Abstractions for
Mobile Computation

Luca Cardelli
with Andrew D. Gordon

Microsoft Research

e Understanding Mobility
~ Virtual mobility
~ Physical mobility
~ Both together over wide areas
e Modeling mobility
~ Why previous formalisms are not good enough
~ The ambient calculus
« Applications and future directions
~ Study of combined security and mobility properties

~ Libraries and languages for wide-area networks

e | ocal area networks
e \Wide area networks

e Mobile networks

Administrative Domain

Internet/Web: a federated WAN infrastructure that spans the
planet. We would like to program it.

Unfortunately, federated WANS violate many familiar assump-
tions about the behavior of distributed systems.

Three phenomena that remain largely hidden in LANs become
readily observable:

~ Virtual locations.

~ Physical locations.

~ Bandwidth fluctuations.

Another phenomenon becomes unobservable:

~ Failures.

e To emulate a LAN on top of a WAN we would have to:

~ (A) Hide virtual locations. By semi-transparent security. But
IS It possible to guarantee the integrity of mobile code?

~ (B) Hide physical locations. Cannot “hide” the speed of light,
other than by slowing down the whole network.

~ (C) Hide bandwidth fluctuations. Service guarantees elimi-
nate bandwidth fluctuations, but introduce access failures.

~ (D) Reveal failures. Impossible in principle, since the Web is
an asynchronous network.

e |In summary: (A) may be unsolvable for mobile code; (B) is only
solvable (in full) by introducing unacceptable delays; (C) can be
solved in a way that reduces it to (D); (D) Is unsolvable in prin-
ciple, while probabilistic solutions run into point (B).

< WAN observables are different (and not reducible to) LAN ob-
servables.

e Observables determine programming constructs, and therefore
Influence programs and programming languages.

< \We need a complete set of programming constructs that can de-
tect and react to the available observables and, of course, we do
not want programming constructs that attempt to detect or react
to non-observables.

Mobile computation can cope with the observables characteris-
tic of a wide-area network such as the Web.

~ Virtual locations. Trust mechanisms to cross virtual barriers.
~ Physical locations. Mobility to optimize placement.

~ Bandwidth fluctuations. Mobility to split applications and es-
tablish optimized communication protocols.

~ Failures. Running around or away from failures.

AF 81

US EU

I A A CDG
SFO NSA I I l
N

J

< Mobile devices also move computations. In this sense, we cannot
avold the issues raised by mobile computation.

Separate locations exist. They may be difficult to reach.

Since different locations have different properties, both people
and programs (and sublocations!) will want to move between
them.

Barriers to mobility will be erected to preserve certain properties
of certain locations.

Some people and some programs will still need to cross those
barriers.

This is the situation Wide-Area Languages have to cope with.

= Broadly classifiable in two categories:
~ Agents (Actors, Process Calculi, Telescript, etc.)
~ Spaces (Linda, Distributed Lindas, JavaSpace, etc.)

« (With the work on Ambients, we aim to unify and extend those
basic concepts.)

Service Combinators (with Rowan Davies)
— WebL (Hannes Marais et al.)

~ Control constructs for handling bandwidth fluctuations from
the point of view of a static client.

Ambients (with Andrew D. Gordon)

~ Control constructs for handling mobility of entire sub-
systems, barrier crossing, and security.

It’s all about barriers:

—~

—~

—~

Locality = barrier topology.
Process mobility = barrier crossing.
Security = (In)ability to cross barriers.

Interaction by shared position within a barrier, with no ac-
tion at a distance.

CSP/CCS. (StaticZimmutable connectivity.)

n-calculus. (Channel mobility.)
N.B. "mobility" in this context is not process mobility.

Process mobility is reduced to channel mobility.

Ambient Calculus:
Process mobility = Barrier crossing.

e |n the w-calculus (our starting point):
~ processes exist in a single contiguous location
~ Interaction is by shared names, used as I/0 channels

~ there Is no direct account of access control

e |n our ambient calculus:
~ processes exist in multiple disjoint locations
~ Interaction is by shared position, with no action at a distance

~ capabilities, derived from ambient names, regulate access

« Join calculus. (Channel mobility and locality.)

= Various calculi with failure. (Locality = Partial Failure.)

< Ambient calculus:
Locality = Barrier topology.

e (BAN logic, etc.)
= Spi-calculus. (Channel mobility and cryptography)

< Ambient calculus:
Security = (In)ability to cross barriers.

We want to capture in an abstract way, notions of locality, of mo-
bility, and of ability to cross barriers.

An ambient is a place, delimited by a boundary, where computa-
tion happens.

Ambients have a name, a collection of local processes, and a col-
lection of subambients.

Ambients can move in an out of other ambients, subject to capa-
bilities that are associated with ambient names.

Ambient names are unforgeable (as in & and spi).

P

(vn) P

P|P
P
M[P]
M.P
(n).P
(M)

iIn M
out M
open M

M.M’

new name n in a scope

scoping
Inactivity standard in
parallel process calculi
replication

ambient
exercise a capability

)
input locally, bind t n)
put locally, 0)
)
)

)
} data structures
ambient-specific
\ actions
output locally (async) j ambient 170

name
entry capability
exit capability
open capability
empty path
composite path

basic capabilities

useful with 170

e Behavior

~ The semantics of the ambient calculus is given in non-deter-
ministic “chemical style” (as in Berry&Boudol’s Chemical Ab-
stract Machine, and in Milner’s wt-calculus).

~ The semantics is factored into a reduction relation P — P’ de-
scribing the evolution of a process P into a process P’, and a
process equivalence indicated by Q = Q’.

~ Here, — is real computation, while = Is “rearrangement”.
« Equivalence

~ On the basis of behavior, a substitutive observational equiva-
lence, P =~ Q, Is defined between processes.

~ Standard process calculi reasoning techniques (context lem-
mas, bisimulation, etc.) can be adapted.

= Parallel execution is denoted by a binary operator:

PIQ
e |tis commutative and associative:
PIQ = QP
PIQIR =Pl (QIR)
« |t obeys the reduction rule:
P—-Q = P|R—Q]R

« Replication is a technically convenient way of representing iter-
ation and recursion.

P
e |t denotes the unbounded replication of a process P.
P = P|IP

e There are no reduction rules for !P; in particular, the process P
under ! cannot begin to reduce until it is expanded out as P | !P.

= The restriction operator creates a new (forever unique) ambient
name n within a scope P.

(vn)P

< As in the w-calculus, the (vn) binder can float as necessary to ex-
tend or restrict the scope of a name. E.g.:

(vm(P |1 Q) = P|(vn)Q 1fn¢in(P)
e Reduction rule:

P—Q = (vh)P — (vn)Q

e The process that does nothing:

0
e Some garbage-collection equivalences:

P]J]0O = P
0 = 0
(vn)0 = 0

= This process does not reduce.

e An ambient is written as follows, where n iIs the name of the am-
bient, and P is the process running inside of it.

n[P]
e |In n[P], it is understood that P is actively running:
P—Q = n[P]—n[Q]

< Multiple ambients may have the same name, (e.g., replicated
Servers).

e QOperations that change the hierarchical structure of ambients
are sensitive. They can be interpreted as the crossing of firewalls
or the decoding of ciphertexts.

e Hence these operations are restricted by capabilities.
M. P

This executes an action regulated by the capability M, and then
continues as the process P.

e The reduction rules for M. P depend on M.

< An entry capability, in m, can be used in the action:

e The reduction rule (non-deterministic and blocking) is:

InNm. P

ninm. P | Q] | m[R] — m[n[P | Q] IR]

iInm.P | Q

—> P]Q

| R

« An exit capability, out m, can be used in the action:

outm. P

e The reduction rule (non-deterministic and blocking) is:
m[nfoutm. P | Q] | Rl — n[P | Q] | m[R]

outm.P | Q

| R

—> P1oQ | |

< An opening capability, open m, can be used in the action:

open n. P

e The reduction rule (non-deterministic and blocking) is:
openn.P | n[Q] — P]Q

openn. P | Q —> P]|Q

< An open operation may be upsetting to both P and Q above.

~ From the point of view of P, there is no telling in general what
Q might do when unleashed.

~ From the point of view of Q, its environment is being ripped
open.

< Still, this operation is relatively well-behaved because:

~ The dissolution is initiated by the agent open n. P, so that the
appearance of Q at the same level as P is not totally unexpect-
ed;

~ open n Is a capability that is given out by n, so n[Q] cannot be
dissolved if it does not wish to be.

< An ambient should not get killed or trapped unless:
~ [t talks too much. (By making its capabilities public.)
~ It poisons itself. (By opening an untrusted intruder.)

~ It steps into quicksand. (By entering an untrusted ambient.)

< Some natural primitives violate this principle. E.g.:

n[burstn.P | Q] — P] Q

Then a mere in capability gives a kidnapping ability:
entrap(M) 2 (vkm) (m[M.burstm.ink] | k[1)

entrap(in n) | n[P] —* (vk) (n[ink | P] | k[I)
—* (VK) K[n[P]]

e Morale
~ One can imagine lots of different mobility primitives.

~ But one must think hard about the "security" implications of
combinations of these primitives.

Local anonymous communication within an ambient:
(x). P Input action
(M) async output action
We have the reduction:
(¥). P | (M) — P{x<M}
This mechanism fits well with the ambient intuitions.

~ Long-range communication, like long-range movement,
should not happen automatically because messages may have
to cross firewalls and other obstacles. (C.f., Telescript.)

~ Still, this is sufficient to emulate communication over named
channels, etc.

Reduction Summary

nfinm.P | Q] | m[R] — m[n[P] Q] |R] (Red In)
m[nfoutm. P | Q] | R] —=n[P | Q] | m[R] (Red Out)

openn.P | nN[Q]—P] Q (Red Open)

(n). P | (M) — P{n<M} (Red Comm)

P—Q = (vh)P — (vn)Q (Red Res)

P—Q = n[P]—n[Q] (Red Amb)

P—Q = PJ|R—Q]R (Red Par)
P=P,P—-0Q,Q=Q = P —Q (Red =)

—* reflexive and transitive closure of —

In addition, we identify terms up to renaming of bound names:

(vn)P = (vm)P{n<m} ifm ¢ fn(P)
(nN).P = (Mm).P{h<m} ifm ¢ fn(P)

Tak November 6, 1998 2:37 pm 16

Structural Congruence Summary

P=P

P=Q = Q=P
P=Q,Q=R = P=R
P=Q = (vn)P=(vn)Q
P=Q = P|JR=Q]R
P=Q = P=1Q
P=Q = MI[P]=M[Q]
P=0Q = MP=M.Q
P=Q =

(n).P=(n).Q

(Struct Refl)
(Struct Symm)
(Struct Trans)

(Struct Res)
(Struct Par)
(Struct Repl)
(Struct Amb)
(Struct Action)
(Struct Input)

Talk November 6, 1998 2:37 pm

17

PIQ=Q]P
PIQIR=P]QIR)
P=P|IP

(vn)(vm)P = (vm)(vn)P

(vm(P 1 Q) =P | (vn)Q ifn ¢ in(P)
(vn)(m[P]) = m[(vnh)P] ifn#m
P]J]0=P

(vn)0 =0

0=0

eP=P
(M.M’).P = M.(M’.P)

(Struct Par Comm)
(Struct Par Assoc)
(Struct Repl Par)
(Struct Res Res)
(Struct Res Par)
(Struct Res Amb)

(Struct Zero Par)
(Struct Zero Res)
(Struct Zero Repl)

(Struct €)
(Struct .)

Tak November 6, 1998 2:37 pm

18

Example

Principal A Principal B
2 N
A[msg[(M)|outA In B]] | B[open msg. (X). P]
J g
send M:A=>B receive X; P

A[msg[{M)Jout A. in B]] | B[open msg. (x). P]
— A[] | msg[(M)]in B] | B[open msg. (X). P]
— A[] | B[msg[(M)]] open msg. (x). P]

— All | BIM) [(X). P]

— Al] | B[P{x<-M]]

Talk

November 6, 1998 2:37 pm

19

= Replication creates new names:
I(vn)P #Z (vn)IP
e Multiple n ambients have separate identity:

n[P]In[Q] # n[P]Q]

= Originally, a metaphor to explain the ambient calculus.
< Acquiring a life of its own:

~ a “computationally complete multithreaded graphical office
metaphor”.

~ (optionally) typed.
~ I1somorphic to the ambient calculus.

« Disclaimer: not yet in the form of a useful graphical scripting
language. But all the “useful” primitives are in principle ex-
pressible.

e A folder name n.
e Active contents P:
~ hierarchical data and “gremlins”.

~ computational primitives for mobility and communication.

Enter Reduction

Talk

October 14, 1998 4:26 pm

16

Exit Reduction

Talk

October 14, 1998 4:26 pm

17

Open Reduction

openn'ZP) % P Q

Tak

October 14, 1998 4:26 pm

18

Copiers

Tak

October 14, 1998 4:26 pm

19

Copy Reduction

P P

e e

=] % =]

Talk October 14, 1998 4:26 pm

20

e Give authenticity to folders.

e Copiers are unable to accurately duplicate rubber stamps.

allowed forbidden

Leaves of the Syntax

O

Inactive gremlin

Talk

October 14, 1998 4:26 pm

22

L

e A nameless file. (Originally: an asynchronous message.)

X P{x})

e A gremlin grabbing (reading and removing) a file.

Read Reduction

O

P{M}

Tak

October 14, 1998 4:26 pm

24

Textual Syntax Visual Syntax Comments

T
—n -~ .
(vn)P | Y New name n in scope P.
\ P /
N e e m
/ n

Folder (ambient) of name
n[P]
n and contents P.

M.P @ Action M followed by P.

Two processes in parallel.

P]QO P Q (Visually: contiguously
placed in 2D.)
Inactive process (often
0 O omitted).
P
P . Replication of P.
(M) M Output M.
e
(n).P @ Input n followed by P.

(P) (P) Grouping.
Data M,N
n A hame

In N An entry capability

out n An exit capability
openn An open capability

here The empty path of capabilities

M.N The concatenation of two paths

A string (file)
etc.

e The folder calculus is Turing-complete (even without the 170
operations), concurrent, with synchronization primitives.

= A type system can be used to make sure that each gremlin reads
only messages of the appropriate type.

~ The type of a file is associated with the name of the folder that
contains it. All the files in a folder must have the same type.

~ Subfolders of a given folder may contain files of different
types.

~ S0 we have a heterogeneous data hierarchy, but with well-
typed 1/0.

A Distiller Server

distill(x)

out inbox. in outbOBS/

| —— |

—

Inbox, input: Folder[PS]

in distiller. in mbo%@ outbox, output: Folder[PDF]

Tak

October 14, 1998 4:26 pm

32

In textual form:

distiller|

Inbox|

lopen input |

I(x) output[(distill(x)) | out inbox. in outbox]] |
outbox[]]

I
Input[("%!'PS...") | indistiller. in inbox]

Talk October 14, 1998 4:26 pm

33

Authentication

out home
In home

Tak

October 14, 1998 4:26 pm

34

Nonces

I
I
I
I
I
I
I
I
|

outa.Inb

N

Tak

October 14, 1998 4:26 pm

35

Shared Keys

generation of a fresh shared key k

encryption:
plaintext M inside a k-envelope

decryption:

opening a k-envelope and reading
the contents

Tak

October 14, 1998 4:26 pm

36

e Some new features

~ The primitives invented exclusively for process mobility end
up being meaningful for security. (Various caveats apply.)

~ The combination of mobility and cryptography in the same
formal framework seems novel and intriguing.

~ E.g., we can represent both mobility and (some) security as-
pects of “crossing a firewall”.

Old concepts that can be represented:

~ Synchronization and communication mechanisms.

~ Turing machines. (Natural encoding, no 1/0 required.)
~ Arithmetic. (Tricky, no 170 required.)

~ Data structures.

~ m-calculus. (Easy, channels are ambients.)

~ A-calculus. (Hard, different than encoding A in 7.)

~ Spi-calculus concepts. (Being debated.)

Net-centric concepts that can be represented:

—~

—~

—~

Named machines and services on complex networks.
Agents, applets, RPC.

Encrypted data and firewalls.

Data packets, routing, active networks.

Dynamically linked libraries, plug-ins.

Mobile devices.

Public transportation.

= \We can use open to encode locks:

releasen.P 2 n[] | P
acquiren.P £ openn.P

e This way, two processes can “shake hands” before proceeding
with their execution:

acquire n. release m. P | release n. acquire m. Q

Turing Machines

end[extendLft | Sg |
square[S; |
square[S; |

square[S; | head |

square[Sn.1 |
square[Sy, | extendRht]] .. | .. 111

Talk November 6, 1998 2:29 pm

tourist 2 (X). joe[x. enjoy]
ticket-desk £ !(in AF81SFO. out AF81CDG)

SFO[ticket-desk | tourist | AF81SFO[route]]

—*SFO[ticket-desk |
joe[in AF81SFO. out AF81CDG. enjoy] |
AF81SFO[route]]

—*SFO[ticket-desk |
AF81SFO[route | joe[out AFS1CDG. enjoy]]]

< Assume that the shared key k is already known to the firewall
and the client.

Wally 2 (vwr) (inr) | r[open k. inw] | w[openr. P])
Cleo 2 (x).k[x.C]

Cleo | Wally
—*(vwr) ((x). k[x.C] | (inr)] r[open k. inw] | w[openr. P])
—* (vwr) (K[inr.C] | r[open k. inw] | w[openr. P])
—* (vwr) (r[k[C] | open k. inw]] w[openr. P])
—*(vwr) (r[C] inw]] wlopenr.P])
—*(vwr) (wW[r[C] | openr.P])
—*(vw) (w[C] P])

< Assume that the shared key k is already known to the firewall
and the client.
Wally 2 (vw) (k[in k. in w] | w[open k. P])
Cleo 2 K[open k. C]

Cleo | Wally
—* (vw) (k[open k. C] | K[in k. in w] | w[open k. P])
—* (vw) (K[K[in w] | open k. C] | w[open k. P])
—* (vw) (k[inw | C] | w|open k. P])
—* (vw) WIK[C] | open k. P]
—* (vw) w[C | P]

e One secret names iIs introduced: w Is the secret name of the fire-
wall.

« \We want to verify that Cleo knows the key k: this is done by in k.
After that, Cleo gives control to in w to enter the firewall.

< A named channel is represented by an ambient.
~ The name of the channel is the name of the ambient.

~ Communication on a channel 1s becomes local 1/0 inside a
channel-ambient.

~ A conventional name, io, Is used to transport 1I/0 requests
Into the channel.

(chn)P 2 (vn) (n['openio] | P)
n(x).P 2 (vp) (iof[in n. (x). p[out n. P]] | open p)
n{M) £ jo[in n. (M)]

e These definitions satisfy the expected reduction:
nx).P | n(M) —* P{x«M}

In presence of a channel for n.

e Therefore:

((vn)P) 2 (vn) (n['open io] | (PY)

n(x).P) 2 (vp) (io[in n. (X). p[out n. {P)]] | open p)
dn{m)) 2 jo[inn. (m)]

(P1QD 2 (P)4Q)D

UPY 2 IqP)

~ The choice-free synchronous w-calculus, can be encoded with-
In the asynchronous m-calculus.

~ The A-calculus can be encoded within the asynchronous n-cal-
culus.

Contextual Equivalence

e Exhibition
Pln & P =(vni.np)(n[Q]IR) A ng{n;...ny}
e Convergence
Pl & 3n. P—*Q A Qln

« Contextual Equivalence

P~Q & VC[). CIP) & ClQ)l

Tak November 6, 1998 2:29 pm

12

n[P] 1is a firewall named n protecting P.
In n 1s the capability needed to enter the firewall.
out n 1s the capability needed to exit the firewall.

The context iIs the Internet.

The Perfect-Firewall Equation:
(vh)n[P] = O (iIf n not in P)

e The ambient calculus can, without special extensions, model cer-
tain cryptographic procedures.

~ In particular, it can model the most basic subset of the spi-cal-
culus:

{M}IN shared-key encryption of M by N
decrypt M with N shared-key decryption

e |t does not embrace a particular implementation:

~ It does not model the ability an attacker may have to compare
bit patterns.

~ It does not model the ability an attacker may have to exploit
properties of a specific underlying crypto.

= A nonce is simply a fresh name that can, for example, be commu-
nicated by an output action.

Q1 (vn)((n) | P) output a nonce n for Q

When the nonce comes back to P, it can be verified by open n.

< A name can be used as a shared key, as long as it is kept secret
and shared only by certain parties.

K[(txt)] encrypt txt with the shared key k
open k. (x). P decrypt with the shared key k
and read the message

< Anybody who knows k can decrypt a message K[(txt)]:
~ Either by open k (destructively).
~ Or by in k followed by out k (non-destructively).

« [fk[(txt)] is the plaintext txt encrypted by k, then open k represents
the (public) ability to open a k-envelope, without knowing k.

Principal A
(Vk)
l{open k)
| K[(txt)]

Principal B
(open-cap).
open-cap.
(msg). P

create a new signature key
publish the signature verifier
sign a message

acquire the signature verifier
verify an available message
read the message and proceed

« |f k[(txt)] Is the plaintext txt encrypted by k, then
(X). K[(x)] represents the (public) ability to insert a plaintext in a
k-envelope, without knowing k.

Principal A
(VK) create a new encryption key
1(X). K[{X)] publish message encryptors
| lopen k. (x). P decrypt incoming messages and proceed

Principal B
(txt) encrypt a message for A
(assuming an encryptor for A is available here)
(possibly route it back to A)

e k[(txt)] 1sthe plaintext txt encrypted with key k.
e P~ (Q means “no attacker can tell P from Q.
e The Perfect-Cipher Equation:
(VK1) kq[{txt)] = (vkz) ko[(txty)]
~ Simply because (vky) ki[(txt))] = 0 = (vky) ky[(txty)].

~ This iIs a consequence of (a) the reductions allowed in the cal-
culus, (b) the absence of other reductions that might make dis-
tinctions, (c) the (debatable) interpretation of ambient
operations as crypto operations.

e Calculi make “implicit security assumptions™.

~ Nominal calculi, like 7, spi, assume that nobody can guess the
name of a private channel.

~ The ambient calculus assumes that nobody can extract a name
from a capability.

~ Consequences include the perfect-cipher equation.
< A) This is good.

~ These assumptions are “security abstraction” that enable
high-level reasoning (via =).

~ These assumptions can be realized by different implementa-
tion (crypto) techniques.

~ They may increase practical security by providing a program-
ming model that is more transparent.

e B) This is bad.

~ Such assumption are dangerous since they are not obviously
“realistic”. How do they map to algebraic properties of the
underlying crypto primitives?

~ They may hold within the calculus, but do they keep holding
under low-level attacks (if somebody can dissect an agent)?

e (Speculation.) Implicit security assumptions must be made ex-
plicit and must be “securely implemented”.

~ One must describe an implementation of the calculus in terms
of realistic cryptographic primitives.

~ One must prove that the implementation is (1) correct and (2)
prevents certain low-level attacks. [Abadi, Gonthier, Fournet]

Ambit

stationC

-}0- -

stationA stationB

- IIIIIII-IIC:jr'lI
'I
Joe tralnAg trainBC

let train(stationX stationY XYatX XYatY tripTime) =

S nhancy

new moving. // assumes the train originates inside stationX
moving[rec T.
be XYatX. wait 2.0.
be moving. go out stationX. wait tripTime. go in stationY.
be XYatY. wait 2.0.
be moving. go out stationY. wait tripTime. go in stationX.
T];

new stationA stationB stationC ABatA ABatB BCatB BCatC.
stationA[train(stationA stationB ABatA ABatB 10.0)] |
stationB[train(stationB stationC BCatB BCatC 20.0)] |
stationC[train(stationC stationB BCatC BCatB 30.0)] |

new joe.

joe [
go
go
go
go

in stationA.

in ABatA. go out ABatB.
in BCatB. go out BCatC.
out stationCl |

new nancy.

nancy [

3 13 13 I3

in stationC.
in BCatC. go out BCatB.
iE ABatB. go out ABatA.

out stationA]

Execution trace

moving: Be ABatA

moving: Be BCatC

moving: Be BCatB

nancy: Moved in stationC
nancy: Moved in BCatC

joe: Moved in stationA
joe: Moved in ABatA

ABatA: Be moving

BCatC: Be moving

moving: Moved out stationC
BCatB: Be moving

moving: Moved out stationB
moving: Moved out stationA
moving: Moved in stationB
moving: Be ABatB

joe: Moved out ABatB
ABatB: Be moving

moving: Moved out stationB
moving: Moved in stationC
moving: Be BCatC

BCatC: Be moving

moving: Moved out stationC
moving: Moved in stationA
moving: Be ABatA

ABatA: Be moving

moving: Moved out stationA
moving: Moved in stationB

Talk

September 6, 1998 5:19 pm

moving:

nancy:

Be BCatB
Moved out BCatB

joe: Moved in BCatB

BCatB:

moving:
moving:
moving:

nancy:
ABatB:

moving:
moving:
moving:

BCatB:

moving:
moving:
moving:

nancy:
nancy:
ABatA:

moving:
moving:
moving:
moving:
moving:

Be moving
Moved out stationB
Moved in stationB
Be ABatB
Moved in ABatB
Be moving
Moved out stationB
Moved in stationB
Be BCatB
Be moving
Moved out stationB
Moved in stationA
Be ABatA
Moved out ABatA
Moved out stationA
Be moving
Moved out stationA
Moved in stationB
Be ABatB
Moved in stationC
Be BCatC

joe: Moved out BCatC
joe: Moved out stationC

moving:

Moved in stationC

Talk

September 6, 1998 5:19 pm

e The ambient/folder calculus is a minimal formalism designed
for theoretical study. As such, it is not a “programming lan-
guage”.

e Still, the ambient calculus is designed to match fundamental
WAN characteristics.

< \We now discuss how ambient characteristics might look like
when extrapolated to a programming language.

< Mobility is all about barriers:
~ Locality = barrier topology.
~ Process mobility = barrier crossing.
~ Security = (in)ability to cross barriers.
~ Communication = interaction within a barrier.

~ No immediate (un-mediated) action at a distance (across bar-
riers).
e Ambients embed this barrier-based view of mobility (extrapolat-
ed from Telescript), which is grounded on WAN observables.

< A “wide-area language” is one that does not contain features vi-
olating this view of computation.

Our basic abstraction is that of mobile computational ambients.

The ambient calculus brings this abstraction to an extreme, by
representing everything in terms of ambients at a very fine grain.

In practice, ambients would have to be medium or large-grained
entities. Ambient contents should include standard program-
ming subsystems such as modules, classes, objects, and threads.

But: the ability to smoothly move a collection of running threads
Is almost unheard of in current software infrastructures. Ambi-
ents would be a novel and non-trivial addition to our collection
of programming abstractions.

e The only way to denote an ambient is by its name.

~ One may possess a name without having immediate access to
any ambient of that name (unlike pointers).

~ Name references are never “broken” but may be “blocked”
until a suitable ambient becomes available.

e Uniformly replace pointers (to data structures etc.) by names.
~ At least across ambient boundaries.

~ This Is necessary to allow ambients to move around freely
without being restrained by immobile ties.

< Ambients can be used to model both physical and virtual loca-
tions.

~ Some physical locations are mobile (such as airplanes) while
others are immobile (such as buildings).

~ Similarly, some virtual locations are mobile (such as agents)
while others are immobile (such as mainframe computers).

< Mobility distinctions are not part of the basic semantics of ambi-
ents.

~ Can be added as a refinement of the basic model, or

~ Can be embedded in type systems that restrict the mobility of
certain ambients.

< Ambients offer a good paradigm for application migration.

~ If an ambient encloses a whole application, then the whole
running application can be moved without need to restart it
or reinitialize it.

~ In practice, an application will have ties to the local window
system, the local file system, etc. These ties, however, should
only be via ambient names.

~ After movement the application can smoothly move and re-
connect its bindings to the new local environment. (Some care
will still be needed to restart in a good state).

e The communication primitives of the ambient calculus (local to
an ambient) do not support global consensus or failure detec-
tion.

e These properties should be preserved by any higher-level com-
munication primitives that may be added to the basic model, so
that the intended semantics of communication over a wide-area
networks Is preserved.

~ RPC, interpreted as mobile packets that transport and deposit
messages to remote locations.

~ Parent-child communication

~ Communication between siblings.

e The ambient calculus is highly concurrent.

~ It has high-level synchronization primitives that are natural
and effective (as shown in the examples).

~ [t Is easy to represent basic synchronization constructs, such

as mutexes:
releasen; P 2 n[] | P release a mutex called n, and
acquiren; P & openn.P acquire a mutex called n, ther

= Still, additional synchronization primitives are desirable.

~ A useful technigue is to synchronize on the change of name of
an ambient:

nfbemP | Q] — m[P | Q]

~ (See also the Seal calculus by Castagna and Vitek.)

e The names of the ambient calculus represent an unusual combi-
nation of static and dynamic binding.

~ The names obey the classical rules of static scoping, including
consistent renaming, capture-avoidance, and block nesting.

~ The navigation primitives behave by dynamically binding/
linking a name to any ambient that has the right name.

e Definitional facilities can similarly be derived in static or dy-
namic binding style. E.g.:

~ Statically bound function definitions.

~ Dynamically bound resource definitions.

< An ambient containing definitions is similar to a module/class.
~ Remote invocation is like qualified module access.
~ open is like inheritance.
~ copy Is like object generation from a prototype.

e Unusual “module” features:

~ Ambients are first class modules: one can choose at run time
which particular instance of a module to use.

~ Ambients support dynamic linking: missing subsystems can be
added to a running system by placing them in the right spot.

~ Ambients support dynamic reconfiguration. The identity of In-
dividual modules is maintain at run time. The blocking se-
mantics allows smooth suspension and reactivation. The
hierarchical structure allows replacement of subsystems.

< Ambient security is based on boundaries and capabilities, as op-
posed to a cryptography, or access-control.

e These three models are all interdefinable. In our case:

~ Access control iIs obtained by using ambients to implement
RPC-like invocations that have to cross boundaries and au-
thenticate every time.

~ Cryptography is obtained by interpreting ambient names (by
assumption unforgeable) as encryption keys.

e The ambient security model is high level.
~ It maps naturally to administrative domains and sandboxes.

~ It allows the direct discussion of virus, trojan horses, infection
of mobile agents, firewall crossing, etc.

No “hard” pointers.

Remote references are URLSs, symbolic links, or such.
Migration/ Transportation

Thread migration.

Data migration.

Whole-application migration.
Dynamic linking.

A missing library or plug-in may suddenly show up.
Patient communication.

Blocking/exactly-once semantics.

Built-in security primitives.

An informal paper describing wide-area computation, the Fold-
er Calculus, and ideas for wide-area languages.

A technical paper about the basic Ambient Calculus.

A technical paper about techniques for proving equational prop-
erties of Ambients.

A technical paper about a type systems for Ambients (“Ex-
change Types™) regulating communication.

Work in progress with Giorgio Ghelli about type systems for
regulating mobility.

A Java applet implementation of the Ambient Calculus, and a
tech report about its thread synchronization algorithm.

www.luca.demon.co.uk

« The notion of named, active, hierarchical, mobile ambients captures
the structure and properties of wide-area networks and of mo-
bile computing and computation.

e The ambient calculus formalizes ambient notions simply and
powerfully.

~ It 1s no more complex than common process calculi.
~ It supports reasoning about mobility and security.

e |t provides a basis for envisioning new programming methodol-
ogies, libraries, and languages for wide-area computation.

