
Talk July 26, 1999 4:08 pm 1

Anytime, Anywhere
Modal Logics for Mobile Ambients

Luca Cardelli
Andy Gordon
Microsoft Research 

Edinburgh, June 15, 1999



Talk July 26, 1999 4:08 pm 2

Introduction

• We have been looking for ways to express properties of mobile
computations, E.g.:

– "Here today, gone tomorrow."

– "Eventually the agent crosses the firewall."

– "Every agent carries a suitcase."

– "Somewhere there is a virus."

– "There is always at most one ambient called n here."

• Options include equational reasoning, reasoning on traces, or...



Talk July 26, 1999 4:08 pm 3

Spatial Logic

• Devise a process logic that can talk about space as well as time.

• The ambient calculus has a spatial structure given by the nesting of
ambients: we want a logic that can talk about that structure:

• Could not find much of close relevance in the literature, except for
Mads Dam’s thesis and Urquhart’s semantics, but we quickly di-
verge from both.

Process
0 (void)
n[P] (location)
P | Q (composition)

Formula
0 (there is nothing here)
n[$] (there is one thing here)
$ | % (there are two things here)



Talk July 26, 1999 4:08 pm 4

Ambients

• An ambient is a named, bounded place, where computation hap-
pens. (Can be hardware or software.) The boundary of an ambient
is both a unit of mobility and a security perimeter.

• Ambients have a name, a collection of local processes, and a col-
lection of subambients. That is, an ambient configuration is a tree
of named locations with active processes inside.

• Ambients can move in an out of other ambients, subject to capabil-
ities that are associated with ambient names. That is, the tree of lo-
cation is dynamically reconfigurable (but only locally reconfig-
urable).

• Ambient names, and the capabilities extracted from them, are un-
forgeable (as in π and spi).



Talk July 26, 1999 4:08 pm 5

Example

The packet msg moves from a to b, mediated by the capabilities out a (to
exit a), in b (to enter b), and open msg (to open the msg envelope).

a[msg[jMk�| out a. in b]] | b[open msg. (x). P]
(exit a) xyyz a[] | msg[jMk�| in b] | b[open msg. (x). P]
(enter b) xyyz a[] | b[msg[jMk] | open msg. (x). P]
(open msg) xyyz a[] | b[jMk�| (x). P]
(read M) xyyz a[] | b[P{ x←M}]

a[msg[jMk�| out a. in b]] | b[open msg. (x). P]

send M : a=>b receive x; P

Location a Location b



Talk July 26, 1999 4:08 pm 6

Restriction-free Ambient Calculus

P,Q : Π ::=
0
P | Q
!P
M[P]
M.P
(n).P
jMk

M ::=
n
in M
out M
open M
ε
M.M’

n[in m. P | Q] | m[R] xyyz m[n[P | Q] | R]
m[n[out m. P | Q] | R] xyyz n[P | Q] | m[R]
open m. P | m[Q] xyyz P | Q
(m).P | jMk xyyz P{ m←M}

(enter reduction)
(exit reduction)
(open reduction)
(read reduction)



Talk July 26, 1999 4:08 pm 7

Structural Congruence
P � P
P � Q ⇒ Q � P
P � Q, Q � R ⇒ P � R

(Struct Refl)
(Struct Symm)
(Struct Trans)

P � Q ⇒ P | R � Q | R
P � Q ⇒ !P � !Q
P � Q ⇒ M[P] � M[Q]
P � Q ⇒ M.P � M.Q
P � Q ⇒ (x).P � (x).Q

(Struct Par)
(Struct Repl)
(Struct Amb)
(Struct Action)
(Struct Input)

ε.P � P
(M.M’ ).P � M.M’ .P

(Struct ε)
(Struct .)

P | Q � Q | P
(P | Q) | R � P | (Q | R)
P | 0 � P

(Struct Par Comm)
(Struct Par Assoc)
(Struct Par Zero)



Talk July 26, 1999 4:08 pm 8

These axioms (particularly the ones for !) are sound and complete with
respect to equality of spatial trees: edge-labeled finite-depth unor-
dered trees, with infinite-branching but finitely many distinct labels
under each node.

!(P | Q) � !P | !Q
!0 � 0
!P � P | !P
!P � !!P

(Struct Repl Par)
(Struct Repl Zero)
(Struct Repl Copy)
(Struct Repl Repl)



Talk July 26, 1999 4:08 pm 9

Reduction

n[in m. P | Q] | m[R] xyyz m[n[P | Q] | R]
m[n[out m. P | Q] | R] xyyz n[P | Q] | m[R]
open n. P | n[Q] xyyz P | Q
(n).P | jMk xyyz P{ n←M}

(Red In)
(Red Out)
(Red Open)
(Red Comm)

P xyyz Q ⇒ n[P] xyyz n[Q]
P xyyz Q ⇒ P | R xyyz Q | R

(Red Amb)
(Red Par)

P’ � P, P xyyz Q, Q � Q’ ⇒ P’ xyyz Q’ (Red �)

xyyz* refl-tran closure of xyyz



Talk July 26, 1999 4:08 pm 10

Syntactic Conventions

!P | Q is read (!P) | Q
M.P | Q is read (M.P) | Q
(n).P | Q is read ((n).P) | Q

n[] $ n[0]
M $ M.0 (where appropriate)



Talk July 26, 1999 4:08 pm 11

Why a Logic?

A recurring issue for us was how to state behavioral properties of
ambients. E.g., protocol specifications.

We have formal tools for establishing equational properties. But
many properties cannot easily be formulated as equations.

For example, type systems for ambients guarantee certain proper-
ties, such as that some ambients are immobile, some are persistent.
It’s hard to write down equations for immobility and persistence!

Our solution: use a (modal) logic tailored for ambients.



Talk July 26, 1999 4:08 pm 12

Modal Formulas

In a modal logic, the truth of a formula is relative to a state (world).

In our case, the truth of a space-time modal formula is relative to
the here and now of a process. Each formula talks about the current
time (before further evolution of the process) and the current place
(the top-level of the process).

Therefore, the formula n[0] is read: 

there is here and now an empty location called n

The operator n[$] is a single step in space (akin to the temporal
next), which allows us talk about that place one step down into n.

Other modal operators can be used to talk about undetermined
times (in the future) and undetermined places (in the location tree).



Talk July 26, 1999 4:08 pm 13

Logical Formulas

where η is a name n or a (quantifiable) variable x.

$, % : Φ ::=
T
¬$

$ ∨ %
0
η[$]
$ | %
Òx.$
2$

�$

$@η
$©%

true
negation (also $¬)
disjunction
void
location
composition
universal quantification over names
sometime modality (temporal)
somewhere modality (spatial)
location adjunct
composition adjunct



Talk July 26, 1999 4:08 pm 14

Satisfaction Relation

P�P’ iff Ón, P”.  P � n[P’] | P”
�* is the reflexive and transitive closure of �

P � T
P � ¬$

P � $∨%
P � 0
P � n[$]
P � $ | %
P � Òx.$
P � 2$

P � �$

P � $@n
P � $©%

$ ¬ P � $
$ P � $ ∨ P � %
$ P � 0
$ ÓP’:Π. P � n[P’] ∧ P’ � $
$ ÓP’,P” :Π. P � P’|P”  ∧ P’ � $ ∧ P” � %
$ Òm:Λ. P � ${ x←m}
$ ÓP’:Π. Pxyz*P’ ∧ P’ � $
$ ÓP’:Π. P�*P’ ∧ P’ � $
$ n[P] � $ 
$ ÒP’:Π. P’ � $ ⇒ P|P’ � % 



Talk July 26, 1999 4:08 pm 15

Basic Fact

Satisfaction is invariant under structural congruence:

(P � $ ∧ P � P’) ⇒ P’ � $

I.e.: { P:Π @ P � $}  is closed under �.

Hence, formulas describe only congruence-invariant properties.



Talk July 26, 1999 4:08 pm 16

Some Derived Formulas

F
$ ⇒ %
$ ∧ %
Óx.$
�$

4$

$F

$¬F

$F¬

$ ¬T
$ ¬$ ∨ %
$ ¬(¬$ ∨ ¬%)
$ ¬Òx.¬$

$ ¬�¬$

$ ¬2¬$

$ $©F

$�valid
$�satisfiable

P � - iff P � $ ⇒ P � %
P � - iff P � $ ∧ P � %
P � - iff Óm:Λ. P � ${ x←m}
P � - iff ÒP’:Π. P�*P’ ⇒ P’ � $
P � - iff ÒP’:Π. Pxyz*P’ ⇒ P’ � $ 

P � - iff ÒP’:Π. P’ � $ ⇒ P|P’ � F
iff ÒP’:Π. ¬ P’ � $ 

P � - iff ÒP’:Π. P’ � $ 
P � - iff ÓP’:Π. P’ � $ 



Talk July 26, 1999 4:08 pm 17

Simple Examples

(1) p[T] | T 

there is a p here (and possibly something else)

(2) �(1)

somewhere there is a p

(3) (2) ⇒ 4(2)

if there is a p somewhere, then forever there is a p somewhere

(4) p[q[T] | T] | T

there is a p with a child q here

(5) �(4)

somewhere there is a p with a child q



Talk July 26, 1999 4:08 pm 18

Claims

• The satisfaction relation is "utterly natural" (to us):

– The definitions of 0, $|%, and n[$] seem inevitable, once we ac-
cept that formulas should be able to talk about the tree structure
of locations, and that they should not distinguish processes that
are surely indistinguishable (up to �).

– The connectives $@n and $©% have security motivations.

– The modalities 2$ and �$ talk about process evolution and
structure in an undetermined way (good for specs).

– The fragment T, ¬$, $∨%, Òx.$, is classical: why not?

• The logic is induced by the satisfaction relation.

– We did not have any preconceptions about what kind of logic
this ought to be. We didn’t invent this logic, we discovered it!



Talk July 26, 1999 4:08 pm 19

From Satisfaction to Logic

Propositional validity

vld $ $  ÒP:Π. P � $ $ (closed) is valid

Sequents

$�L} % $ vld ($ ⇒ %)

Rules

$1�L} %1; ...; $n�L} %n� $�L} % $ (n≥0)

$1�L} %1 ∧ ... ∧ $n�L} %n ⇒ $�L} %

N.B.: All the rules shown later are validated accordingly.

Conventions:

xML}��means  L}��in both directions

  means    in both directions



Talk July 26, 1999 4:08 pm 20

"Neutral" Sequents

• The logic is formulated as a sequent calculus with single-premise,
single-conclusion sequents. We don’t pre-judge ",".

– By taking ∧ on the left and ∨ on the right of L} as structural oper-
ators, all the standard rules of sequent and natural deduction sys-
tems with multiple premises/conclusions can be derived. 

– By taking | on the left of L} as a structural operator, all the rules
of intuitionistic linear logic can be derived (by appropriate map-
pings of the ILL connectives).

– By taking nestings of ∧ and | on the left of L} as structural "bunch-
es", we obtain a bunched logic, with its two associated implica-
tions, ⇒ and ©.

• This is convenient. We do not know much, however, about the met-
atheory of this presentation style.



Talk July 26, 1999 4:08 pm 21

Step 1: Propositional Rules

(A-L) $∧(&∧')�L} %  ($∧&)∧'�L} %
(A-R) $�L} (&∨')∨%  $�L} &∨('∨%)
(X-L) $∧&�L} %  &∧$�L} %
(X-R) $�L} &∨%  $�L} %∨&
(C-L) $∧$�L} %  $�L} %
(C-R) $�L} %∨%  $�L} %
(W-L) $�L} %  $∧&�L} %
(W-R) $�L} %  $�L} &∨%
(Id)  $�L} $
(Cut) $�L} &∨%; $ª∧&�L} %ª  $∧$ª�L} %∨%ª

(T) $∧T�L} %  $ L} %
(F) $�L} F∨%  $ L} %
(¬-L) $�L} &∨%  $∧¬&�L} %
(¬-R) $∧&�L} %  $�L} ¬&∨%



Talk July 26, 1999 4:08 pm 22

Step 2: Concurrency Rules

• Apart from our interest in mobility and nested locations, a fragment
of our logic makes sense just for ordinary concurrency (i.e., for a
CCS-like process calculus with 0 and | ). We examine this fragment
first.

• (Small caveat. To get things off the ground, one needs some process
that is definitely ¬0. In our full logic, locations have this property,
otherwise something must be introduced for this purpose.)



Talk July 26, 1999 4:08 pm 23

Concurrency Rules

( | 0)  $ | 0 xML} $ 0 is nothing

( | ¬0)  $ | ¬0 L} ¬0 if a part is non-0, so is the whole

(A | )  $ | (% | &) xML} ($ | %) | & | associativity

(X | )  $ | % L} % | $ | commutativity

( | L}) $ª�L} %ª; $¨�L} %¨  $ª | $¨ L} %ª | %¨ | congruence

( | ∨)  ($∨%) | & L} $ | &�∨ % | & |-∨ distribution

( | || )  $ª | $¨�L} $ª | %¨�∨ %ª | $¨�∨ ¬%ª | ¬%¨ decomposition

( | ©) $ | &�L} %  $�L} &©% |-© adjunction

N.B., neutral sequents make the rule ( | L}) (and others) particularly
simple, even though | does not distribute with ∧ in the "useful" direc-
tion.



Talk July 26, 1999 4:08 pm 24

The Decomposition Operator

Consider the De Morgan dual of | :

$ || %  for every partition, one piece satisfies $ 
or the other piece satisfies %

$�Ò ⇔ ¬((¬$)Ó)  every component satisfies $ 
$�Ó ⇔ ¬((¬$)Ò)  some component satisfies $ 

Examples:

(p[T] ⇒ p[q[T]Ó])Ò every p has a q child
(p[T] ⇒ p[q[T] | (¬q[T])Ò])Ò every p has a unique q child

$ || %

$�Ò

$�Ó

$ ¬(¬$ | ¬%)

$ $ || F
$ $ | T

P � - iff ÒP’,P” :Π. P � P’|P”  ⇒ 
P’ � $ ∨ P” � %

P � - iff ÒP’,P” :Π. P � P’|P”  ⇒ P’ � $
P � - iff ÓP’,P” :Π. P � P’|P”  ∧ P’ � $



Talk July 26, 1999 4:08 pm 25

The Decomposition Axiom

( | || )  ($ª | $¨)�L} ($ª | %¨)�∨ (%ª | $¨)�∨ (¬%ª | ¬%¨)

Alternative formulations and special cases:

 ($ª | $¨)�∧ (%ª || %¨)�L} ($ª | %¨)�∨ (%ª | $¨)

"If P has a partition into pieces that satisfy $ª and $¨ , and every
partition has one piece that satisfies %ª or the other that satisfies %¨,
then either P has a partition into pieces that satisfy $ª and %¨ , or it
has a partition into pieces that satisfy %ª and $¨ ."

 ¬($ | %) L} ($ | T) ⇒ (T | ¬%)

"If P has no partition into pieces that satisfy $ and %, but P has a
piece that satisfies $, then P has a piece that does not satisfy %."

 ¬(T | %) L} T | ¬%



Talk July 26, 1999 4:08 pm 26

The Composition Adjunct

( | ©) $ | &�L} %  $�L} &©%

"Assume that every process that has a partition into pieces that sat-
isfy $ and & , also satisfies %. Then, every process that satisfies $,
together with any process that satisfies &, satisfies %. (And vice
versa.)"    (c.f. (xyµ R))

Interpretations of $©%:

- P provides % in any context that provides $

- P ensures % under any attack that ensures $

That is, P � $©% is a context-system spec (a concurrent version of a
pre-post spec).

Moreover $©% is, in a precise sense, linear implication: the context
that satisfies $ is used exactly once in the system that satisfies %.



Talk July 26, 1999 4:08 pm 27

Some Derived Rules

 ($©%) | $ L} %

"If P provides % in any context that provides $, and Q provides $, then P
and Q together provide %." 

Proof:   $©% L} $©%  ($©%) | $ L} %��������      by (Id), ( | ©)

' L} $; % L} &  ' | ($©%) L} & (c.f. (xyµ L))

"If anything that satisfies ' satisfies $, and anything that satisfies % satis-
fies &, then: anything that has a partition into a piece satisfying '�(and
hence $), and another piece satisfying % in a context that satisfies $, it sat-
isfies (% and hence) &."

Proof:

' L} $; $©% L} $©%  ' | $©% L} $ | $©% assumption, (Id), ( | L})

$ | $©% L} %  above

% L} & assumption



Talk July 26, 1999 4:08 pm 28

More Derived Rules

 $ L} T | $ you can always add more pieces (if they are 0)

 F | $ L} F  if a piece is absurd, so is the whole

 0 L} ¬(¬0 | ¬0) 0 is single-threaded

 $ | % ∧ 0 L} $  you can split 0 (but you get 0). Proof uses ( | || )

$ª�L} $; %�L} %ª  $©%�L} $ª©%ª ©�is contravariant on the left

 $©% | %©& L} $©& ©�is transitive

 ($ | %)©& xML} $©(%©&) ©�curry/uncurry

 $©(%©&) L} %©($©&) contexts commute

 T xML} T©T truth can withstand any attack

 T L} F©$ anything goes if you can find an absurd partner

 T©$ L} $ if $ resists any attack, then it holds



Talk July 26, 1999 4:08 pm 29

Step 3: Location Rules

(n[] ¬0)  n[$] L} ¬0 locations exist

(n[] �¬ | )  n[$]�L} ¬(¬0 | ¬0) are not decomposable

(n[] �L}) $�L} %  n[$]�L} n[%] n[] congruence

(n[] ∧)  n[$]∧n[&]�L} n[$∧&] n[]-∧ distribution

(n[] ∨)  n[&∨%] L} n[&]∨n[%] n[]-∨ distribution

(n[] F)  n[F]�L} F can’t hold absurdity

(n[] @) n[$]�L} %  $�L} %@n n[]-@ adjunction



Talk July 26, 1999 4:08 pm 30

Some Derived Rules

Consequences:
$�L} %  $@n�L} %@n @ congruence

 n[$@n]�L} $
 $�xML} n[$]@n

 n[¬$]�L} ¬n[$]
 ¬n[$]�xML} ¬n[T] ∨ n[¬$]



Talk July 26, 1999 4:08 pm 31

Examples

an n $ n[T] | T there is now an n here

no n $ ¬an n there is now no n here

one n $ n[T] | no n there is now exactly one n here

$�Ò $ ¬(¬$ | T) everybody here satisfies $

(n[T] ⇒ n[$])Ò every n here satisfies $

�((n[T] ⇒ n[$])Ò) every n everywhere satisfies $



Talk July 26, 1999 4:08 pm 32

Step 4: Time and Space Modalities

(2)  2$ xML} ¬4¬$

(4 K)  4($ ⇒ %) L} 4$ ⇒ 4%
(4 T)  4$ L} $
(4 4)  4$ L} 44$
(4 L}) $�L} %  4$�L} 4% 

(�)  �$ xML} ¬�¬$

(� K)  �($ ⇒ %) L} �$ ⇒ �%

(� T)  �$ L} $
(� 4)  �$ L} ��$

(� L}) $�L} %  �$�L} �%

S4, but not S5:
¬ vld 2$ L} 42$

¬ vld �$ L} ��$



Talk July 26, 1999 4:08 pm 33

Additional Modality Rules

(2 n[])  n[2$]�L} 2n[$]
(2 | )  (2$) | (2%)�L} 2($ | %)

(� n[])  n[�$]�L} �$

(� | )  (�$) | %�L} �($ | T)

(�2)  �2$�L} 2�$
if somewhere sometime $, then sometime somewhere $ 



Talk July 26, 1999 4:08 pm 34

Step 5: Validity and Satisfiability

P � $F iff ÒP’:Π. P’ � $ ⇒ P | P’ � F
iff ÒP’:Π. ¬P’ � $ iff $ is unsatisfiable

(©F ¬)  $F L} $¬ if $ is unsatisfiable then $�is false

(¬ ©F)  $F¬ L} $FF if $ is satisfiable then $F�is unsatisfiable

We can reflect validity and satisfiability within the logic:

Vld $ $  $¬F P � Vld $��iff  ÒP’:Π. P’ � $
Sat $ $  $F¬ P � Sat $��iff  ÓP’:Π. P’ � $

Then, as derived rules we have that Vld,Sat are S5 modalities.
(That is, S4 plus:  Sat�$ L} Vld�Sat�$.)



Talk July 26, 1999 4:08 pm 35

Reflecting Name Equality

Name equality can be defined within the logic:

η�= µ  $  η[T]@µ

Since (for any substitution applied to η,µ):

P � η[T]@µ  
iff µ[P] � η[T]  
iff η�= µ ∧ P � T
iff η�= µ

Example: "Any two ambients here have different names":

Òx.Òy. x[T] | y[T] | T ⇒ ¬ x=y



Talk July 26, 1999 4:08 pm 36

What Kind of Logic is This?

• Not sure where we stand in the Big Picture:

– A relevant logic without contraction? (Heresy!)

– A linear logic with distribution? (Anathema!)

– Two implications, one classical and additive, ⇒, 
one intuitionistic and multiplicative, ©? (Confusion!)

• Admittedly, this is intentionally ad-hoc: we are motivated by cap-
turing truths about the ambient calculus. 

• Still, there are interesting and unusual sublogics that seem applica-
ble to other contexts and, in particular, to other process calculi.



Talk July 26, 1999 4:08 pm 37

Urquhart Decontracted

• (Noted after the fact [O’Hearn, Pym].) The definition of the satis-
faction relation is very similar to Urquhart’s semantics of relevant
logic. In particular $|% is defined just like�intesional conjunction,
and $©% is defined just like relevant implication in that semantics.

• Except: 

– We do not have contraction. This does not make sense in process
calculi, because P | P ≠ P. Urquhart semantics without contrac-
tion does not seem to have been studied.

– We use an equivalence �, instead of a Kripke-style partial order
� as in Urquhart’s general case. (We may have a need for a par-
tial order in more sophisticated versions of our logic.)



Talk July 26, 1999 4:08 pm 38

Girard Redistributed

• (Noted after the fact [Winskel, O’Hearn].) In an appropriate sense,
$|% is�linear tensor, and $©% is linear implication. A precise con-
nection can be made with full intuitionistic linear logic.

• Except:

– The additives, ⊕ILL  and & ILL , distribute (a derived rule).

– �ILL collapses with 0ILL .

– !ILL  is rather degenerate. (! ILL$) xyµILL  % does not seem to have
an interesting interpretation.

• Still, the multiplicative fragment seems faithful.



Talk July 26, 1999 4:08 pm 39

Syntactic Connections with Linear Logic

• Intuitionistic linear logic (ILL) can be embedded in our logic:

• The rules of ILL can be logically derived from these definitions.
(E.g.: the proof of !$�L} !$ ⊗ !$�uses the decomposition axiom.)

• So, $1, ..., $n L}ILL  %  implies  $1 |  ... | $n L} %.

1ILL � $ 0
�ILL � $ F
�ILL � $ T
0ILL � $ F

$ ⊕ %� $ $ ∨ %
$ &  %� $ $ ∧ %
$ ⊗ %� $ $ | %
$ xyµ %� $ $ © %
!$� $ 0 ∧ (0 ⇒ $)¬F



Talk July 26, 1999 4:08 pm 40

Semantic Connections with Linear Logic

• A (commutative) quantale 4 is a structure 
<S : Set, ≤ : S2→Bool, ⊗ : S2→S, 1 : S, r : 3(S)→S> such that:

≤, r : a complete join semilattice
⊗, 1 : a commutative monoid
p ⊗ rQ = r{ p ⊗ q @ q Ð�Q}

• They are complete models of Intuitionistic Linear Logic (ILL):

?$ ⊕ %A� $ r{ ?$A, ?%A} ?1ILL A� $ 1
?$ &  %A� $ r{ C @ C≤?$A ∧ C≤ ?%A} ?�ILL A� $ any element of S
?$ ⊗ %A� $ ?$A ⊗ ?%A ?�ILL A� $ rS
?$ xyµ %A� $ r{ C @ C ⊗ ?$A ≤ ?%A} ?0ILL A� $ rÔ
?!$A� $ υX. ?1 & $ & X⊗XA where υX. A{ X} �$ r{ C @ C ≤ A{ C}}

vldILL ($1, ..., $n L}ILL  %)4 $ ?$1A4 ⊗4 ... ⊗4 ?$nA4 ≤4 ?%A4



Talk July 26, 1999 4:08 pm 41

The Process Quantale

• The sets of processes closed under � and ordered by inclusion form
a quantale (let  A��$�{ P @ P�Q ∧ Q Ð�A} ):

Φ $ <Φ, ⊆, ⊗, 1, t>     where, for A,B ⊆ Π:

Φ� $� { A� @ A ⊆ Π}
1Φ $� { 0} �,             A ⊗Φ B $� { P | Q @ P Ð�A ∧ Q Ð�B} �

• Our syntactic definitions of ILL operators match their quantale in-
terpretation. (E.g.: ?$ ⊗ %AΦ =�?$AΦ ⊗Φ ?%AΦ,  ?!$AΦ =�!Φ?$AΦ.)

• Interpretation of formulas:

?$A $ {P:Π @ P � $}        where ?$A�= ?$A�

• Our validity matches ILL validity for ILL sequents:

vldILL ($1, ..., $n L}ILL  %)Φ���⇔   vld($1 | ... | $n L} %)



Talk July 26, 1999 4:08 pm 42

Applications

• Model Checking

– We have an algorithm for deciding the � relation for !-free pro-
cesses and ©-free formulas.

• Expressing Locking

– If E, n:Amb•[S] L} P : T (a typing judgment asserting that no am-
bient called n can ever be opened in P), then:

P � 4(�an n ⇒ 4�an n)

• Expressing Immobility

– If E, p:Amb•[S], q:Amb•[RS’] L} P : T (a typing judgment assert-
ing that no ambient called q can ever move within P), then:

P � 4(�(p parents q) ⇒ 4�(p parents q))
where p parents q� $��p[q[T] | T] | T



Talk July 26, 1999 4:08 pm 43

Future Directions: Fixpoints

• Abadi, Lamport, and Plotkin and have described reactive specifica-
tions such that:

$ → %  | % → $ ⇒ $ ∧ %

Define:  < → =� $ µ;. (; © <) © =.  Then:

$ → %� =  (($ → %) © $) © %� ⇒ (% → $) © %
% → $� =  ((% → $) © %) © $� ⇒ ($ → %) © $

$ → %  | % → $� ⇒ (% → $) © %  | % → $ ⇒ %

$ → %  | % → $� ⇒ $ → %  | ($ → %) © $ ⇒ $

• Modalities and their variations can be defined from fixpoints.
Moreover, we can express new useful predicates:

n� $ ¬�(n[T] | T)
unique n� $ µ;. n | (n[n] ∨ Óy≠n. y[;])



Talk July 26, 1999 4:08 pm 44

Conclusions

• The novel aspects of our logic lie in its treatment of space (spatial
structures) and of the evolution of space over time (mobility).

• The logic has a strong intensional flavor, reflecting the fact that
space has intensional properties. The logic has a linear flavor in the
sense that space cannot be instantly created or deleted.

• These principles can be applied to any process calculus that embod-
ies a distinction between topological and dynamic operators.

• The logic is based on strong computational intuitions, so we are not
too timid about our choice of connectives. However, from a purely
logical point of view, it seems to have unusual properties (perhaps
accidental to our presentation).


