
Talk September 6, 1998 4:54 pm 1

Abstractions for
Mobile Computation

Luca Cardelli
with Andrew D. Gordon

Microsoft Research

Talk November 6, 1998 2:33 pm 1

Outline

• Understanding Mobility

~ Virtual mobility

~ Physical mobility

~ Both together over wide areas

• Modeling mobility

~ Why previous formalisms are not good enough

~ The ambient calculus

• Applications and future directions

~ Study of combined security and mobility properties

~ Libraries and languages for wide-area networks

Talk November 6, 1998 4:24 pm 3

Three Mental Pictures

• Local area networks

• Wide area networks

• Mobile networks

Talk November 6, 1998 4:24 pm 4

LANs and (Traditional) Distributed Computing

Administrative Domain

Talk November 6, 1998 4:24 pm 5

The Web

Talk November 6, 1998 4:24 pm 6

WAN Characteristics

• Internet/Web: a federated WAN infrastructure that spans the
planet. We would like to program it.

• Unfortunately, federated WANs violate many familiar assump-
tions about the behavior of distributed systems.

• Three phenomena that remain largely hidden in LANs become
readily observable:

~ Virtual locations.

~ Physical locations.

~ Bandwidth fluctuations.

• Another phenomenon becomes unobservable:

~ Failures.

Talk November 6, 1998 4:24 pm 7

A WAN is not a big LAN

• To emulate a LAN on top of a WAN we would have to:

~ (A) Hide virtual locations. By semi-transparent security. But
is it possible to guarantee the integrity of mobile code?

~ (B) Hide physical locations. Cannot “hide” the speed of light,
other than by slowing down the whole network.

~ (C) Hide bandwidth fluctuations. Service guarantees elimi-
nate bandwidth fluctuations, but introduce access failures.

~ (D) Reveal failures. Impossible in principle, since the Web is
an asynchronous network.

• In summary: (A) may be unsolvable for mobile code; (B) is only
solvable (in full) by introducing unacceptable delays; (C) can be
solved in a way that reduces it to (D); (D) is unsolvable in prin-
ciple, while probabilistic solutions run into point (B).

Talk November 6, 1998 4:24 pm 8

Observables

• WAN observables are different (and not reducible to) LAN ob-
servables.

• Observables determine programming constructs, and therefore
influence programs and programming languages.

• We need a complete set of programming constructs that can de-
tect and react to the available observables and, of course, we do
not want programming constructs that attempt to detect or react
to non-observables.

Talk November 6, 1998 4:24 pm 9

Mobile Computation

• Mobile computation can cope with the observables characteris-
tic of a wide-area network such as the Web.

~ Virtual locations. Trust mechanisms to cross virtual barriers.

~ Physical locations. Mobility to optimize placement.

~ Bandwidth fluctuations. Mobility to split applications and es-
tablish optimized communication protocols.

~ Failures. Running around or away from failures.

Talk November 6, 1998 4:24 pm 10

Mobile Computing

• Mobile devices also move computations. In this sense, we cannot
avoid the issues raised by mobile computation.

US

NSASFO

AF 81

EU
CDG

Talk November 6, 1998 4:24 pm 11

Mobility Postulates

• Separate locations exist. They may be difficult to reach.

• Since different locations have different properties, both people
and programs (and sublocations!) will want to move between
them.

• Barriers to mobility will be erected to preserve certain properties
of certain locations.

• Some people and some programs will still need to cross those
barriers.

This is the situation Wide-Area Languages have to cope with.

Talk November 6, 1998 4:24 pm 12

Related Work

• Broadly classifiable in two categories:

~ Agents (Actors, Process Calculi, Telescript, etc.)

~ Spaces (Linda, Distributed Lindas, JavaSpace, etc.)

• (With the work on Ambients, we aim to unify and extend those
basic concepts.)

Talk November 6, 1998 4:24 pm 13

Some of my own work

• Service Combinators (with Rowan Davies)

→ WebL (Hannes Marais et al.)

~ Control constructs for handling bandwidth fluctuations from
the point of view of a static client.

• Ambients (with Andrew D. Gordon)

~ Control constructs for handling mobility of entire sub-
systems, barrier crossing, and security.

Talk September 6, 1998 5:13 pm 1

Modeling Mobility

• It’s all about barriers:

~ Locality = barrier topology.

~ Process mobility = barrier crossing.

~ Security = (In)ability to cross barriers.

~ Interaction by shared position within a barrier, with no ac-
tion at a distance.

Talk September 6, 1998 5:13 pm 2

Formalisms for Concurrency/Distribution

• CSP/CCS. (Static/immutable connectivity.)

• π-calculus. (Channel mobility.)
N.B. "mobility" in this context is not process mobility.

• Process mobility is reduced to channel mobility.

• Ambient Calculus:
Process mobility = Barrier crossing.

Talk September 6, 1998 5:13 pm 3

... in particular, π
• In the π-calculus (our starting point):

~ processes exist in a single contiguous location

~ interaction is by shared names, used as I/O channels

~ there is no direct account of access control

• In our ambient calculus:

~ processes exist in multiple disjoint locations

~ interaction is by shared position, with no action at a distance

~ capabilities, derived from ambient names, regulate access

Talk September 6, 1998 5:13 pm 4

Formalisms for Locality

• Join calculus. (Channel mobility and locality.)

• Various calculi with failure. (Locality = Partial Failure.)

• Ambient calculus:
Locality = Barrier topology.

Talk September 6, 1998 5:13 pm 5

Formalisms for Security

• (BAN logic, etc.)

• Spi-calculus. (Channel mobility and cryptography)

• Ambient calculus:
Security = (In)ability to cross barriers.

Talk September 16, 1998 2:16 pm 13

Ambients

• We want to capture in an abstract way, notions of locality, of mo-
bility, and of ability to cross barriers.

• An ambient is a place, delimited by a boundary, where computa-
tion happens.

• Ambients have a name, a collection of local processes, and a col-
lection of subambients.

• Ambients can move in an out of other ambients, subject to capa-
bilities that are associated with ambient names.

• Ambient names are unforgeable (as in π and spi).

Talk November 6, 1998 2:37 pm 1

The Ambient Calculus
P ::= (νn) P new name n in a scope

0 inactivity
P | P parallel
!P replication
M[P] ambient
M.P exercise a capability
(n).P input locally, bind to n
�M� output locally (async)

M::= n name
in M entry capability
out M exit capability
open M open capability
ε empty path
M.M’ composite path

standard in
process calculi

ambient-specific

ambient I/O

data structures

actions

scoping

useful with I/O

basic capabilities

Talk November 6, 1998 2:37 pm 2

Semantics

• Behavior

~ The semantics of the ambient calculus is given in non-deter-
ministic “chemical style” (as in Berry&Boudol’s Chemical Ab-
stract Machine, and in Milner’s π-calculus).

~ The semantics is factored into a reduction relation P ���� P’ de-
scribing the evolution of a process P into a process P’, and a
process equivalence indicated by Q � Q’.

~ Here, ���� is real computation, while � is “rearrangement”.

• Equivalence

~ On the basis of behavior, a substitutive observational equiva-
lence, P � Q, is defined between processes.

~ Standard process calculi reasoning techniques (context lem-
mas, bisimulation, etc.) can be adapted.

Talk November 6, 1998 2:37 pm 3

Parallel

• Parallel execution is denoted by a binary operator:

P|Q

• It is commutative and associative:

P | Q � Q | P
(P | Q) | R � P | (Q | R)

• It obeys the reduction rule:

P ���� Q ⇒ P | R ���� Q | R

Talk November 6, 1998 2:37 pm 4

Replication

• Replication is a technically convenient way of representing iter-
ation and recursion.

!P

• It denotes the unbounded replication of a process P.

!P � P | !P

• There are no reduction rules for !P; in particular, the process P
under ! cannot begin to reduce until it is expanded out as P|!P.

Talk November 6, 1998 2:37 pm 5

Restriction

• The restriction operator creates a new (forever unique) ambient
name n within a scope P.

(νn)P

• As in the π-calculus, the (νn) binder can float as necessary to ex-
tend or restrict the scope of a name. E.g.:

(νn)(P | Q) � P | (νn)Q if n 	 fn(P)

• Reduction rule:

P ���� Q ⇒ (νn)P ���� (νn)Q

Talk November 6, 1998 2:37 pm 6

Inaction

• The process that does nothing:

0

• Some garbage-collection equivalences:

P | 0 � P
!0 � 0

(νn)0 � 0

• This process does not reduce.

Talk November 6, 1998 2:37 pm 7

Ambients

• An ambient is written as follows, where n is the name of the am-
bient, and P is the process running inside of it.

n[P]

• In n[P], it is understood that P is actively running:

P ���� Q ⇒ n[P] ���� n[Q]

• Multiple ambients may have the same name, (e.g., replicated
servers).

Talk November 6, 1998 2:37 pm 8

Actions and Capabilities

• Operations that change the hierarchical structure of ambients
are sensitive. They can be interpreted as the crossing of firewalls
or the decoding of ciphertexts.

• Hence these operations are restricted by capabilities.

M. P

This executes an action regulated by the capability M, and then
continues as the process P.

• The reduction rules for M. P depend on M.

Talk November 6, 1998 2:37 pm 9

Entry Capability

• An entry capability, in m, can be used in the action:

in m. P

• The reduction rule (non-deterministic and blocking) is:

n[in m. P | Q] | m[R] ���� m[n[P | Q] |R]

in m.P | Q

n

R

m

| ���� P | Q

n

 | R

m

Talk November 6, 1998 2:37 pm 10

Exit Capability

• An exit capability, out m, can be used in the action:

out m. P

• The reduction rule (non-deterministic and blocking) is:

m[n[out m. P | Q] | R] ���� n[P | Q] | m[R]

����out m. P | Q

n

 | R

m

P | Q

n

R

m

|

Talk November 6, 1998 2:37 pm 11

Open Capability

• An opening capability, open m, can be used in the action:

open n. P

• The reduction rule (non-deterministic and blocking) is:

open n. P | n[Q] ���� P | Q

����Q

n

open n. P | P | Q

Talk November 6, 1998 2:37 pm 12

• An open operation may be upsetting to both P and Q above.

~ From the point of view of P, there is no telling in general what
Q might do when unleashed.

~ From the point of view of Q, its environment is being ripped
open.

• Still, this operation is relatively well-behaved because:

~ The dissolution is initiated by the agent open n. P, so that the
appearance of Q at the same level as P is not totally unexpect-
ed;

~ open n is a capability that is given out by n, so n[Q] cannot be
dissolved if it does not wish to be.

Talk November 6, 1998 2:37 pm 13

Design Principle

• An ambient should not get killed or trapped unless:

~ It talks too much. (By making its capabilities public.)

~ It poisons itself. (By opening an untrusted intruder.)

~ It steps into quicksand. (By entering an untrusted ambient.)

• Some natural primitives violate this principle. E.g.:

n[burst n. P | Q] ���� P | Q

Then a mere in capability gives a kidnapping ability:

entrap(M)
 (ν k m) (m[M. burst m. in k] | k[])

entrap(in n) | n[P] ����* (νk) (n[in k | P] | k[])
 ����* (νk) k[n[P]]

Talk November 6, 1998 2:37 pm 14

• Morale

~ One can imagine lots of different mobility primitives.

~ But one must think hard about the "security" implications of
combinations of these primitives.

Talk November 6, 1998 2:37 pm 15

Ambient I/O

• Local anonymous communication within an ambient:

(x). P input action
�M� async output action

• We have the reduction:

(x). P | �M� ���� P{x←M}

• This mechanism fits well with the ambient intuitions.

~ Long-range communication, like long-range movement,
should not happen automatically because messages may have
to cross firewalls and other obstacles. (C.f., Telescript.)

~ Still, this is sufficient to emulate communication over named
channels, etc.

Talk November 6, 1998 2:37 pm 16

Reduction Summary

In addition, we identify terms up to renaming of bound names:

(νn)P = (νm)P{n←m} if m 	 fn(P)
(n).P = (m).P{n←m} if m 	 fn(P)

n[in m. P | Q] | m[R] ���� m[n[P | Q] |R]
m[n[out m. P | Q] | R] ���� n[P | Q] | m[R]
open n. P | n[Q] ���� P | Q

(Red In)
(Red Out)
(Red Open)

(n). P | �M� ���� P{n←M} (Red Comm)

P ���� Q ⇒ (νn)P ���� (νn)Q
P ���� Q ⇒ n[P] ���� n[Q]
P ���� Q ⇒ P | R ���� Q | R

(Red Res)
(Red Amb)
(Red Par)

P’ � P, P ���� Q, Q � Q’ ⇒ P’ ���� Q’ (Red �)

����* reflexive and transitive closure of ����

Talk November 6, 1998 2:37 pm 17

Structural Congruence Summary

P � P
P � Q ⇒ Q � P
P � Q, Q � R ⇒ P � R

(Struct Refl)
(Struct Symm)
(Struct Trans)

P � Q ⇒ (νn)P � (νn)Q
P � Q ⇒ P | R � Q | R
P � Q ⇒ !P � !Q
P � Q ⇒ M[P] � M[Q]
P � Q ⇒ M.P � M.Q
P � Q ⇒ (n).P � (n).Q

(Struct Res)
(Struct Par)
(Struct Repl)
(Struct Amb)
(Struct Action)
(Struct Input)

Talk November 6, 1998 2:37 pm 18

P | Q � Q | P
(P | Q) | R � P | (Q | R)
!P � P | !P
(νn)(νm)P � (νm)(νn)P
(νn)(P | Q) � P | (νn)Q if n 	 fn(P)
(νn)(m[P]) � m[(νn)P] if n ≠ m

(Struct Par Comm)
(Struct Par Assoc)
(Struct Repl Par)
(Struct Res Res)
(Struct Res Par)
(Struct Res Amb)

P | 0 � P
(νn)0 � 0
!0 � 0

(Struct Zero Par)
(Struct Zero Res)
(Struct Zero Repl)

ε.P � P
(M.M’).P � M.(M’.P)

(Struct ε)
(Struct .)

Talk November 6, 1998 2:37 pm 19

Example

A[msg[�M�|out A. in B]] | B[open msg. (x). P]
���� A[] | msg[�M�|in B] | B[open msg. (x). P]
���� A[] | B[msg[�M�]|open msg. (x). P]
���� A[] | B[�M�|(x). P]
���� A[] | B[P{x←M}]

A[msg[�M�|out A. in B]] | B[open msg. (x). P]

send M:A=>B receive x; P

Principal A Principal B

Talk November 6, 1998 2:37 pm 20

Noticeable Inequivalences

• Replication creates new names:

!(νn)P � (νn)!P

• Multiple n ambients have separate identity:

n[P]|n[Q] � n[P|Q]

Talk October 14, 1998 4:26 pm 14

The Folder Calculus

• Originally, a metaphor to explain the ambient calculus.

• Acquiring a life of its own:

~ a “computationally complete multithreaded graphical office
metaphor”.

~ (optionally) typed.

~ isomorphic to the ambient calculus.

• Disclaimer: not yet in the form of a useful graphical scripting
language. But all the “useful” primitives are in principle ex-
pressible.

Talk October 14, 1998 4:26 pm 15

Folders

• A folder name n.

• Active contents P:

~ hierarchical data and “gremlins”.

~ computational primitives for mobility and communication.

n

P

Talk October 14, 1998 4:26 pm 16

Enter Reduction

n

R

n

mm

→
R

Q
P
Q

Pin m

Talk October 14, 1998 4:26 pm 17

Exit Reduction

→
R

m

n

Q

m

R

n

P
Q

Pout m

Talk October 14, 1998 4:26 pm 18

Open Reduction

n

Q → QPPopen n

Talk October 14, 1998 4:26 pm 19

Copiers

P

Talk October 14, 1998 4:26 pm 20

Copy Reduction

→P P
P

Talk October 14, 1998 4:26 pm 21

Rubber Stamps

• Give authenticity to folders.

• Copiers are unable to accurately duplicate rubber stamps.

n

P

n

P

m

allowed

n

P

n

forbidden

Talk October 14, 1998 4:26 pm 22

Leaves of the Syntax

Inactive gremlin

n n
=

=

Talk October 14, 1998 4:26 pm 23

Output and Input

• A nameless file. (Originally: an asynchronous message.)

• A gremlin grabbing (reading and removing) a file.

M

P{x}x

Talk October 14, 1998 4:26 pm 24

Read Reduction

→M P{M}P{x}x

Talk October 14, 1998 4:26 pm 25

Example

p p n m

n

out p

m

→
Enter

in m open n qq

p

m

p n m

n →out p

Open
open n qq

Talk October 14, 1998 4:26 pm 26

p

m

p m

→out p

Copy

qq

p

m

p m

→out p
out p

Read

qq

Talk October 14, 1998 4:26 pm 27

p

m

p m

out p →
Exit

out p

mp

p m

out p

Talk October 14, 1998 4:26 pm 28

Textual Syntax

Textual Syntax Visual Syntax Comments

(νn)P New name n in scope P.

n[P]
Folder (ambient) of name
n and contents P.

M.P Action M followed by P.

P

n

n

P

PM

Talk October 14, 1998 4:26 pm 29

P | Q
Two processes in parallel.
(Visually: contiguously
placed in 2D.)

0
Inactive process (often
omitted).

!P Replication of P.

�M� Output M.

(n).P Input n followed by P.

P Q

P

M

Pn

Talk October 14, 1998 4:26 pm 30

(P) Grouping.

Data M,N

n
in n

out n
open n

here
M.N
“ ... “

A name
An entry capability
An exit capability
An open capability
The empty path of capabilities
The concatenation of two paths
A string (file)
etc.

P

Talk October 14, 1998 4:26 pm 31

Remarks

• The folder calculus is Turing-complete (even without the I/O
operations), concurrent, with synchronization primitives.

• A type system can be used to make sure that each gremlin reads
only messages of the appropriate type.

~ The type of a file is associated with the name of the folder that
contains it. All the files in a folder must have the same type.

~ Subfolders of a given folder may contain files of different
types.

~ So we have a heterogeneous data hierarchy, but with well-
typed I/O.

Talk October 14, 1998 4:26 pm 32

A Distiller Server

inbox, input: Folder[PS]
outbox, output: Folder[PDF]

distiller

inbox

input

outbox

open input

output

out inbox. in outbox

%!PS... in distiller. in inbox

distill(x)

x

Talk October 14, 1998 4:26 pm 33

In textual form:

distiller[
 inbox[
 !open input |
 !(x) output[�distill(x)� | out inbox. in outbox]] |
 outbox[]]
|
input[�"%!PS..."� | in distiller. in inbox]

Talk October 14, 1998 4:26 pm 34

Authentication

home

open n

g

n
x

Pout g

out home.
in home

n x

Talk October 14, 1998 4:26 pm 35

Nonces

a b

open noncen
 n’ msg

M,n’

out b. in a

nonce
out a. in b

n

open msg

 x,n” n”
Popen n

Talk October 14, 1998 4:26 pm 36

Shared Keys

k

M

encryption:

open k
P

generation of a fresh shared key k

decryption:
opening a k-envelope and reading

plaintext M inside a k-envelope

k

 x
the contents

Talk November 6, 1998 2:29 pm 1

Expressiveness

• Some new features

~ The primitives invented exclusively for process mobility end
up being meaningful for security. (Various caveats apply.)

~ The combination of mobility and cryptography in the same
formal framework seems novel and intriguing.

~ E.g., we can represent both mobility and (some) security as-
pects of “crossing a firewall”.

Talk November 6, 1998 2:29 pm 2

Expressiveness

• Old concepts that can be represented:

~ Synchronization and communication mechanisms.

~ Turing machines. (Natural encoding, no I/O required.)

~ Arithmetic. (Tricky, no I/O required.)

~ Data structures.

~ π-calculus. (Easy, channels are ambients.)

~ λ-calculus. (Hard, different than encoding λ in π.)

~ Spi-calculus concepts. (Being debated.)

Talk November 6, 1998 2:29 pm 3

Expressiveness

• Net-centric concepts that can be represented:

~ Named machines and services on complex networks.

~ Agents, applets, RPC.

~ Encrypted data and firewalls.

~ Data packets, routing, active networks.

~ Dynamically linked libraries, plug-ins.

~ Mobile devices.

~ Public transportation.

Talk November 6, 1998 2:29 pm 4

Ambients as Locks

• We can use open to encode locks:

release n. P
 n[] | P
acquire n. P
 open n. P

• This way, two processes can “shake hands” before proceeding
with their execution:

acquire n. release m. P | release n. acquire m. Q

Talk November 6, 1998 2:29 pm 5

Turing Machines

end[extendLft | S0 |
square[S1 |

square[S2 |
...

square[Si | head |
...

square[Sn-1 |
square[Sn | extendRht]] ..] ..]]]

Talk November 6, 1998 2:29 pm 6

Ambients as Mobile Processes

tourist
 (x). joe[x. enjoy]
ticket-desk
 ! �in AF81SFO. out AF81CDG�

SFO[ticket-desk | tourist | AF81SFO[route]]

 ����*SFO[ticket-desk |
joe[in AF81SFO. out AF81CDG. enjoy] |
AF81SFO[route]]

 ����*SFO[ticket-desk |
AF81SFO[route | joe[out AF81CDG. enjoy]]]

Talk November 6, 1998 2:29 pm 7

Ambients as Firewalls (buggy)

• Assume that the shared key k is already known to the firewall
and the client.

Wally
 (ν w r) (�in r� | r[open k. in w] | w[open r. P])
Cleo
 (x). k[x. C]

Cleo | Wally
����* (ν w r) ((x). k[x. C] | �in r� | r[open k. in w] | w[open r. P])
����* (ν w r) (k[in r. C] | r[open k. in w] | w[open r. P])
����* (ν w r) (r[k[C] | open k. in w] | w[open r. P])
����* (ν w r) (r[C | in w] | w[open r. P])
����* (ν w r) (w[r[C] | open r. P])
����* (ν w) (w[C | P])

Talk November 6, 1998 2:29 pm 8

Ambients as Firewalls

• Assume that the shared key k is already known to the firewall
and the client.

Wally
 (νw) (k[in k. in w] | w[open k. P])
Cleo
 k[open k. C]

Cleo | Wally
����* (νw) (k[open k. C] | k[in k. in w] | w[open k. P])
����* (νw) (k[k[in w] | open k. C] | w[open k. P])
����* (νw) (k[in w | C] | w[open k. P])
����* (νw) w[k[C] | open k. P]
����* (νw) w[C | P]

Talk November 6, 1998 2:29 pm 9

Comments

• One secret names is introduced: w is the secret name of the fire-
wall.

• We want to verify that Cleo knows the key k: this is done by in k.
After that, Cleo gives control to in w to enter the firewall.

Talk November 6, 1998 2:29 pm 10

The Asynchronous π-calculus

• A named channel is represented by an ambient.

~ The name of the channel is the name of the ambient.

~ Communication on a channel is becomes local I/O inside a
channel-ambient.

~ A conventional name, io, is used to transport I/O requests
into the channel.

• These definitions satisfy the expected reduction:

n(x).P | n�M� ����* P{x←M}

in presence of a channel for n.

(ch n)P
 (νn) (n[!open io] | P)
n(x).P
 (νp) (io[in n. (x). p[out n. P]] | open p)
n�M�
 io[in n. �M�]

Talk November 6, 1998 2:29 pm 11

• Therefore:

�(νn)P

 (νn) (n[!open io]|�P
)
�n(x).P

 (νp) (io[in n. (x). p[out n. �P
]]|open p)
�n�m�

 io[in n. �m�]
�P|Q

 �P
|�Q

�!P

 !�P

~ The choice-free synchronous π-calculus, can be encoded with-
in the asynchronous π-calculus.

~ The λ-calculus can be encoded within the asynchronous π-cal-
culus.

Talk November 6, 1998 2:29 pm 12

Contextual Equivalence

• Exhibition

P↓n ⇔ P � (νn1...np)(n[Q]|R) ∧ n	{n1...np}

• Convergence

P⇓ ⇔ �n. P ����* Q ∧ Q↓n

• Contextual Equivalence

P � Q ⇔ �C���. C�P�⇓ ⇔ C�Q�⇓

Talk November 6, 1998 6:29 pm 1

Firewalls

• n[P] is a firewall named n protecting P.

• in n is the capability needed to enter the firewall.

• out n is the capability needed to exit the firewall.

• The context is the Internet.

• The Perfect-Firewall Equation:

(νn) n[P] � 0 (if n not in P)

Talk November 6, 1998 6:29 pm 2

Cryptography

• The ambient calculus can, without special extensions, model cer-
tain cryptographic procedures.

~ In particular, it can model the most basic subset of the spi-cal-
culus:

{M}N shared-key encryption of M by N
decrypt M with N shared-key decryption

• It does not embrace a particular implementation:

~ It does not model the ability an attacker may have to compare
bit patterns.

~ It does not model the ability an attacker may have to exploit
properties of a specific underlying crypto.

Talk November 6, 1998 6:29 pm 3

Nonces

• A nonce is simply a fresh name that can, for example, be commu-
nicated by an output action.

Q | (νn) (�n� | P) output a nonce n for Q

When the nonce comes back to P, it can be verified by open n.

Talk November 6, 1998 6:29 pm 4

Shared Keys

• A name can be used as a shared key, as long as it is kept secret
and shared only by certain parties.

k[�txt�] encrypt txt with the shared key k
open k. (x). P decrypt with the shared key k

and read the message

• Anybody who knows k can decrypt a message k[�txt�]:

~ Either by open k (destructively).

~ Or by in k followed by out k (non-destructively).

Talk November 6, 1998 6:29 pm 5

Public Keys: Signed Messages

• If k[�txt�] is the plaintext txt encrypted by k, then open k represents
the (public) ability to open a k-envelope, without knowing k.

Principal A
(νk) create a new signature key

!�open k� publish the signature verifier
| k[�txt�] sign a message

Principal B
(open-cap). acquire the signature verifier

open-cap. verify an available message
(msg). P read the message and proceed

Talk November 6, 1998 6:29 pm 6

Public Keys: Coded Message

• If k[�txt�] is the plaintext txt encrypted by k, then
(x). k[�x�] represents the (public) ability to insert a plaintext in a
k-envelope, without knowing k.

Principal A
(νk) create a new encryption key

!(x). k[�x�] publish message encryptors
| !open k. (x). P decrypt incoming messages and proceed

Principal B
�txt� encrypt a message for A

(assuming an encryptor for A is available here)
(possibly route it back to A)

Talk November 6, 1998 6:29 pm 7

Ciphers

• k[�txt�] is the plaintext txt encrypted with key k.

• P � Q means “no attacker can tell P from Q”.

• The Perfect-Cipher Equation:

(νk1) k1[�txt1�] � (νk2) k2[�txt2�]

~ Simply because (νk1) k1[�txt1�] � 0 � (νk2) k2[�txt2�].
~ This is a consequence of (a) the reductions allowed in the cal-

culus, (b) the absence of other reductions that might make dis-
tinctions, (c) the (debatable) interpretation of ambient
operations as crypto operations.

Talk November 6, 1998 6:29 pm 8

Calculi vs. Reality

• Calculi make “implicit security assumptions”.

~ Nominal calculi, like π, spi, assume that nobody can guess the
name of a private channel.

~ The ambient calculus assumes that nobody can extract a name
from a capability.

~ Consequences include the perfect-cipher equation.

• A) This is good.

~ These assumptions are “security abstraction” that enable
high-level reasoning (via �).

~ These assumptions can be realized by different implementa-
tion (crypto) techniques.

~ They may increase practical security by providing a program-
ming model that is more transparent.

Talk November 6, 1998 6:29 pm 9

• B) This is bad.

~ Such assumption are dangerous since they are not obviously
“realistic”. How do they map to algebraic properties of the
underlying crypto primitives?

~ They may hold within the calculus, but do they keep holding
under low-level attacks (if somebody can dissect an agent)?

• (Speculation.) Implicit security assumptions must be made ex-
plicit and must be “securely implemented”.

~ One must describe an implementation of the calculus in terms
of realistic cryptographic primitives.

~ One must prove that the implementation is (1) correct and (2)
prevents certain low-level attacks. [Abadi, Gonthier, Fournet]

Talk September 6, 1998 5:19 pm 1

Language Applications

Talk September 6, 1998 5:19 pm 2

Transportation

let train(stationX stationY XYatX XYatY tripTime) =

 new moving. // assumes the train originates inside stationX

 moving[rec T.

 be XYatX. wait 2.0.

 be moving. go out stationX. wait tripTime. go in stationY.

 be XYatY. wait 2.0.

 be moving. go out stationY. wait tripTime. go in stationX.

 T];

new stationA stationB stationC ABatA ABatB BCatB BCatC.

 stationA[train(stationA stationB ABatA ABatB 10.0)] |

 stationB[train(stationB stationC BCatB BCatC 20.0)] |

 stationC[train(stationC stationB BCatC BCatB 30.0)] |

stationA stationB stationC

trainAB

trainBC

trainBC
joe

nancy

Talk September 6, 1998 5:19 pm 3

new joe.

 joe[

 go in stationA.

 go in ABatA. go out ABatB.

 go in BCatB. go out BCatC.

 go out stationC] |

new nancy.

 nancy[

 go in stationC.

 go in BCatC. go out BCatB.

 go in ABatB. go out ABatA.

 go out stationA]

Talk September 6, 1998 5:19 pm 4

Execution trace

moving: Be ABatA
moving: Be BCatC
moving: Be BCatB
nancy: Moved in stationC
nancy: Moved in BCatC
joe: Moved in stationA
joe: Moved in ABatA
ABatA: Be moving
BCatC: Be moving
moving: Moved out stationC
BCatB: Be moving
moving: Moved out stationB
moving: Moved out stationA
moving: Moved in stationB
moving: Be ABatB
joe: Moved out ABatB
ABatB: Be moving
moving: Moved out stationB
moving: Moved in stationC
moving: Be BCatC
BCatC: Be moving
moving: Moved out stationC
moving: Moved in stationA
moving: Be ABatA
ABatA: Be moving
moving: Moved out stationA
moving: Moved in stationB

Talk September 6, 1998 5:19 pm 5

moving: Be BCatB
nancy: Moved out BCatB
joe: Moved in BCatB
BCatB: Be moving
moving: Moved out stationB
moving: Moved in stationB
moving: Be ABatB
nancy: Moved in ABatB
ABatB: Be moving
moving: Moved out stationB
moving: Moved in stationB
moving: Be BCatB
BCatB: Be moving
moving: Moved out stationB
moving: Moved in stationA
moving: Be ABatA
nancy: Moved out ABatA
nancy: Moved out stationA
ABatA: Be moving
moving: Moved out stationA
moving: Moved in stationB
moving: Be ABatB
moving: Moved in stationC
moving: Be BCatC
joe: Moved out BCatC
joe: Moved out stationC
moving: Moved in stationC
...

Talk September 16, 1998 2:16 pm 37

Wide Area Languages

• The ambient/folder calculus is a minimal formalism designed
for theoretical study. As such, it is not a “programming lan-
guage”.

• Still, the ambient calculus is designed to match fundamental
WAN characteristics.

• We now discuss how ambient characteristics might look like
when extrapolated to a programming language.

Talk September 16, 1998 2:16 pm 38

Barriers

• Mobility is all about barriers:

~ Locality = barrier topology.

~ Process mobility = barrier crossing.

~ Security = (in)ability to cross barriers.

~ Communication = interaction within a barrier.

~ No immediate (un-mediated) action at a distance (across bar-
riers).

• Ambients embed this barrier-based view of mobility (extrapolat-
ed from Telescript), which is grounded on WAN observables.

• A “wide-area language” is one that does not contain features vi-
olating this view of computation.

Talk September 16, 1998 2:16 pm 39

Ambients as a Programming Abstraction

• Our basic abstraction is that of mobile computational ambients.

• The ambient calculus brings this abstraction to an extreme, by
representing everything in terms of ambients at a very fine grain.

• In practice, ambients would have to be medium or large-grained
entities. Ambient contents should include standard program-
ming subsystems such as modules, classes, objects, and threads.

• But: the ability to smoothly move a collection of running threads
is almost unheard of in current software infrastructures. Ambi-
ents would be a novel and non-trivial addition to our collection
of programming abstractions.

Talk September 16, 1998 2:16 pm 40

Names vs. Pointers

• The only way to denote an ambient is by its name.

~ One may possess a name without having immediate access to
any ambient of that name (unlike pointers).

~ Name references are never “broken” but may be “blocked”
until a suitable ambient becomes available.

• Uniformly replace pointers (to data structures etc.) by names.

~ At least across ambient boundaries.

~ This is necessary to allow ambients to move around freely
without being restrained by immobile ties.

Talk September 16, 1998 2:16 pm 41

Locations

• Ambients can be used to model both physical and virtual loca-
tions.

~ Some physical locations are mobile (such as airplanes) while
others are immobile (such as buildings).

~ Similarly, some virtual locations are mobile (such as agents)
while others are immobile (such as mainframe computers).

• Mobility distinctions are not part of the basic semantics of ambi-
ents.

~ Can be added as a refinement of the basic model, or

~ Can be embedded in type systems that restrict the mobility of
certain ambients.

Talk September 16, 1998 2:16 pm 42

Migration and Transportation

• Ambients offer a good paradigm for application migration.

~ If an ambient encloses a whole application, then the whole
running application can be moved without need to restart it
or reinitialize it.

~ In practice, an application will have ties to the local window
system, the local file system, etc. These ties, however, should
only be via ambient names.

~ After movement the application can smoothly move and re-
connect its bindings to the new local environment. (Some care
will still be needed to restart in a good state).

Talk September 16, 1998 2:16 pm 43

Communication

• The communication primitives of the ambient calculus (local to
an ambient) do not support global consensus or failure detec-
tion.

• These properties should be preserved by any higher-level com-
munication primitives that may be added to the basic model, so
that the intended semantics of communication over a wide-area
networks is preserved.

~ RPC, interpreted as mobile packets that transport and deposit
messages to remote locations.

~ Parent-child communication

~ Communication between siblings.

Talk September 16, 1998 2:16 pm 44

Synchronization

• The ambient calculus is highly concurrent.

~ It has high-level synchronization primitives that are natural
and effective (as shown in the examples).

~ It is easy to represent basic synchronization constructs, such
as mutexes:

• Still, additional synchronization primitives are desirable.

~ A useful technique is to synchronize on the change of name of
an ambient:

~ (See also the Seal calculus by Castagna and Vitek.)

release n; P
 n[] | P release a mutex called n, and d
acquire n; P
 open n. P acquire a mutex called n, then

n[be m.P | Q] → m[P | Q]

Talk September 16, 1998 2:16 pm 45

Static and Dynamic Binding

• The names of the ambient calculus represent an unusual combi-
nation of static and dynamic binding.

~ The names obey the classical rules of static scoping, including
consistent renaming, capture-avoidance, and block nesting.

~ The navigation primitives behave by dynamically binding/
linking a name to any ambient that has the right name.

• Definitional facilities can similarly be derived in static or dy-
namic binding style. E.g.:

~ Statically bound function definitions.

~ Dynamically bound resource definitions.

Talk September 16, 1998 2:16 pm 46

Modules

• An ambient containing definitions is similar to a module/class.

~ Remote invocation is like qualified module access.

~ open is like inheritance.

~ copy is like object generation from a prototype.

• Unusual “module” features:

~ Ambients are first class modules: one can choose at run time
which particular instance of a module to use.

~ Ambients support dynamic linking: missing subsystems can be
added to a running system by placing them in the right spot.

~ Ambients support dynamic reconfiguration. The identity of in-
dividual modules is maintain at run time. The blocking se-
mantics allows smooth suspension and reactivation. The
hierarchical structure allows replacement of subsystems.

Talk September 16, 1998 2:16 pm 47

Security

• Ambient security is based on boundaries and capabilities, as op-
posed to a cryptography, or access-control.

• These three models are all interdefinable. In our case:

~ Access control is obtained by using ambients to implement
RPC-like invocations that have to cross boundaries and au-
thenticate every time.

~ Cryptography is obtained by interpreting ambient names (by
assumption unforgeable) as encryption keys.

• The ambient security model is high level.

~ It maps naturally to administrative domains and sandboxes.

~ It allows the direct discussion of virus, trojan horses, infection
of mobile agents, firewall crossing, etc.

Talk September 16, 1998 2:16 pm 48

Summary of WAL Features

• No “hard” pointers.

Remote references are URLs, symbolic links, or such.

• Migration/Transportation

Thread migration.

Data migration.

Whole-application migration.

• Dynamic linking.

A missing library or plug-in may suddenly show up.

• Patient communication.

Blocking/exactly-once semantics.

• Built-in security primitives.

Talk November 6, 1998 7:41 pm 1

Current Progress

• An informal paper describing wide-area computation, the Fold-
er Calculus, and ideas for wide-area languages.

• A technical paper about the basic Ambient Calculus.

• A technical paper about techniques for proving equational prop-
erties of Ambients.

• A technical paper about a type systems for Ambients (“Ex-
change Types”) regulating communication.

• Work in progress with Giorgio Ghelli about type systems for
regulating mobility.

• A Java applet implementation of the Ambient Calculus, and a
tech report about its thread synchronization algorithm.

www.luca.demon.co.uk

Talk November 6, 1998 7:41 pm 2

Conclusions

• The notion of named, active, hierarchical, mobile ambients captures
the structure and properties of wide-area networks and of mo-
bile computing and computation.

• The ambient calculus formalizes ambient notions simply and
powerfully.

~ It is no more complex than common process calculi.

~ It supports reasoning about mobility and security.

• It provides a basis for envisioning new programming methodol-
ogies, libraries, and languages for wide-area computation.

