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WIDE AREA COMPUTATION




Three Mental Pictures

Three views of computation:
 Local area networks

 Wide area networks

e Mobile networks




1: LANs and (Traditional) Distributed Computing

Administrative Domain




LAN Characteristics

Static and often trivial topology (everything 1 logical step apart).
Immobility (initially) of software, computers, and links.

Software evolution: control mobility, data mobility, link mobility.
Hardware evolution: laptops, wireless LANS.

Traditional Distributed Object Systems: RPC/RMI.
(CORBA, OLE, Modula-3 Network Objects, Java RMI.)

Traditionally, no code mobility, no thread/process mobility.

More recently, pre-Web: code mobility (Tcl), agent mobility (Tele-
script), closure mobility (Obliq).



2: The Web




WAN Characteristics

Internet/Web: a federated WAN infrastructure that spans the planet.
We would like to program it.

Unfortunately, federated WANS violate many familiar assumptions
about the behavior of distributed systems.

Three phenomena that remain largely hidden in LANs become
readily observable:

— Virtual locations.

— Physical locations

— Bandwidth fluctuations

Another phenomenon becomes unobservable:

— Failures.



A WAN is not a big LAN

« To emulate a LAN on top of a WAN we would have to:

— (A) Hide virtual locations By semi-transparent security. But is
It possible to guarantee the integrity of mobile code?

— (B) Hide physical locationsCannot “hide” the speed of light,
other than by slowing down the whole network.

— (C) Hide bandwidth fluctuationsService guarantees eliminate
bandwidth fluctuations, but introduce access failures.

— (D) Reveal failuresimpossible in principle, since the Web is an
asynchronous network.

 Hard problems: (A) may be unsolvable for mobile code; (B) is only
solvable (in full) by introducing unacceptable delays; (C) can be
solved in a way that reduces it to (D); (D) is unsolvable in principle,
while probabilistic solutions run into (B).



Observables

WAN observablesre different (and not reducible to) LAN observ-
ables.

Observables determine programming constructs, and therefore In-
fluence programs and programming languages.

We need a complete set of programming constructs that can detec
and react to the available observables and, of course, we do no
want programming constructs that attempt to detect or react to non-
observables.

Something has already emerged to cope with these observables
Mobile Computation.



Mobile Computation

* Mobile computation can cope with the observables characteristic of
a wide-area network such as the Web.

— Virtual locations. Trust mechanisms to cross virtual barriers.
— Physical locations Mobillity to optimize placement.

— Bandwidth fluctuations Mobility to split applications and es-
tablish optimized communication protocols.

— Fallures. Running around or away from failures.
e Code mobility, post-Web.
— Basic Java Applets.
— Countless Tcl-based and Java-based ongoing projects.

— Still no (native) thread mobility.
(Many attempts; see Agent Mobility meetings)



3: Mobile Computing
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 Mobile devices also move computations. In this sense, we cannot
avoid the issues raised by mobile computation.



Hardware Mobility
* Lots of gadgets

Smart cards (wired).

Active badges, pagers (wireless).
Cellphones, GPS receivers (wireless).
Palm/Laptops (wired, wireless).

 Nested gadgets and networks, some mobile:

Personal gadgets
Personal Area Networks
Car, train, ship, airplane local networks



Two Overlapping Views of Mobillity
* Mobile Computing.

— |.e. mobile hardware, physical mobility.
* Mobile Computation.

— |.e. mobile software, virtual mobility.
« But the borders are fuzzy:

— Agents may move by traversing a network (virtually), or by be-
Ing carried on a laptop (physically).

— Computers may move by lugging them around (physically), or
by telecontrol software (virtually).

— Boundaries may be physical (buildings) or virtual (firewalls).



A Unifying Difficulty: Security Barriers
* A (nasty) fundamental change in the way we compute.
— Bye bye, flat IP addressing, transparent routing.
— Bye bye, single universal address space.

— Bye bye, transparent distributed object systems.

— Bye bye, roaming agents.

— Bye byeaction-at-a-distance computing

* Big firewalls (for intranets), small firewalls (for applets).
Becoming pervasive: 1 PC Firewall = $99.95.

* Firewall are designed impede access. But we need to make rightful
access simple.



Mobility Postulates

Separate locations exist. They may be difficult to reach.

Since different locations have different properties, both people and
programs (and sublocations!) will want to move between them.

Barriers to mobility will be erected to preserve certain properties of
certain locations.

Some people and some programs will still need to cross those bar-
riers.

This is the situation wide area computing has to cope with.



Related Work

« Broadly classifiable in two categories:
— Agents (Actors, Process Calculi, Telescript, etc.)
— Spaces (Linda, Distributed Lindas, JavaSpace, etc.)

« With our work on Ambients, we aim to unify and extend those basic
concepts.



M ODELING MOBILITY




Modeling Mobllity

It's all about barriers:

Locality =barrier topology.
Process mobility barrier crossing.
Security HIn)abillity to cross barriers.

Interaction byshared position within a barrier,
with no action at a distance.



Formalisms for Concurrency/Distribution

CSP/CCS. (Static/immutable connectivity.)

T-calculus. (Channel mobility.)
N.B. "mobility" in this context is not process mobility.

Process mobility is reduced to channel mobility.

Ambient Calculus:
Process mobility = Barrier crossing.



... In particular, 1t

* |In therecalculus (our starting point):
— processes exist in a singlentiguouslocation
— Interaction is byshared namesused as I/O channels

— there is no direct account of access control

e In our ambient calculus:
— processes exist in multiptesjoint locations
— Interaction is byshared position with no action at a distance

— capabilities, derived from ambient names, regulate access



Formalisms for Locality

« Join calculus. (Channel mobility and locality.)

« Various calculi with failure. (Locality = Partial Failure.)

 Ambient calculus:
Locality = Barrier topology.




Formalisms for Security

 (BAN logic, etc.)
« Spi-calculus. (Channel mobility and cryptography)

 Ambient calculus:
Security = (In)abllity to cross barriers.




AMBIENT CALCULUS




Approach

We want to capture in an abstract way, notions of locality, of mo-
bility, and of ability to cross barriers.

An ambients a place, delimited by a boundamhere computation
happens.

Ambients have aame a collection of locaprocessesand a col-
lection ofsubambients

Ambients can move in an out of other ambients, subjectgabil-
ities that are associated with ambient names.

Ambient names are unforgeable (agtiand spi).



The Ambient Calculus

P:= (vn)P new name in a scope )  scoping
0 Inactivity ~ standard in
PIP  parallel process calculi
P replication

' _ data structures
M[P]  ambient

M.P exercise a capability
(n).P  Input locally, bind tan
(M) output locally (async)

M::= n name
InM  entry capabllity )

ambient-specific

actions
ambient I/O

out M exit capability basic capabilities

open M open capability
€ empty path

M.M"  composite path useful with 1/0




Semantics

e Behavior

— The semantics of the ambient calculus is given in non-determin-
Istic “chemical style” (as in Berry&Boudol’'s Chemical Abstract

Machine, and in Milner’st-calculus).

— The semantics is factored into a reduction relafion- P’ de-
scribing the evolution of a processnto a procesB’, and a pro-
cess equivalence indicated GQy= Q.

— Here,— is real computation, while is “rearrangement”.

 Equivalence

— On the basis of behavior, a substitutoleservational equiva-
lence P = Q, Is defined between processes.

— Standard process calculi reasoning technigues (context lemmas
bisimulation, etc.) can be adapted.



Parallel

« Parallel execution is denoted by a binary operator:

P1Q
e |tis commutative and associative:
PIQ = QP
PIQ IR = PIQIR)
* |t obeys the reduction rule:
P—Q O PIR—Q|R




Replication

Replication is a technically convenient way of representing itera-
tion and recursion.
P
It denotes the unbounded replication of a proéess
P = P|IP

There are no reduction rules fét; in particular, the processun-
der ! cannot begin to reduce until it is expanded o &5



Restriction

The restriction operator creates a new (forever unigue) ambient
namen within a scopéd.

(vn)P

As in ther-calculus, theyn) binder can float as necessary to extend
or restrict the scope of a name. E.qQ.:

(v)(P|Q) = P|UNQ ifn¢ in(P)
Reduction rule:
P—Q U (vn)P— (Vvn)Q




Inaction

e The process that does nothing:
0

« Some garbage-collection equivalences:

P|IO = P
10 = 0
(vn)0 = O

 This process does not reduce.




Ambients

An ambient is written as follows, whenas the name of the ambi-
ent, andP Is the process running inside of it.

n[P]
In n[P], it is understood tha is actively running:
P—Q U n[P] —n[Q]

Multiple ambients may have the same name, (e.g., replicated serv-
ers).



Actions and Capabillities

* Operations that change the hierarchical structure of ambients are
sensitive. They can be interpreted as the crossing of firewalls or the
decoding of ciphertexts.

 Hence these operations are restricteddpabilities
M. P

This executes an action regulated by the capaMlignd then con-
tinues as the proceBs

 The reduction rules fdvl. P depend om.



Entry Capabillity

* An entry capabilityjn m, can be used in the action:

* The reduction rule (non-deterministic and blocking) is:

nmP

ninm.P|Q][mR] — m[n[P|Q]|R]

In m.P|Q

| | R — P|Q

|R




Exit Capabillity

e An exit capability,out m can be used in the action:
outmP

* The reduction rule (non-deterministic and blocking) is:

minfoutm. P |Q] |R] — n[P[Q]|mM[R]

outm.P|Q | |R —> PIQ | |




Open Capability

* An opening capabilityppen mcan be used in the action:
open nP
* The reduction rule (non-deterministic and blocking) is:
openn.P|n[Q] — P|Q

openn.P| | Q —= P|Q




 An openoperation may be upsetting to bétlandQ above.

— From the point of view oP, there is no telling in general what
Q might do when unleashed.

— From the point of view o), its environment is being ripped
open.

o Sitill, this operation is relatively well-behaved because:

— The dissolution is initiated by the agepenn. P, so that the ap-
pearance of) at the same level &sis not totally unexpected,

— open nis a capability that is given out loy son[Q] cannot be
dissolved if it does not wish to be.



Design Principle

e An ambient should not get killed or trapped unless:
— It talks too much. (By making its capabilities public.)
— It poisons itself. (By opening an untrusted intruder.)
— It steps into quicksand. (By entering an untrusted ambient.)
e Some natural primitives violate this principle. E.g.:
n[burstn. P|Q] — P|Q

Then a meran capability gives a kidnapping ability:
entragM) 2 (v km) (m[M. burst min K] | K[])

entrag(in n) [ n[P] —*  (vKk) (n[in k| P] | k[])
—* (VK K[n[P]]



 Moral
— One can imagine lots of different mobility primitives.

— But one must think hard about the "security" implications of
combinations of these primitives.



Ambient I/O

Local anonymous communication within an ambient:

(). P Input action
(M) async output action

We have the reduction:
(X). P | (M) — P{x~ M}
This mechanism fits well with the ambient intuitions.

— Long-range communication, like long-range movement, should
not happen automatically because messages may have to cros
firewalls and other obstacles. (C.f., Telescript.)

— Still, this I1s sufficient to emulate communication over named
channels, etc.



Reduction Summary

ninm. P |Q] | MR] — m[n[P | Q] |R] (Red In)

m[nfoutm. P |Q] | R] — n[P | Q] | MR] (Red Out)

openn. P |n[Q] — P |Q (Red Open)

(n). P [ (M) — P{n— M} (Red Comm)
P—Q O (vn)P— (vn)Q (Red Res)

P—Q U n[P] —nQ] (Red Amb)

P—Q O P|IR—Q]|R (Red Par)
P=P,P—-0Q,0=0Q 010 P —Q (Red=)

—>* reflexive and transitive closure ef>

In addition, we identify terms up to renaming of bound names:
(vh)P = (vmP{nm} if m¢ fn(P)
(nN).P = M).P{n—m} if m¢ in(P)
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Structural Congruence Summary

e
Il
-

[ P=R

(vn)P = (vn)Q
PIR=Q|R
IP=1Q

M[P] = M[Q]
M.P = M.Q
(n).P=(n).Q

U U UUUU UTUTU
'ONONONONONORNONOE
ODoooogoo ©Og

(Struct Refl)
(Struct Symm)

(Struct Trans)

(Struct Res)
(Struct Par)
(Struct Repl)
(Struct Amb)
(Struct Action)
(Struct Input)

Talk July 21, 1999 4:33 pm
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P[Q=QI[P

(PIQIR=P[QI|R)

IP=P|IP

(vn)(vm)P = (vm)(vn)P

(Vvn(P[Q) =P | (nQ if n¢ n(P)
(vn)(M[P]) = m[(vn)P] if n#m

P|O=P
(vn)0=0
10=0

eP=P
(M.M*).P=M.(M".P)

(Struct Par Comm)
(Struct Par Assoc)
(Struct Repl Par)
(Struct Res Res)
(Struct Res Par)
(Struct Res Amb)

(Struct Zero Par)
(Struct Zero Res)
(Struct Zero Repl)

(Structe)
(Struct .)

Talk
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Example

Principal A Principal B

A A

4 I
Almsd(Mj|out A. in B] | B[open msg(X). P]
- 4 - J

send M: A=>B receive xP

Almsd(M)lout A in B]] | B[open msg(x). P]
— A[] | msdg(M)|in B] | B[open msg(X). P]
— A[] | B[msd(M)]|lopen msg(x). P]

— Al] | BIM)|(X). P]

— Al] | B[P{x~M}]

Talk
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Noticeable Inequivalences

* Replication creates new names:
I(vn)P # (vn)!P
« Multiple n ambients have separate identity:

n[P]n[Q] # n[P|Q]




FOLDER CALCULUS




The Folder Calculus

« A graphical office metaphor to explain the ambient calculus.
* A precise metaphor, isomorphic to the formal ambient calculus.

« Based on wide-area computation principles: locality, mobility,
nested domains, asynchronous communication, authentication.



Folders (Nested Domains)

e A folder namen.
e Active contentd>:
— hierarchical data and “gremlins”.

— computational primitives for mobility and communication.




Enter Reduction (Mobility)

Talk
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Exit Reduction (Mobility)
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Open Reduction (Assimilation)

—
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Copy Reduction (lteration/Recursion)
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Rubber Stamps (Authentication)

\ y

\————

« Give authenticity to folders.

o Copiers are unable to accurately duplicate rubber stamps.

—) —) )
| | | |
n — | m n — | N
I s B N |-< N
/ / / /
\ \ \ \
\ \P, / \ \P /
\\___\’./___’/ \\___\’./___’/

allowed forbidden




Post-It Notes (Local Communication)

* A Post-It Note (Nameless file / Asynchronous message).

[

e A gremlin grabbing (reading and removing) a note.

X P{x} )
 Read reduction
ﬁ X P{x}) —> P{ M}




Messages (Names or Capabillities)

A messag@ can be either:
 The name of a folder (danger: spoofing, killing):

& -

E _X‘open X> P)) — open P )

« A capability (no danger of recovering the name):

“ X (E) -




Leaves of the Syntax

O

Inactivegremlin

P
i
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Example

. Message from Ato B

open ms

@

E xit

Enter

Talk
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Open

Read

Talk

July 20, 1999 12:33 pm

58



P{a/x}
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Same Example, with scoping




Open
—>
Read

—>
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Example: Agent Authentication
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Example: A Distiller Server

distill(x)

out inbox. in outb

ﬁ

—

in distiller. in inb@@

Talk July 20, 1999 12:33 pm
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Example: Keys

generation of a fresh kel

encryption:
plaintextM inside ak-envelope

decryption:

opening ak-envelope and reading
the contents

Talk

July 20, 1999 12:33 pm
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AMBIENT CALCULUS
EXPRESSIVENESS




Expressiveness

e Some new features

— The primitives invented for process mobility end up being mean-
ingful for security.

— The combination of mobility and security in the same formal
framework seems novel and intriguing.

— E.qg., we can represent both mobility and (some) security aspects
of “crossing a firewall”.



Old Concepts

Old concepts that can be represented:

Synchronization and communication mechanisms.
Turing machines. (Natural encoding, no /O required.)
Arithmetic. (Tricky, no I/O required.)

Data structures.

m-calculus. (Easy, channels are ambients.)
A-calculus. (Hard, different than encodingn 1)

Spi-calculus concepts. (Being debated.)



New Concepts

Net-centric concepts that can be represented:

Named machines and services on complex networks.
Agents, applets, RPC.

Encrypted data and firewalls.

Data packets, routing, active networks.

Dynamically linked libraries, plug-ins.

Mobile devices.

Public transportation.



Ambients as Locks

 We can usepento encode locks:

releasenP 2 n[] |P
acquirenP & openn.P

* This way, two processes can “shake hands” before proceeding with
their execution:

acquire nrelease mP | release nacquire mQ




Turing Machines

endextendLff] & |

squarg$, |
squar¢S |

squar¢S | head|

squarg¢S, |
squar¢S, |extendRAL .. | .. []]

Talk June 14, 1999 11:40 am
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Ambients as Mobile Processes

tourist 2 (X). jog[x. enjoy]
ticket-desk 2 ! (in AF81SFO. out AF81CDG

SF(ticket-desH tourist | AF81SFQroutg]]

—*  SF(ticket-desK
jog[in AF81SFO out AF81CDGenjoy |
AF81SFJroutd]

—*  SF(ticket-desK
AF81SFQroute|jodout AFS1CDGenjoy]]




Ambients as Firewalls (buggy)

 Assume that the shared kieys already known to the firewall and
the client.

Wally 2 (wwr) (inr)|r[open k. inW|w[openr. B)
Cleo 2 (X). k[x. C]

Cleo|Wally
—*(vwr) ((X).kx C]|(nr)|r[open K. In W|w[openT. R)
—*(vwr) (k[inr.C]|r[open K. In W|w[openTr. R)
—* (vw ) (r[K[C] | open kinw] | w[openT. R)
—*(vwrn) (r[C|inw]|wopenr.R)
—*(vwr) (wW[r[C]|opent P])
—*(vw) (W[C[P])




Ambients as Firewalls

 Assume that the shared kieys already known to the firewall and
the client.

Wally 2 (ww) (K[in k. inw |w[open k. P
Cleo £ Kopen kC]

Cleo|Wally
—* (VW) ( Klopen kC] | k[in k. iInw] | w[open K. P)
—* (VW) ( K[K[In w] | open k C] | wlopen k. PP)
—* (vw) (k[in w|C] | w[open k. )
—* (vw) W[K[C] | open k P]
—* (vw) W[C |P]




Comments

e One secret names is introduceds the secret name of the firewall.

 We want to verify that Cleo knows the kkythis is done byn k.
After that, Cleo gives control ta w to enter the firewall.



The Asynchronousrt-calculus

A named channel is represented by an ambient.
— The name of the channel is the name of the ambient.

— Communication on a channel is becomes local I/O inside a chan-
nel-ambient.

— A conventional namag, is used to transport I/O requests into

the channel.
(ch nP 2 (vn) (n['openig | P)
n(x).P 2 (vp) (io[in n. (X). p[out n P]] | open p
n{M) 2 jo[in n. (M)]

 These definitions satisfy the expected reduction in presence of a
channel fom:

n(x).P|n(M) —* P{x-M}



e Therefore:

gvmP) 2 (vn) (n['open id|¢PD)

n(x).P) 2 (vp) (io[in n. (X). p[out n {P)]]|open p
dn{m)) 2 io[in n. {m)]

(PIQY £ (PYIEQY

§'P) & 1GPY

— The choice-free synchronouscalculus, can be encoded within
the asynchronous-calculus.

— TheA-calculus can be encoded within the asynchromecedcu-
lus.




WAN L ANGUAGES




From Calculi to Languages

The ambient/folder calculus is a minimal formalism designed for
theoretical study. As such, it is not a “programming language”.

Still, the ambient calculus is designed to match fundamental WAN
characteristics.

By building languages on top of a well-understood WAN seman-
tics, we can be confident that languages will embody the intended
semantics.

We now discuss how ambient characteristics might look like when
extrapolated to programming languages.



WAN Phenomena

 Physical Locations
— Observable because of the speed of light limit
— Preclude instantaneous actions
— Require mobile code

* Virtual Locations
— Observable because of administrative domains
— Preclude unfettered actions

— Require security model and disconnected operation



* Variable Connectivity
— Observable because of free-will actions, physical mobility
— Precludes purely static networks
— Requires bandwidth adaptability
* Failures
— Unobservable because of asynchrony, domain walls
— Preclude reliance on other parts of the system

— Require blocking behavior, transaction model



Mobility and Barriers

Mobillity is all about barriers:

— Locality =barrier topology.

— Process mobility barrier crossing.

— Security in)abllity to cross barriers.

— Communication steraction within a barrier.

— No immediateaction at a distancé= across barriers.

Ambients embed this barrier-based view of mobility, which is
grounded on WAN observables.

A “wide-area language” is one that does not contain features violat-
Ing this view of computation.



Wide Area Languages
 WAN-sound

— No action-at-a-distance assumption
— No continued connectivity assumption
— No security bypasses

« WAN-complete

— Able to emulate and support surfer/roamer/road-warrior
behavior

e Some steps towards Wide Area Languages:
— Agent languages (although many are effectively LAN-bound)
— Ambit (with Mads Torgesen)

— Service Combinators (with Rowan Davies)
WebL (Hannes Marais)



Ambients as a Programming Abstraction

Our basic abstraction is that of mobile computational ambients.

The ambient calculus brings this abstraction to an extreme, by rep-
resentingeverythingin terms of ambients at a very fine grain.

In practice, ambients would have to be medium or large-grained en-
tities. Ambient contents should include standard programming sub-
systems such as modules, classes, objects, and threads.

But: the ablility to smoothly move a collection of running threads is
almost unheard of in current software infrastructures. Ambients
would be a novel and non-trivial addition to our collection of pro-

gramming abstractions.



Names vs. Pointers

 The only way to denote an ambient is by its name.

— One may possess a hame without having immediate access tc
any ambient of that name (unlike pointers).

— Name references are never “broken” but may be “blocked” until
a suitable ambient becomes available.

o Uniformly replace pointers (to data structures etc.) by names.
— At least across ambient boundaries.

— This Is necessary to allow ambients to move around freely with-
out being restrained by immobile ties.



| ocations

 Ambients can be used to model both physical and virtual locations.
— Some physical locations are mobile (such as airplanes) while
others are immobile (such as buildings).

— Similarly, some virtual locations are mobile (such as agents)
while others are immobile (such as mainframe computers).
« Mobility distinctions are not part of the basic semantics of ambi-
ents.
— Can be added as a refinement of the basic model, or

— Can be embedded in type systems that restrict the mobility of
certain ambients.



Migration and Transportation

 Ambients offer a good paradigm for application migration.

— If an ambient encloses a whole application, then the whole run-
ning application can be moved without need to restart it or rein-
itialize it.

— In practice, an application will have ties to the local window sys-

tem, the local file system, etc. These ties, however, should only
be via ambient names.

— After movement the application can smoothly move and recon-
nect its bindings to the new local environment. (Some care will
still be needed to restart in a good state).



Communication

 The communication primitives of the ambient calculus (local to an
ambient) do not support global consensus or failure detection.

 These properties should be preserved by any higher-level commu-
nication primitives that may be added to the basic model, so that the
Intended semantics of communication over a wide-area networks is
preserved.

— RPC, interpreted as mobile packets that transport and deposit
messages to remote locations.

— Parent-child communication

— Communication between siblings.



Synchronization

 The ambient calculus is highly concurrent.

— It has high-level synchronization primitives that are natural and
effective (as shown in the examples).
— It Is easy to represent basic synchronization constructs, such as
mutexes:
releasenP 2 n[]|P release a mutex calleg and daP
acquire nP 2 opennP acquire a mutex called then doP

 Sitill, additional synchronization primitives are desirable.

— A useful technigue is to synchronize on the change of name of
an ambient:

nfbe mP|Q] - m[P|Q]

— (See also the Seal calculus by Castagna and Vitek.)



Static and Dynamic Binding

 The names of the ambient calculus represent an unusual combina
tion of static and dynamic binding.

— The names obey the classical rules of static scoping, including
consistent renaming, capture-avoidance, and block nesting.

— The navigation primitives behave by dynamically binding/link-
INg a name to any ambient that has the right name.

« Definitional facilities can similarly be derived in static or dynamic
binding style. E.g.:

— Statically bound function definitions.

— Dynamically bound resource definitions.



Modules

 An ambient containingefinitionsis similar to a module/class.
— Remote invocation is like qualified module access.
— openis like inheritance.
— copyis like object generation from a prototype.
e Unusual “module” features:
— Ambients ardirst class modulesone can choose at run time

which particular instance of a module to use.

— Ambients supportlynamic linking missing subsystems can be
added to a running system by placing them in the right spot.

— Ambients supportlynamic reconfigurationModule identity is
maintained at run time. The blocking semantics allows smooth
suspension and reactivation. The dynamic hierarchical structure
allows replacement of subsystems.



Security

 Ambient security is based on boundaries and capabilities, as op-
posed to a cryptography, or access-control.

e These three models are all interdefinable. In our case:

— Access control is obtained by using ambients to implement RPC-
like invocations that have to cross boundaries and authenticate
every time.

— Cryptography is obtained by interpreting ambient names (by as-
sumption unforgeable) as encryption keys.

 The ambient security model is high level.
— It maps naturally to administrative domains and sandboxes.

— It allows the direct discussion of virus, trojan horses, infection of
mobile agents, firewall crossing, etc.



Summary of WAL Features

No “hard” pointers.

Remote references are URLSs, symbolic links, or such.
Migration/Transportation

Thread migration.

Data migration.

Whole-application migration.
Dynamic linking.

A missing library or plug-in may suddenly show up.
Patient communication.

Blocking/exactly-once semantics.

Built-in security primitives.



EQUIVALENCE




Contextual Equivalence

A standard semantic equivalenée: Q iff the observable behavior
of a system with componehtis unaffected by replacingwith Q.

In the ambient calculus:
— Pl n means that proce&sexhibitsn (observable bypen 1).
Pin = P=(Vn..n)(NQ]|R U n¢{ny...ny}

— PLnh means that proce8sconverges, I.e., it evolves into a pro-
cess that exhibits.

Plh =« P—*Q 0 Qin
— A contextC(e) Is a process with a hole. Ex,n[e], in N., .
— Contextual Equivalence:
P=~Q = Vn.VC(e). C(P)n = C(Q)




Example: Some Basic Equations

e Some easy inequivalences:
— p[] andq[] distinguished by.
— open p0 andopen g0 distinguished by[n[]] | «.
— In p.0 andout pO distinguished byn[n[. | out p. out | p[]].
* As Iin most process calculi, reduction does not imply equivalence:
— n[] | open N0 — O butn[] | open N0 # 0.
A general law:
(vn)(n[] | open n.B = (vn)P




Example: Perfect Firewalls

 An ambientn[P] can abstractly model an internet firewall named

enclosing a group of machineqor a sandbox namedenclosing
a group of applets).

ThePerfect Firewall Equation

If nobody inside or outside an ambient knows its name, then it
forms a perfect boundary between its inside and outside:

n¢g in(P) 1 (vnn[P] =0
(Alternatively: (vn)n[(vn)P] = 0.)



Example: Perfect Encryption

 An ambientk|(M)] abstractly models a ciphertéxtl} , obtained by
encrypting a plaintext! with a keyk.

ThePerfect Encryption Equation
(VK)K[(M)] = (VK)K[(M")]
(Follows from the Perfect Firewall Equatiorkif fn(M).)
Compare withvk)c({ M}, = (vK)c{M’},) from spi.




Example: Piloting an Agent Across a Firewall

* Pre-arranged passworkls<, k" allow an agent to cross a firewall:

Firewall 2 (vw)w[k[out w. in kK’. in W} | open k'. open k".P
Agent2 k'[open K.K[C]]

Assumingk, k', k" do not occur IrC or P andw does not occur in
C, we get the safety property:

(Vk k’ K") (Agent| Firewall) = (vw)w[C | P]
« Contextual equivalence here means that:
— The agent may successfully cross the firewall. In addition:

— The agent will successfully cross the firewall under any attack
(since "In every context" includes both "in parallel with any at-
tacking process" and "inside any attacking environment").

— Caveat: only ambient-level attacks. E.g. applet-to-applet.



Problem 1: Chemical Soups

o Structural congruence [Berry & Boudol, Milner] allows for:
— rearrangement | (vn)Q = (vn)(P | Q) if n ¢ n(P), ...
— garbage collectior®? |0=0, ...
— replication!!P =P |IP,10=0, ...
— reduction factored by congruence, based on the rule:
P=PPOP—-Q 0Q=0Q0 P—Q
 This is great for many purposes!

— Calculating reductions, validating type systems, obeying page
limits...

e But it's dreadful for others.
— Try proving that IfC(0)Ln thenC(P)Lin.



Solution: Hardenings and Labelled Transitions

« A concretionis a phrasévp)(P")P" [Milner].

« New idea: dardening® > (vp)(P’')P" identifies a top-level process
P’ of P, the residué¢", and the bindings they share.

e For example:

P = (vp)(va)(n[p[] | all)

has two hardenings:

P> (v) ((ve)n[p(l]) (va)(O | qll)
P> (va) (dll) (vp)(n[p(l] | O)




Definition of Hardening

Hardening? > (vp)(P’)P"

Me{in n, out n, openhn
M.P > (V)(M.P)O

P> (p)P)P" {p} nfn(Q) =g

P1Q > (vp)(P)(P"|Q)
Q> (va)Q)Q" {qg} n fn(P) =g

n[P] > (v){n[P])O

P > (vp)(P’)P"

P Q> (vaXQ)(P Q")

(Vvn)P > (vn)(vp)(P")P"

P > (vp)(P’)P"

IP > (vp)(P")(P" | IP)




Definition of Labelled Transitions

« First, alabelled transitionP L P for Me{in n, out n, open
means thal® has effecM on parent of sibling, and evolves t&".

M-transitions, wher&le{in n, out n, openjn

P> (vp)M.P")P" {p} n fn(M) =g
P = (vp)(P" |P")

EX: out a.in b(M) > (v){out a.in b{M))O

out a.in biM) 252 inb{M) |0




. Second, a labelled transitidh — P’ means that® Internally
evolves in one step ©'.:

T-transitions:

P> (p)n[QHP Q> (vg)mRNQ R " R n¢{q}
P — (vp)((va)(m[R] | n[Q’]) | P")

EX:
almsdout a.in b{M)]] > (v){aJmsdout a.in b{M)]])0
msdout a.in b{M)]] > (v)(msdout a.in b{M)])0
out a.in b(M) L2 in b (M) | O

a[msdout a.in b(M)]] — msdin b.(M) | 0] | a[0] | O




Theorems about Hardening and Labelled Transitions

e If P> (vp)(P)P" thenP = (vp)(P’ | P").

e If P=0QandQ > (vr)(Q)Q" then there ar®’ andP" with
P> (vr)(P)P", P’ =Q’, andP" = Q".

e P— Qifand onlyifP —=0Q .

» PCnifand only if there are), g, Q, Q" such that
P—"Q, Q> (va}n[Q)Q", andn¢{a}.

Hence, we solve the problem of provia@)LIn implies C(P)Ln.




Problem 2: The Trouble with Contexts

* General contextS(s) possess neither the desirable properties:
— they have a unique hole, preserved by reduction.
— they are identified up to alpha-conversion.

o Usual solution: identify a limited set of contexts satisfying those
properties, and.:

— aContext LemmaP = Q if and only if for all limited context
and names, thatH{ P} [In <« H{Q}[Ln.

 |In CCS and thercalculus, the limited contexts are simply parallel
observersH ::=« | R. [De Nicola and Hennessy]



Parallel Observers in the Ambient Calculus

e LetP =outp0OandQ =0.
— We haveP |[R[n < Q|RnforallnandR,
— while if C(e) = p[m[e]] we haveC(P)Lm but notC(Q)LIm.

 Therefore, the set of parallel observers does not satisfy a context
lemma in the ambient calculus.




Solution: Harnesses

e Our solution is to augment parallel observers with ambients:

Harnesses:
' Ho:= harnesses |
. unique hole
(vn)P restriction
P|H left composition
H|Q right composition
n[H] ambient

 We identify harnesses up to alpha-conversion:
If H = (vn)e, its instantiatiorH{ n[|} is (vn")n(].

« By a careful analysis, we have proved that harnesses satisfy the de
sired context lemma.




Problem 3: AnalyzingH{P} — Q

* |n lots of proofs that appeal to our context lemma, we have the
problem of analyzing reductions lik§ P} — Q.

 Intuitively, eitherP or H evolves on its won, or they interact. The
best formalization we have found of this is:

— An Activity LemmaH{ P} — R if and only If:

(Act Proc) P—P withR=H{P’}, or
(ActHar) H-—H withR=H{P}, or
(ActInter) Ho R~ P
(large case analysis of all possible labeled-transition
Interactions of a process with a harness)

« Although the formulation of the activity lemma is very complex
(due to numerous ways in which ambients may interact), the activ-
ity lemma can be used comfortably in specific proofs.




Summary: Difficulty of Deriving Ambient Equations

 Problem 1: Reduction defined using structural congruence.
— Solution: usé > (vp)(P’)P" andP — P’ instead.
Thm1:P—Q = P->=Q
e Problem 2: Equivalence defined using arbitrary contexts.
— Solution: use a context lemma for limited contexts.
Thm2:P=Q < VH,n.H{P}lnh - H{Q}Ln
 Problem 3: Analyzing the reductions of a process in harness.
— Solution: use an activity lemma.

Thm3: H{P} - R - (P—P OR=H{P}) O
(H— H OR=H{P}) O(Ho R~ P)

 Examples: Perfect firewall and cipher equations; firewall crossing.




Assessment

We wanted to prove equations asserting simple security properties
of ambients, and we succeeded. But:

Reasoning about higher-order hierarchical processes is difficult
(others have found similar difficulties). Is there an alternative?

Defining reduction from structural congruence is a mixed blessing.
LawsP |0 = 0and!O = 0, are not so innocent!

Defining labeled transitions from hardening works well.

Activity lemma is useful but suspicious. Is there a less monolithic
definition?



TYPES FOR MOBILE AMBIENTS




Need for Distinctions

The syntax does not distinguish between names and capabilities,
therefore it permits strange terms like:

iIn N[P] (stuck)
n.P (stuck)

This cannot be avoided by a more precise syntax, because such term
may be generated by interactions:

(inny | (mM.mP] — Inn[P]
(n) | (m.mP — n.P
(m). (m.P| m[Q]) (tests whethem is a name or a capabyify

We have two sorts of things (ambient names and capabilities) that we
want to use consistently. A type system should do the job.

Desired property: a well-typed program does not produce insane terms
like in N[P] andn.P.




Exchange Types

W= message types
AmQT] ambient name allowing exchange
CagT] capability unleashing@ exchange
T .= exchange types
Shh no exchange

W%, xWj tuple exchangel(is the null product)
|

e A quiet ambientAmb2 AmHdShH

* A harmless capabilityCap£ Cag Shi

e A synchronization ambien&mij 1]

 Ambient containing harmless capabilitiésnii Cag ShH]

« EX.: A capability that may unleash the exchange of names for quiet
ambientsCag Amid Shi]




Polyadic Ambient Calculus

P,Q:=

(vn:-W)P

0

PIQ

P

M[P]

M.P

(nl:W]_, e I'](Wk)P
(Mq, ..., My

M,N ::=
n
in M
out M
openM
€
M.N
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Reduction

nfinm. P [Q] | mR] — m[n[P [Q] |R]

m{nfoutm. P |Q] | R] — n[P [ Q] | m[R]

opennP [n[Q] — P |Q

(nl:W]_, e I'](Wk)P |(M1, ey, M) — P{n1<— My, ..., k< Mk}

P—Q 0O (vn:WP — (vn:W)Q
P—Q U n[P] —n[Q]

P—Q 0O P|IR—Q|R
P=P,P—-0Q0=Q 0 P —Q




Intuitions: Typing of Processes

If M is aT, then(M) is a process that exchanges
M:WQO (M) : W
If Pis a process that may excharigehen (:T).P is too.
P:wWl (n\W.P:W
If P andQ are processes that may exchahgeenP|Q is too. (Sim-
llarly for !'P.)
P:T,Q:TU PIQ:T

Both 0 andn[P] exchange nothing at the current level, so they can
have any exchange type, and can be added in parallel freely.

Therefore W-inputs andW-outputs are tracked so that they match
correctly when placed in parallel.



Intuitions: Typing of Open

We have to worry abouipen which might open-up &-ambient
and unleasli-exchanges inside &ambient.

We decorate each ambient name withThbat can be exchanged
In ambients of that name. Different ambients may permit internal
exchanges of different types.

n:AmQT], P: TO n[P]islegal andn[P] : S

If n permitsT-exchanges, thempen nmay unleasfi-exchanges in
the current location.

n:AmAQT] O open n: CagT]

Any process that use<Cag T] had better be a process that already
exchanged, because neW-exchanges may be unleashed.

M:CadT],P: T MP:T



Judgments

EFO good environment
EFM:W good expression of typd/
EFP:T good process that exchanges




Rules

EF¢ n¢don(E) E'nNW,E" ¢
@ =0 E, W ¢ E,nNW,E"Fn:W

EF¢ EFM:CadT] EFM :CagT]
EFe:.CagT] EFMM :CadT]

EFM:AMUY EFM:AMUY EFM:AMUT]
EFINM: CagT] EFoutM: CadT] EFopenM: CadT]

EFM:CadT] EFP:T EFM:AmdT] EFP:T
EFMP:T EFM[P] : S

E, Wy, ..., e W E P WX, xW EFM{W; ... EF MW
EF (nl:Wl, ey nk:Wk).P W< . xWe EF (Mq, ..., M) - Wix. . xXW




E, tAmMQT]|FP:S EF ¢
EF (VNIAMQT]P: S EFO:T

EFP:T EFQ:T EFP:T
EFPQ:T EFIP:T

 EX.: A process that outputs names of quiet ambients:
EF I(vn:Amb(n) : Amb

« EX.: A capability that may unleashexchanges:
NAMQT], mMAMQY F in n. open m Cag Y

Prop (Subject Reduction)
If EFP:UandP —QthenEFQ: U.




Typed Polyadic Asynchronoustcalculus

(CHTy, ..., i) =
AmEQT)xEThx.. X{Tid*x(Td]

(vI:CHTDP) 2
(vn:{Ch[T]}) (vnP:{CH[T]}) n['open A] | (P}

IN(X1:T1, .0 X< T).P) £
(vp:AmB (open p
NPlin N, (X, XP1AT 1), - o XeXPdTD). plout n ¢PY]])

nng, ..., W) =2
nPlin n. (nq, NPy, ..., Nk, NPY]

(PIQ) £ (PDIEQY
Py 2 1(P)
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Derived Rules

(EFP) & (E)F (P): Shh

(@, n1:W4, ..., Nk W) A
¢1 nl:«W]_», nlp:«W]_», ey nk:«Wk», nkp:«Wk»

(E,nChWi, ..., W FP) O (EF V™N:ChW, ..., W])P)
(EFnN: Ch[W]_, ey V\ﬂ», (EF Ny WL, ...,dEF Nk : W)
(1 (EFn{nyg, ..., W)Y
«E Fn: Ch[Wl, ey V\ﬂ», «E, n1:W1, ...,nk:WkI— P})
[ (EF n(ng:Wy, ..., nWW).P)
(EFP),(EFQ) U (EFP]|Q)
(EEPY 0O (EFI'P)
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Typed Call-by-Value A-calculus

[A-B] £ Ch[[A], CH[BI]
[EFDb:T] 2 [E]F (vVk:CH[T]) [blk: Shh

Xl £ kX

:)\X:A.bA_,B]]k 2
(vVn:[A- B]) (kin) | In(x:[AL k:Ch[[B]]). [bslk)

[ba_g(@a)k =
(VK:Ch[[A- BJ], k":Ch[[AIll])

(bl [K (:[A-B]). ([@le | K" (y:IA]). X{y, k))

[XTEXT] = [XT]F (vVK:CH[T]]) k{X) : Shh

= X:[T], X:[T] = (vk: AmH[T]X[T]]) k['open K] | kP[in k{x, X¥)] : Shh

Talk August 5, 1999 1:57 pm

124



Records

A recordr containing cellg; has the general structute... |GPUT(M;)
| lopen ¢°] | ... ], where is the cell containe®" are the value con-
tainers for each celt;® are input packets for reading and writing cell
contents, antl; are the cell contents.
(record ) £ rJ]
(addrcM 2 c™lopen & [inr. (M)]
(getrc(xW). Pg) £
(vop:AmQY) (open op. off |
cPlin r. in U (x;W).
((x) | op[out Y. out r. open op{PI])])
(setr c(My). Pg) 2
(vop:AmQY) (open op. off |
cPlin r. in U (x;W).
((M) | op[out &Y. out r. open op{PY])])




Field Types

The type of names of a record field holdWwgmay be denoted by:
Field[W]

This notation can be translated to the ambient calculus by mapping
each environment nanme: Field[W] to two environment namas"'

n® : AmHW], and by mapping each restrictiom(Field[W]) P to the
restrictions Yn®“tAmHW]) (vnP:AmHW]) P.



Telestrip’d

[AgentWa, ..., W] 2 AmH[Wi]x.. X[W]]

Typing: each agent camelcomeonly agents talking about a single
type, but cameetdifferent agents that talk about different types.

[Net] ::= : Shh

[noplacé £ O
[place gArend] £ p[[Arend] (if p:AMEShH)
[Net|Nef] £ [Nef] |[Nef]




[Arend], ::= : Shh (if p:AmShH)

[empty, £ O
[agent(a:AgenfWi, ..., W])[Codd], =
(va:JAgenfWy, ..., W]])
a[recordsut|add sut at 4 [Codd]]
[Arenal Arend), = [Arend), |[Arend],

(Built-in "resources" of places can be modeled as static agents.)




[Codd, ::= [WAIx.. X[W] (if a: [AgenfWy, ..., W)

[stog, 2 O

[go p. Codé, 2
get sut atg:AmldShH). set sut gp). out g. in p[Codd,

[spawn(a’:AgenfW,, ..., W])[Code]. Codé, 2 (for a'#a)
get sut ap:AmdShh). (va',u:{AgenfW;, ..., W]))
(a’[recordsut|add sut at g out a open u{Code}),]
| open u{Codée),
| Vt:AmldShH) tjouta. ina’. out a’.
(Uouttina’l |ufouttin a))])

Talk August 5, 1999 1:57 pm 129



[Imeet Ny, ..., ). Codd, 2
(vz.{AgenfWy, ..., W]D)
Zlout a. In n. fout z. open Zny, ..., Y]] | (Code),

[welcomgXxq, ..., Xm). Codé, =2
open a (Ny:{W1), ..., Nk {Wk)). (Codé),

[folder nm. Codg £ (vn:Field[(W)]) (add sut n f{Codé),)
[get (xW). Codé, = get sut fix:(\W)). (Codé€),
[set AM). Codd, £ set sutm). (Code),




STATIC CONSTRAINTS ON MOBILITY




Introduction

« The Ambient Calculus is a process calculus based on:
— Local communication.
— Mobility regulated by capabilities.

e The calculus can be decorated with static information to restrict el-
ther aspect (or both):

— Exchange control systens restrict communication.

— Access control systerms restrict mobility.



e In [Cardelli-Gordon POPL'99] we have investigatedchange
types(which subsume type systems for processes and functions).

e In [Cardelli-Ghelli-Gordon ICALP’99] we investigaienmobility
andlockingannotations, which are simple predicates about mobil-
Iity.

 Here we consider further static predicates about mobility.



Name Groups (Sorts)

We would like to say, within the type system, something like:
The ambient nameadcan enter the ambient nam®ad

But this would bring us straight into dependent types, since hames
are value-level entities. This is no fun.

Instead, we introduce type-level name groGgld, and we say:
Ambients of groups can enter ambients of grotjp

Groups can be seen as relatedualculus sorting mechanisms.
We add groujreation

Group creation Is surprisingly interesting. For example, it has the
effect of statically blocking certain communications, and can there-
fore prevent the “accidental” escape of capabilities that is a major
concern in practical systems.



Grand Plan

Investigate the notion of name groups and group creation. (This can
be applied directly to the-calculus as well.)

Study the judgmentgrocess P may cross ambients of group G
(This reduces to immobility annotations when a process can cross
no groups.)

Study the predicatepfocess P may open ambients of group G
(This reduces to locking annotations, when a group can be opened
by Nno processes.)

Recursive types. (To capture mutually-recursive sortraalculus
style.)

Mix and stir well.



Typed Ambient Calculus with Groups

« Just one new process construct:
(VG)P
to create a new group with scopeP.
« Just one new type construct:

G[T]

as the type of names of groGpthat name ambients that contain
exchanges.

The construct| T| replacesAmid T], whereAmbcan now be seen
as the group of all names.

e SO0 we can now write, e.duG) (vn:G[Int]) n[(3) | (xInt). P]




Types

W= message types
G[T] ambient name in group with T exchanges
CadT] capability unleashin@ exchanges
T .= exchange types
Shh no exchange
W%, xWj tuple exchangel(is the null product)

e A quiet ambientG[ShH

A harmless capabilityCad Shi

e A synchronization ambien| 1]

 Ambient containing harmless capabiliti€gCag ShH]

« A capabillity that may unleash the exchange of names for quiet am-
bients:Cap G[ShH]




Processes and Messages

(VG)P
(vn:-W)P

PIQ

P

M[P]

M.P

(nl:Wl, e n(Wk)P
(M1, ..., M)

M,N ::=
n
in M
out M
openM
€
M.N
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Reduction

nfinm. P [ Q] | mR] — m[n[P [Q] |R]

m{nfoutm. P |Q] | R] — n[P [ Q] | m[R]

opennP [n[Q] — P |Q

(nl:W]_, e n(Wk)P |(M1, ey M) — P{n1<— Myq, ..., N Mk}

P—Q O (VGP— (vVG)Q
P—Q 0O (vn:WP — (vn:WQ
P—Q U n[P] —n[Q]

P—Q 0O P|IR—Q|R
P=P,P—-0Q,0=Q 00 P —Q




Structural Congruence

P=P (Struct Refl)
P=Q O Q=P (Struct Symm)
P=Q, Q=R O P=R (Struct Trans)
P=Q 0O (VGP=((VG)Q (Struct GRes)
P=Q U (vnWP = (vniW)Q (Struct Res)
P=Q U P|R=Q]|R (Struct Par)
P=Q O !P=1Q (Struct Repl)
P=Q 0O MI[P]=M[Q] (Struct Amb)
P=Q U MP=M.Q (Struct Action)
P=Q O (Struct Input)

(nl:W]_, e n(Wk)P = (nl:W]_, e I'](Wk)Q
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PIQ=Q|P
PIQIR=P|QIR)
IP=P|IP

(vn:W)(vmW)P = (vmW’)(vitW)P  if n# m
(VWP |Q) =P | vn!W)Q if n¢ fn(P)
(VW) (M[P]) = m[(vniW)P] if nZm

(VG)(VG)P = (vVG')(VG)P

(vVG)(vnW)P = (vnW)(VG)P if G ¢ fn(W)

VO)(P|Q) =P|(G)Q
(VG)(M[P]) = m[(vG)P]
(vG)0=0

(vniW) 0 =0

P|O=P

10=0

if G ¢ fn(P)

(Struct Par Comm)
(Struct Par Assoc)
(Struct Repl Par)
(Struct Res Res)
(Struct Res Par)
(Struct Res Amb)

(Struct GRes GRes)
(Struct GRes Res)
(Struct GRes Par)
(Struct GRes Amb)

(Struct Zero GRes)
(Struct Zero Res)
(Struct Zero Par)
(Struct Zero Repl)




eP=P (Structe)
(M.M").P=M.(M’.P) (Struct .)
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Judgments

EFO good environment
EFT good type
EFM:W good message of tyjw!

EFP:T good process that exchanges




Rules

Good Environments
EFW n¢domE) EF¢ Gé¢domE)

Nl E, Wk ¢ E,GF?

Good Types
GedomE) EFT E-T

E+ G[T] El CadT]

EF¢ EFW;, ... EFW
E I_ Shh E_ Wlx"'me




Good Messages
E',nWE"F?¢
E,nWE Fn:W

EF CadT] EFM:CadT] EFM :CagT]
EFe:CagT] EFMM :CafdT]

E-M:G[§ EFCadT] EFM:G[S EF CafT]

EFINM: CadT] EFoutM: CagT]

EFM:G[T]
EF openM : CadT]




Good Processes
E,GFP:S &Gfn(9 E, nG[T]FP:S

EFVG)P:S EF (VvniG[T]P: S

EFM:CadT] EFP:T EFM:G[T] EFP:T EFS

EFMP:T EFM[P] : S
EFT EFP:T EFQ:T EFP:T
EFO:T EFP|Q:T EFIP:T

E, MWy, ..., kWP Wix.. xW, EFMgW; ... EF MW

E (n1:W1, - nk:Wk).P WX . xXWLe EF(My, ..., M) © WX, xXW




Prop (Subject Reduction)
If EFP: TandP — Q then there exist&ssuch thatss EF Q
T,



Scope Extrusion

Consider:
(vG) (vn:G[ShH) (n)
It cannot be typed, becauSesscapes along with the messages

G, nG[ShH F (n) : G[ShH

= Gk (vn:G[ShH) (n) : G[ShAH

% F (vG) (vn:G[Shh) (n) : G|ShH G € In(G[ShR))
Similarly,

(vm:W) m[(vG) (vn:G[ShH) (n)]

cannot be typed, because it contains an untypable term. But can we
type this one, which is equivalent by extrusion:

(vm:W) (vG) m[(vn:G[ShH) (n)]




Again:
(vm:W) (vG) m[(vn:G[ShH) (n)]

This looks like it may be typable (breaking subject reduction) because
the messag@) : G[Shi Is confined to the ambient, andm[...] can

have an arbitrary type, e.§hh that does not contaia. Therefore

(vG) would not “see” any message escaping.

However, consider the type ot it must have the forl[T], whereH
IS some group, and is the type of messages exchanged inside
Hmmm..., but that's5[ShH. So we would have:

(vm:H[G[ShH]) (vG) m[(vn:G[ShH) (n)]
which is not typable. Good.



Finally, this variation (not equivalent to the previous one) is typable:
(VG) (vm:H[G[ShH]) m[(vn:G[ShH) (n)]

Therefore, we can create a new graopand then ambients in
which names of that group are exchanged.

We are guaranteed that names of grGugan never be communi-
cated to processes outside of the initial scop&,adimply because
those processes cannot nam receive the messages.



Secrecy

Therefore:

Names of grou@@ aresecret(forever) within the scope ofG.

This Is In contrast with the situation with ordinary name restriction,
where a name that is initially held secret (e.g. a key) may accidentally
be given away and misused (e.g. to decrypt previous messages).

e Scoping of names can be extruded too far, inadvertently.

e Scoping of groups offers better protection. Still, it too can be ex-
truded arbitrarily, so it does not impede the mobility of processes
that carry secrets. It just prevents those processes from giving away
the secrets.

Speculation: groups might help in establishing “forward secrecy”
properties.



Crossing Control

= message types
G[~Hs,T] ambient name Iin group, containing
processes that may crddsand exchangé
Cafg~Hs,T] capabllity unleashingls crossings and
T exchanges

EFP:~HsT process that exchangéand crossells

vn:G[~{}, T] a name for immobile ambients




Opening Control

I I
W= message types

G[°Hs,T] ambient name in group, containing processes
that may opemis and exchangé

Cafg°Hs,T] capabllity unleashingls openings and
T exchanges

EFP:°HsT  process that exchangéand opensls
vn:G[°Hs, T] a name for locked ambients, whé&¢Hs

(We requireGe Hs for open nto be typeable, because the opening of
G may unleash further openingskid. With this rule the transitive clo-
sure of possible openings must be present already in the types.)




M ODAL LOGICS




Introduction

We have been looking for ways to express properties of mobile
computations, E.g.:

— "Here today, gone tomorrow."

— "Eventually the agent crosses the firewall."
— "Every agent carries a suitcase."

— "Somewhere there is a virus."

— "There is always at most one ambient catidxre."

Options include equational reasoning, reasoning on traces, or...



Spatial Logic

e Devise a process logic that can talk almp#ceas well as time.

 The ambient calculus has a spatial structure given by the nesting of

ambients: we want a logic that can talk about that structure:
I I

Process Formula
0 (void) 0 (there is nothing here)
n[P] (location) n[¢4]  (there is one thing here)
P|Q (composition) 418 (there are two things here)

e Could not find much of close relevance in the literature, except for
Mads Dam'’s thesis and Urquhart’'s semantics, but we quickly di-
verge from both.



Restriction-free Ambient Calculus

| P,Q:I1:= M=
0 n
P|Q in M
P out M
MI[P] openM
M.P £
(n).P M.M’
(M)
| NiNM.P|Q]|MR] — mn[P|Q] |R] (enter reduction) |
m[nfoutm. P |Q] | R] — n[P | Q] | MR] (exit reduction)
open mP | m[Q] — P|Q (open reduction)
— P{m~ M} (read reduction)

(M).P [ (M)




Structural Congruence

P=P

P=Q U Q=P
P=0Q,Q=R IO P=R
P=Q O P|R=Q|R
P=Q L IP=!
P=Q 0 M[P]=M[Q]
P=Q O MP=M.Q
P=Q O X.P=(X.Q
eP=P

(M.M’).P=MM'.P
PIQ=QIP

PIQIR=P[QIR)
P|O=P

(Struct Refl)
(Struct Symm)
(Struct Trans)
(Struct Par)
(Struct Repl)
(Struct Amb)
(Struct Action)
(Struct Input)
(Structe)

(Struct .)

(Struct Par Comm)
(Struct Par Assoc)
(Struct Par Zero)
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I(P|Q)=!P|!Q (Struct Repl Par)

I0=0 (Struct Repl Zero)
IP=P|IP (Struct Repl Copy)
IP=1IP (Struct Repl Repl)

These axioms (particularly the oneslfoare sound and complete with
respect to equality ofpatial trees edge-labeled finite-depth unor-
dered trees, with infinite-branching but finitely many distinct labels
under each node.




Reduction

ninm. P |Q] | MR] — m[n[P | Q] | R| (Red In)
mnfoutm. P |Q] |R] — n[P |Q] | M[R] (Red Out)

openn. P |n[Q] — P |Q (Red Open)
(n).P [ (M) — P{n~ M} (Red Comm)
P—Q U n[P] —nQ] (Red Amb)
P—Q 0O P|IR—Q]|R (Red Par)

P=PP—-QQ=Q 0 P—Q (Red=)

—>* refl-tran closure of—




Why a Logic?
A recurring issue for us was how to state behavioral properties of

ambients. E.g., protocol specifications.

We have formal tools for establishing equational properties. But
many properties cannot easily be formulated as equations.

For example, type systems for ambients guarantee certain proper-
ties, such as that some ambients are immobile, some are persisten
It's hard to write down equations for immobility and persistence!

Our solution: use a (modal) logic tailored for ambients.



Modal Formulas

In a modal logic, the truth of a formula is relative to a state (world).

In our case, the truth ofspace-timenodal formula is relative to
thehere and novef a process. Each formula talks about the current
time (before further evolution of the process) and the current place
(the top-level of the process).

Therefore, the formule[0] is read:
there ishere and novan empty location calleal

The operaton[/] is asingle step in spac@kin to the temporal
nex), which allows us talk about that place one step dowminto

Other modal operators can be used to talk about undetermined
times (in the future) and undetermined places (in the location tree).



Logical Formulas

| A4, B P =
T true
-4 negation (alsé7™)
0B disjunction
0 void
n[4] location
A\ B composition
Vx4 universal quantification over names
OA sometime modality (temporal)
<A somewhere modality (spatial)
“A@n location adjunct
sa>B composition adjunct

wherern is a name or a (quantifiable) variable




Satisfaction Relation

PET

PE-Y 2 - PEY

P E S4B A PEYOPES

PEO 2 pP=0

PE n[¥] A FIP:N.P=nP]OP ESL
PEYZ|B A PP N.P=P|P” OPELOP EB
PE Vx4 2 VmA.PEZ{X—m}
PEOCY 2 JP:N. PP OPEZY
PE<S 2 JPMN. PP OPEY
PE4@n 2 nPlEXA

PE Y>3 A VPNPEZLO PIPES

PIP' iff dn,P". P=n[P’]|P”
|” is the reflexive and transitive closurelof
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Claims

The satisfaction relation is "utterly natural” (to us):

— The definitions 0, 4|3, andn[%4| seem inevitable, once we ac-
cept that formulas should be able to talk about the tree structure
of locations, and that they should not distinguish processes that
are surely indistinguishable (up£).

— The connectiveg/@n and*>A have security motivations.

— The modalities>% and <-4 talk about process evolution and
structure in an undetermined way (good for specs).

— The fragment, =<, 4118, Vx4, is classical: why not?
The logic is induced by the satisfaction relation.

— We did not have any preconceptions about what kind of logic
this ought to be. We didn’t invent this logic, we discovered it!



Some Derived Formulas

a0 B
A 0%pB
Ix.4

04

d
—]

-4 0B
(=4 0=P)
VX~ 4

L aT
~O=

1> 1> 1> 1> 1> >

2 >F

“valid
4 satisfiable

PE -iff
PE -iff
PE -iff
PE -iff
PE -iff

PE -iff

Iff
PE -iff
PE -iff

PEZYDO PEB
PEAOPE®

dmA. PE S4{x—m}
VPN.PI'POPEY
VP'M.P- P 0OPEY

VP:M.PEZO PP EF
VPN - P EY

VP'M. P ES

MNP ES
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Basic Fact

Satisfaction is invariant under structural congruence:
(PELZOP=P)0 PPFEYA
l.e..{P:I|PFE%} is closed undet.

Hence, formulas describe only congruence-invariant properties.




Simple Examples

(1) p[T]|T
there is @ here (and possibly something else)
(2) < (1)
somewhere there ispa
3) (2)U o(2)
If there is g somewhere, then forever there 18 somewhere
(4) plalTI[TTIT
there is g with a childg here
(5) <(4)

somewhere there ispawith a childg




From Satisfaction to Logic

Propositional validity

vid¥4 £ VP.N.PEX 4 (closed) is valid
Sequents

Ar-B 2 vid&E@ O B)
Rules

kDB A B OAF B A& (n=0)

S B 0. OAn B0 A B
N.B.: All the rules shown later are validated accordingly.
Conventions:
- meanst in both directions

[T1 meansl] in both directions




"Neutral" Sequents

 The logic is formulated as a sequent calculus with single-premise,
single-conclusion sequents. We don’t pre-judge ",".

— By takinglJon the left and]on the right of- as structural oper-
ators, all the standard rules of sequent and natural deduction sys
tems with multiple premises/conclusions can be derived.

— By taking| on the left of- as a structural operator, all the rules
of intuitionistic linear logic can be derived (by appropriate map-
pings of the ILL connectives).

— By taking nestings afland| on the left of- as structural "bunch-
es", we obtain a bunched logic, with its two associated implica-
tions,[] and>.

* This is convenient. We do not know much, however, about the met-
atheory of this presentation style.



Step 1: Propositional Rules

(A-L)
(A-R)
(X-L)
(X-R)
(C-L)
(C-R)
(W-L)
(W-R)
(1d)
(Cut)
(T)
(F)
(—-L)
(=-R)

ACOD) + B M (AO)OD - B
A+ (CODYIB M A CHDIB)
AOCHB OCHAE B

A+ COB OAE BLC
AAF B OAF B

ArBOB OAF B

ArB OACH B

AP O0AECOB

O09+A

ArCOB; AOCHB 094 +BOB
AOT+B OAF P

A-FOB 041 B

ArCOB OARCHEB
ACHB OAE-COB
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Step 2: Concurrency Rules

o Apart from our interest in mobility and nested locations, a fragment
of our logic makes sense just for ordinary concurrency (i.e., for a
CCS-like process calculus withand| ). We examine this fragment
first.

 (Small caveat. To get things off the ground, one needs some proces:
that is definitely- 0. In our full logic, locations have this property,
otherwise something must be introduced for this purpose.)



Concurrency Rules

(|10) OA|04%A 0 is nothiry

(|-0) O%|-0F=0 if a part is nor, so is the whole
(Al) O B|C)4- (A |DB)|C associativi
(X]) OXA|BrHDB|A commutativiy
(|F) LB, ArB 04 |A B |B corgruence
(|0) O@&EIB)|C+A|COB|C -Odistribution
(111) OD|ND+D|B OB |49 1-B |-B" decomposition
(|>) ANICHP MAC>DB |->> adunction

N.B., neutral sequents make the rule-) (and others) particularly
simple, even thoughdoes not distribute withl in the "useful” direc-

tion.




The Decomposition Operator

Consider the De Morgan dual [af
ANB £2-(-XA|-B) PE-iff VP ,P":N.P=P|P" O

PEAOP EDB
g¥  Ag|F PE-iff VP',P":M.P=P|P" 0P EX
g3 Ag|T PE-iff 3P’,P":M.P=P|P" OP' EX
Al|B for every partition, one piece satisfiés

or the other piece satisfi&s
QY o =((=9)7) every component satisfied
D3 < a((-9)7Y) some component satisfigs

Examples:

(p[T1 O pla[TI])" everyp has & child
(p[T]1 O pla[T] | (=a[TD)"])" everyp has a uniqug child
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The Decomposition Axiom

() O& A [B)0(B [A)T(=DB [-B)
Alternative formulations and special cases:

UG [A)UEB|B) & |B) 0B |A)

"If P has a partition into pieces that satisfyand*4", and every
partition has one piece that satisfieéor the other that satisfie€s’,
then eithel has a partition into pieces that satisfyands”, or it
has a partition into pieces that satigiyand®? ."

=D &AT)0 (T |~D)

"If P has no partition into pieces that satishands, butP has a
piece that satisfieg, thenP has a piece that does not satisty

O-(T|B)ET |-



The Composition Adjunct

(1) D|CHB MD+C>B

"Assume that every process that has a partition into pieces that sat-
Isfy &7 andC, also satisfies3. Then, every process that satisfi@s

together with any process that satisfiessatisfies’s. (And vice
versa.)" ¢.f.(— R))

Interpretations of7>5:

- P provides’ in any context that providés
- P ensuress under any attack that ensutés

That is,P F %> Is a context-system spec (a concurrent version of a
pre-post spec).

Moreovers/>3 is, in a precise sense, linear implication: the context
that satisfiesZ is used exactly once in the system that satiSfies



Some Derived Rules

0 (Z>B) | D+ B

"If P provides? in ary context that provideg, andQ provides, thenP
andQ together providés."

Proof: “A>B+ A>B [ (4A>B) |AF B by (1d), (| )

DEA, B-C O D|EB>B)EC (c.f.(— L))

"If anything that satisfie§) satisfies#, and agthing that satisfieSs satis-
fies C, then: agthing that has a partition into a piece satis§§ <0 (and

hence4), and another piece saligfg ‘3 in a context that satisfiég, it sat-
Isfies (3 and hence)."

Proof:

DEA, ABEA>B O D|A>B A |A>DB assumption, (Id), H)
G| T>B - B

BrC

above

assumption




More Derived Rules

OA9T |4 you can alwgis add more pieces (if there0)
OF |49 F If a piece is absurd, so is the whole

O+ =(=0[|=0) 0 is sirgle-threaded

099 |B00FA you can spliD (butyou get0). Proof uses (||| )

AL BB OA>BEFA>B > is contravariant on the left
O 9>B | B>C = A>C > is transitive

O (4 | B)>C - 4> (B>0) > curry/uncuriy
[ 6> (B>C) F B> (54>0) contexts commute

OTH=TD>T truth can withstand gmattack
OTFF>%S anything goes ifyou can find an absurd partner
OT>A-A if 4 resists ay attack, then it holds




Step 3: Location Rules

] -0)
1-1)
1 F)
1 0)
1 0)
] F)
] @)

O n[4] -0
O n[#A] F=(=0]=0)

A+ B M n[4] - n[B]

O n[A4]ON[C] + n[$ATC]
O n[CCEB] F n[C]On[A]
On[F]+F

N[+ B T4+ B@n

locations exist
are not decomposable

n[] congruence
n[]- U distribution
n[]- U distribution
can’t hold absurayt

n[]-@ adunction




Some Derived Rules

Conseguences:
Ar+B OA@Nn+ B@n

O n[4@n] -4
0 4 4 n[<4]@n

O n[=%4] F = n[%4]
O =n[4] 4 =n[T] On[-4]

@ corgruence
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Examples

ann 2 n[T]|T there is now am here

non £ -ann there is now nm here

onen 2 n[T]|non there is now exagtlonen here
QY A (=T evelybody here satisfie$?
(N[T] O n[4])” evel n here satisfie$?

X((N[T] O n[4])") evel n eveywhere satisfie$?




Step 4: Time and Space Modalities

(Q) 0 A4 4 =o-A

oK) Oo®0d B)r-o9d aob
oT) Oo¥9r%

(om4) Oo¥4Foo4

(mT) OTraTl

(oF) AP O0oA9EoB

(%)  O*D4-%-9

(X K) Ox@0 B)FrDOd 2B
(XT) OXD+rgD

(X 4) OXIGrmxg

(XT) OTFXT

(X ) F-B OXGr- =P

S4, but not S5;: - vid OX4 + oA - vid A+ XA
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Additional Modality Rules

(< nfl) O n[OHA] = On[A]

(<) [ (OA) | (©B) F (A |B)
(< n[]) O n[<-4] - <-4

(< 1) (A B~ (&A]T)
(<-<) O X0 E O<A

if somewhere sometinig, then sometime somewhére




Step 5: Validity and Satisfiability

PESG" iff VP':MN.PPELDO P|P EF
iff YP':IN. =P E% iff Fis unsatisfiable

(>F =) 09 -9 if &7 is unsatisfiable the# is false
(= >F) 097 =9 if Gis satisfiable theB is unsatisfiable
We can reflect validity and satisfiability within the logic:
vidg 2 gF PEVIdY iff VP:MN.P'ESY
Satd 2 9 PE Sat¥ iff AP:M.P'EXA

Then, as derived rules we have that, Satare S5 modalities.
(That is, S4 plust] Sat®Z - VlId Sat®4.)




Reflecting Name Equality

Name equality can be defined within the logic:

n=u £ nTj@u

Since (for any substitution applied ng.):

PEn[T]@u
iff u[P]E n[T]
iff n= uOPET

Iff n=pu

Example: "Any two ambients here have different names":

UXVY. X[T]|Y[T]|T O = x=y




Thief!

A shopperis likely to pull out a wallet. Ahiefis likely to grab it.

Shopperz
Person[Wallet[£] [T]
<O(PersonNoWallet | Wallet[£])

NoWallet2 - (Wallet[£] | T)
Thief £ Wallet[£] > ONoWallet

By simple logical deductions involving the lawstoand<:

Shoppel| Thief[]
(Person[Wallet[£] TT] | Thie) [
O(PersonNoWallet | NoWalle)




Syntactic Connections with Linear Logic

Intuitionistic linear logic (ILL) can be embedded in our logic:

.. 2 0 “L0B &2 A0DB
L 2 F A& B & A0OD
T AT AO0B 2 | B
O||_L 2 F A — B £ A> B
17 2 0000 9)°F

The rules of ILL can be logically derived from these definitions.
(E.g.: the proof of 4 - |4 [1 14 uses the decomposition axiom.)

SO,%]_, . S?n FiL B |mpI|eS Szfl | |Szin - B.
N.B. weakening/contraction are not valid (becaR$e # P).
But the additives,] andl], distribute (a derived rule).




Semantic Connections with Linear Logic

* A (commutative) quantal€ is a structure
<S:Set<:S-Bool,[]:$-.51:S\/ 29 -S> such that:

<, \/ . a complete join semilattice
], 1: a commutative monoid

pOVQ = V{pUaqlge Q}

 They are complete models of Intuitionistic Linear Logic (ILL):
[(203] = V{4, [BL} 1] & 1
(A& B] & {C|CAOCL[B} [Li] & anyelement o
[A03] £ [A0][28] [Tl £ VS
[A —o CB]] 2 V{CliCcO[A<[3} [Owl & Vg
199] £ uX.[1& 9 & XOX] where uX. A{X} £ \/{C| C< A{C}}

vid | (SZ]L e AL CB)Q 2 [[SZ]l]]Q DQ DQ [[gn]]({,) <0 [[CB]]@




The Process Quantale

The sets of processes closed urdand ordered by inclusion form
a quantale (letA= 2 {P | P=Q [1Q € A}):

®2<p, [],0,1,[)> where, forA,BLIT:
® 2 {AT]AOM}
1¢={O}—, AlpB 2 {P|Q|Pe AOQe€e B}~

Our syntactic definitions of ILL operators match their quantale in-
terpretation. (E.g[%7 [ Blo = [“lo Lo [Ble, ['Alo="o[A]s.)
Interpretation of formulas:

[4] 2 {P:N]|PE%} where[7] = [~
Our validity matches ILL validity for ILL sequents:

V|d|L|_(SZ[1, ey Szfn FiL (B)q) < V|d(SZ]1| |S?n = (B)




Applications

 Model Checking

— We have an algorithm for deciding theelation for!-free pro-
cesses and-free formulas.

e EXpressing Locking

— If E, nfAmB[S - P : T (a typing jJudgment asserting that no am-
bient calledh can ever bepered inP), then:

PEo(<-an nlJ o<-ann
e EXpressing Immobility
— If E, pAmMB[Y, gAmB['ST + P : T (a typing judgment assert-
Ing that no ambient callemican ever move withiR), then:

P E o(<-(p parents 9|1 o<~(p parents §)
wherep parents q2 p[q[T] | T]|T




Future Directions: Fixpoints

« Abadi, Lamport, and Plotkin and have descrileattivespecifica-
tions such that:

A-B|B->A 0O AODB
Define: <)/ - £ 2 pX. (A > <Y)><Z. Then:
BsA = (B->AD>B)>A O (A->DB)>A
A->B|B-A 0O (B--AD>B| B4 O B
A->B|B->A 0O A>B|A->B>A O A
 Modalities and their variations can be defined from fixpoints.
Moreover, we can express new useful predicates:
A 2 -<(n[T]|T)
unique n 2 pX. A | (n[A] O3Jyzn. y[X])




Conclusions

The novel aspects of our logic lie in its treatmengpHce(spatial
structures) and of the evolution of space over time (mobility).

The logic has a strong intensional flavor, reflecting the fact that
space has intensional properties. The logic has a linear flavor in the
sense that space cannot be instantly created or deleted.

These principles can be applied to any process calculus that embod
les a distinction between topological and dynamic operators.

The logic i1s based on strong computational intuitions. However,
from a purely logical point of view, it seems to have unusual prop-
erties (perhaps accidental to our presentation style).



