

– The definitions of 0, $|%, and n[$] seem inevitable, once we ac-
cept that formulas should be able to talk about the tree structure
of locations, and that they should not distinguish processes that
are surely indistinguishable (up to �).

– The connectives $@n and $©% have security motivations.

– The modalities 2$ and �$ talk about process evolution and
structure in an undetermined way (good for specs).

– The fragment T, ¬$, $∨%, Òx.$, is classical: why not?

• The logic is induced by the satisfaction relation.

– We did not have any preconceptions about what kind of logic
this ought to be. We didn’t invent this logic, we discovered it!



Talk August 7, 1999 1:42 pm 166

Some Derived Formulas

F
$ ⇒ %
$ ∧ %
Óx.$
�$

4$

$F

$¬F

$F¬

$ ¬T
$ ¬$ ∨ %
$ ¬(¬$ ∨ ¬%)
$ ¬Òx.¬$

$ ¬�¬$

$ ¬2¬$

$ $©F

$�valid
$�satisfiable

P � - iff P � $ ⇒ P � %
P � - iff P � $ ∧ P � %
P � - iff Óm:Λ. P � ${ x←m}
P � - iff ÒP’:Π. P�*P’ ⇒ P’ � $
P � - iff ÒP’:Π. Pxyz*P’ ⇒ P’ � $ 

P � - iff ÒP’:Π. P’ � $ ⇒ P|P’ � F
iff ÒP’:Π. ¬ P’ � $ 

P � - iff ÒP’:Π. P’ � $ 
P � - iff ÓP’:Π. P’ � $ 
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Basic Fact

Satisfaction is invariant under structural congruence:

(P � $ ∧ P � P’) ⇒ P’ � $

I.e.: { P:Π @ P � $}  is closed under �.

Hence, formulas describe only congruence-invariant properties.
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Simple Examples

(1) p[T] | T 

there is a p here (and possibly something else)

(2) �(1)

somewhere there is a p

(3) (2) ⇒ 4(2)

if there is a p somewhere, then forever there is a p somewhere

(4) p[q[T] | T] | T

there is a p with a child q here

(5) �(4)

somewhere there is a p with a child q
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From Satisfaction to Logic

Propositional validity

vld $ $  ÒP:Π. P � $ $ (closed) is valid

Sequents

$�L} % $ vld ($ ⇒ %)

Rules

$1�L} %1; ...; $n�L} %n� $�L} % $ (n≥0)

$1�L} %1 ∧ ... ∧ $n�L} %n ⇒ $�L} %

N.B.: All the rules shown later are validated accordingly.

Conventions:

xML}��means  L}��in both directions

  means    in both directions
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"Neutral" Sequents

• The logic is formulated as a sequent calculus with single-premise,
single-conclusion sequents. We don’t pre-judge ",".

– By taking ∧ on the left and ∨ on the right of L} as structural oper-
ators, all the standard rules of sequent and natural deduction sys-
tems with multiple premises/conclusions can be derived. 

– By taking | on the left of L} as a structural operator, all the rules
of intuitionistic linear logic can be derived (by appropriate map-
pings of the ILL connectives).

– By taking nestings of ∧ and | on the left of L} as structural "bunch-
es", we obtain a bunched logic, with its two associated implica-
tions, ⇒ and ©.

• This is convenient. We do not know much, however, about the met-
atheory of this presentation style.
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Step 1: Propositional Rules

(A-L) $∧(&∧')�L} %  ($∧&)∧'�L} %
(A-R) $�L} (&∨')∨%  $�L} &∨('∨%)
(X-L) $∧&�L} %  &∧$�L} %
(X-R) $�L} &∨%  $�L} %∨&
(C-L) $∧$�L} %  $�L} %
(C-R) $�L} %∨%  $�L} %
(W-L) $�L} %  $∧&�L} %
(W-R) $�L} %  $�L} &∨%
(Id)  $�L} $
(Cut) $�L} &∨%; $ª∧&�L} %ª  $∧$ª�L} %∨%ª

(T) $∧T�L} %  $ L} %
(F) $�L} F∨%  $ L} %
(¬-L) $�L} &∨%  $∧¬&�L} %
(¬-R) $∧&�L} %  $�L} ¬&∨%
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Step 2: Concurrency Rules

• Apart from our interest in mobility and nested locations, a fragment
of our logic makes sense just for ordinary concurrency (i.e., for a
CCS-like process calculus with 0 and | ). We examine this fragment
first.

• (Small caveat. To get things off the ground, one needs some process
that is definitely ¬0. In our full logic, locations have this property,
otherwise something must be introduced for this purpose.)
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Concurrency Rules

( | 0)  $ | 0 xML} $ 0 is nothing

( | ¬0)  $ | ¬0 L} ¬0 if a part is non-0, so is the whole

(A | )  $ | (% | &) xML} ($ | %) | & | associativity

(X | )  $ | % L} % | $ | commutativity

( | L}) $ª�L} %ª; $¨�L} %¨  $ª | $¨ L} %ª | %¨ | congruence

( | ∨)  ($∨%) | & L} $ | &�∨ % | & |-∨ distribution

( | || )  $ª | $¨�L} $ª | %¨�∨ %ª | $¨�∨ ¬%ª | ¬%¨ decomposition

( | ©) $ | &�L} %  $�L} &©% |-© adjunction

N.B., neutral sequents make the rule ( | L}) (and others) particularly
simple, even though | does not distribute with ∧ in the "useful" direc-
tion.
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The Decomposition Operator

Consider the De Morgan dual of | :

$ || %  for every partition, one piece satisfies $ 
or the other piece satisfies %

$�Ò ⇔ ¬((¬$)Ó)  every component satisfies $ 
$�Ó ⇔ ¬((¬$)Ò)  some component satisfies $ 

Examples:

(p[T] ⇒ p[q[T]Ó])Ò every p has a q child
(p[T] ⇒ p[q[T] | (¬q[T])Ò])Ò every p has a unique q child

$ || %

$�Ò

$�Ó

$ ¬(¬$ | ¬%)

$ $ || F
$ $ | T

P � - iff ÒP’,P” :Π. P � P’|P”  ⇒ 
P’ � $ ∨ P” � %

P � - iff ÒP’,P” :Π. P � P’|P”  ⇒ P’ � $
P � - iff ÓP’,P” :Π. P � P’|P”  ∧ P’ � $
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The Decomposition Axiom

( | || )  ($ª | $¨)�L} ($ª | %¨)�∨ (%ª | $¨)�∨ (¬%ª | ¬%¨)

Alternative formulations and special cases:

 ($ª | $¨)�∧ (%ª || %¨)�L} ($ª | %¨)�∨ (%ª | $¨)

"If P has a partition into pieces that satisfy $ª and $¨ , and every
partition has one piece that satisfies %ª or the other that satisfies %¨,
then either P has a partition into pieces that satisfy $ª and %¨ , or it
has a partition into pieces that satisfy %ª and $¨ ."

 ¬($ | %) L} ($ | T) ⇒ (T | ¬%)

"If P has no partition into pieces that satisfy $ and %, but P has a
piece that satisfies $, then P has a piece that does not satisfy %."

 ¬(T | %) L} T | ¬%
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The Composition Adjunct

( | ©) $ | &�L} %  $�L} &©%

"Assume that every process that has a partition into pieces that sat-
isfy $ and & , also satisfies %. Then, every process that satisfies $,
together with any process that satisfies &, satisfies %. (And vice
versa.)"    (c.f. (xyµ R))

Interpretations of $©%:

- P provides % in any context that provides $

- P ensures % under any attack that ensures $

That is, P � $©% is a context-system spec (a concurrent version of a
pre-post spec).

Moreover $©% is, in a precise sense, linear implication: the context
that satisfies $ is used exactly once in the system that satisfies %.
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Some Derived Rules

 ($©%) | $ L} %

"If P provides % in any context that provides $, and Q provides $, then P
and Q together provide %." 

Proof:   $©% L} $©%  ($©%) | $ L} %��������      by (Id), ( | ©)

' L} $; % L} &  ' | ($©%) L} & (c.f. (xyµ L))

"If anything that satisfies ' satisfies $, and anything that satisfies % satis-
fies &, then: anything that has a partition into a piece satisfying '�(and
hence $), and another piece satisfying % in a context that satisfies $, it sat-
isfies (% and hence) &."

Proof:

' L} $; $©% L} $©%  ' | $©% L} $ | $©% assumption, (Id), ( | L})

$ | $©% L} %  above

% L} & assumption
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More Derived Rules

 $ L} T | $ you can always add more pieces (if they are 0)

 F | $ L} F  if a piece is absurd, so is the whole

 0 L} ¬(¬0 | ¬0) 0 is single-threaded

 $ | % ∧ 0 L} $  you can split 0 (but you get 0). Proof uses ( | || )

$ª�L} $; %�L} %ª  $©%�L} $ª©%ª ©�is contravariant on the left

 $©% | %©& L} $©& ©�is transitive

 ($ | %)©& xML} $©(%©&) ©�curry/uncurry

 $©(%©&) L} %©($©&) contexts commute

 T xML} T©T truth can withstand any attack

 T L} F©$ anything goes if you can find an absurd partner

 T©$ L} $ if $ resists any attack, then it holds
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Step 3: Location Rules

(n[] ¬0)  n[$] L} ¬0 locations exist

(n[] �¬ | )  n[$]�L} ¬(¬0 | ¬0) are not decomposable

(n[] �L}) $�L} %  n[$]�L} n[%] n[] congruence

(n[] ∧)  n[$]∧n[&]�L} n[$∧&] n[]-∧ distribution

(n[] ∨)  n[&∨%] L} n[&]∨n[%] n[]-∨ distribution

(n[] F)  n[F]�L} F can’t hold absurdity

(n[] @) n[$]�L} %  $�L} %@n n[]-@ adjunction
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Some Derived Rules

Consequences:
$�L} %  $@n�L} %@n @ congruence

 n[$@n]�L} $
 $�xML} n[$]@n

 n[¬$]�L} ¬n[$]
 ¬n[$]�xML} ¬n[T] ∨ n[¬$]
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Examples

an n $ n[T] | T there is now an n here

no n $ ¬an n there is now no n here

one n $ n[T] | no n there is now exactly one n here

$�Ò $ ¬(¬$ | T) everybody here satisfies $

(n[T] ⇒ n[$])Ò every n here satisfies $

�((n[T] ⇒ n[$])Ò) every n everywhere satisfies $
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Step 4: Time and Space Modalities

(2)  2$ xML} ¬4¬$

(4 K)  4($ ⇒ %) L} 4$ ⇒ 4%
(4 T)  4$ L} $
(4 4)  4$ L} 44$
(4 T)  T�L} 4T
(4 L}) $�L} %  4$�L} 4% 

(�)  �$ xML} ¬�¬$

(� K)  �($ ⇒ %) L} �$ ⇒ �%

(� T)  �$ L} $
(� 4)  �$ L} ��$

(� T)  T�L} �T
(� L}) $�L} %  �$�L} �%

S4, but not S5:      ¬ vld 2$ L} 42$�����������¬ vld �$ L} ��$
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Additional Modality Rules

(2 n[])  n[2$]�L} 2n[$]
(2 | )  (2$) | (2%)�L} 2($ | %)

(� n[])  n[�$]�L} �$

(� | )  (�$) | %�L} �($ | T)

(�2)  �2$�L} 2�$
if somewhere sometime $, then sometime somewhere $ 



Talk August 7, 1999 1:42 pm 184

Step 5: Validity and Satisfiability

P � $F iff ÒP’:Π. P’ � $ ⇒ P | P’ � F
iff ÒP’:Π. ¬P’ � $ iff $ is unsatisfiable

(©F ¬)  $F L} $¬ if $ is unsatisfiable then $�is false

(¬ ©F)  $F¬ L} $FF if $ is satisfiable then $F�is unsatisfiable

We can reflect validity and satisfiability within the logic:

Vld $ $  $¬F P � Vld $��iff  ÒP’:Π. P’ � $
Sat $ $  $F¬ P � Sat $��iff  ÓP’:Π. P’ � $

Then, as derived rules we have that Vld,Sat are S5 modalities.
(That is, S4 plus:  Sat�$ L} Vld�Sat�$.)
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Reflecting Name Equality

Name equality can be defined within the logic:

η�= µ  $  η[T]@µ

Since (for any substitution applied to η,µ):

P � η[T]@µ  
iff µ[P] � η[T]  
iff η�= µ ∧ P � T
iff η�= µ

Example: "Any two ambients here have different names":

Òx.Òy. x[T] | y[T] | T ⇒ ¬ x=y
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Thief!

A shopper is likely to pull out a wallet. A thief is likely to grab it.

Shopper� $
Person[Wallet[£] | T] ∧ 
2(Person[NoWallet] | Wallet[£])

NoWallet� $ ¬(Wallet[£] | T)

Thief� $�Wallet[£] ©�2NoWallet

By simple logical deductions involving the laws of ©�and 2:

Shopper | Thief�⇒ 
(Person[Wallet[£] | T] | Thief) ∧
2(Person[NoWallet] | NoWallet)
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Syntactic Connections with Linear Logic

• Intuitionistic linear logic (ILL) can be embedded in our logic:

• The rules of ILL can be logically derived from these definitions.
(E.g.: the proof of !$�L} !$ ⊗ !$�uses the decomposition axiom.)

• So, $1, ..., $n L}ILL  %  implies  $1 |  ... | $n L} %.

• N.B. weakening/contraction are not valid (because P | P ≠ P).

• But the additives, ∧ and ∨, distribute (a derived rule).

1ILL � $ 0
�ILL � $ F
�ILL � $ T
0ILL � $ F

$ ⊕ %� $ $ ∨ %
$ &  %� $ $ ∧ %
$ ⊗ %� $ $ | %
$ xyµ %� $ $ © %
!$� $ 0 ∧ (0 ⇒ $)¬F
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Semantic Connections with Linear Logic

• A (commutative) quantale 4 is a structure 
<S : Set, ≤ : S2→Bool, ⊗ : S2→S, 1 : S, r : 3(S)→S> such that:

≤, r : a complete join semilattice
⊗, 1 : a commutative monoid
p ⊗ rQ = r{ p ⊗ q @ q Ð�Q}

• They are complete models of Intuitionistic Linear Logic (ILL):

?$ ⊕ %A� $ r{ ?$A, ?%A} ?1ILL A� $ 1
?$ &  %A� $ r{ C @ C≤?$A ∧ C≤ ?%A} ?�ILL A� $ any element of S
?$ ⊗ %A� $ ?$A ⊗ ?%A ?�ILL A� $ rS
?$ xyµ %A� $ r{ C @ C ⊗ ?$A ≤ ?%A} ?0ILL A� $ rÔ
?!$A� $ υX. ?1 & $ & X⊗XA where υX. A{ X} �$ r{ C @ C ≤ A{ C}}

vldILL ($1, ..., $n L}ILL  %)4 $ ?$1A4 ⊗4 ... ⊗4 ?$nA4 ≤4 ?%A4
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The Process Quantale

• The sets of processes closed under � and ordered by inclusion form
a quantale (let  A��$�{ P @ P�Q ∧ Q Ð�A} ):

Φ $ <Φ, ⊆, ⊗, 1, t>     where, for A,B ⊆ Π:

Φ� $� { A� @ A ⊆ Π}
1Φ $� { 0} �,             A ⊗Φ B $� { P | Q @ P Ð�A ∧ Q Ð�B} �

• Our syntactic definitions of ILL operators match their quantale in-
terpretation. (E.g.: ?$ ⊗ %AΦ =�?$AΦ ⊗Φ ?%AΦ,  ?!$AΦ =�!Φ?$AΦ.)

• Interpretation of formulas:

?$A $ {P:Π @ P � $}        where ?$A�= ?$A�

• Our validity matches ILL validity for ILL sequents:

vldILL ($1, ..., $n L}ILL  %)Φ���⇔   vld($1 | ... | $n L} %)
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Applications

• Model Checking

– We have an algorithm for deciding the � relation for !-free pro-
cesses and ©-free formulas.

• Expressing Locking

– If E, n:Amb•[S] L} P : T (a typing judgment asserting that no am-
bient called n can ever be opened in P), then:

P � 4(�an n ⇒ 4�an n)

• Expressing Immobility

– If E, p:Amb•[S], q:Amb•[RS’] L} P : T (a typing judgment assert-
ing that no ambient called q can ever move within P), then:

P � 4(�(p parents q) ⇒ 4�(p parents q))
where p parents q� $��p[q[T] | T] | T
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Future Directions: Fixpoints

• Abadi, Lamport, and Plotkin and have described reactive specifica-
tions such that:

$ → %  | % → $ ⇒ $ ∧ %

Define:  < → =� $ µ;. (; © <) © =.  Then:

$ → %� =  (($ → %) © $) © %� ⇒ (% → $) © %
% → $� =  ((% → $) © %) © $� ⇒ ($ → %) © $

$ → %  | % → $� ⇒ (% → $) © %  | % → $ ⇒ %

$ → %  | % → $� ⇒ $ → %  | ($ → %) © $ ⇒ $

• Modalities and their variations can be defined from fixpoints.
Moreover, we can express new useful predicates:

n� $ ¬�(n[T] | T)
unique n� $ µ;. n | (n[n] ∨ Óy≠n. y[;])
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Conclusions

• The novel aspects of our logic lie in its treatment of space (spatial
structures) and of the evolution of space over time (mobility).

• The logic has a strong intensional flavor, reflecting the fact that
space has intensional properties. The logic has a linear flavor in the
sense that space cannot be instantly created or deleted.

• These principles can be applied to any process calculus that embod-
ies a distinction between topological and dynamic operators.

• The logic is based on strong computational intuitions. However,
from a purely logical point of view, it seems to have unusual prop-
erties (perhaps accidental to our presentation style).


