A Theory of Objects

Luca Cardelli

joint work with Martín Abadi
Digital Equipment Corporation
Systems Research Center

Sydney '97

Outline

- Topic: a foundation for object-oriented languages based on object calculi.
~ Interesting object-oriented features.
\sim Modeling of those features.
- Plan:

1) Class-Based Languages
2) Object-Based Languages
3) Subtyping -- Advanced Features
4) A Language with Subtyping
5) Matching -- Advanced Features
6) A Language with Matching

Object-Oriented Features

Easy Language Features

The early days

- Integers and floats (occasionally, also booleans and voids).
- Monomorphic arrays (Fortran).
- Monomorphic trees (Lisp).

The days of structured programming

- Product types (records in Pascal, structs in C).
- Union types (variant records in Pascal, unions in C).
- Function/procedure types (often with various restrictions).
- Recursive types (typically via pointers).

End of the easy part

- Languages with rich user-definable types (Pascal, Algol68).

Four major innovations

- Objects and Subtyping (Simula 67).
- Abstract types (CLU).
- Polymorphism (ML).
- Modules (Modula 2).

Despite much progress, nobody really knows yet how to combine all these ingredients into coherent language designs.

Confusion

These four innovations are partially overlapping and certainly interact in interesting ways. It is not clear which ones should be taken as more prominent. E.g.:

- Object-oriented languages have tried to incorporate type abstraction, polymorphism, and modularization all at once. As a result, o-o languages are (generally) a mess. Much effort has been dedicated to separating these notions back again.
- Claims have been made (at least initially) that objects can be subsumed by either higher-order functions and polymorphism (ML camp), by data abstraction (CLU camp), or by modularization (ADA camp). But later, subtyping features were adopted: ML => ML2000, CLU \Rightarrow Theta, ADA $=>$ ADA' 95 .
- One hard fact is that full-blown polymorphism can subsume data abstraction. But this kind of polymorphism is more general than, e.g., ML's, and it is not yet clear how to handle it in practice.
- Modules can be used to obtain some form of polymorphism and data abstraction (ADA generics, $\mathrm{C}++$ templates) (Modula 2 opaque types), but not in full generality.
- Goals
~ Data (state) abstraction.
~ Polymorphism.
\sim Code reuse.
- Mechanisms
\sim Objects with self (packages of data and code).
~ Subtyping and subsumption.
\sim Classes and inheritance.

Objects

- Objects and object types
- Objects are packages of data (instance variables) and code (methods).
- Object types describe the shape of objects.

```
ObjectType CellType is
    var contents: Integer;
    method get(): Integer;
    method set(n: Integer);
end;
object myCell: CellType is
    var contents: Integer := 0;
    method get(): Integer is return self.contents end;
    method set(n: Integer) is self.contents:= n end;
end;
```

where $a: A$ means that the program a has type A. So, myCell : CellType.

Classes

- Classes are ways of describing and generating collections of objects of some type.

```
class cell for CellType is
    var contents: Integer := 0;
    method get(): Integer is return self.contents end;
    method set(n: Integer) is self.contents := n end;
end;
var myCell: CellType := new cell;
procedure double(aCell: CellType) is
    aCell.set(2 * aCell.get());
end;
```

- Subtypes can be formed by extension (of interface) from other types.

```
ObjectType ReCellType;
    var contents: Integer;
    var backup: Integer;
    method get(): Integer;
    method set(n: Integer);
    method restore();
end;
```

ReCellType is a subtype of CellType: an object of type ReCellType can be used in place of an object of type CellType.

- Subclasses are ways of describing classes incrementally, reusing code.

```
subclass reCell of cell for ReCellType is
    var backup: Integer := 0;
    override set(n: Integer) is
    self.backup := self.contents;
    super.set(n);
    end;
    method restore() is self.contents := self.backup end;
end;
```

(Inherited:
var contents
method get)

- Subtyping relation, $A<: B$

An object type is a subtype of any object type with fewer components.
(e.g.: ReCellType <: CellType)

- Subsumption rule

$$
\begin{aligned}
& \text { if } a: A \text { and } A<: B \text { then } a: B \\
& \text { (e.g.: myReCell:CellType) }
\end{aligned}
$$

- Subclass rule

The type of the objects generated by a subclass is a subtype of the type of the objects generated by a superclass.
c can be a subclass of d only if cType <: dType
(e.g.: reCell can indeed be declared as a subclass of cell)

- Object-oriented languages have been plagued, possibly more than languages of any other kind, by confusion and unsoundness.
- How do we keep track of the interactions of the numerous object-oriented features?
- How can we be sure that they all make sense, and that their interactions make sense?

Why Objects?

- Who needs object-oriented languages, anyway?
~ Systems may be modeled by other paradigms.
~ Data abstraction can be achieved with plain abstract data types.
\sim Reuse can be achieved by parameterization and modularization.
- Still, the object-oriented approach has been uniquely successful:
~ Some of its features are not easy to explain as the union of wellunderstood concepts.
\sim It seems to integrate good design and implementation techniques in an intuitive framework.
- Many characteristics of object-oriented languages are different presentations of a few general ideas. The situation is analogous in procedural programming.
- The λ-calculus has provided a basic, flexible model, and a better understanding of procedural languages.
- A Theory of Objects develops a calculus of objects, analogous to the λ-calculus but independent.
~ The calculus is entirely based on objects, not on functions.
~ The calculus is useful because object types are not easily, or at all, definable in most standard formalisms.
\sim The calculus of objects is intended as a paradigm and a foundation for object-oriented languages.
- Mainstream object-oriented languages are class-based.
- Some of them are Simula, Smalltalk, C++, Modula-3, and Java.
- Class-based constructs vary significantly across languages.
- We cover only core features.
- In the simplest class-based languages, there is no clear distinction
~ between classes and object types,
\sim between subclasses and subtypes.
- Objects are generated from classes.

We write InstanceTypeOf(c) for the type of objects generated from class c.

- The typical operations on objects are:
\sim creation,
\sim field selection and update,
\sim method invocation.
- Class definitions are often incremental: a new class may inherit structure and code from one or multiple existing classes.

Classes and Objects

- Classes are descriptions of objects.
- Example: storage cells.

```
class cell is
    var contents: Integer := 0;
    method get(): Integer is
            return self.contents;
    end;
    method set(n: Integer) is
            self.contents:= n;
    end;
end;
```

- Classes generate objects.
- Objects can refer to themselves.

Naive Storage Model

- Object $=$ reference to a record of attributes.

Naive storage model

Object Operations

- Object creation.
\sim InstanceTypeOf(c) indicates the type of an object of class c.
var myCell: InstanceTypeOf(cell) := new cell;
- Field selection.
- Field update.
- Method invocation.

```
procedure double(aCell: InstanceTypeOf(cell)) is
    aCell.set(2 * aCell.get());
end;
```

- A more refined storage model for class-based languages.

Embedding vs. Delegation

- In the naive storage model, methods are embedded in objects.

\longrightarrow| attribute record | |
| :---: | :---: |
| contents | 0 |
| get | (code for get) |
| set | (code for set) |

- In the methods-suites storage model, methods are delegated to the method suites.

Comparison of Storage Models

- Naive and method-suites models are semantically equivalent for class-based languages.
- They are not equivalent (as we shall see) in object-based languages, where the difference between embedding and delegation is critical.
- Method lookup is the process of finding the code to run on a method invocation $\operatorname{o.m}(\ldots)$. The details depend on the language and the storage model.
- In class-based languages, method lookup gives the illusion that methods are embedded in objects.
~ Method lookup and field selection look similar (o.x and o.m(...)).
\sim Features that would distinguish embedding from delegation implementations (e.g., method update) are usually avoided.

This hides the details of the storage model.

- Self is always the receiver: the object that appears to contain the method being invoked.
- A subclass is a differential description of a class.
- The subclass relation is the partial order induced by the subclass declarations.
- Example: restorable cells.

```
subclass reCell of cell is
    var backup: Integer :=0;
    override set(n: Integer) is
    self.backup := self.contents;
    super.set(n);
    end;
    method restore() is
    self.contents := self.backup;
    end;
end;
```


Subclasses and Self

- Because of subclasses, the meaning of self becomes dynamic.

```
self.m(...)
```

- Because of subclasses, the concept of super becomes useful.
super. $m(\ldots)$

Subclasses and Naive Storage

- In the naive implementation, the existence of subclasses does not cause any change in the storage model.

Subclasses and Method Suites

- Because of subclasses, the method-suites model has to be reconsidered. In dynamically-typed class-based languages, method suites are chained:

Hierarchical method suites

- In statically-typed class-based languages, however, the method-suites model can be maintained in its original form.

Collapsed method suites

Embedding/Delegation View of Class Hierarchies

- Hierarchical method suites:
~ delegation (of objects to suites) combined with
\sim delegation (of sub-suites to super-suites).
- Collapsed method suites:
~ delegation (of objects to suites) combined with
~ embedding (of super-suites in sub-suites).

Subclasses and Type Compatibility

- Subclasses are not just a mechanism to avoid rewriting definitions.Consider the following code fragments:

```
var myCell: InstanceTypeOf(cell) := new cell;
var myReCell: InstanceTypeOf(reCell):= new reCell;
procedure f(x: InstanceTypeOf(cell)) is ... end;
myCell := myReCell;
f(myReCell);
```

\sim An instance of reCell is assigned to a variable holding instances of cell.
\sim An instance of reCell is passed to a procedure f that expects instances of cell.

- Both code fragments would be illegal in Pascal, since InstanceTypeOf(cell) and InstanceTypeOf(reCell) do not match.

Polymorphism

- In object-oriented languages these code fragments are made legal by the following rule, which embodies what is often called (subtype) polymorphism:

If c^{\prime} is a subclass of c, and o^{\prime} is an instance of c^{\prime}, then o^{\prime} is an instance of c.
or, from the point of view of the typechecker:
If c^{\prime} is a subclass of c, and $o^{\prime}:$ InstanceTypeOf($\left.c^{\prime}\right)$, then o ': InstanceTypeOf(c).

The Subtype Relation

If c^{\prime} is a subclass of c, and $o^{\prime}:$ InstanceTypeOf($\left.c^{\prime}\right)$,
then o ': InstanceTypeOf(c).

- We analyze this further, by a reflexive and transitive subtype relation ($<$:) between InstanceTypeOf types.
\sim This subtype relation is intended, intuitively, as set inclusion between sets of values.
\sim For now we do not define the subtype relation precisely, but we assume that it satisfies two properties:
- If $a: A$, and $A<: B$, then $a: B$.
- InstanceTypeOf(c') <: InstanceTypeOf(c)
if and only if c^{\prime} is a subclass of c.

If $a: A$, and $A<: B$, then $a: B$.

- This property, called subsumption, is the characteristic property of subtype relations.
\sim A value of type A can be viewed as a value of a type B.
\sim We say that the value is subsumed from type A to type B.

Subclassing is Subtyping

InstanceTypeOf((c') <: InstanceTypeOf(c)

 if and only if c^{\prime} is a subclass of c.- This property, which we may call subclassing-is-subtyping, is the characteristic of classical class-based languages.
~ Since inheritance is connected with subclassing, we may read this as an inheritance-is-subtyping property.
~ More recent class-based languages adopt a different, inheritance-is-not-subtyping approach.
- With the introduction of subsumption, we have to reexamine the meaning of method invocation. For example, given the code:

```
procedure }g(x\mathrm{ : InstanceTypeOf(cell)) is
    x.set(3);
end;
g(myReCell);
```

we should determine what is the meaning of $x \cdot \operatorname{set}(3)$ during the invocation of g.

- The declared type of x is InstanceTypeOf(cell), while its value is myReCell, which is an instance of reCell.
- Since set is overridden in reCell, there are two possibilities:

```
Static dispatch: x.set(3) runs the code of set from cell
Dynamic dispatch: x.set(3) runs the code of set from reCell
```

\sim Static dispatch is based on the compile-time type information available for x.
\sim Dynamic dispatch is based on the run-time value of x.

- We may say that InstanceTypeOf(reCell) is the true type of x during the execution of $g(m y R e C e l l)$, and that the true type determines the choice of method.
- Dynamic dispatch is found in all object-oriented languages, to the point that it can be regarded as one of their defining properties.
- Dynamic dispatch is an important component of object abstraction.
~ Each object knows how to behave autonomously.
\sim So the context does not need to examine the object and decide which operation to apply.
- A consequence of dynamic dispatch is that subsumption should have no run-time effect on objects.
~ For example, if subsumption from InstanceTypeOf(reCell) to InstanceTypeOf(cell) coerced a reCell to a cell by cutting backup and restore, then a dynamically dispatched invocation of set would fail.
\sim The fact that subsumption has no run-time effect is both good for efficiency and semantically necessary.
- In analyzing the meaning and implementation of class-based languages we end up inventing and analyzing sub-structures of objects and classes.
- These substructures are independently interesting: they have their own semantics, and can be combined in useful ways.
- What if these substructures were directly available to programmers?
- Slow to emerge.
- Simple and flexible.
- Usually untyped.
- Just objects and dynamic dispatch.
- When typed, just object types and subtyping.
- Direct object-to-object inheritance.

An Object, All by Itself

- Classes are replaced by object constructors.
- Object types are immediately useful.

ObjectType Cell is
var contents: Integer;
method get(): Integer;
method $\operatorname{set}(n$: Integer $)$;
end;
object cell: Cell is var contents: Integer := 0; method $\operatorname{get}()$: Integer is return self.contents end; method $\operatorname{set}(n$: Integer $)$ is self.contents $:=n$ end;
end;

- Procedures as object generators.

```
procedure newCell(m: Integer): Cell is
    object cell: Cell is
        var contents: Integer := m;
        method get(): Integer is return self.contents end;
        method set(n: Integer) is self.contents := n end;
    end;
    return cell;
end;
var cellInstance: Cell := newCell(0);
```

- Quite similar to classes!

Decomposing Class-Based Features

- General idea: decompose class-based notions and orthogonally recombine them.
- We have seen how to decompose simple classes into objects and procedures.
- We will now investigate how to decompose inheritance.
~ Object generation by parameterization.
\sim Vs. object generation by cloning and mutation.
- Classes describe objects.
- Prototypes describe objects and are objects.
- Regular objects are clones of prototypes. var cellClone: Cell $:=$ clone cellInstance;
- clone is a bit like new, but operates on objects instead of classes.

Mutation of Clones

- Clones are customized by mutation (e.g., update).
- Field update.
cellClone.contents := 3;
- Method update.

```
cellClone.get :=
        method (): Integer is
            if self.contents < 0 then return 0 else return self.contents end;
        end;
```

- Self-mutation possible.

Self-Mutation

- Restorable cells with no backup field.

```
ObjectType ReCell is
        var contents: Integer;
        method get(): Integer;
        method set(n: Integer);
        method restore();
end;
```


- The set method updates the restore method!

```
object reCell: ReCell is
    var contents: Integer \(:=0\);
    method get(): Integer is return self.contents end;
    method \(\operatorname{set}(n\) : Integer) is
    let \(x=\) self. \(\cdot \operatorname{get}()\);
    self.restore \(:=\) method () is self.contents \(:=x\) end;
    self.contents : \(=n\);
    end;
    method restore() is self.contents \(:=0\) end;
end;
```


Forms of Mutation

- Method update is an example of a mutation operation. It is simple and statically typable.
- Forms of mutation include:
~ Direct method update (Beta, NewtonScript, Obliq, Kevo, Garnet).
~ Dynamically removing and adding attributes (Self, Act1).
~ Swapping groups of methods (Self, Ellie).

Object-Based Inheritance

- Object generation can be obtained by procedures, but with no real notion of inheritance.
- Object inheritance can be achieved by cloning (reuse) and update (override), but with no shape change.
- How can one inherit with a change of shape?
- An option is object extension. But:
\sim Not easy to typecheck.
~ Not easy to implement efficiently.
~ Provided rarely or restrictively.

Donors and Hosts

- General object-based inheritance: building new objects by "reusing" attributes of existing objects.
- Two orthogonal aspects:
~ obtaining the attributes of a donor object, and
~ incorporating those attributes into a new host object.
- Four categories of object-based inheritance:
~ The attributes of a donor may be obtained implicitly or explicitly.
~ Orthogonally, those attributes may be either embedded into a host, or delegated to a donor.

Implicit vs. Explicit Inheritance

- A difference in declaration.
- Implicit inheritance: one or more objects are designated as the donors (explicitly!), and their attributes are implicitly inherited.
- Explicit inheritance, individual attributes of one or more donors are explicitly designated and inherited.
- Super and override make sense for implicit inheritance, not for explicit inheritance.
- Intermediate possibility: explicitly designate a named collection of attributes that, however, does not form a whole object. E.g. mixin inheritance.
- (We can see implicit and explicit inheritance, as the extreme points of a spectrum.)

Embedding vs. Delegation Inheritance

- A difference in execution.
- Embedding inheritance: the attributes inherited from a donor become part of the host (in principle, at least).
- Delegation inheritance: the inherited attributes remain part of the donor, and are accessed via an indirection from the host.
- Either way, self is the receiver.
- In embedding, host objects are independent of their donors. In delegation, complex webs of dependencies may be created.
- Host objects contain copies of the attributes of donor objects.

Embedding

Embedding-Based Languages

- Embedding provides the simplest explanation of the standard semantics of self as the receiver.
- Embedding was described by Borning as part of one of the first proposals for prototype-based languages.
- Recently, it has been adopted by languages like Kevo and Obliq. We call these languages embedding-based (concatenation-based, in Kevo terminology).

Embedding-Based Inheritance

- Embedding inheritance can be specified explicitly or implicitly.
~ Explicit forms of embedding inheritance can be understood as reassembling parts of old objects into new objects.
~ Implicit forms of embedding inheritance can be understood as ways of concatenating or extending copies of existing objects with new attributes.

Explicit Embedding Inheritance

- Individual methods and fields of specific objects (donors) are copied into new objects (hosts).
- We write embed $\operatorname{o.m}(\ldots)$
to embed the method m of object o into the current object.
- The meaning of embed cell.set (n) is to execute the set method of cell with self bound to the current self, and not with self bound to cell as in a normal invocation cell.set(n).
- Moreover, the code of set is embedded in reCellExp.

reCellExp

object cell: Cell is
var contents: Integer $:=0$;
method get(): Integer is return self.contents end; method $\operatorname{set}(n$: Integer $)$ is self.contents $:=n$ end;
end;
object reCellExp: ReCell is
var contents: Integer $:=$ cell.contents;
var backup: Integer $:=0$;
method get () : Integer is
return embed cell.get();
end;
method $\operatorname{set}(n$: Integer $)$ is
self.backup := self.contents;
embed cell.set(n);
end;
method restore() is self.contents $:=$ self.backup end;
end;

- The code for get could be abbreviated to:
method get copied from cell;

Implicit Embedding Inheritance

- Whole objects (donors) are copied to form new objects (hosts).
- We write
object $o: T$ extends o,
to designate a donor object o ' for o.
- As a consequence of this declaration, o is an object containing a copy of the attributes of o ', with independent state.

reCellImp

object cell: Cell is
var contents: Integer := 0 ;
method $\operatorname{get}()$: Integer is return self.contents end; method $\operatorname{set}(n$: Integer $)$ is self.contents $:=n$ end;
end;
object reCellImp: ReCell extends cell is
var backup: Integer $:=0$;
override $\operatorname{set}(n$: Integer) is
self.backup := self.contents;
embed super. $\operatorname{set}(n)$;
end;
method restore() is self.contents $:=$ self.backup end;
end;

- We could define an equivalent object by a pure extension of cell followed by a method update.

```
object reCellImp1: ReCell extends cell is
    var backup: Integer := 0;
    method restore() is self.contents := self.backup end;
end;
reCellImp1.set :=
    method (n: Integer) is
        self.backup := self.contents;
        self.contents := n;
    end;
```

This code works because, with embedding, method update affects only the object to which it is applied. (This is not true for delegation.)

- The definitions of both reCellImp and reCellExp can be seen as convenient abbreviations:

```
object reCell: ReCell is
    var contents: Integer \(:=0\);
    var backup: Integer :=0;
    method get(): Integer is return self.contents end;
    method \(\operatorname{set}(n\) : Integer) is
    self.backup := self.contents;
    self.contents:= \(n\);
    end;
    method restore() is self.contents \(:=\) self.backup end;
end;
```

- Host objects contain links to the attributes of donor objects.
- Prototype-based languages that permit the sharing of attributes across objects are called delegation-based.
- Operationally, delegation is the redirection of field access and method invocation from an object or prototype to another, in such a way that an object can be seen as an extension of another.
- Note: similar to hierarchical method suites.

Delegation and Self

- A crucial aspect of delegation inheritance is the interaction of donor links with the binding of self.
- On an invocation of a method called m, the code for m may be found only in the donor cell. But the occurrences of self within the code of m refer to the original receiver, not to the donor.
- Therefore, delegation is not redirected invocation.

Implicit Delegation Inheritance (Traditional Delegation)

- Whole objects (donors/parents) are shared to from new objects (hosts/children).
- We write
object o : T child of o,
to designate a parent object o ' for o.
- As a consequence of this declaration, o is an object containing a single parent link to o ', with parent state shared among children. Parent links are followed in the search for attributes.

(Single-parent) Delegation

- A first attempt.

object cell: Cell is
var contents: Integer $:=0$;
method get(): Integer is return self.contents end; method $\operatorname{set}(n$: Integer $)$ is self.contents $:=n$ end;
end;
object reCellImp': ReCell child of cell is
var backup: Integer $:=0$;
override $\operatorname{set}(n$: Integer) is
self.backup := self.contents;
delegate super.set(n);
end;
method restore() is self.contents $:=$ self.backup end;
end;

- This is almost identical to the code of reCellImp for embedding.
- But for delegation, this definition is wrong: the contents field is shared by all the children.
- A proper definition must include a local copy of the contents field, overriding the contents field of the parent.

```
object reCellImp: ReCell child of cell is
    override contents: Integer := cell.contents;
    var backup: Integer := 0;
    override set(n: Integer) is
        self.backup := self.contents;
        delegate super.set(n);
    end;
    method restore() is self.contents := self.backup end;
end;
```

- On an invocation of reCellImp.get(), the get method is found only in the parent cell, but the occurrences of self within the code of get refer to the original receiver, reCellImp, and not to the parent, cell.
- Hence the result of $\operatorname{get}()$ is, as desired, the integer stored in the contents field of reCellimp, not the one in the parent cell.

Explicit Delegation Inheritance

- Individual methods and fields of specific objects (donors) are linked into new objects (hosts).
- We write
delegate $o . m(\ldots)$
to execute the m method of o with self bound to the current self (not to o).
- The difference between delegate and embed is that the former obtains the method from the donor at the time of method invocation, while the latter obtains it earlier, at the time of object creation.

(An example of) Delegation

reCellExp

object reCellExp: ReCell is
var contents: Integer $:=$ cell.contents;
var backup: Integer :=0;
method $\operatorname{get}()$: Integer is return delegate cell.get () end;
method set(n : Integer) is
self.backup := self.contents;
delegate cell.set(n);
end;
method restore() is self.contents $:=$ self.backup end;
end;

- Explicit delegation provides a clean way of delegating operations to multiple objects. It provides a clean semantics for multiple donors.
- Inheritance is called static when inherited attributes are fixed for all time.
- It is dynamic when the collection of inherited attributes can be updated dynamically (replaced, increased, decreased).
- Although dynamic inheritance is in general a dangerous feature, it enables rather elegant and disciplined programming techniques.
- In particular, mode-switching is the special case of dynamic inheritance where a collection of (inherited) attributes is swapped with a similar collection of attributes. (This is even typable.)

Delegation-Style Mode Switching

Reparenting

flip a set of attributes

old object	
contents	0
backup	0
get	(code for get)
set	(code for set)
restore	(code for restore)

Method Update

Embedding vs. Delegation Summary

- In embedding inheritance, a freshly created host object contains copies of donor attributes.
- Access to the inherited donor attributes is no different than access to original attributes, and is quick.
- Storage use may be comparatively large, unless optimizations are used.
- In delegation inheritance, a host object contains links to external donor objects.
- During method invocation, the attribute-lookup procedure must preserve the binding of self to the original receiver, even while following the donor links.
\sim This results in more complicated implementation and formal modeling of method lookup.
\sim It creates couplings between objects that may not be desirable in certain (e.g. distributed) situations.
- In class-based languages the embedding and delegation models are normally (mostly) equivalent.
- In object-based languages they are distinguishable.
\sim In delegation, donors may contain fields, which may be updated; the changes are seen by the inheriting hosts.
~ Similarly, the methods of a donor may be updated, and again the changes are seen by the inheriting hosts.
\sim It is often permitted to replace a donor link with another one in an object; then all the inheritors of that object may change behavior.
\sim Cloning is still taken to perform shallow copies of objects, without copying the corresponding donors. Thus, all clones of an object come to share its donors and therefore the mutable fields and methods of the donors.
- Thus, embedding and delegation are two fundamentally distinct ways of achieving inheritance with prototypes.
- Interesting languages exist that explore both possibilities.

Advantages of Delegation

- Space efficiency by sharing.
- Convenience in performing dynamic, pervasive changes to all inheritors of an object.
- Well suited for integrated languages/environments.
- Delegation can be criticized because it creates dynamic webs of dependencies that lead to fragile systems. Embedding is not affected by this problem since objects remain autonomous.
- In embedding-based languages such as Kevo and Omega, pervasive changes are achieved even without donor hierarchies.
- Space efficiency, while essential, is best achieved behind the scenes of the implementation.
~ Even delegation-based languages optimize cloning operations by transparently sharing structures; the same techniques can be used to optimize space in embedding-based languages.
- Prototypes were initially intended to replace classes.
- Several prototype-based languages, however, seem to be moving towards a more traditional approach based on classlike structures.
- Prototypes-based languages like Omega, Self, and Cecil have evolved usage-based distinctions between objects.
- Trait objects.
- Prototype objects.
- Normal objects.

Traits

Embedding-Style Traits

traits

$s \longrightarrow \longrightarrow$| contents | 0 |
| :---: | :---: |

prototype

a Cell $=s+t \longrightarrow$| contents | 0 |
| :---: | :---: |
| get | (code for get) |
| set | (code for set) |

object

Traits

Traits are not Prototypes

- In the spirit of classless languages, traits and prototypes are still ordinary objects. But there are distinctions:
\sim Traits are intended only as the shared parents of normal objects: they should not be used directly or cloned.
~ Prototypes are intended only as object (and prototype) generators via cloning: they should not be used directly or modified.
~ Normal objects are intended only to be used and to carry local state: they should rely on traits for their methods.
- These distinctions may be methodological or enforced: some operations on traits and prototypes may be forbidden to protect them from accidental damage.

Trait Treason

- This separation of roles violates the original spirit of prototype-based languages: traits objects cannot function on their own. They typically lack instance variables.
- With the separation between traits and other objects, we seem to have come full circle back to class-based languages and to the separation between classes and instances.

Object Constructions vs. Class Implementations

- The traits-prototypes partition in delegation-based languages looks exactly like an implementation technique for classes.
- A similar traits-prototypes partition in embedding-based languages corresponds to a different implementation technique for classes that trades space for access speed.
- Class-based notions and techniques are not totally banned in object-based languages. Rather, they resurface naturally.
- The achievement of object-based languages is to make clear that classes are just one of the possible ways of generating objects with common properties.
- Objects are more primitive than classes, and they should be understood and explained before classes.
- Different class-like constructions can be used for different purposes; hopefully, more flexibly than in strict class-based languages.
- I look forward to the continued development of typed objectbased languages.
~ The notion of object type arise more naturally in object-based languages.
~ Traits, method update, and mode switching are typable (general reparenting is not easily typable).
- No need for dichotomy: object-based and class-based features can be merged within a single language, based on the common object-based semantics (Beta, $\mathrm{O}-1, \mathrm{O}-2, \mathrm{O}-3$).
- Embedding-based languages seem to be a natural fit for distributed-objects situations. E.g. COM vs. CORBA.
\sim Objects are self-contained and are therefore localized.
\sim For this reason, Obliq was designed as an embedding-based language.

Advanced Subtyping Issues

Covariance

- The type $A \times B$ is the type of pairs with left component of type A and right component of type B. The operations $f s t(c)$ and $s n d(c)$ extract the left and right components, respectively, of an element c of type $A \times B$.
- We say that \times is a covariant operator (in both arguments), because $A \times B$ varies in the same sense as A or B :

$$
A \times B<: A
$$

We can justify this property as follows:
Argument for the covariance of $\boldsymbol{A} \times \boldsymbol{B}$
A pair $\langle a, b\rangle$ with left component a of type A and right component b of type B, has type $A \times B$. If $A<: A$ ' and $B<: B^{\prime}$, then by subsumption we have $a: A^{\prime}$ and $b: B^{\prime}$, so that $\langle a, b\rangle$ has also type $A^{\prime} \times B^{\prime}$. Therefore, any pair of type $A \times B$ has also type $A^{\prime} \times B^{\prime}$ whenever $A<: A^{\prime}$ and $B<: B^{\prime}$. In other words, the inclusion $A \times B<: A^{\prime} \times B^{\prime}$ between product types is valid whenever $A<: A^{\prime}$ and $B<: B^{\prime}$.

Contravariance

- The type $A \rightarrow B$ is the type of functions with argument type A and result type B.
- We say that \rightarrow is a contravariant operator in its left argument, because $A \rightarrow B$ varies in the opposite sense as A; the right argument is instead covariant:

$$
A \rightarrow B<: A^{\prime} \rightarrow B^{\prime} \text { provided that } A^{\prime}<: A \text { and } B<: B^{\prime}
$$

Argument for the co/contravariance of $A \rightarrow B$

If $B<: B^{\prime}$, then a function f of type $A \rightarrow B$ produces results of type B^{\prime} by subsumption. If $A^{\prime}<: A$, then f accepts also arguments of type A^{\prime}, since these have type A by subsumption. Therefore, every function of type $A \rightarrow B$ has also type $A^{\prime} \rightarrow B^{\prime}$ whenever $A^{\prime}<: A$ and $B<: B^{\prime}$. In other words, the inclusion $A \rightarrow B<: A^{\prime} \rightarrow B^{\prime}$ between function types is valid whenever $A^{\prime}<: A$ and $B<: B^{\prime}$.

- In the case of functions of multiple arguments, for example of type $\left(A_{1} \times A_{2}\right) \rightarrow B$, we have contravariance in both A_{1} and A_{2}. This is because product, which is covariant in both of its arguments, is found in a contravariant context.

Invariance

- Consider pairs whose components can be updated; we indicate their type by $A \star B$. Given $p: A \star B, a: A$, and $b: B$, we have operations $\operatorname{get} \operatorname{Lft}(p): A$ and $\operatorname{getRht}(p): B$ that extract components, and operations $\operatorname{set} \operatorname{Lft}(p, a)$ and $\operatorname{set} \operatorname{Rht}(p, b)$ that destructively update components.
- The operator does not enjoy any covariance or contravariance properties:

$$
A \times B<: A^{\prime} \times B^{\prime} \text { provided that } A=A^{\prime} \text { and } B=B^{\prime}
$$

We say that is an invariant operator (in both of its arguments).

Argument for the invariance of $A \ngtr B$

If $A<: A^{\prime}$ and $B<: B^{\prime}$, can we covariantly allow $A \star B<: A^{\prime} \not B^{\prime}$? If we adopt this inclusion, then from $p: A \star B$ we obtain $p: A^{\prime} \star B^{\prime}$, and we can perform $\operatorname{set} L f t\left(p, a^{\prime}\right)$, for any $a^{\prime}: A^{\prime}$. After that, $\operatorname{get} L f t(p)$ might return an element of type A^{\prime} that is not an element of type A. Hence, the inclusion $A \nless B<: A^{\prime} \not B^{\prime}$ is not sound.

Conversely, if $A "<: A$ and $B "<: B$, can we contravariantly allow $A \nsim B<: A " \neq B$ "? From $p: A \nsim B$ we now obtain $p: A^{\prime \prime} B^{\prime \prime}$, and we can incorrectly deduce that $\operatorname{get} \operatorname{Lft}(p): A$ ". Hence, the inclu$\operatorname{sion} A \times B<: A " B$ " is not sound either.

In the simplest approach to overriding, an overriding method must have the same type as the overridden method.

- This condition can be relaxed to allow method specialization:

An overriding method may adopt different argument and result types, specialized for the subclass.

- We still do not allow overriding and specialization of field types.

Fields are updatable, like the components of the type $A \star B$, and therefore their types must be invariant.

Suppose we use different argument and result types, A^{\prime} and B^{\prime}, when overriding m :

```
class c is
    method m(x:A): B is ... end;
    method m}\mp@subsup{m}{1}{}(\mp@subsup{x}{1}{}:\mp@subsup{A}{1}{}):\mp@subsup{B}{1}{}\mathrm{ is ... end;
end;
subclass c' of c is
    override m(x: A'): B' is ... end;
end;
```

- We are constrained by subsumption between InstanceTypeOf(c') and InstanceTypeOf(c).

Specialization on Override

```
class c is
    method m(x:A): B is ... end;
    method m}\mp@subsup{m}{1}{}(\mp@subsup{x}{1}{}:\mp@subsup{A}{1}{}):\mp@subsup{B}{1}{}\mathrm{ is _. end;
end;
subclass c, of c is
    override m(x: A'): B' is ... end;
end;
```

- When o' of InstanceTypeOf(c') is subsumed into InstanceTypeOf(c) and o'.m(a) is invoked, the argument may have static type A and the result must have static type B.
- Therefore, it is sufficient to require that $B^{\prime}<: B$ (covariantly) and that $A<: A^{\prime}$ (contravariantly).
- This is called method specialization on override. The result type B is specialized to B^{\prime}, while the parameter type A is generalized to A^{\prime}.

Specialization on Inheritance

There is another form of method specialization that happens implicitly by inheritance.

- The occurrences of self in the methods of c can be considered of type InstanceTypeOf(c).
- When the methods of c are inherited by c^{\prime}, the same occurrences of self can similarly be considered of type InstanceTypeOf(c^{\prime}).
- Thus, the type of self is silently specialized on inheritance (covariantly!).

The Variance Controversy

It is controversial whether the types of arguments of methods should vary covariantly or contravariantly from classes to subclasses.

- The properties of the operators \times, \rightarrow, and follow inevitably from our assumptions.

The variance properties of method types follow inevitably by a similar analysis.

- We cannot take method argument types to vary covariantly, unless we change the meaning of covariance, subtyping, or subsumption.

With our definitions, covariance of method argument types is unsound: if left unchecked, it may lead to unpredictable behavior.

- Eiffel still favors covariance of method arguments. Unsound behavior is supposed to be caught by global flow analysis.
- Covariance can be soundly adopted for multiple dispatch, but using a different set of type operators.

Self Type Specialization

Class definitions are often recursive, in the sense that the definition of a class c may contain occurrences of InstanceTypeOf(c).

For example, we could have a class c containing a method m with result type InstanceTypeOf(c):

```
class c is
    var x: Integer := 0;
    method m(): InstanceTypeOf(c) is ... self ... end;
end;
subclass c' of c is
    var y: Integer := 0;
end;
```

On inheritance, recursive types are, by default, preserved exactly, just like other types.

- For instance, for o^{\prime} of class c^{\prime}, we have that $o^{\prime} . m()$ has type InstanceTypeOf(c) and not, for example, InstanceTypeOf(c^{\prime}).
- In general, adopting InstanceTypeOf($\left.c^{\prime}\right)$ as the result type for the inherited method m in c^{\prime} is unsound, because m may construct and return an instance of c that is not an instance of c '.
Suppose, though, that m returns self, perhaps after field updates.
- Then it would be sound to give the inherited method the result type InstanceTypeOf(c^{\prime} ').
- With this more precise typing, we avoid later uses of typecase.
- Limiting the result type to InstanceTypeOf(c) constitutes an unwarranted loss of information.

This argument leads to the notion of Self types.

- The keyword Self represents the type of self.
- Instead of giving the result type InstanceTypeOf(c) to m, we write:

```
class c is
    var x: Integer := 0;
    method m(): Self is ... self ... end;
end;
```

- The typing of the code of m relies on the assumptions that Self is a subtype of InstanceTy$p e O f(c)$, and that self has type Self.
- When c^{\prime} is declared as a subclass of c, the result type of m is still taken to be Self.

Thus Self is automatically specialized on subclassing.

Variance of the Type Self

- There are no drawbacks to extending classical class-based languages with Self as the result type of methods.
\sim We can even allow Self as the type of fields.
\sim These extensions prevent loss of type information at no cost other than keeping track of the type of self.
(See Eiffel and Sather.)
- A natural next step is to allow Self in contravariant (argument) positions.
\sim This is what Eiffel set out to do (with some trouble).
\sim The proper handling of Self in contravariant positions is a new development in class-based languages.

One central characteristic of classical class-based languages is the strict correlation between inheritance, subclassing, and subtyping.

- A great economy of concepts and syntax is achieved by identifying these three relations.
- But here are situations in which inheritance, subclassing, and subtyping conflict.

Opportunities for code reuse are then limited.
Therefore, there has been an effort to separate these relations.

- The separation of subclassing and subtyping is now common.
- Other separations are more tentative.

Object Types

In the original formulation of classes (in Simula, for example), the type description of objects is mixed with their implementation.
This conflicts with separating specifications from implementations.
Separation between specifications and implementations can be achieved by introducing types for objects.

- Object types are independent of specific classes.
- Object types list attributes and their types, but not their implementations.
- They are suitable to appear in interfaces, and to be implemented separately and in more than one way.
(In Java, object types are in fact called interfaces.)

Recall the classes cell and reCell:

class cell is
var contents: Integer := 0 ;
method get(): Integer is return self.contents end;
method $\operatorname{set}(n$: Integer $)$ is self.contents $:=n$ end;
end;
subclass reCell of cell is
var backup: Integer $:=0$;
override $\operatorname{set}(n$: Integer) is
self.backup := self.contents;
super.set(n);
end;
method restore() is self.contents $:=$ self.backup end;
end;

We introduce two object types Cell and ReCell that correspond to these classes.

- We write them as separate types (but we could introduce syntax to avoid repeating common components).

```
ObjectType Cell is
    var contents: Integer;
    method get(): Integer;
    method set(n: Integer);
end;
ObjectType ReCell is
    var contents: Integer;
    var backup: Integer;
    method get(): Integer;
    method set(n: Integer);
    method restore();
end;
```

- We may still use ObjectTypeOf(cell) as a meta-notation for the object type Cell.
\sim This type can be mechanically extracted from class cell.
~ Therefore, we may write either o: ObjectTypeOf(cell) or o: Cell.
- The main property we expect of ObjectTypeOf is that:

```
new c:ObjectTypeOf(c) for any class c
```

- Different classes cell and cell may happen to produce the same object type Cell, equal to Ob jectTypeOf(cell) and ObjectTypeOf(cell $\left.l_{1}\right)$.
- Therefore, objects having type Cell are required only to satisfy a certain protocol, independently of attribute implementation.

When object types are independent of classes, we must provide an independent definition of subtyping.

- There are several choices at this point:
\sim whether subtyping is determined by type structure or by type names in declarations,
\sim in the former case, what parts of the structure of types matter.
- We will use a particularly simple form of structural subtyping.

We assume, for two object types O and O^{\prime}, that:

$$
O^{\prime}<: O \quad \text { if } O^{\prime} \text { has all the components that } O \text { has }
$$

where a component of an object type is the name of a field or a method and its associated type. So, for example, ReCell $<$: Cell.

With this definition of subtyping, object types naturally support multiple subtyping, because components are assumed unordered.

For example, consider the object type:

```
ObjectType ReInteger is
    var contents: Integer;
    var backup: Integer;
    method restore();
end;
```

Then we have both ReCell $<$: Cell and ReCell $<$: ReInteger.

Subclassing Implies Subtyping (Still)

With the new definition of subtyping we have:

$$
\text { If } c^{\prime} \text { is a subclass of } c \text { then ObjectTypeOf }\left(c^{\prime}\right)<: \text { ObjectTypeOf }(c) \text {. }
$$

- This holds simply because a subclass can only add new attributes to a class, and because we require that overriding methods preserve the existing method types.
- Therefore, we have partially decoupled subclassing from subtyping, since subtyping does not imply subclassing. Subclassing still implies subtyping, so all the previous uses of subsumption are still allowed. But, since subsumption is based on subtyping and not subclassing, we now have even more freedom in subsumption.
- In conclusion, the notion of subclassing-is-subtyping can be weakened to subclassing-im-plies-subtyping without loss of expressiveness, and with a gain in separation between interfaces and implementations.

Subclassing without Subtyping

- We have seen how the partial decoupling of subtyping from subclassing increases the opportunities for subsumption.
- Another approach has emerged that increases the potential for inheritance by further separating subtyping from subclassing. This approach abandons completely the notion that subclassing implies subtyping, and is known under the name inheritance-is-not-subtyping.
- It is largely motivated by the desire to handle contravariant (argument) occurrences of Self so as to allow inheritance of methods with arguments of type Self; these methods arise naturally in realistic examples.
- The price paid for this added flexibility in inheritance is decreased flexibility in subsumption. When Self is used liberally in contravariant positions, subclasses do not necessarily induce subtypes.
- Consider two types Max and MinMax for integers enriched with min and max methods. Each of these types is defined recursively:

Object Type Max is
var n : Integer;
method max(other: Max): Max;
end;
ObjectType MinMax is
var n : Integer;
method max(other: MinMax): MinMax;
method min(other: MinMax): MinMax;
end;

- Consider also two classes:

```
class maxClass is
    var }n\mathrm{ : Integer := 0;
    method max(other: Self): Self is
            if self. }n>\mathrm{ other.n then return self else return other end;
    end;
end;
subclass minMaxClass of maxClass is
    method min(other: Self): Self is
                    if self. n<other.n then return self else return other end;
    end;
end;
```

- The methods min and max are called binary because they operate on two objects: self and other; the type of other is given by a contravariant occurrence of Self. Notice that the method max, which has an argument of type Self, is inherited from maxClass to minMaxClass.
- Intuitively the type Max corresponds to the class maxClass, and MinMax to minMaxClass. To make this correspondence more precise, we must define the meaning of ObjectTypeOf for classes containing occurrences of Self, so as to obtain ObjectType-Of $($ maxClass $)=$ Max and ObjectTypeOf $($ minMaxClass $)=$ MinMax.
- For these equations to hold, we map the use of Self in a class to the use of recursion in an object type. We also implicitly specialize Self for inherited methods; for example, we map the use of Self in the inherited method max to MinMax. In short, we obtain that any instance of maxClass has type Max, and any instance of minMaxClass has type MinMax.
- Although minMaxClass is a subclass of maxClass, MinMax cannot be a subtype of Max. Consider the class:

```
subclass minMaxClass' of minMaxClass is
    override max(other: Self): Self is
    if other.min(self)=other then return self else return other end;
    end;
end;
```

- For any instance $m m$ ' of minMaxClass' we have $m m$ ':MinMax. If MinMax were a subtype of Max, then we would have also $m m^{\prime}: \operatorname{Max}$, and $m m^{\prime} . \max (m)$ would be allowed for any m of type Max. Since m may not have a min attribute, the overridden max method of mm ' may break. Therefore:

MinMax <: Max does not hold

- Thus, subclasses with contravariant occurrences of Self do not always induce subtypes.

Type Parameters

- Type parameterization is a general technique for reusing the same piece of code at different types. It is becoming common in modern object-oriented languages, partially independently of object-oriented features.
- In conjunction with subtyping, type parameterization can be used to remedy some typing difficulties due to contravariance, for example in method specialization.
- Consider the following object types, where Vegetables $<:$ Food (but not vice versa):

ObjectType Person is

method eat(food: Food);
end;
ObjectType Vegetarian is
method eat(food: Vegetables);
end;

- The intention is that a vegetarian is a person, so we would expect Vegetarian $<$: Person.
- However, this inclusion cannot hold because of the contravariance on the argument of the eat method. If we erroneously assume Vegetarian $<$: Person, then a vegetarian can be subsumed into Person, and can be made to eat meat.
- We can obtain some legal subsumptions between vegetarians and persons by converting the corresponding object types into type operators parameterized on the type of food:

ObjectOperator PersonEating $[F<$: Food $]$ is
method eat(food: F);
end;
ObjectOperator VegetarianEating $[F<$: Vegetables $]$ is

> method eat (food: F);
end;

- The mechanism used here is called bounded type parameterization. The variable F is a type parameter, which can be instantiated with a type. A bound like $F<$: Vegetables limits the possible instantiations of F to subtypes of Vegetables.
- So, VegetarianEating[Vegetables] is a type; in contrast, VegetarianEating[Food] is not wellformed. The type VegetarianEating[Vegetables] is an instance of VegetarianEating, and is equal to the type Vegetarian.
- We have that:

$$
\text { for all } F<: \text { Vegetables, VegetarianEating }[F]<: \text { PersonEating }[F]
$$

because, for any $F<:$ Vegetables, the two instances are included by the usual rules for subtyping.

- In particular, we obtain:

$$
\text { Vegetarian = VegetarianEating }[\text { Vegetables }]<: \text { PersonEating }[\text { Vegetables }] .
$$

This inclusion can be useful for subsumption: it asserts, correctly, that a vegetarian is a person that eats only vegetables.

- Related to bounded type parameters are bounded abstract types (also called partially abstract types). Bounded abstract types offer a different solution to the problem of making Vegetarian subtype of Person.
- We redefine our object types by adding the F parameter, subtype of Food, as one of the attributes:

ObjectType Person is

$$
\text { type } F<: \text { Food; }
$$

var lunch: F;
method eat(food: F);
end;
ObjectType Vegetarian is type $F<:$ Vegetables;
var lunch: F;
method eat (food: F);
end;

- The meaning of the type component $F<:$ Food in Person is that, given a person, we know that it can eat some Food, but we do not know exactly of what kind. The lunch attribute provides some food that a person can eat.
- We can build an object of type Person by choosing a specific subtype of Food, for example $F=$ Dessert, picking a dessert for the lunch field, and implementing a method with parameter of type Dessert. We have that the resulting object is a Person, by forgetting the specific F that we chose for its implementation.
- Now the inclusion Vegetarian <: Person holds. A vegetarian subsumed into Person can be safely fed the lunch it carries with it, because originally the vegetarian was constructed with $F<$ Vegetables.
- A limitation of this approach is that a person can be fed only the food it carries with it as a component of type F, and not some food obtained independently.

Object Protocols

- Even when subclasses do not induce subtypes, we can find a relation between the type induced by a class and the type induced by one of its subclasses. It just so happens that, unlike subtyping, this relation does not enjoy the subsumption property. We now examine this new relation between object types.
- We cannot usefully quantify over the subtypes of Max because of the failure of subtyping. A parametric definition like:

$$
\text { ObjectOperator } P[M<: \text { Max }] \text { is } \ldots \text { end; }
$$

- is not very useful; we could instantiate P by writing $P[M a x]$, but $P[M i n M a x]$ would not be well-formed.
- Still, any object that supports the MinMax protocol, in an intuitive sense, supports also the Max protocol. There seems to be an opportunity for some kind of subprotocol relation that may allow useful parameterization. In order to find this subprotocol relation, we introduce two type operators, MaxProtocol and MinMaxProtocol:

ObjectOperator MaxProtocol $[X]$ is
var n :Integer;
method max(other: X): X;
end;
ObjectOperator MinMaxProtocol $[X]$ is
var n :Integer;
method max(other: X): X;
method $\min ($ other: X): X;
end;

- Generalizing from this example, we can always pass uniformly from a recursive type T to an operator T-Protocol by abstracting over the recursive occurrences of T. The operator T-Protocol is a function on types; taking the fixpoint of T-Protocol yields back T.
- We find two formal relationships between Max and MinMax. First, MinMax is a post-fixpoint of MaxProtocol, that is:

MinMax <: MaxProtocol[MinMax]

- Second, let <: denote the higher-order subtype relation between type operators:

$$
P \prec: P^{\prime} \quad \text { iff } \quad P[T]<: P^{\prime}[T] \quad \text { for all types } T
$$

- Then, the protocols of Max and MinMax satisfy:

> MinMaxProtocol <: MaxProtocol

- Either of these two relationships can be taken as our hypothesized notion of subprotocol:

```
S subprotocol T if S<:T-Protocol[S]
```

or
S subprotocol T if S-Protocol <: T-Protocol

- The second relationship expresses a bit more directly the fact that there exists a subprotocol relation, and that this is in fact a relation between operators, not between types.
- Whenever we have some property common to several types, we may think of parameterizing over these types. So we may adopt one of the following forms of parameterization:

ObjectOperator $P_{1}[X<:$ MaxProtocol $[X]]$ is \ldots end;
ObjectOperator $P_{2}[P<:$ MaxProtocol $]$ is ... end;

- Then we can instantiate P_{1} to $P_{1}[$ MinMax $]$, and P_{2} to $P_{2}[$ MinMaxProtocol $]$.
- These two forms of parameterization seem to be equally expressive in practice. The first one is called F-bounded parameterization. The second form is higher-order bounded parameterization, defined via pointwise subtyping of type operators.
- Instead of working with type operators, a programming language supporting subprotocols may conveniently define a matching relation (denoted by $<\#$) directly over types. The properties of the matching relation are designed to correspond to the definition of subprotocol. Depending on the choice of subprotocol relation, we have:

```
S<#T if S<:T-Protocol[S]
    or
S<#T if S-Protocol <: T-Protocol
```

(F-bounded interpretation)
(higher-order interpretation)

- With either definition we have MinMax <\# Max.
- Matching does not enjoy a subsumption property (that is, $S<\# T$ and $s: S$ do not imply that s $: T$); however, matching is useful for parameterizing over all the types that match a given one:

ObjectOperator $P_{3}[X<\#$ Max $]$ is ... end;

- The instantiation $P_{3}[$ MinMax $]$ is legal.
- In summary, even in the presence of contravariant occurrences of Self, and in absence of subtyping, there can be inheritance of binary methods like max. Unfortunately, subsumption is lost in this context, and quantification over subtypes is no longer very useful. These disadvantages are partially compensated by the existence of a subprotocol relation, and by the ability to parameterize with respect to this relation.

Type Information, Lost and Found

Although subsumption has no run-time effect, it has the effect of reducing static knowledge of the true type of an object.

- Imagine a root class with no attributes, such that all classes are subclasses of the root class. Any object can be viewed, by subsumption, as a member of the root class. Then it is a useless object with no attributes.
- When an object is subsumed from InstanceTypeOf(reCell) to InstanceTypeOf(cell), we lose direct access to its backup field.

However, the field backup is still used, through self, by the body of the overriding method set.

- So, attributes forgotten by subsumption can still be used thanks to dynamic dispatch.

In purist object-oriented methodology, dynamic dispatch is the only mechanism for accessing attributes forgotten by subsumption.

- This position is often taken on abstraction grounds: no knowledge should be obtainable about objects except through their methods.
- In the purist approach, subsumption provides a simple and effective mechanism for hiding private attributes.
When we create a reCell and give it to a client as a cell, we can be sure that the client cannot directly affect the backup field.

Most languages, however, provide some way of inspecting the type of an object and thus of regaining access to its forgotten attributes.

- A procedure with parameter x of type InstanceTypeOf(cell) could contain the following code.

```
typecase }
    when rc: InstanceTypeOf(reCell) do ...rc.restore() ...;
    when c: InstanceTypeOf(cell) do ... c.set(3) ...;
end;
```

- The typecase statement binds x to c or to $r c$ depending on the true (run-time) type of x.
- Previously inaccessible attributes can now be used in the $r c$ branch.

The typecase mechanism is useful, but it is considered impure for several methodological reasons (and also for theoretical ones).

- It violates the object abstraction, revealing information that may be regarded as private.
- It renders programs more fragile by introducing a form of dynamic failure when none of the branches apply.
- It makes code less extensible: when adding a subclass one may have to revisit and extend the typecase statements in existing code.
\sim This is a bad property, in particular because the source code of commercial libraries may not be available.
\sim In the purist framework, the addition of a new subclass does not require recoding of existing classes.

Although typecase may be ultimately an unavoidable feature, its methodological drawbacks require that it be used prudently.

The desire to reduce the uses of typecase has shaped much of the type structure of object-oriented languages.

- In particular, typecase on self is necessary for emulating objects in conventional languages by records of procedures.
In contrast, the standard typing of methods in object-oriented languages avoids this need for typecase.
- More sophisticated typings of methods are aimed at avoiding typecase also on method results and on method arguments.
- Class-based: various implementation techniques based on embedding and/or delegation. Self is the receiver.
- Object-based: various language mechanisms based on embedding and/or delegation. Self is the receiver.
- Object-based can emulate class-based. (By traits, or by otherwise reproducing the implementations techniques of class-based languages.)
- Language analysis:
\sim Class-based langs. \rightarrow Object-based langs. \rightarrow Object calculi
- Language synthesis:
\sim Object calculi \rightarrow Object-based langs. \rightarrow Class-based langs.

Our Approach to Modeling

- We have identified embedding and delegation as underlying many object-oriented features.
- In our object calculi, we choose embedding over delegation as the principal object-oriented paradigm.
- The resulting calculi can model classes well, although they are not class-based (since classes are not built-in).
- They can model delegation-style traits just as well, but not "true" delegation. (Object calculi for delegation exist but are more complex.)
- Objects can emulate classes (by traits) and procedures (by "stack frame objects").
- Everything can indeed be an object.

Object-Oriented

Class-Based

Object-Based

(transparencies by Martín Abadi,
largely based on the paper "Type Systems" by Luca Cardelli)

A program variable can assume a range of values during the execution of a program.
An upper bound of such a range is called a type of the variable.
~ For example, a variable x of type Boolean is supposed to assume only boolean values during every run of a program.
\sim If x has type Boolean, then the boolean expression $\operatorname{not}(x)$ has a sensible meaning in every run of the program.

Typed and Untyped Languages

Languages that do not restrict the range of variables are called untyped languages.

- Operations may be applied to inappropriate arguments: the result may be a fixed value, a fault, an exception, or an unspecified effect.
- The pure λ-calculus is an extreme case of an untyped language where no fault ever occurs.

Languages where variables can be given (nontrivial) types are called typed languages.

- A type system is that component of a typed language that keeps track of the types of variables and other program expressions.
- A language is typed by virtue of the existence of a type system for it, whether or not types actually appear in the syntax of programs.
- Typed languages are explicitly typed if types are part of the syntax, and implicitly typed otherwise.

Types have pragmatic characteristics that distinguish them from other kinds of program annotations.

- They are more precise than comments.
- They are more easily mechanizable than formal specifications.

Some expected properties of type systems are:

- Types should be checkable, algorithmically.
- Type rules should be transparent: it should be possible to predict whether a program will typecheck, or to see why it does not.

Type Soundness

One important purpose of a type system is to prevent the occurrence of execution errors during the running of a program.

When this property holds for all of the program runs that can be expressed within a language, the language is type sound.

- A fair amount of careful analysis is required to avoid false claims of type soundness.
- Even informal knowledge of the principles of type systems helps.
- A formal presentation of a type system permits a formal proof, and also provides an independent specification for a typechecker.
- These categories are somewhat simplistic: being typed, or being explicitly typed, can be seen as a matter of degree.
- We will ignore some kinds of type information, for example:
\sim untraced and traced (used for garbage collection),
\sim static and dynamic (used in partial evaluation),
\sim unclassified, secret, and top secret (used for confidentiality),
\sim untrusted and trusted (used for integrity),
~
- Even the notion of execution error is difficult to make precise in a simple, general manner.

Advantages of Typed Languages

The use of types in programming has several practical benefits:

- Economy of execution
~ In the earliest high-level languages (e.g., FORTRAN), type information was introduced for generating reasonable code for numeric computations.
\sim In ML, accurate type information eliminates the need for nil-checking on pointer dereferencing.
Accurate type information at compile time leads to the application of the appropriate operations at run time without expensive tests.
- Economy of small-scale development
~ When a type system is well designed, typechecking can capture a large fraction of routine programming errors.
~ The errors that occur are easier to debug, because large classes of other errors have been ruled out.
~ Experienced programmers can adopt a style that causes some logical errors to be detected by a typechecker.
- Economy of maintenance
~ Code written in untyped languages can be maintained only with great difficulty.
\sim Even weakly checked unsafe languages are superior to safe but untyped languages.
- Economy of large-scale development
\sim Teams of programmers can negotiate interfaces, then proceed separately to implement the corresponding pieces of code.
~ Dependencies between pieces of code are minimized, and code can be locally rearranged without fear of global effects.

These benefits can be achieved with informal specifications for interfaces, but typechecking helps.

Execution Errors in More Detail

There are two kinds of execution errors:

- trapped errors cause the computation to stop immediately, e.g.,
~ division by zero,
~ accessing an illegal address,
- untrapped errors may go unnoticed (for a while), e.g.,
~ accessing data past the end of an array,
\sim jumping to an address outside the instruction stream.
A program fragment is safe if it does not cause untrapped errors.
Languages where all program fragments are safe are safe languages.

Safety

	Typed	Untyped
Safe	ML	LISP (classic)
Unsafe	C	Assembler

Good Behavior

For any given language, we may designate a subset of the possible execution errors as forbidden errors.

The forbidden errors should include all of the untrapped errors, plus a subset of the trapped errors.

A program fragment that does not cause forbidden errors has good behavior (or is well behaved).

A language where all of the (legal) programs have good behavior is called strongly checked.

- No untrapped errors occur.
- None of the forbidden trapped errors occur.
- Other trapped errors may occur; it is the programmer's responsibility to avoid them.

Checking Good Behavior

Untyped languages may enforce good behavior by run time checks.
Typed languages (like ML and Pascal) can enforce good behavior by performing static checks to prevent some programs from running.
\sim These languages are statically checked.
\sim The checking process is typechecking.
\sim The algorithm that performs this check is the typechecker.
\sim A program that passes the typechecker is said to be well typed.

Typed languages may also perform some dynamic checks.
Some languages take advantage of their static type structures to perform dynamic type tests (cf. Java's InstanceOf).

In reality, certain statically checked languages do not ensure safety.
These languages are weakly checked (or weakly typed): some unsafe operations are detected statically and some are not detected.
~ Pascal is unsafe only when untagged variant types and function parameters are used.
\sim C has many unsafe and widely used features, such as pointer arithmetic and casting.
\sim Modula-3 supports unsafe features, but only in modules that are explicitly marked as unsafe.

Most type systems include a relation of type equivalence.
Are X and Y equivalent?

> type $X=$ Real
> type $Y=$ Real

- When they fail to match by virtue of being distinct type names, we have by-name equivalence.
- When they match by virtue of being associated with similar types, we have structural equivalence.
- Most compilers use a combination of by-name and structural equivalence (sometimes without a satisfactory specification).
- Structural equivalence has several advantages:
\sim It can be defined easily, without strange special cases.
~ It easily allows "anonymous" types.
~ It works well with data sent over a network, with persistent data.
~ It works well with program sources developed in pieces.
- Pure structural equivalence can be limited through branded types.

> type $X=$ Real brand Temperature
> type $Y=$ Real brand Speed

When Types Do Not Match: Coercions?

Many languages do not give up when a type mismatch occurs.

- Instead, they apply a coercion in the offending program.
- Sometimes the coercion happens at run time, with significant cost.

Languages vary in their use of coercions.

- For languages with lots of basic types (such as COBOL) frequent coercions are a necessity.
- Many languages allow coercions at least for numeric types.

Silent coercions have advantages and disadvantages:

- They free the programmer from tedious conversions.
- Typechecking becomes harder to predict, and can turn simple typos into serious mistakes.
- If a coercion does any allocation, then data structures may not be shared as intended.

The Language of Type Systems

A type system specifies the type rules of a programming language independently of particular typechecking algorithms.

This is analogous to describing a syntax by a formal grammar, independently of particular parsing algorithms (and as important!).

Type systems are formulated in terms of assertions called judgments.
A typical judgment has the form:

$$
\Gamma \vdash \mathfrak{I}
$$

Here Γ is a static typing environment; for example, an ordered list of distinct variables and their types, of the form $\varnothing, x_{1}: A_{1}, \ldots, x_{n}: A_{n}$.

The form of the assertion \mathfrak{I} varies from judgment to judgment, but all the free variables of \mathfrak{I} must be declared in Γ.

The typing judgment, which asserts that a term M has a type A with respect to a static typing environment for the free variables of M.

It has the form:

$$
\Gamma \vdash M: A
$$

(M has type A in Γ)

Examples:

$$
\begin{aligned}
& \phi \vdash \text { true : Bool } \\
& \varnothing, x: N a t \vdash x+1: \text { Nat }
\end{aligned}
$$

Type Rules

Type rules are rules for deriving judgments.
A typical type rule has the form:

(Rule name)	(Annotations)
$\Gamma_{1} \vdash \mathfrak{I}_{1}$	\ldots
$\Gamma_{n} \vdash \Im_{n} \quad$ (Annotations)	
	$\Gamma \vdash \mathfrak{I}$

Examples:

$$
\begin{array}{ll}
\begin{array}{l}
(\text { Val } n)(n=0,1, \ldots) \\
\frac{\Gamma \vdash \diamond}{\Gamma \vdash n: N a t}
\end{array} & \frac{(\mathrm{Val}+)}{} \\
\frac{\Gamma \vdash M: N a t \quad \Gamma \vdash N: N a t}{} & \\
\frac{\Gamma \vdash M+N: N a t}{(\text { Env } \varnothing)} \\
\emptyset \vdash \diamond
\end{array}
$$

Type Derivations

A derivation in a given type system is a tree of judgments
\sim with leaves at the top and a root at the bottom,
\sim where each judgment is obtained from the ones immediately above it by some rule of the system.

A valid judgment is one that can be obtained as the root of a derivation in a given type system.

$\varnothing \vdash \diamond$	by (Env \varnothing)	$\varnothing \vdash \diamond$	by (Env \varnothing)
øト1:Nat	by (Val n)	$\phi \vdash 2: N a t$	by (Val n)
	$1+2: N a t$		by (Val +)

Well Typing and Type Soundness

In a given type system, a term M is well typed for an environment Γ, if there is a type A such that $\Gamma \vdash M: A$ is a valid judgment.

The discovery of a derivation (and hence of a type) for a term is called the type inference problem. This problem can be very hard.

We can check the internal consistency of a type system by proving a type soundness theorem.
\sim For denotational semantics, we expect that if $\varnothing \vdash M: A$ is valid, then $\llbracket M \rrbracket \in \llbracket A \rrbracket$ holds.
\sim For operational semantics, we expect that if $\varnothing \vdash M: A$ and M reduces to M^{\prime} then $\varnothing \vdash M^{\prime}: A$.
This theorem shows that well typing corresponds to a semantic notion of good behavior.

First-Order Type Systems

In this context, first-order means lacking type parameterization and type abstraction (like Pascal, unlike ML).

Languages with higher-order functions can be first-order.
The type systems of most common languages are first-order.

A common mathematical example of a first-order language is the first-order typed λ-calculus, called system F_{1}.

The main changes from the untyped λ-calculus are:

- the addition of type annotations for bound variables (as in $\lambda x: A . x$),
- the addition of basic types (such as Bool and Nat),
- the addition of types for functions, of the form $A \rightarrow B$,
- the requirement that programs typecheck.

Syntax of F_{1}

$A, B=$	types
K	KєBasic
$A \rightarrow B$	basic types
$M, N:=$	function types
x	terms
$\lambda x: A . M$	variable
$M N$	function abstraction

Judgments for $\mathbf{F}_{\mathbf{1}}$

$\Gamma \vdash \diamond$
$\Gamma \vdash A$
$\Gamma \vdash M: A$
Γ is a well-formed environment
A is a well-formed type in Γ
M is a well-formed term of type A in Γ

Rules for \mathbf{F}_{1}

$(\operatorname{Env} \phi)$	$(\operatorname{Env} x)$
$\overline{\phi \vdash \diamond}$	$\frac{\Gamma \vdash A \quad x \notin \operatorname{dom}(\Gamma)}{\Gamma, x: A \vdash \diamond}$

(Type Const)	(Type Arrow)
$\Gamma \vdash$	$\Gamma \vdash A \quad \Gamma \vdash B$
$\diamond \quad K \in$ Basic	
$\Gamma \vdash K$	$\Gamma \vdash A \rightarrow B$

$(\operatorname{Val} x)$
$\frac{\Gamma^{\prime}, x: A, \Gamma^{\prime \prime} \vdash \diamond}{\Gamma^{\prime}, x: A, \Gamma^{\prime \prime} \vdash x: A}$
(Val Fun)
$\frac{\Gamma, x: A \vdash M: B}{\Gamma \vdash \lambda x: A \cdot M: A \rightarrow B}$
(Val Appl)
$\frac{\Gamma \vdash M: A \rightarrow B \quad \Gamma \vdash N: A}{\Gamma \vdash M N: B}$

A derivation in \mathbf{F}_{1}

where the last two steps are by (Val Appl) and (Val Fun).

- F_{1} allows some programming with higher-order functions.

For example, the Church numerals:

$$
\begin{gathered}
\lambda x: K \rightarrow K . \lambda y: K . y \\
\lambda x: K \rightarrow K . \lambda y: K . x(y) \\
\lambda x: K \rightarrow K . \lambda y: K . x(x(y)) \\
\lambda x: K \rightarrow K . \lambda y: K . x(x(x(y)))
\end{gathered}
$$

all typecheck with type $(K \rightarrow K) \rightarrow(K \rightarrow K)$

- Some untyped terms cannot be annotated so that they typecheck in F_{1} :

$$
\lambda x: ? \cdot x(x)
$$

- We can prove type soundness theorems for F_{1}.

In particular:

$$
\text { If } \varnothing \vdash M: A \text { and } M \rightarrow^{l} N \text { then } \varnothing \vdash N: A
$$

\sim Here \rightarrow^{l} is the trivial extension of the call-by-name operational semantics of the untyped λ-calculus to F_{1}.
\sim This is called a subject reduction theorem.
\sim This theorem implies, for example, that if $\varnothing \vdash M: A$ then M does not evaluate to $\lambda x: K . x(\ldots)$, where a non-function is being applied.
\sim For richer type systems, subject reduction theorems can be hard.

We add a set of rules for each of several new type constructions, following a fairly regular pattern.

We begin with some basic data types:

- the type Unit, whose only value is the constant unit,
- the type Bool, whose values are true and false,
- the type $N a t$, whose values are the natural numbers.

Unit Type

(Type Unit) $\Gamma \vdash \diamond$ $\Gamma \vdash$ Unit	(Val Unit) $\Gamma \vdash \diamond$
	$\frac{\Gamma \vdash \text { unit : Unit }}{}$

The Unit type is often used as a filler for uninteresting arguments and results. (It corresponds to Void or Null in some languages.)

Basic Types: Booleans

Bool Type

(Type Bool) $\Gamma \vdash \diamond$	(Val True) $\Gamma \vdash \diamond$	(Val False) $\Gamma \vdash \diamond$
$\Gamma \vdash \mathrm{Bool}$	$\bar{\Gamma}$ true : Bool	$\Gamma \vdash$ false : Bool
(Val Cond)		
$\Gamma \vdash M:$ Bool	$\Gamma \vdash N_{1}: A$	$\Gamma \vdash N_{2}: A$

$i f_{A}$ gives a hint to the typechecker that the result type should be A, and that types inferred for N_{1} and N_{2} should be compared with A.
It is normally the task of a typechecker to synthesize A and similar type information.

Basic Types: Natural Numbers

Nat Type

(Type Nat)	(Val Zero)	(Val Succ)
$\Gamma \vdash$ -	$\Gamma \vdash$ -	$\Gamma \vdash M: N a t$
$\Gamma \vdash \mathrm{Nat}$	$\Gamma \vdash 0$: Nat	$\Gamma \vdash \operatorname{succ}$ M : Nat
(Val Pred)	(Val IsZero)	
$\Gamma \vdash M:$ Nat	$\Gamma \vdash M: N a t$	
$\Gamma \vdash \operatorname{pred} M$: N	Nat \quad Гトi	or M : Bool

Structured Types: Products

A product type $A_{1} \times A_{2}$ is the type of pairs of values with first component of type A_{1} and second component of type A_{2}.

These components can be extracted with the projections first and second, respectively.

Product Types

(Type Product) $\Gamma \vdash A_{1} \quad \Gamma \vdash A_{2}$ $\Gamma \vdash A_{1} \times A_{2}$	$\frac{\Gamma \vdash M_{1}: A_{1}}{\Gamma \vdash\left\langle M_{1}, M_{2}\right\rangle: A_{1} \times A_{2}}$

> (Val First) $\frac{\Gamma \vdash M: A_{1} \times A_{2}}{\Gamma \vdash \text { first } M: A_{1}}$

$$
\begin{aligned}
& \text { (Val Second) } \\
& \frac{\Gamma \vdash M: A_{1} \times A_{2}}{\Gamma \vdash \operatorname{second} M: A_{2}}
\end{aligned}
$$

Instead of the projections, we can use a with statement.
\sim The with statement decomposes a pair M and binds its components to two separate variables x_{1} and x_{2} in the scope N.
\sim The with notation is related to pattern matching in ML, and also to Pascal's with statement.

Product Types (Cont.)

```
(Val With)
    \Gamma\vdashM:A}\mp@subsup{A}{1}{}\times\mp@subsup{A}{2}{}\quad\Gamma,\mp@subsup{x}{1}{}:\mp@subsup{A}{1}{},\mp@subsup{x}{2}{}:\mp@subsup{A}{2}{}\vdashN:
    \Gamma\vdash(with (x, :A, , x :A A ) :=M do N) : B
```


Structured Types: Unions

An element of a union type $A_{1}+A_{2}$ is an element of A_{1} tagged with a left token (created by inLeft), or an element of A_{2} tagged with a right token (created by inRight).

The tags can be tested by isLeft and isRight, and the values extracted with asLeft and asRight.

Union Types

(Type Union)
$\Gamma \vdash A_{1} \quad \Gamma \vdash A_{2}$
$\Gamma \vdash A_{1}+A_{2}$
(Val isLeft)
$\frac{\Gamma \vdash M: A_{1}+A_{2}}{\Gamma \vdash \text { isLeft } M: \text { Bool }}$
(Val asLeft)
$\frac{\Gamma \vdash M: A_{1}+A_{2}}{\Gamma \vdash \operatorname{asLeft} M: A_{1}}$
(Val inLeft)

$\Gamma \vdash M_{1}: A_{1} \quad \Gamma \vdash A_{2}$
$\Gamma \vdash$ inLeft $_{A_{2}} M_{1}: A_{1}+A_{2}$

(Val isRight)

$$
\frac{\Gamma \vdash M: A_{1}+A_{2}}{\Gamma \vdash \text { isRight } M: \text { Bool }}
$$

(Val asRight)

$$
\Gamma \vdash M: A_{1}+A_{2}
$$

$\Gamma \vdash$ asRight $M: A_{2}$
(Val inRight)
$\frac{\Gamma \vdash A_{1} \quad \Gamma \vdash M_{2}: A_{2}}{\Gamma \vdash \text { inRight }_{A_{1}} M_{2}: A_{1}+A_{2}}$

The use of asLeft (and asRight) can give rise to errors:
\sim Any result of asLeft must have type A_{1}.
~ When asLeft is mistakenly applied to a right-tagged value, a trapped error or exception is produced.

The case construct can replace isLeft, isRight, asLeft, asRight, and the related trapped errors.
It also eliminates any dependence on the Bool type.
Union Types (Cont.)
(Val Case)

$$
\Gamma \vdash M: A_{1}+A_{2} \quad \Gamma, x_{1}: A_{1} \vdash N_{1}: B \quad \Gamma, x_{2}: A_{2} \vdash N_{2}: B
$$

$$
\Gamma \vdash\left(\text { case }_{B} M \text { of } x_{1}: A_{1} \text { then } N_{1} \mid x_{2}: A_{2} \text { then } N_{2}\right): B
$$

The case construct executes one of two branches depending on the tag of M, with the untagged contents of M bound to x_{1} or x_{2} in the scope of N_{1} or N_{2}, respectively.

Structured Types: Records

A record type is a named collection of types, with a value-level operation for extracting components by name.
We ignore the order of the record components (and identify expressions that differ only in this order).

Record Types

```
(Type Record) (ll distinct)
    \Gamma\vdash}\mp@subsup{A}{1}{
\Gamma\vdashRecord(l}\mp@subsup{l}{1}{}:\mp@subsup{A}{1}{},\ldots,\mp@subsup{l}{n}{}:\mp@subsup{A}{n}{}
(Val Record Select)
```



```
\Gamma\vdashM.l和:A
(Val Record With)
```



```
    \Gamma \vdash ( \text { with (l =x =x :A A , .., l} = l _ { n } = x _ { n } : A _ { n } ) : = M \text { do N):B}
```

Product types $A_{1} \times A_{2}$ can be defined as $\operatorname{Record}\left(\right.$ first: A_{1}, second: A_{2}).

Structured Types: Variants

Variant types

Enumeration types, such as $\{$ red, green, blue $\}$, can be defined as Variant(red:Unit, green:Unit, blue:Unit).

Other First-Order Types

See L. Cardelli's paper for a discussion of reference types and arrays.

Recursive Types

Instead of declaring recursive types, as in:

$$
\text { type } X=\text { Unit }+(\text { Nat } \times X)
$$

we use recursive types of the form $\mu X . A$, like:

$$
\mu X .(\text { Unit }+(\text { Nat } \times X))
$$

Here X is a type variable. Intuitively, $\mu X . A$ is the solution to recursive to the equation $X=A$ where X may occur in A. So for example:

$$
\mu X .(\text { Unit }+(\text { Nat } \times X))=\text { Unit }+(\text { Nat } \times \mu X .(\text { Unit }+(\text { Nat } \times X)))
$$

This notation postpones the need for type declarations.
Anyway, with structural equivalence, we would want to say that the type X declared by $X=A$ "is" $\mu X . A$.

For writing rules for recursive types, we enrich environments with type variables.

Recursive Types

(Env X)	(Type Rec)
$\Gamma \vdash \diamond \quad X \notin \operatorname{dom}(\Gamma)$	$\Gamma, X \vdash A$
$\Gamma, X \vdash \diamond$	$\overline{\Gamma \vdash \mu X . A}$
(Val Fold)	(Val Unfold)
$\Gamma \vdash M: A[\mu X . A / X]$	$\Gamma \vdash M: \mu X . A$
$\Gamma \vdash$ fold $_{\mu X . A} M: \mu X . A$	$\Gamma \vdash$ unfold $_{\mu X . A} M: A[\mu X . A / X]$

The operations unfold and fold are explicit coercions that map between a recursive type $\mu X . A$ and its unfolding $A[\mu X . A / X]$.

These coercions do not have any run time effect. They are usually omitted from the syntax of programming languages.

List Types

List Types

List $_{A} \triangleq \mu X$. Unit $+(A \times X)$
nil $_{A}:$ List $_{A} \triangleq$ fold(inLeft unit $)^{\text {cons }_{A}: A \rightarrow \text { List }_{A} \rightarrow \text { List }_{A} \triangleq \lambda h d: A . \lambda \text { tl:List }}$. fold(inRight $\langle h d$, tl $\left.\rangle\right)$
listCase $_{A, B}:$ List $_{A} \rightarrow B \rightarrow\left(A \times\right.$ List $\left._{A} \rightarrow B\right) \rightarrow B \triangleq$
$\quad \lambda l:$ List $_{A} \cdot \lambda n: B . \lambda c: A \times$ List $_{A} \rightarrow B$.
\quad case (unfold $l)$ of unit:Unit then $n \mid p: A \times$ List $_{A}$ then $c p$

Value-level recursion can be typechecked using recursive types.
Encoding of Divergence and Recursion via Recursive Types

$$
\begin{aligned}
& \perp_{A}: A \triangleq\left(\lambda x: B .\left(\text { unfold }_{B} x\right) x\right)\left(\text { fold }_{B}\left(\lambda x: B .\left(\text { unfold }_{B} x\right) x\right)\right) \\
& \mathbf{Y}_{A}:(A \rightarrow A) \rightarrow A \triangleq \\
& \lambda f: A \rightarrow A .\left(\lambda x: B . f\left(\left(\text { unfold }_{B} x\right) x\right)\right)\left(\text { fold }_{B}\left(\lambda x: B . f\left(\left(\text { unfold }_{B} x\right) x\right)\right)\right)
\end{aligned}
$$

where $B \equiv \mu X . X \rightarrow A, \quad$ for an arbitrary A

Untyped Programming via Recursive Types

Encoding the Untyped λ-calculus via Recursive Types

```
V
    the type of untyped }\lambda\mathrm{ -terms
|x\rangle\triangleqx translation |-> from untyped }\lambda\mathrm{ -terms to }V\mathrm{ elements
|\lambdax.M》\triangleq fold}\mp@subsup{V}{V}{}(\lambdax:V.|M|
|MN\rangle\triangleq (unfold}\mp@subsup{V}{V}{}|M|)|N
```


A Type System for an Imperative Language

Syntax of the imperative language

$A::=$	types	
	Bool	boolean type
	Nat	natural numbers type
	Proc	procedure type
$D::=$	declarations	
	$\operatorname{proc} I=C$	procedure declaration
	$\operatorname{var} I: A=E$	variable declaration
$C::=$	commands	
	$I:=E$	assignment
	$C_{1} ; C_{2}$	sequential composition
	begin D in C end	block
	call I	procedure call
	while E do C end	while loop

Judgments for the imperative language

$\Gamma \vdash \diamond$	Γ is a well-formed environment
$\Gamma \vdash A$	A is a well-formed type in Γ
$\Gamma \vdash C$	C is a well-formed command in Γ
$\Gamma \vdash E: A$	E is a well-formed expression of type A in Γ
$\Gamma \vdash D \therefore S$	D is a well-formed declaration of signature S in Γ

Type rules for the imperative language

(Comm Block)

$\Gamma \vdash D \therefore(I: A) \quad \Gamma, I: A \vdash C$
$\Gamma \vdash$ begin D in C end
:---:
$\Gamma \vdash$ call I

(Expr Identifier) $\Gamma_{1}, I: A, \Gamma_{2} \vdash \diamond$ $\Gamma_{1}, I: A, \Gamma_{2} \vdash I: A$	(Expr Numeral)
$\Gamma \vdash N: N a t$	

(Expr Plus)
$\Gamma \vdash E_{1}: N a t \quad \Gamma \vdash E_{2}: N a t$
:---
$\Gamma \vdash E_{1}+E_{2}: N a t$

$\Gamma \vdash E_{1}$ not $=E_{2}:$ Bool

Type inference is the problem of finding a type A for a term M in a given typing environment Γ, so that $\Gamma \vdash M: A$, if any such type exists.

- In systems with abundant type annotations, the type inference problem amounts to little more than checking the annotations.
- The problem is not always trivial but, as in the case of F_{1}, simple typechecking algorithms may exist.

A harder problem, called type reconstruction, consists in starting with an untyped program M, and finding an environment Γ, a type-annotated version M^{\prime} of M, and a type A such that $\Gamma \vdash M^{\prime}: A$.

A Type Inference Algorithm for \mathbf{F}_{1}

Type (Γ, M) takes an environment Γ and a term M and produces the unique type of M, if M has a type.

The instruction fail causes a global failure of the algorithm.
We assume that the initial environment parameter Γ is well formed.

Type inference algorithm for $\mathbf{F}_{\mathbf{1}}$

```
Type (\Gamma,x)\triangleq
    if x:A }\in\Gamma\mathrm{ for some A then A else fail
Type(\Gamma, \lambdax:A.M) \triangleq
    if x & dom( }\Gamma)\mathrm{ then }A->\mathrm{ Type((}\Gamma,x:A),M) else restart after renaming
Type(Г,MN)\triangleq
    if Type ( }\Gamma,M)\equiv\mathrm{ Type ( }\Gamma,N)->B\mathrm{ for some B then B else fail
```

For example:

$$
\begin{aligned}
& \text { Type }((\phi, y: K \rightarrow K), \lambda z: K . y(z)) \\
& =K \rightarrow \text { Type }((\phi, y: K \rightarrow K, z: K), y(z)) \\
& =K \rightarrow(\text { if Type }((\phi, y: K \rightarrow K, z: K), y) \equiv \\
& \quad \text { Type }((\varnothing, y: K \rightarrow K, z: K), z) \rightarrow B \text { for some } B \\
& \quad \text { then } B \text { else fail }) \\
& =K \rightarrow(\text { if } K \rightarrow K \equiv K \rightarrow B \text { for some } B \text { then } B \text { else fail }) \\
& =K \rightarrow K
\end{aligned}
$$

The algorithm for type inference in F_{1} is fundamental.

- It can be extended in straightforward ways to all of the first-order type structures studied earlier.
- It is the basis of the typechecking algorithms of Pascal and similar procedural languages.
- It can be extended (though not always easily) to handle subtyping and higher-order constructs.

InTRODUCTION TO Object Calculi

- Many characteristics of object-oriented languages are different presentations of a few general ideas.
- The situation is analogous in procedural programming.

The λ-calculus has provided a basic, flexible model, and a better understanding of actual languages.

From Functions to Objects

- We develop a calculus of objects, analogous to the λ-calculus but independent.
\sim It is entirely based on objects, not on functions.
~ We go in this direction because object types are not easily, or at all, definable in most standard formalisms.
- The calculus of objects is intended as a paradigm and a foundation for object-oriented languages.
- We have, in fact, a family of object calculi:
~ functional and imperative;
\sim untyped, first-order, and higher-order.

Untyped and first-order object calculi

Calculus:	ς	$\mathbf{O b}_{\mathbf{1}}$	$\mathbf{O b}_{1<:}$	$n n$	$\mathbf{O b}_{\mathbf{1} \mu}$	$\mathbf{O b}_{1<: \mu}$	$n n$	$\mathbf{i m p} \varsigma$	$n n$
objects	\bullet								
object types		\bullet	\bullet	\bullet	\bullet	\bullet	\bullet		\bullet
subtyping			\bullet	\bullet		\bullet	\bullet		\bullet
variance				\bullet					
recursive types					\bullet	\bullet	\bullet		
dynamic types							\bullet		
side-effects								\bullet	\bullet

Higher-order object calculi

Calculus:	$\mathbf{O b}$	$\mathbf{O b}_{\mu}$	$\mathbf{O b}_{<:}$	$\mathbf{O b}_{<: \mu}$	SOb	\mathbf{S}	\mathbf{S}_{\forall}	$n n$	$\boldsymbol{O b}_{\omega<; \mu}$
objects	\bullet								
object types	\bullet								
subtyping			\bullet						
variance			\circ	\circ		\bullet	\bullet	\bullet	\bullet
recursive types		\bullet		\bullet					\bullet
dynamic types									
side-effects								\bullet	
quantified types	\bullet	\bullet	\bullet	\bullet			\bullet	\bullet	\bullet
Self types				\circ	\bullet	\bullet	\bullet	\bullet	\circ
structural rules						\bullet	\bullet	\bullet	\bullet
type operators									\bullet

There are several other calculi (e.g., Castagna's, Fisher\&Mitchell's).

Object Calculi

As in λ-calculi, we have:
\sim operational semantics,
~ denotational semantics,
\sim (some) axiomatic semantics (due to M. Abadi and R. Leino),
~ type systems,
~ type inference algorithms (due to J. Palsberg, F. Henglein),
~ equational theories,
~ a theory of bisimilarity (due to A. Gordon and G. Rees),
~ examples,
~ (small) language translations,
\sim guidance for language design.

The Role of "Functional" Object Calculi

- Functional object calculi are object calculi without side-effects (with or without syntax for functions).
- We have developed both functional and imperative object calculi.
- Functional object calculi have simpler operational semantics.
- "Functional object calculus" sounds odd: objects are supposed to encapsulate state!
- However, many of the techniques developed in the context of functional calculi carry over to imperative calculi.
- Sometimes the same code works functionally and imperatively. Often, imperative versions require just a little more care.

Just Objects, No Classes

- Language analysis:

Class-based languages \rightarrow Object-based languages \rightarrow Object calculi

- Language synthesis:

Object calculi \rightarrow Object-based languages \rightarrow Class-based languages

- We have identified embedding and delegation as underlying many object-oriented features.
- In our object calculi, we choose embedding over delegation as the principal object-oriented paradigm.
- The resulting calculi can model classes well, although they are not class-based (since classes are not built-in).
- They can model delegation-style traits just as well, but not "true" delegation.
(Object calculi for delegation exist but are more complex.)

An object is a collection of methods. (Their order does not matter.)
Each method has:
\sim a bound variable for self (which denotes the object itself),
\sim a body that produces a result.
The only operations on objects are:
~ method invocation,
\sim method update.

Syntax of the ς-calculus

$$
\begin{aligned}
& a, b::= \\
& x \\
& {\left[l_{i}=\varsigma\left(x_{i}\right) b_{i}^{i \in 1 . . n}\right] } \\
& \text { a.l } \\
& \text { a.l } l=\varsigma(x) b
\end{aligned}
$$

terms
variable
object (l_{i} distinct)
method invocation
method update

An object o with two methods, l and m :

$$
\begin{aligned}
& o \triangleq \\
& \quad[l=\varsigma(x)[], \\
& \quad m=\varsigma(x) x . l]
\end{aligned}
$$

- l returns an empty object.
- m invokes l through self.

A storage cell with two methods, contents and set:

$$
\begin{aligned}
& \text { cell } \triangleq \\
& \quad[\text { contents }=\varsigma(x) 0 \\
& \quad \text { set }=\varsigma(x) \lambda(n) \text { x.contents } \leqslant \varsigma(y) n]
\end{aligned}
$$

- contents returns 0 .
- set updates contents through self.

An Untyped Object Calculus: Reduction

- The notation $b \rightarrow c$ means that b reduces to c in one step.
- The substitution of a term c for the free occurrences of a variable x in a term b is written $b\{x \leftarrow c\}$, or $b\{c\}$ when x is clear from context.

\[

\]

In addition, if $a \rightarrow b$ then $C[a] \rightarrow C[b]$ where $C[-]$ is any context.

We are dealing with a calculus of objects, not of functions.
The semantics is deterministic (Church-Rosser).
It is not imperative or concurrent.

Some Example Reductions

Let $\quad o \triangleq[l=\varsigma(x) x . l]$
then
o. $l \rightarrow x . l\{\{x \leftarrow o\} \equiv o . l \rightarrow \ldots$

Let $\quad o^{\prime} \triangleq[l=\varsigma(x) x]$
then $\quad o^{\prime} . l \rightarrow x\left\{x \leftarrow o^{\prime}\right\} \equiv o^{\prime}$

Let $\quad o^{\prime \prime} \triangleq[l=\varsigma(y)(y . l \leqslant \varsigma(x) x)]$
then $\quad o " . l \rightarrow(o " . l \leqslant \varsigma(x) x) \rightarrow o$,
divergent method
self-returning method
self-modifying method

Static Scoping and Substitution, in Detail

Object scoping

$F V(\varsigma(y) b)$	$\triangleq F V(b)-\{y\}$
$F V(x)$	$\triangleq\{x\}$
$F V\left(\left[l_{i}=\varsigma\left(x_{i}\right) b_{i}{ }^{i \in 1 . . n}\right]\right)$	$\triangleq \cup^{i \in 1 . . n} F V\left(\varsigma\left(x_{i}\right) b_{i}\right)$
$F V(a . l)$	$\triangleq F V(a)$
$F V(a . l=\varsigma(y) b)$	$\triangleq F V(a) \cup F V(\varsigma(y) b)$

Object substitution

$(\varsigma(y) b)\{x \leftarrow c\}$	$\triangleq \varsigma\left(y^{\prime}\right)\left(b\left\{y \leftarrow y^{\prime}\right\}\{x \leftarrow c\}\right)$
	\quad for $y^{\prime} \notin F V(\varsigma(y) b) \cup F V(c) \cup\{x\}$
$x\{x \leftarrow c\}$	$\triangleq c$
$y\{x \leftarrow c\}$	$\triangleq y$
$\left[l_{i}=\varsigma\left(x_{i}\right) b_{i}{ }^{i \in 1 . . n}\right]\{x \leftarrow c\}$	$\left.\triangleq\left[l_{i}=\left(\varsigma\left(x_{i}\right) b_{i}\right)\{x \leftarrow c\}\right\}^{i \in 1 . . n}\right] \quad$ for $y \neq x$
$(a . l)\{x \leftarrow c\}$	
$(a . l \leftarrow \varsigma(y) b)\{x \leftarrow c\}$	
	$\triangleq(a\{x \leftarrow c\}) . l$
	$\triangleq(a\{x \leftarrow c\}) . l=((\varsigma(y) b)\{x \leftarrow c\})$

- A closed term is a term without free variables.
- We write $b\{x\}$ to highlight that x may occur free in b.
- We write $b\{c\}$, instead of $b\{x \leftarrow c\}$, when $b\{x\}$ is present in the same context.
- We identify $\varsigma(x) b$ with $\varsigma(y)(b\{x \leftarrow y\})$, for all y not occurring free in b.
(For example, we view $\varsigma(x) x$ and $\varsigma(y) y$ as the same method.)
- We identify any two objects that differ only in the order of their components.
(For example, $\left[l_{1}=\varsigma\left(x_{1}\right) b_{1}, l_{2}=\varsigma\left(x_{2}\right) b_{2}\right]$ and $\left[l_{2}=\varsigma\left(x_{2}\right) b_{2}, l_{1}=\varsigma\left(x_{1}\right) b_{1}\right]$ are the same object for us.)

Expressiveness

- Our calculus is based entirely on methods;
fields can be seen as methods that do not use their self parameter:

$$
\begin{aligned}
{[\ldots, l=b, \ldots] } & \triangleq[\ldots, l=\varsigma(y) b, \ldots] \\
o . l:=b & \triangleq o . l \leqslant \varsigma(y) b
\end{aligned}
$$

for an unused y
for an unused y

Terminology

		object attributes	
		fields	methods
object operations	selection	field selection	method invocation
	update	field update	method update

- Method update is the most exotic construct, but:
\sim it leads to simpler rules, and
\sim it corresponds to features of several languages.
- In addition, we can represent:
~ basic data types,
~ functions,
\sim recursive definitions,
\sim classes and subclasses.
- Some operations on objects are not available:
~ method extraction,
~ object extension,
\sim object concatenation,
because they are atypical and in conflict with subtyping.

These examples are:

- easy to write in the untyped calculus,
- patently object-oriented (in a variety of styles),
- sometimes hard to type.

Let cell \triangleq

$$
[\text { contents }=0
$$

$$
\text { set }=\varsigma(x) \lambda(n) x . c o n t e n t s:=n]
$$

Then
cell.set(3)
$\rightarrow \quad(\lambda(n)[$ contents $=0$, set $=\varsigma(x) \lambda(n) x . c o n t e n t s:=n]$.contents: $=n)(3)$
$\rightarrow \quad[$ contents $=0$, set $=\varsigma(x) \lambda(n) x$. contents $:=n]$
.contents $:=3$
$\rightarrow \quad[$ contents $=3$, set $=\varsigma(x) \lambda(n) x . c o n t e n t s:=n]$
and cell.set(3).contents
$\rightarrow 3$

A Cell with an Accessor

$$
\begin{aligned}
& \text { gcell } \triangleq \\
& \quad[\text { contents }=0 \\
& \text { set }=\varsigma(x) \lambda(n) x . c o n t e n t s:=n \\
& \text { get }=\varsigma(x) x . c o n t e n t s]
\end{aligned}
$$

- The get method fetches contents.
- A user of the cell may not even know about contents.

$$
\begin{aligned}
& \text { uncell } \triangleq \\
& \qquad \text { contents }=0 \\
& \text { set }=\varsigma(x) \lambda(n)(x . \text { undo }:=x) . \text { contents }:=n \\
& \text { undo }=\varsigma(x) x]
\end{aligned}
$$

- The undo method returns the cell before the latest call to set.
- The set method updates the undo method, keeping it up to date.

$$
\begin{aligned}
& \text { origin }_{1} \triangleq \\
& {[x=0} \\
& \left.\quad m v_{-} x=\varsigma(s) \lambda(d x) s . x:=s . x+d x\right] \\
& \text { origin }_{2} \triangleq \\
& {[x=0, y=0} \\
& m v_{-} x=\varsigma(s) \lambda(d x) s . x:=s . x+d x \\
& \left.m v_{-} y=\varsigma(s) \lambda(d y) s . y:=s . y+d y\right]
\end{aligned}
$$

For example, we can define $u n i t_{2} \triangleq$ origin $_{2} \cdot m v_{-} x(1) \cdot m v_{-} y(1)$, and then we can compute $u n i t_{2} \cdot x$ $=1$.

Intuitively, all operations possible on origin ${ }_{1}$ are possible on origin ${ }_{2}$.
Hence we would like to obtain a type system where a point like origin ${ }_{2}$ can be accepted in any context expecting a point like origin ${ }_{1}$.

Object-Oriented Booleans

true and false are objects with methods if, then, and else. Initially, then and else are set to diverge when invoked.

$$
\begin{aligned}
& \text { true } \triangleq[\text { if }=\varsigma(x) \text { x.then, then }=\varsigma(x) \text { x.then, else }=\varsigma(x) \text { x.else }] \\
& \text { false } \triangleq[\text { if }=\varsigma(x) \text { x.else, then }=\varsigma(x) \text { x.then, else }=\varsigma(x) \text { x.else }]
\end{aligned}
$$

then and else are updated in the conditional expression:

$$
\operatorname{cond}(b, c, d) \triangleq((b . t h e n:=c) . \text {.else }:=d) . \text { if }
$$

So:

$$
\begin{aligned}
& \text { cond(true, false, true }) \equiv((\text { true.then }:=\text { false }) . \text { else }:=\text { true }) . \text { if } \\
& \rightarrow([\text { if }=\varsigma(x) \text { x.then, then }=\text { false, else }=\varsigma(x) x . \text { else }] . \text { else }:=\text { true }) \text {.if } \\
& \rightarrow[\text { if }=\varsigma(x) x . t h e n, \text { then }=\text { false, else }=\text { true }] . \text { if } \\
& \rightarrow[\text { if }=\varsigma(x) \text { x.then, then }=\text { false, else }=\text { true }] . \text { then } \\
& \rightarrow \text { false }
\end{aligned}
$$

Object-Oriented Natural Numbers

- Each numeral has a case field that contains either $\lambda(z) \lambda(s) z$ for zero, or $\lambda(z) \lambda(s) s(x)$ for nonzero, where x is the predecessor (self).

Informally: $\quad n \cdot \operatorname{case}(z)(s)=$ if n is zero then z else $s(n-1)$

- Each numeral has a succ method that can modify the case field to the non-zero version. zero is a prototype for the other numerals:

$$
\begin{aligned}
& \text { zero } \triangleq \\
& \quad[\text { case }=\lambda(z) \lambda(s) z \\
& \text { succ }=\varsigma(x) \text { x.case }:=\lambda(z) \lambda(s) s(x)]
\end{aligned}
$$

So:
zero
one \triangleq zero.succ $\equiv[$ case $=\lambda(z) \lambda(s) s($ zero $)$, succ $=\ldots]$
pred $\triangleq \lambda(n) n \cdot c a s e(z e r o)(\lambda(p) p)$

The calculator uses method update for storing pending operations.

$$
\begin{aligned}
& \text { calculator } \triangleq \\
& {[\text { arg }=0.0,} \\
& \text { acc }=0.0, \\
& \text { enter }=\varsigma(s) \lambda(n) \text { s.arg }:=n, \\
& \text { add }=\varsigma(s)(s . a c c:=s . e q u a l s) . \text { equals } \leqslant \varsigma\left(s^{\prime}\right) s^{\prime} . a c c+s^{\prime} . a r g, \\
& \text { sub }=\varsigma(s)(s . a c c:=s . e q u a l s) . e q u a l s \leqslant \varsigma\left(s^{\prime}\right) s^{\prime} . \text { acc- } s^{\prime} . a r g, \\
& \text { equals }=\varsigma(s) s . a r g]
\end{aligned}
$$

We obtain the following calculator-style behavior:

```
calculator .enter(5.0) .equals=5.0
calculator .enter(5.0) .sub .enter(3.5) .equals=1.5
calculator .enter(5.0) .add .add .equals=15.0
```


Functions as Objects

A function is an object with two slots:
\sim one for the argument (initially undefined),
\sim one for the function code.

Translation of the untyped λ-calculus

$$
\begin{aligned}
& \| x\rangle \triangleq x \\
& \varangle \lambda(x) b\rangle \triangleq \\
& \quad[\arg =\varsigma(x) x \cdot \arg , \\
& \text { val }=\varsigma(x) \varangle b\rangle\{x \leftarrow x \cdot \arg \}] \\
& \varangle b(a)\rangle \triangleq(\varangle b\rangle . \arg :=\| a\rangle) \cdot v a l
\end{aligned}
$$

Self variables get statically nested. A keyword self would not suffice.

The translation validates the β rule:

$$
\varangle(\lambda(x) b)(a) \rrbracket \rightarrow \quad \forall b\{x \leftarrow a\}\rangle
$$

where \rightarrow is the reflexive and transitive closure of \rightarrow.

For example:

$$
\begin{aligned}
& \varangle(\lambda(x) x)(y) \rrbracket \triangleq([\arg =\varsigma(x) x \cdot \arg , \text { val }=\varsigma(x) x \cdot a r g] \cdot \arg :=y) \cdot v a l \\
& \rightarrow[\arg =\varsigma(x) y, \text { val }=\varsigma(x) x \cdot \arg] \cdot v a l \\
& \rightarrow[\arg =\varsigma(x) y, \text { val }=\varsigma(x) x \cdot \arg] \cdot \arg \\
& \rightarrow y \\
&\triangleq \varangle y\rangle
\end{aligned}
$$

The translation has typed and imperative variants.

Functions as Objects, with Defaults

- $\lambda(x=c) b\{x\}$ is a function with a single parameter x with default c.
- $f(a)$ is a normal application of f to a, and $f()$ is an application of f to its default.

For example, $(\lambda(x=c) x)()=c$ and $(\lambda(x=c) x)(a)=a$.

Translation of default parameters

$$
\begin{aligned}
& \varangle \lambda(x=c) b\{x\}\rangle \triangleq[\arg =\| c\rangle, v a l=\varsigma(x)\langle b\{x\} \rrbracket\{x \leftarrow x \cdot \arg \}] \\
& \varangle b(a)\rangle \triangleq \quad \varangle b\rangle \bullet \boxtimes a\rangle \quad \text { where } p \bullet q \triangleq(p . a r g:=q) \cdot v a l \\
& \langle b()\rangle \triangleq \varangle b\rangle . \mathrm{val}
\end{aligned}
$$

The encoding of functions as objects yields fixpoint combinators for the object calculus.
However, more direct techniques for recursion exist.
In particular, we can define $\mu(x) b$ as follows:

$$
\begin{aligned}
& \mathbb{\boxtimes}(x) b\{x\} \rrbracket \triangleq \\
& \quad[\operatorname{rec}=\varsigma(x) \boxtimes b\{x\} \rrbracket\{\{x \leftarrow x . \text { rec }\}] \cdot \text {.rec }
\end{aligned}
$$

and obtain the unfolding property $\mu(x) b\{x\}=b\{\mu(x) b\{x\}\}$:

$$
\begin{aligned}
& \text { 《 } \mu(x) b\{x\} \rrbracket \\
& \equiv[\operatorname{rec}=\varsigma(x) \varangle b\{x\} \rrbracket\{x \leftarrow x . r e c\}] \cdot \text {.rec } \\
& =\langle b\{x\}\rangle\{x \leftarrow x . r e c\}\{x \leftarrow[\operatorname{rec}=\varsigma(x)\langle b\{x\}\rangle\{x \leftarrow x . r e c\}]\}\} \\
& \equiv \boxtimes b\{x\} \rrbracket\{x \leftarrow[\operatorname{rec}=\varsigma(x) \varangle b\{x\} \Omega\{x \leftarrow x \cdot r e c\}] \cdot r e c\} \\
& \equiv \boxtimes b\{x\} \nabla\{x \leftarrow \varangle \mu(x) b\{x\} \nabla\}\} \\
& \equiv \quad \varangle b\{\mu(x) b\{x\}\}\}
\end{aligned}
$$

Classes

A class is an object with:
~ a new method, for generating new objects,
\sim code for methods for the objects generated from the class.
For generating the object:

$$
o \triangleq\left[l_{i}=\varsigma\left(x_{i}\right) b_{i}^{i \in 1 . . n}\right]
$$

we use the class:

$$
\begin{aligned}
& c \triangleq \\
& \quad\left[\text { new }=\varsigma(z)\left[l_{i}=\varsigma(x) z . l_{i}(x)^{i \in 1 \ldots n}\right]\right. \\
& \left.\quad l_{i}=\lambda\left(x_{i}\right)_{b_{i}}^{i \in 1 . . n}\right]
\end{aligned}
$$

The method new is a generator. The call $c . n e w$ yields o.
Each field l_{i} is a pre-method.

$$
\begin{aligned}
& \text { cellClass } \triangleq \\
& \qquad \begin{array}{l}
{[\text { new }=\varsigma(z)} \\
\quad[\text { contents }=\varsigma(x) \text { z.contents }(x), \text { set }=\varsigma(x) \text { z.set }(x)], \\
\text { contents }=\lambda(x) 0 \\
\text { set }=\lambda(x) \lambda(n) \text { x.contents }:=n]
\end{array}
\end{aligned}
$$

Writing the new method is tedious but straightforward.
Writing the pre-methods is like writing the corresponding methods.
cellClass.new yields a standard cell:

$$
[\text { contents }=0, \text { set }=\varsigma(x) \lambda(n) \text { x.contents }:=n]
$$

Inheritance is the reuse of pre-methods.
Given a class c with pre-methods $c . l_{i}{ }^{i \in 1 . . n}$ we may define a new class c^{\prime} :

$$
c^{\prime} \triangleq\left[\text { new }=\ldots, l_{i}=c . l_{i}{ }^{i \in 1 . . n}, l_{j}=\ldots{ }^{j \in n+1 . . m}\right]
$$

We may say that c ' is a subclass of c.

Inheritance for Cells

$$
\begin{aligned}
& \text { cellClass } \triangleq \\
& \qquad \text { new }=\varsigma(z) \\
& \quad[\text { contents }=\varsigma(x) \text { z.contents }(x), \text { set }=\varsigma(x) \text { z.set }(x)], \\
& \text { contents }=\lambda(x) 0, \\
& \text { set }=\lambda(x) \lambda(n) x . \text { contents }:=n] \\
& \text { uncellClass } \triangleq \\
& {[\text { new }=\varsigma(z)[\ldots],} \\
& \text { contents }=\text { cellClass.contents } \\
& \text { set }=\lambda(x) \text { cellClass.set }(x . u n d o:=x), \\
& \text { undo }=\lambda(x) x]
\end{aligned}
$$

- The pre-method contents is inherited.
- The pre-method set is overridden, though using a call to super.
- The pre-method undo is added.

The reduction rules given so far do not impose any evaluation order.
We now define a deterministic reduction system for the closed terms of the ς-calculus.

- Our intent is to describe an evaluation strategy of the sort commonly used in programming languages.
\sim A characteristic of such evaluation strategies is that they are weak in the sense that they do not work under binders.
\sim In our setting this means that when given an object $\left[l_{i}=\varsigma\left(x_{i}\right) b_{i}{ }^{i \in 1 . . n}\right]$ we defer reducing the body b_{i} until l_{i} is invoked.

An Operational Semantics: Results

- The purpose of the reduction system is to reduce every closed expression to a result.
- For the pure ς-calculus, we define a result to be a term of the form $\left[l_{i}=\varsigma\left(x_{i}\right) b_{i}{ }^{i \in 1 . . n}\right]$.
\sim A result is itself an expression.
\sim For example, both $\left[l_{1}=\varsigma(x)[]\right]$ and $\left[l_{2}=\varsigma(y)\left[l_{1}=\varsigma(x)[]\right] . l_{1}\right]$ are results.
\sim (If we had constants such as natural numbers, we would include them among the results.)
- Our weak reduction relation is denoted \rightsquigarrow.
- We write $\vdash a \rightsquigarrow v$ to mean that a reduces to a result v, or that v is the result of a.
- This relation is axiomatized with three rules.

Operational semantics

(Red Object) (where $\left.v \equiv\left[l_{i}=\varsigma\left(x_{i}\right) b_{i}^{i \in 1 . . n}\right]\right)$
$\vdash v \rightsquigarrow v$
(Red Select) (where $\left.v^{\prime} \equiv\left[l_{i}=\varsigma\left(x_{i}\right) b_{i}\left\{x_{i}\right\}^{i \in 1 . . n}\right]\right)$
$\vdash a \rightsquigarrow v^{\prime} \quad \vdash b_{j}\left\{\left\{v^{\prime}\right\} \rightsquigarrow v \quad j \in 1 . . n\right.$
$\vdash a . l_{j} \rightsquigarrow v$
(Red Update)

$$
\frac{\vdash a \rightsquigarrow\left[l_{i}=\varsigma\left(x_{i}\right) b_{i}^{i \in 1 . . n}\right] \quad j \in 1 . . n}{\vdash a \cdot l_{j} \leqslant \varsigma(x) b \rightsquigarrow\left[l_{j}=\varsigma(x) b, l_{i}=\varsigma\left(x_{i}\right) b_{i}^{i \in(1 . . n)-\{j\}}\right]}
$$

1. Results are not reduced further.
2. In order to evaluate $a . l_{j}$ we should first calculate the result of a, check that it is in the form $\left[l_{i}=\zeta\left(x_{i}\right) b_{i}\left\{x_{i}\right\}^{i \in 1 . . n}\right]$ with $j \in 1 . . n$, and then evaluate $b_{j}\left\{\left[l_{i}=\zeta\left(x_{i}\right) b_{i}{ }^{i \in 1 . . n}\right]\right\}$.
3. In order to evaluate $a \cdot l_{j} \leqslant \varsigma(x) b$ we should first calculate the result of a, check that it is in the form $\left[l_{i}=\zeta\left(x_{i}\right) b_{i}^{i \in 1 . . n}\right]$ with $j \in 1 . . n$, and return $\left[l_{j}=\zeta(x) b, l_{i}=\zeta\left(x_{i}\right) b_{i}^{i \epsilon(1 . . n)-\{j\}}\right]$. We do not compute inside b or the b_{i}.

The reduction system is deterministic:

$$
\text { If } \vdash a \rightsquigarrow v \text { and } \vdash a \rightsquigarrow v^{\prime} \text {, then } v \equiv v^{\prime} \text {. }
$$

The rules for \rightsquigarrow immediately suggest an algorithm for reduction, which constitutes an interpreter for ς-terms.

The next proposition says that \rightsquigarrow is sound with respect to \rightarrow.

Proposition (Soundness of weak reduction)

If $\vdash a \rightsquigarrow v$, then $a \rightarrow v$.

Further, $\rightsquigarrow>$ is complete with respect to \rightarrow, in the following sense:

Theorem (Completeness of weak reduction)

Let a be a closed term and v be a result.
If $a \rightarrow v$, then there exists v^{\prime} such that $\vdash a \rightsquigarrow v^{\prime}$.

This theorem was proved by Melliès.

An Interpreter

The rules for \rightsquigarrow immediately suggest an algorithm for reduction, which constitutes an interpreter for ς-terms.

The algorithm takes a closed term and, if it converges, produces a result or the token wrong, which represents a computation error.

- Outcome (c) is the outcome of running the algorithm on input c, assuming the algorithm terminates.
- The algorithm implements the operational semantics in the sense that $\vdash c \rightsquigarrow v$ if and only if Outcome $(c) \equiv v$ and v is not wrong.
- The algorithm either diverges or terminates with a result or with wrong, but it does not get stuck.
$\operatorname{Outcome}\left(\left[l_{i}=\varsigma\left(x_{i}\right) b_{i}^{i \in 1 . . n}\right]\right) \triangleq$ $\left[l_{i}=\varsigma\left(x_{i}\right) b_{i}{ }^{i \in 1 . . n}\right]$
$\operatorname{Outcome}\left(a . l_{j}\right) \triangleq$
let $o=$ Outcome (a)
in if o is of the form $\left[l_{i}=\varsigma\left(x_{i}\right) b_{i}\left\{x_{i}\right\}^{i \in 1 . . n}\right]$ with $j \in 1 . . n$
then Outcome $\left(b_{j}\{0\}\right)$
else wrong
Outcome $\left(a . l_{j} \leqslant \varsigma(x) b\right) \triangleq$
let $o=$ Outcome (a)
in if o is of the form $\left[l_{i}=\varsigma\left(x_{i}\right) b_{i} \in 1 . . n\right]$ with $j \in 1 . . n$
then $\left[l_{j}=\varsigma(x) b, l_{i}=\varsigma\left(x_{i}\right) b_{i}{ }^{i \in(1 . . n)-\{j\}}\right]$
else wrong

OBJECTS AND Imperative Features

An Imperative Untyped Object Calculus

- An object is still a collection of methods.
- Method update works by side-effect ("in-place").
- Some new operations make sense:
~ let (for controlling execution order),
~ object cloning ("shallow copying").

Syntax of the imp ς-calculus

$a, b::=$
let $x=a$ in b
clone(a)

- The semantics is given in terms of stacks and stores.

Order of Evaluation

We adopt the following order of evaluation:

- The ς binders suspend evaluation in object creation.
- The method update $a \leqslant \varsigma(y) b$ evaluates a, but the ς binder suspends the evaluation of the new method body b.
- The method invocation a.l triggers the evaluation of a (and of further expressions).
- The cloning clone (a) triggers the evaluation of a.
- let $x=a$ in b evaluates a then b.

With the introduction of side-effects, order of evaluation affects not just termination but also output.

Fields, Revisited

Fields need not be primitive in functional calculi, because there we can regard a field as a method that does not use its self parameter.

So we could try, again:

$$
\begin{array}{lcr}
\text { field: } & {[\ldots, l=b, \ldots] \triangleq[\ldots, l=\varsigma(x) b, \ldots]} & \text { for } x \notin F V(b) \\
\text { field selection: } & o . l \triangleq o . l & \\
\text { field update: } & \text { o.l:=b } \triangleq o . l \leqslant \varsigma(x) b & \text { for } x \notin F V(b)
\end{array}
$$

In both field definition and field update, the implicit $\varsigma(x)$ binder suspends evaluation of the field until selection.

- This semantics is inefficient, because at every access the suspended fields are reevaluated.
- This semantics is inadequate, because at every access the side-effects of suspended fields are repeated.

So we consider an alternative definition for fields, based on let.
The let construct gives us a way of controlling execution flow:
An object with fields:

$$
\begin{aligned}
& {\left[l_{i}=b_{i}^{i \in 1 . . n}, l_{j}=\varsigma\left(x_{j}\right) b_{j}^{j \in n+1 . . n+m}\right] } \triangleq \\
& \text { let } y_{1}=b_{1} \text { in } \ldots \text { let } y_{n}=b_{n} \text { in }\left[l_{i}=\varsigma\left(y_{0}\right) y_{i}{ }^{i \in 1 . . n}, l_{j}=\varsigma\left(x_{j}\right) b_{j}^{j \in n+1 . . n+m}\right] \\
& \text { for } y_{i} \notin F V\left(b_{k}^{k \in 1 . . n+m}\right), y_{i} \text { distinct, } i \in 0 . . n
\end{aligned}
$$

A field selection:

$$
\text { a.l } \triangleq a . l
$$

A field update:

$$
\begin{array}{rl}
a . l:=b \triangleq \text { let } y_{1}=a \text { in let } y_{2}=b \text { in } y_{1} . l & l \leqslant\left(y_{0}\right) y_{2} \\
& \text { for } y_{i} \notin F V(b), y_{i} \text { distinct, } i \in 0 . .2
\end{array}
$$

Conversely, let and sequencing can be defined using fields:

$$
\begin{aligned}
& \text { let } x=a \text { in } b\{x\} \triangleq[\operatorname{def}=a, \text { val }=\varsigma(x) b\{x . d e f\}] . \text { val } \\
& a ; b \triangleq[f s t=a, \text { snd }=b] . \text { snd }
\end{aligned}
$$

Thus we have a choice between a calculus with fields, field selection, and field update, and one with let $(\operatorname{imp} \varsigma)$.

- These calculi are inter-translatable.
- We adopt imp ς as primitive because it is more economical and it enables easier comparisons with our other calculi.

$$
\begin{aligned}
& \text { uncell } \triangleq \\
& \quad[\text { contents }=0, \\
& \quad \text { set }=\varsigma(x) \lambda(n)(x . \text { undo }:=x) \text {.contents }:=n, \\
& \text { undo }=\varsigma(x) x]
\end{aligned}
$$

- The undo method returns the cell before the latest call to set.
- The set method updates the undo method, keeping it up to date.

The previous code works only if update has a functional semantics. An imperative version is:

$$
\begin{aligned}
& \text { uncell } \triangleq \\
& \qquad \begin{array}{l}
{[\text { contents }=0,} \\
\text { set }=\varsigma(x) \lambda(n) \\
\\
\quad \text { let } y=\operatorname{clone}(x) \\
\\
\text { in }(x . \text { undo }:=y) . \text { contents }:=n,
\end{array} \\
& \text { undo }=\varsigma(x) x]
\end{aligned}
$$

(Or write a top-level definition: let uncell = [...] ;.)

The next example is an implementation of the prime-number sieve.
This example is meant to illustrate advanced usage of object-oriented features, and not necessarily transparent programming style.

```
let sieve=
    [m=\varsigma(s)\lambda(n)
    let sieve'= clone(s)
    in s.prime := n;
    s.next := sieve';
    s.m\leqslant\zeta(s') \lambda(n')
        case (n'mod n)
        when 0 do [],
        when p+1 do sieve'.m(n');
    [],
prime = \varsigma(x) x.prime,
next = \varsigma(x) x.next];
```

- The sieve starts as a root object which, whenever it receives a prime p, splits itself into a filter for multiples of p, and a clone of itself.
- As filters accumulate in a pipeline, they prevent multiples of known primes from reaching the root object.
- After the integers from 2 to n have been fed to the sieve, there are as many filter objects as there are primes smaller than or equal to n, plus a root object.
- Each prime is stored in its filter; the n-th prime can be recovered by scanning the pipeline for the n-th filter.
- The sieve is used, for example, in the following way:
for in in $1 . .99$ do sieve.m(i.succ);
sieve.next.next.prime
(accumulate the primes ð 100)
(returns the third prime)

Translation of an imperative λ-calculus

$$
\begin{aligned}
& \langle x\rangle \triangleq x \\
& \varangle x:=a \rrbracket \triangleq \\
& \text { let } y=\| a\rangle \\
& \text { in x.arg :=y } \\
& \langle\lambda(x) b\rangle \triangleq \\
& {[\arg =\varsigma(x) \text { x.arg, }} \\
& \text { val }=\varsigma(x) \varangle b \rrbracket\{x \leftarrow x \text {.arg }\}] \\
& \varangle b(a)\rangle \triangleq \\
& \text { let } f=\text { clone }(\varangle b \rrbracket) \\
& \text { in let } y=\| a\rangle \\
& \text { in }(\text { f.arg :=y).val }
\end{aligned}
$$

Cloning on application corresponds to allocating a new stack frame.

Imperative Operational Semantics

We give an operational semantics that relates terms to results in a global store.
We say that a term b reduces to a result v to mean that, operationally, b yields v.
Object terms reduce to object results consisting of sequences of store locations, one location for each object component:

$$
\left[l_{i}=\mathbf{l}_{i} \in 1 . . n\right]
$$

To imitate usual implementations, we do not rely on substitutions. The semantics is based on stacks and closures.

- A stack associates variables with results.
- A closure is a pair of a method together with a stack that is used for the reduction of the method body.
- A store maps locations to method closures.

The operational semantics is expressed in terms of a relation that relates a store σ, a stack S, a term b, a result v, and another store σ.

This relation is written:

$$
\sigma \cdot S \vdash b \rightsquigarrow v \cdot \sigma^{\prime}
$$

This means that with the store σ and the stack S, the term b reduces to a result v, yielding an updated store σ^{\prime}. The stack does not change.

We represent stacks and stores as finite sequences.

- $\mathrm{t}_{i} \leftrightarrow m_{i} \in 1 . . n$ is the store that maps the location t_{i} to the closure m_{i}, for $i \in 1$..n.
- $\sigma . l_{j} \leftarrow m$ is the result of storing m in the location 1_{j} of σ, so if $\sigma \equiv \mathrm{c}_{i} \leftrightarrow m_{i}{ }^{i \epsilon 1 . . n}$ and $j \in 1 . . n$ then $\left.\sigma . \mathrm{c}_{j} \leftarrow m \equiv \mathrm{l}_{j} \mapsto m, \mathrm{c}_{i} \mapsto m_{i} \in 1 . . n-\{ \}\right\}$.

Operational semantics

\imath	store location	(e.g., an integer)
$v::=\left[l_{i}=l_{i}{ }^{i \in 1 . . n}\right]$	result	(listinct)
$\sigma::=1_{i} \mapsto\left\langle\zeta\left(x_{i}\right) b_{i,} S_{i}\right\rangle^{i \in 1 . . n}$	store	(i_{i} distinct)
$S::=x_{i} \mapsto v_{i}{ }^{i \in 1 . . n}$	stack	(x_{i} distinct)
$\sigma \vdash \diamond$	well-formed store judgment	
$\sigma \cdot S \vdash \diamond$	well-formed stack judgment	
$\sigma \cdot S \vdash a \rightsquigarrow v \cdot \sigma$,	term reduction judgment	

(Store \varnothing)	(Store 1)	
	$\sigma \cdot S \vdash \diamond$	$1 \notin \operatorname{dom}(\sigma)$
¢ト。		, ${ }^{\text {c }}$

$($ Stack $\varnothing)$	$($ Stack $x)$	$\left(l_{i}, l_{i} \operatorname{distinct}\right)$
$\sigma \vdash \diamond$		
$\sigma \cdot \phi \vdash \diamond$		

(Red x)
$\frac{\sigma \cdot\left(S^{\prime}, x \mapsto v, S^{\prime \prime}\right) \vdash \diamond}{\sigma \cdot\left(S^{\prime}, x \mapsto v, S^{\prime \prime}\right) \vdash x \rightsquigarrow v \cdot \sigma}$
(Red Object) (l_{i}, l_{i} distinct)
$\frac{\sigma \cdot S \vdash \diamond \quad \mathbf{1}_{i} \notin \operatorname{dom}(\sigma) \quad \forall i \in 1 . . n}{\sigma \cdot S \vdash\left[l_{i}=\zeta\left(x_{i}\right) b_{i}{ }^{i \in 1 . . n}\right] \rightsquigarrow\left[l_{i}=l_{i}{ }^{i \in 1 . . n}\right] \cdot\left(\sigma, l_{i} \mapsto\left\langle\zeta\left(x_{i}\right) b_{i}, S\right\rangle^{i \in 1 . . n}\right)}$
(Red Select)

$$
\begin{gathered}
\sigma \cdot S \vdash a \rightsquigarrow\left[l_{i}=l_{i}^{i \in 1 . . n}\right] \cdot \sigma^{\prime} \quad \sigma^{\prime}\left(l_{j}\right)=\left\langle\zeta\left(x_{j}\right) b_{j}, S^{\prime}\right\rangle \quad x_{j} \notin \operatorname{dom}\left(S^{\prime}\right) \quad j \in 1 . . n \\
\sigma^{\prime} \cdot\left(S^{\prime}, x_{j} \mapsto\left[l_{i}=l_{i} i \in 1 . . n\right]\right) \vdash b_{j} \rightsquigarrow v_{\bullet} \sigma^{\prime \prime}
\end{gathered}
$$

$$
\sigma \cdot S \vdash a \cdot l_{j} \rightsquigarrow v \cdot \sigma "
$$

(Red Update)

$$
\begin{aligned}
& \sigma \cdot S \vdash a \rightsquigarrow\left[l_{i}=1_{i}{ }^{i \in 1 . . n}\right] \cdot \sigma^{\prime} \quad j \in 1 . . n \quad \imath_{j} \in \operatorname{dom}\left(\sigma^{\prime}\right) \\
& \sigma \cdot S \vdash a . l_{j} \leqslant \zeta(x) b \rightsquigarrow\left[l_{i}=l_{i}{ }^{i \in 1 . . n}\right] \cdot\left(\sigma^{\prime} . \iota_{j} \leftarrow\langle\zeta(x) b, S\rangle\right) \\
& \text { (Red Clone) (} \mathrm{l}_{i} \text { ' distinct) } \\
& \sigma \cdot S \vdash a \rightsquigarrow\left[l_{i}=\mathrm{l}_{i}{ }^{i \in 1 . . n}\right] \cdot \sigma^{\prime} \quad \imath_{i} \in \operatorname{dom}\left(\sigma^{\prime}\right) \quad \mathrm{l}_{i}{ }^{\prime} \notin \operatorname{dom}\left(\sigma^{\prime}\right) \quad \forall i \in 1 . . n \\
& \sigma \cdot S \vdash \text { clone }(a) \rightsquigarrow\left[l_{i}=l_{i}{ }^{, i \in 1 . . n}\right] \cdot\left(\sigma^{\prime}, l_{i}{ }^{\prime} \mapsto \sigma^{\prime}\left(1_{i}\right)^{i \in 1 . . n}\right)
\end{aligned}
$$

```
\(\sigma \cdot S \vdash a \rightsquigarrow v^{\prime} \cdot \sigma^{\prime} \quad \sigma^{\prime} \cdot\left(S, x \mapsto v^{\prime}\right) \vdash b \rightsquigarrow v^{\prime \prime} \cdot \sigma^{\prime \prime}\)
```

$\sigma \cdot S \vdash$ let $x=a$ in $b \rightsquigarrow v " \cdot \sigma "$

A variable reduces to the result it denotes in the current stack.
An object reduces to a fresh collection of locations, while the store is extended to associate method closures to those locations.

A selection operation reduces its object to a result, and activates the appropriate method closure.

An update operation reduces its object to a result, and updates the appropriate store location with a new method closure.

A cloning operation reduces its object to a result; then it allocates a collection of locations and maps them to the method closures from the object.

A let reduces to the result of reducing its body in a stack extended with the bound variable and the result of its associated term.

Example Executions

- The first example is a simple terminating reduction.

$$
\begin{aligned}
& (\phi \cdot \phi \vdash[l=\varsigma(x)[]] \rightsquigarrow[l=0] \cdot(0 \mapsto\langle\varsigma(x)[], \phi\rangle) \\
& \downarrow(0 \mapsto\langle\varsigma(x)[], \varnothing\rangle) \cdot(x \mapsto[l=0]) \vdash[] \rightsquigarrow[] \cdot(0 \mapsto\langle\zeta(x)[], \varnothing\rangle) \\
& \phi \cdot \phi \vdash[l=\varsigma(x)[]] . l \leadsto[] \cdot(0 \mapsto\langle\varsigma(x)[], \phi\rangle)
\end{aligned}
$$

by (Red Object) by (Red Object) (Red Select)

- The next one is a divergent reduction.

An attempt to prove a judgment of the form $\varnothing \cdot \varnothing \vdash[l=\varsigma(x) x . l] . l \rightsquigarrow$? $?$ y yields an incomplete derivation.

$$
\begin{aligned}
& \left\{\begin{array}{l}
\phi \cdot \phi \vdash[l=\varsigma(x) x . l] \rightsquigarrow[l=0] \cdot(0 \mapsto\langle\zeta(x) x . l, \phi\rangle) \\
\left(\begin{array}{l}
(0 \mapsto\langle\zeta(x) x . l, \phi\rangle) \cdot(x \mapsto[l=0]) \vdash x \rightsquigarrow[l=0] \cdot(0 \mapsto\langle\zeta(x) x . l, \phi\rangle) \\
\\
\\
(0 \mapsto\langle\zeta(x) x . l, \phi)) \cdot(x \mapsto[l=0]) \vdash x . l \rightsquigarrow ? \cdot ? \\
(0 \mapsto\langle\zeta(x) x . l, \phi\rangle) \cdot(x \mapsto[l=0]) \vdash x . l \rightsquigarrow ? \cdot ?
\end{array}\right. \\
\phi \cdot \phi \vdash[l=\varsigma(x) x . l] . l \rightsquigarrow ? \cdot ?
\end{array}\right.
\end{aligned}
$$

by (Red Object) by $(\operatorname{Red} x)$
by (Red Select) (Red Select) (Red Select)

An infinite branch has a repeating pattern.

- As a variation of this example, we can have a divergent reduction that keeps allocating storage.

Read from the bottom up, the derivation for this reduction has judgments with increasingly large stores, $\sigma_{0}, \sigma_{1}, \ldots$:

$$
\begin{aligned}
& \sigma_{0} \triangleq 0 \mapsto\langle\varsigma(x) \text { clone }(x) . l, \varnothing\rangle \\
& \sigma_{1} \triangleq \sigma_{0}, 1 \mapsto\langle\varsigma(x) \text { clone }(x) . l, \emptyset\rangle \\
& \text { (} \varnothing \cdot \phi \vdash[l=\varsigma(x) \text { clone }(x) . l] \rightsquigarrow[l=0] \cdot \sigma_{0} \\
& \int \sqrt{ } \sigma_{0} \cdot(x \mapsto[l=0]) \vdash x \rightsquigarrow[l=0] \cdot \sigma_{0} \\
& \sigma_{0} \cdot(x \mapsto[l=0]) \vdash \text { clone }(x) \rightsquigarrow[l=1] \cdot \sigma_{1} \\
& \downarrow \sigma_{1} \cdot(x \mapsto[l=0]) \vdash \text { clone }(x) . l \rightsquigarrow ? \bullet ? \\
& \sigma_{0} \cdot(x \mapsto[l=0]) \vdash \text { clone }(x) . l \rightsquigarrow ? \cdot ? \\
& \phi \cdot \phi \vdash[l=\varsigma(x) \text { clone }(x) . l] . l \rightsquigarrow ? \cdot ?
\end{aligned}
$$

by (Red Object) by $(\operatorname{Red} x)$ (Red Clone)
by (Red Select) (Red Select) (Red Select)

- Another sort of incomplete derivation arises from dynamic errors.

In the next example, the error consists in attempting to invoke a method from an object that does not have it.

$$
\left\{\begin{array}{l}
\phi \cdot \phi \vdash[] \rightsquigarrow[] \cdot \phi \\
\phi \cdot \phi \vdash[] \cdot l \rightsquigarrow ? \cdot ?
\end{array}\right.
$$

by (Red Object) STUCK (Red Select)

- The final example illustrates method updating, and creating loops:

$$
\begin{aligned}
& \sigma_{0} \triangleq 0 \mapsto\langle\zeta(x) x . l \leqslant \zeta(y) x, \not \varnothing\rangle \\
& \sigma_{1} \triangleq 0 \mapsto\langle\zeta(y) x,(x \mapsto[l=0])\rangle
\end{aligned}
$$

$$
\int \phi \cdot \phi \vdash[l=\varsigma(x) x . l \leqslant \varsigma(y) x] \rightsquigarrow[l=0] \cdot \sigma_{0}
$$

$$
\gamma \sigma_{0} \cdot(x \mapsto[l=0]) \vdash x \rightsquigarrow[l=0] \cdot \sigma_{0}
$$

$$
\sigma_{0} \cdot(x \mapsto[l=0]) \vdash x . l \leqslant \varsigma(y) x \rightsquigarrow[l=0] \cdot \sigma_{1}
$$

$$
\not \subset \cdot \not \subset \vdash[l=\varsigma(x) x . l \leqslant \varsigma(y) x] \cdot l \rightsquigarrow[l=0] \cdot \sigma_{1}
$$

by (Red Object) by $(\operatorname{Red} x)$ (Red Update) (Red Select)

The store σ_{1} contains a loop: it maps the index 0 to a closure that binds the variable x to a value that contains index 0 .

An attempt to read out the result of $[l=\varsigma(x) x . l \leqslant \varsigma(y) x] . l$ by "inlining" the store and stack mappings would produce the infinite term $[l=\varsigma(y)[l=\varsigma(y)[l=\varsigma(y) \ldots]]]$.
These loops are characteristic of imperative semantics.
Loops in the store complicate reasoning about programs and proofs of type soundness.

The treatment classes carries over, with some twists.
Consider a class:

$$
\begin{aligned}
& \text { let } c= \\
& \quad\left[\text { new }=\varsigma(z)\left[l_{i}=\varsigma(s) z . l_{i}(s)^{i \in 1 . . n}\right],\right. \\
& \left.l_{i}=\varsigma(z) \lambda(s) b_{i}^{i \in 1 . . n}\right] ;
\end{aligned}
$$

The class c evaluates to a set of locations [new $\left.=\mathfrak{l}_{0}, l_{i}=\mathfrak{l}_{i}{ }^{i \in 1 . . n}\right]$ pointing to closures for new and the pre-methods l_{i}.

- When $c . n e w$ is invoked, a set of locations is allocated for the new object, containing closures for its methods.
- These closures contain the code $\varsigma(s) z . l_{i}(s)$, where z is bound to $\left[n e w=\mathfrak{l}_{0}, l_{i}=\mathfrak{l}_{i}{ }^{i \in 1 . . n}\right]$.
- When a method of the new object is invoked, the corresponding pre-method is fetched from the class and applied to the object.

Consider a subclass:

$$
\begin{aligned}
& \text { let } c^{\prime}= \\
& \quad\left[\text { new }=\varsigma(z)\left[l_{i}=\varsigma(s) z . l_{i}(s)^{i \in 1 . . n+m}\right],\right. \\
& l_{j}=\varsigma(z) c . l_{j}^{j \in 1 . . n}, \\
& \left.l_{k}=\varsigma(z) \lambda(s) b_{k}{ }^{k \in n+1 . . n+m}\right] ;
\end{aligned}
$$

When the pre-method l_{j} is inherited from c to c^{\prime}, the evaluation of $c . l_{j}$ is suspended by $\varsigma(z)$.

- Therefore, whenever the method l_{j} is invoked on an instance of c^{\prime}, the pre-method l_{j} is fetched from c.
- The binders $\varsigma(z)$ suspend evaluation and achieve this dynamic lookup of pre-methods inherited from c.
- When $c^{\prime} . n e w$ is invoked, the methods of the new object refer to c^{\prime} and, indirectly, to c.

Global Change

Suppose that, after c and c^{\prime} have been created, and after instances of c and c^{\prime} have been allocated, we replace the pre-method l_{1} of c.

- The instances of c reflect the change, because each method invocation goes back to c to fetch the pre-method.
- The instances of c^{\prime} also reflect the change, via the indirection through c^{\prime}.
- So the default effect of replacing a pre-method in a class is to modify the behavior of all instances of the class and of classes that inherited the pre-method.
- This default is inhibited by independent updates to objects and to inheriting classes.

Our definition of classes is designed for this global-change effect.

Or No Global Change

If one is not interested in global change, one can optimize the definition and remove some of the run-time indirections.

- In particular, we can replace the proper method $l_{j}=\varsigma(z) c . l_{j}$ in the subclass c ' with a field $l_{j}=c . l_{j}$. Then a change to $c . l_{j}$ after the definition of c^{\prime} will not affect c^{\prime} or instances of c^{\prime}.
- Similarly, we can make c.new evaluate the pre-methods of c, so that a change to c will not affect existing instances.

Combining these techniques, we obtain the following eager variants e and e ' of c and c^{\prime} :
let $e=$

$$
\begin{aligned}
& {\left[\text { new }=\varsigma(z) \text { let } w_{1}=z . l_{1} \text { in ... let } w_{n}=z . l_{n} \text { in }\left[l_{i}=\varsigma(s) w_{i}(s)^{i \in 1 . . n}\right],\right.} \\
& \left.l_{i}=\varsigma(z) \lambda(s) b_{i}^{i \in 1 . . n}\right]
\end{aligned}
$$

let $e^{\prime}=$

$$
\begin{aligned}
& {\left[\text { new }=\varsigma(z) \text { let } w_{1}=z . l_{1} \text { in } \ldots \text { let } w_{n+m}=z . l_{n+m}\right. \text { in }} \\
& \quad\left[l_{i}=\zeta(s) w_{i}(s)^{i \in 1 . . n+m}\right], \\
& l_{j}=e . l_{j}{ }^{j \in 1 . . n}, \\
& \left.l_{k}=\zeta(z) \lambda(s) b_{k}{ }^{k \in n+1 . . n+m}\right] ;
\end{aligned}
$$

Imperative Examples of Classes

We define classes $c p_{1}$ and $c p_{2}$ for one-dimensional and two-dimensional points:

$$
\begin{aligned}
& \text { let } c p_{1}= \\
& \quad[\text { new }=\varsigma(z)[\ldots] \\
& \quad x=\varsigma(z) \lambda(s) 0, \\
& \left.m v_{-} x=\varsigma(z) \lambda(s) \lambda(d x) s . x:=s . x+d x\right] ;
\end{aligned}
$$

let $c p_{2}=$

$$
\begin{aligned}
& {[\text { new }=\varsigma(z)[\ldots],} \\
& x=\varsigma(z) c p_{1} \cdot x \\
& y=\varsigma(z) \lambda(s) 0, \\
& m v_{-} x=\varsigma(z) c p_{1} \cdot m v_{-} x, \\
& \left.m v_{-} y=\varsigma(z) \lambda(s) \lambda(d y) s \cdot y:=s \cdot y+d y\right]
\end{aligned}
$$

We define points p_{1} and p_{2} by generating them from $c p_{1}$ and $c p_{2}$:

$$
\begin{aligned}
& \text { let } p_{1}=c p_{1} \text {.new; } ; \\
& \text { let } p_{2}=c p_{2} \text {.new; }
\end{aligned}
$$

We change the $m v_{-} x$ pre-method of $c p_{1}$ so that it does not set the x coordinate of a point to a negative number:

$$
c p_{1} \cdot m v_{-} x \leqslant \varsigma(z) \lambda(s) \lambda(d x) s . x:=\max (s . x+d x, 0)
$$

- The update is seen by p_{1} because p_{1} was generated from $c p_{1}$.
- The update is seen also by p_{2} because p_{2} was generated from $c p_{2}$ which inherited $m v_{-} x$ from $c p_{1}$:

$$
\begin{aligned}
& p_{1} \cdot m v_{-} x(-3) \cdot x=0 \\
& p_{2} \cdot m v_{-} x(-3) \cdot x=0
\end{aligned}
$$

A First-Order Type System for Objects

An object type is a set of method names and of result types:

$$
\left[l_{i}: B_{i}{ }^{i \in 1 . . n}\right]
$$

An object has type $\left[l_{i}: B_{i}{ }^{i \in 1 . . n}\right]$ if it has at least the methods $l_{i}^{i \in 1 . . n}$, with:

- a self parameter of some type $A<:\left[l_{i}: B_{i}{ }^{i \in 1 . . n}\right]$, and
- a result of type B_{i}.

For example, [] and $\left[l_{1}:[], l_{2}:[]\right]$ are object types.

An object type with more methods is a subtype of one with fewer:

$$
\left[l_{i}: B_{i}^{i \in 1 . . n+m}\right]<: \quad\left[l_{i}: B_{i}^{i \in 1 . . n}\right]
$$

For example, we have:

$$
\left[l_{1}:[], l_{2}:[]\right]<:\left[l_{1}:[]\right]<:[]
$$

A longer object can be used instead of a shorter one by subsumption:

$$
a: A \wedge A<: B \Rightarrow a: B
$$

A First-Order Type System

Environments:

$$
E \equiv x_{i}: A_{i}{ }^{i \in 1 \ldots n}
$$

Judgments:

$$
\begin{array}{ll}
E \vdash \diamond & \text { environment } E \text { is well-formed } \\
E \vdash A & A \text { is a type in } E \\
E \vdash A<: B & A \text { is a subtype of } B \text { in } E \\
E \vdash a: A & a \text { has type } A \text { in } E
\end{array}
$$

Types:

$$
\begin{array}{rlrl}
A, B: & \text { Top } & \text { the biggest } \\
& {\left[l_{i}: B_{i}{ }^{i \in 1 . . n}\right]} & & \text { object type }
\end{array}
$$

Terms: as for the untyped calculus (but with types for variables).

First-order type rules for the ς_{-}-calculus: rules for objects

(Type Object) $\left(l_{i}\right.$ distinct) $E \vdash B_{i} \quad \forall i \in 1 . . n$	(Sub Object) $E \vdash\left[l_{i}: B_{i}\right.$ distinct) $i \epsilon 1 . . n$
$\left.\frac{E \vdash B_{i}}{E \vdash\left[l_{i}: B_{i} \in 1 . . n+m\right.}\right]<:\left[l_{i}: B_{i}{ }^{i \in 1 . . n}\right]$	

| (Val Select) | (Val Update) \quad(where $A \equiv\left[l_{i: B} B_{i}{ }^{i \epsilon 1 . . n]}\right]$
 $\frac{E \vdash a:\left[l_{i}: B_{i}{ }^{i \in 1 . . n}\right]}{} \quad j \in 1 . . n$
 $E \vdash a . l_{j}: B_{j}$ |
| :--- | :--- | | $E \vdash a: A \quad E, x: A \vdash b: B_{j} \quad j \in 1 . . n$ |
| :--- | :--- |
| $E \vdash a . l_{j} \div \varsigma(x: A) b: A$ |

(Val Clone) (where $\left.A \equiv\left[l_{i}: B_{i}{ }^{i \epsilon 1 . . n}\right]\right)$
$E \vdash a: A$
$E \vdash$ clone $(a): A$

First-order type rules for the ς-calculus: standard rules

$(\operatorname{Env} \varnothing)$	$(\operatorname{Env} x)$	$(\operatorname{Val} x)$	
	$\frac{E \vdash A \quad x \notin \operatorname{dom}(E)}{E, x: A \vdash \diamond}$		$E^{\prime}, x: A, E^{\prime \prime} \vdash \diamond$ $E^{\prime}, x: A, E^{\prime \prime} \vdash x: A$

(Sub Refl)	(Sub Trans)
$E \vdash A$ $E \vdash A<: A$	$\frac{E \vdash A<: B \quad E \vdash B<: C}{E \vdash A<: C} \quad$

(Type Top) $E \vdash \diamond$	(Sub Top) $E \vdash A$
$E \vdash$ Top	
$\vdash \vdash A<: T o p$	

$$
\begin{aligned}
& \text { (Val Let) } \\
& \frac{E \vdash a: A \quad E, x: A \vdash b: B}{E \vdash \text { let } x=a \operatorname{in} b: B}
\end{aligned}
$$

An Operational Semantics (with Types)

We extend the functional operational semantics to typed terms.
A result is a term of the form $\left[l_{i}=\zeta\left(x_{i}: A_{i}\right) b_{i}^{i \in 1 . . n}\right]$.

Operational semantics

(Red Object) (where $\left.v \equiv\left[l_{i}=\varsigma\left(x_{i}: A_{i}\right) b_{i}{ }^{i \in 1 . . n}\right]\right)$
$\overline{\vdash v \rightsquigarrow v}$
(Red Select) (where $\left.v^{\prime} \equiv\left[l_{i}=\varsigma\left(x_{i}: A_{i}\right) b_{i}\left\{x_{i}\right\}^{i \in 1 . n}\right]\right)$
$\vdash a \rightsquigarrow v^{\prime} \quad \vdash b_{j}\left\{v v^{\prime}\right\} \rightsquigarrow v \quad j \in 1 . . n$

$$
\vdash a . l_{j} \rightsquigarrow v
$$

(Red Update)

$$
\begin{gathered}
\vdash a \rightsquigarrow\left[l_{i}=\varsigma\left(x_{i}: A_{i}\right) b_{i}{ }^{i \in 1 . . n}\right] \quad j \in 1 . . n \\
\vdash a . l_{j} \leqslant \varsigma(x: A) b \rightsquigarrow\left[l_{j}=\varsigma\left(x: A_{j}\right) b, l_{i}=\varsigma\left(x_{i}: A_{i}\right) b_{i}^{i \in(1 . . n)-\{j\}}\right]
\end{gathered}
$$

A Typed Divergent Term

The first-order object calculus is not normalizing: there are typable terms whose evaluation does not terminate.

For example, the untyped term $[l=\varsigma(x) x . l] . l$ can be annotated to obtain the typed term $[l=\varsigma(x:[l:[]]) x . l] . l$, which is typable as follows.

$$
\begin{aligned}
& \int\left(\int_{\left(\begin{array}{c}
\gamma \phi \vdash \diamond \\
\phi \vdash[] \\
\phi \vdash[l:[]]
\end{array}\right.}^{\substack{\gamma, x:[l:[]] \vdash \diamond \\
\phi, x:[l:[]] \vdash x:[l:[]]}}\right. \\
& \phi, x:[l:[]] \vdash x . l:[] \\
& \downarrow \text {, } \quad[l=\varsigma(x:[l:[]]) x . l]:[l:[]] \\
& \phi \vdash[l=\varsigma(x:[l:[]]) x . l] . l:[]
\end{aligned}
$$

(Type Object) with $n=0$
(Type Object) with $n=1$
$(\operatorname{Env} x)$

$$
(\operatorname{Val} x)
$$

(Val Select)
(Val Object) with $n=1$
(Val Select)
(Val Object) enables us to assume that the self variable x has the type [l:[]] when checking that the body $x . l$ of the method l has the type [].

Typed Object-Oriented Booleans

Notation

- $x: A \triangleq a$ stands for $x \triangleq a$ and $E \vdash a: A$ where E is determined from the preceding context.

We do not have a single type for our booleans; instead, we have a type $B o o l_{A}$ for every type A.

$$
\begin{gathered}
\text { Bool }_{A} \triangleq[\text { if: A, then }: A, \text { else }: A] \\
\text { true }_{A}: \text { Bool }_{A} \triangleq \\
{\left[\text { if }=\varsigma\left(x: \text { Bool }_{A}\right) x . t h e n,\right.} \\
\text { then }=\varsigma\left(x: \text { Bool }_{A}\right) x . t \text { then } \\
\text { else }=\varsigma\left(x: \text { Bool }_{A}\right) x . e l s e ~
\end{gathered}
$$

$$
\text { false }_{A}: \text { Bool }_{A} \triangleq
$$

$$
\left[i f=\varsigma\left(x: \text { Bool }_{A}\right) \text { x.else }, \ldots\right]
$$

The terms of type Bool $_{A}$ can be used in conditional expressions whose result type is A. For c and d of type A, and fresh variable x, we define:

```
if
    ((b.then }\leqslant\varsigma(x:\mp@subsup{\mathrm{ Bool}}{A}{\prime})c).else \leqslant\varsigma(x:\mp@subsup{Bool}{A}{})d).i
```

Moreover, we get some subtypings, for example:

$$
\begin{aligned}
& {[\text { if }: A \text {, then }: A \text {, else }: A]<:[i f: A]<:[]} \\
& {[\text { if }: A \text {, then }: A \text {, else }: A]<:[\text { else }: A]<:[]}
\end{aligned}
$$

- We assume an imperative semantics (in order to postpone the use of recursive types).
- If set works by side-effect, its result type can be uninformative. (We can write x.set $(3) ; x$.contents instead of $x \cdot \operatorname{set}(3) . c o n t e n t s$.)

Assuming a type Nat and function types, we let:

Cell	$\triangleq[$ contents $:$ Nat, set $:$ Nat $\rightarrow[]]$
GCell	$\triangleq[$ contents $:$ Nat, set $:$ Nat $\rightarrow[]$, get : Nat $]$

We get:

$$
\begin{aligned}
& \text { GCell }<\text { Cell } \\
& \text { cell } \triangleq[\text { contents }=0, \text { set }=\varsigma(x: \text { Cell }) \lambda(n: \text { Nat }) \text { x.contents }:=n] \\
& \quad \text { has type Cell } \\
& \text { gcell } \triangleq[\ldots, \text { get }=\varsigma(x: \text { GCell }) x . c o n t e n t s] \\
& \quad \text { has types GCell and Cell }
\end{aligned}
$$

For the functional calculus (named $\mathbf{O b}_{1<\text { : }}$):

Each well-typed term has a minimum type:

Theorem (Minimum types)

If $E \vdash a: A$ then there exists B such that $E \vdash a: B$ and, for any A^{\prime}, if $E \vdash a: A^{\prime}$ then $E \vdash B<: A^{\prime}$.

The type system is sound for the operational semantics:
Theorem (Subject reduction)
If $\varnothing \vdash a: C$
and $\vdash a \rightsquigarrow v$
then $\varnothing \vdash v: C$.

Because of subsumption, terms do not have unique types.
However, a weaker property holds: every term has a minimum type (if it has a type at all).
The minimum-types property is potentially useful for developing typechecking algorithms:
\sim It guarantees the existence of a "best" type for each typable term.
\sim Its proof suggests how to calculate this "best" type.

For proving the minimum-types property for $\mathbf{O b}_{1<\text { : }}$, we consider a modified system ($\mathbf{M i n O b}_{1<\text { : }}$) obtained by:
\sim removing (Val Subsumption), and
~ modifying the (Val Object) and (Val Update) rules as follows:

Modified rules

$$
\begin{aligned}
& \text { (Val Min Object) } \quad\left(\text { where } A \equiv\left[l_{i}: B_{i}{ }^{i \in 1 . . n}\right]\right) \\
& E, x_{i}: A \vdash b_{i}: B_{i}{ }^{\prime} \quad \phi \vdash B_{i}{ }^{\prime}<: B_{i} \quad \forall i \in 1 . . n \\
& E \vdash\left[l_{i}=\varsigma\left(x_{i}: A\right) b_{i}{ }^{i \in 1 . . n}\right]: A \\
& \frac{\text { (Val Min Update) } \quad\left(\text { where } A \equiv\left[l_{i}: B_{i}{ }^{i \in 1 . . n}\right]\right)}{E \vdash a: A^{\prime} \quad \phi \vdash A^{\prime}<: A \quad E, x: A \vdash b: B_{j}^{\prime} \quad \phi \vdash B_{j}{ }^{\prime}<: B_{j} \quad j \in 1 . . n} \\
& E \vdash a . l_{j} \leqslant \varsigma(x: A) b: A
\end{aligned}
$$

Typing in $\mathbf{M i n O b}_{1<\text { : }}$ is unique, as we show next.
We can extract from $\mathbf{M i n O b} \mathbf{b}_{1<:}$ a typechecking algorithm that, given any E and a, computes the type A such that $E \vdash a: A$ if one exists.

The next three propositions are proved by easy inductions on the derivations of $E \vdash a: A$ in $\mathbf{M i n O b}_{1<\text { : }}$.

Proposition ($\mathbf{M i n O b} b_{1<:}$ typings are $\mathbf{O b}_{1<:}$ typings)
If $E \vdash a: A$ is derivable in $\mathbf{M i n O b}_{1<\text {; }}$, then it is also derivable in $\mathbf{O b} \mathbf{b}_{1<:}$.

Proposition ($\mathrm{MinOb}_{1<\text { : }}$ has unique types)
If $E \vdash a: A$ and $E \vdash a: A^{\prime}$ are derivable in $\mathbf{M i n O b}_{1<:}$, then $A \equiv A^{\prime}$.

Proposition (MinOb ${ }_{1<\text { : }}$ has smaller types than $\mathbf{O b}_{1<:}$)
If $E \vdash a: A$ is derivable in $\mathbf{O b}_{1<\text {; }}$, then $E \vdash a: A$ ' is derivable in $\mathbf{M i n O b}_{\mathbf{1}<\text { : }}$ for some A^{\prime} such that
$E \vdash A^{\prime}<: A$ is derivable (in either system).

We obtain:

Proposition $\left(\mathrm{Ob}_{1<:}\right.$ has minimum types)
In $\mathbf{O b}_{1<;}$, if $E \vdash a: A$
then there exists B such that $E \vdash a: B$ and, for any A^{\prime},
if $E \vdash a: A^{\prime}$ then $E \vdash B<: A^{\prime}$.

Proof

Assume $E \vdash a: A$. So $E \vdash a: B$ is derivable in $\mathbf{M i n O b}_{1<\text { : }}$ for some B such that $E \vdash B<: A$. Hence, $E \vdash a: B$ is also derivable in $\mathbf{O b}_{1<:}$.
If $E \vdash a: A^{\prime}$, then $E \vdash a: B^{\prime}$ is also derivable in $\mathbf{M i n O b}_{1<:}$ for some B^{\prime} such that $E \vdash B^{\prime}<: A^{\prime}$.
Finally, $B \equiv B^{\prime}$, so $E \vdash B<: A^{\prime}$.

Lack of type annotations in ς-binders destroys the minimum-types property. For example, let:

$$
\begin{aligned}
& A \equiv[l:[]] \\
& A^{\prime} \equiv[l: A] \\
& a \equiv[l=\varsigma(x)[l=\varsigma(x)[]]]
\end{aligned}
$$

then:

$$
\phi \vdash a: A \text { and } \phi \vdash a: A^{\prime}
$$

but A and A ' have no common subtype.
This example also shows that minimum typing is lost for objects with fields (where the ς binders are omitted entirely).
The term $a . l:=[]$ typechecks using $\varnothing \vdash a: A$ but not using $\varnothing \vdash a: A^{\prime}$.
Naive type inference algorithms might find the type A^{\prime} for a, and fail to find any type for a.l:=[]. This poses problems for type inference.
(But see Palsberg's work.)

In contrast, with annotations, both

$$
\phi \vdash[l=\varsigma(x: A)[l=\varsigma(x: A)[]]]: A
$$

and

$$
\phi \vdash\left[l=\varsigma\left(x: A^{\prime}\right)[l=\varsigma(x: A)[]]\right]: A^{\prime}
$$

are minimum typings.
The former typing can be used to construct a typing for a.l:=[].

We start the proof with two standard lemmas.

Lemma (Bound weakening)

If $E, x: D, E^{\prime} \vdash \mathfrak{I}$ and $E \vdash D^{\prime}<: D$, then $E, x: D^{\prime}, E^{\prime} \vdash \mathfrak{I}$.

Lemma (Substitution)

If $E, x: D, E^{\prime} \vdash \mathfrak{J}\{x\}$ and $E \vdash d: D$, then $E, E^{\prime} \vdash \mathfrak{J}\{d\}$.

Using these lemmas, we obtain:

Theorem (Subject reduction)

Let c be a closed term and v be a result, and assume $\vdash c \rightsquigarrow v$.
If $\varnothing \vdash c: C$, then $\varnothing \vdash v: C$.

Proof

The proof is by induction on the derivation of $\vdash c \rightsquigarrow v$.

Case (Red Object)

This case is trivial, since $c=v$.

Case (Red Select)

Suppose $\vdash a \rightsquigarrow\left[l_{i}=\zeta\left(x_{i}: A_{i}\right) b_{i}\left\{x_{i}\right\}^{i \in 1 . . n}\right]$ and $\vdash b_{j}\left\{\left[l_{i}=\zeta\left(x_{i}: A_{i}\right) b_{i}\left\{x_{i}\right\}^{i \in 1 . . n}\right]\right\} \rightsquigarrow v$ have yielded $\vdash a . l_{j} \rightsquigarrow v$.
Assume that $\varnothing \vdash a . l_{j}: C$.
This must have come from an application of (Val Select)
\sim with assumption $\varnothing \vdash a: A$ where A has the form $\left[l_{j}: B_{j}, \ldots\right]$, and
\sim with conclusion $\varnothing \vdash a . l_{j}: B_{j}$,
followed by a number of subsumption steps implying $\varnothing \vdash B_{j}<: C$ by transitivity.
By induction hypothesis, we have $\varnothing \vdash\left[l_{i}=\varsigma\left(x_{i}: A_{i}\right) b_{i}\left\{x_{i}\right\}^{i \in 1 . . n}\right]: A$.
This implies that there exists A^{\prime} such that $\varnothing \vdash A^{\prime}<: A$, that all A_{i} equal A^{\prime}, that $\varnothing \vdash$ $\left[l_{i}=\varsigma\left(x_{i}: A^{\prime}\right) b_{i}\left\{x_{i}\right\}^{i \in 1 . . n}\right]: A^{\prime}$, and that $\varnothing, x_{j}: A^{\prime} \vdash b_{j}: B_{j}$.
By a lemma, it follows that $\varnothing \vdash b_{j}\left\{\left[l_{i}=\varsigma\left(x_{i}: A^{\prime}\right) b_{i}\left\{x_{i}\right\}^{i \in 1 . . n}\right]\right\}: B_{j}$.
By induction hypothesis, we obtain $\varnothing \vdash v: B_{j}$ so, by subsumption, $\varnothing \vdash v: C$.

Case (Red Update)

Suppose $\vdash a \rightsquigarrow\left[l_{i}=\varsigma\left(x_{i}: A_{i}\right) b_{i}{ }^{i \in 1 . . n}\right]$ has yielded $\vdash a . l_{j} \leqslant \varsigma(x: A) b \rightsquigarrow\left[l_{j}=\varsigma\left(x: A_{j}\right) b\right.$, $\left.l_{i}=\varsigma\left(x_{i}: A_{i}\right) b_{i}{ }^{i \in(1 . . n)-\{j\}}\right]$.

Assume that $\varnothing \vdash a . l_{j} \leqslant \varsigma(x: A) b: C$.
This must have come from an application of (Val Update)
\sim with assumptions $\varnothing \vdash a: A$ and $\varnothing, x: A \vdash b: B$ where A has the form $\left[l_{j}: B, \ldots\right]$, and
\sim with conclusion $\varnothing \vdash a . l_{j} \leqslant \varsigma(x: A) b: A$,
followed by a number of subsumption steps implying $\varnothing \vdash A<$: C by transitivity.
By induction hypothesis, we have $\phi \vdash\left[l_{i}=\varsigma\left(x_{i}: A_{i}\right) b_{i}{ }^{i \in 1 . . n}\right]: A$.
This implies that A_{j} has the form $\left[l_{j}: B, l_{i}: B_{i}{ }^{i \in(1 . . n)-\{j\}}\right]$, that $\varnothing \vdash A_{j}<: A$, that A_{i} equals A_{j}, and that $\varnothing, x_{i}: A_{j} \vdash b_{i}: B_{i}$ for all i.
By a lemma, it follows that $\varnothing, x: A_{j} \vdash b: B$.
Therefore by (Val Object), $\varnothing \vdash\left[l_{j}=\varsigma\left(x: A_{j}\right) b, l_{i}=\varsigma\left(x_{i}: A_{j}\right) b_{i}^{i \in(1 . . n)-\{j\}}\right]: A_{j}$.
We obtain $\varnothing \vdash\left[l_{j}=\varsigma\left(x: A_{j}\right) b, l_{i}=\varsigma\left(x_{i}: A_{j}\right) b_{i}{ }^{i \epsilon(1 . . n)-\{j\}}\right]: C$ by subsumption.

The proof of subject reduction is simply a sanity check.
It is an easy proof, with just one subtle point: the proof would have failed if we had defined (Red Update) so that

$$
\vdash a . l_{j} \leqslant \varsigma(x: A) b \rightsquigarrow\left[l_{j}=\varsigma(x: A) b, l_{i}=\varsigma\left(x_{i}: A_{i}\right) b_{i}^{i \epsilon(1 . . n)-\{j\}}\right]
$$

with an A instead of an A_{j} in the bound for x.

The subject reduction theorem does not rule out that the execution of a well-typed program may not terminate or may get stuck.

We can prove that the latter is in fact not possible:

- If the reduction does not diverge, then it produces a result of the correct type without getting stuck.
- This absence of stuck states is often called type soundness.

In order to formulate a type soundness result, we reconsider the function Outcome:
$\operatorname{Outcome}\left(\left[l_{i}=\varsigma\left(x_{i}: A_{i}\right) b_{i}^{i \in 1 . . n}\right]\right) \triangleq$

$$
\left[l_{i}=\varsigma\left(x_{i}: A_{i}\right) b_{i}^{i \in 1 . . n}\right]
$$

$\operatorname{Outcome}\left(\right.$ a. $\left.l_{j}\right) \triangleq$
let $o=\operatorname{Outcome}(a)$
in if o is of the form $\left[l_{i}=\zeta\left(x_{i}: A_{i}\right) b_{i}\left\{x_{i}\right\}^{i \in 1 . . n}\right]$ with $j \in 1 . . n$
then Outcome $\left.\left(b_{j}\{0\}\right\}\right)$
else wrong
Outcome $\left(a . l_{j} \leqslant \varsigma(x: A) b\right) \triangleq$
let $o=\operatorname{Outcome}(a)$
in if o is of the form $\left[l_{i}=\varsigma\left(x_{i}: A_{i}\right) b_{i}^{i \in 1 . . n}\right]$ with $j \in 1 . . n$
then $\left[l_{j}=\varsigma\left(x: A_{j}\right) b, l_{i}=\varsigma\left(x_{i}: A_{i}\right) b_{i}{ }^{i \in(1 . . n)-\{j\}}\right]$
else wrong

If Outcome (c) is defined, then it is either wrong or a result.
We obtain:

Theorem (Reductions cannot go wrong)

If $\varnothing \vdash c: C$ and $\operatorname{Outcome}(c)$ is defined, then $\varnothing \vdash \operatorname{Outcome}(c): C$, hence $\operatorname{Outcome}(c)$ wrong.

The proof is by induction on the execution of $\operatorname{Outcome}(c)$, and is very similar to the proof of subject reduction.

Unsoundness of Covariance

Object types are invariant (not co/contravariant) in components.

```
\(U \triangleq \quad\) [] (the unit object type)
\(L \triangleq[l: U] \quad\) (an object type with just \(l\) )
\(L<: U\)
\(P \triangleq[x: U, f: U]\)
\(Q \triangleq[x: L, f: U]\)
Assume \(Q<: P \quad\) by an (erroneous) covariant rule.
\(q: Q \triangleq \quad[x=[l=[]], f=\varsigma(s: Q)\) s.x. \(l]\)
```

then $q: P$
hence $q \cdot x:=[]: P$

But (q.x:=[]).f
by subsumption with $Q<: P$
that is $[x=[], f=\varsigma(s: Q)$ s.x.l] : P
fails!

Let us imagine an operation for extracting a method from an object.
It may seem natural to give the following rules for this operation:

$$
\begin{aligned}
& \text { (Val Extract) (where } \left.A \equiv\left[l_{i}: B_{i} \in^{i \in 1 . n}\right]\right) \\
& \frac{E \vdash a: A \quad j \in 1 . . n}{E \vdash a \cdot l_{j}: A \rightarrow B_{j}} \\
& \frac{\text { (Red Extract) }}{\vdash a \rightsquigarrow\left[l_{i}=\zeta\left(x_{i}: A_{i}\right) b_{i}^{i \in 1 . . n}\right] \quad j \in 1 . . n} \\
& \vdash a \cdot l_{j} \rightsquigarrow \lambda\left(x_{j}: A_{j}\right) b_{j}
\end{aligned}
$$

These rules amount to interpreting an object type $A \equiv\left[l_{i}: B_{i}^{i \in 1 . . n}\right]$ as a recursively defined record-of-functions type $A \equiv\left\langle l_{i}: A \rightarrow B_{i}{ }^{i \in 1 . . n}\right\rangle$.

Method extraction is unsound, as the following example shows:

$$
\left.\begin{array}{lll}
P \triangleq[x: \operatorname{Int}, f: \operatorname{Int}] & & \\
p \triangleq[x=1, f=1] & p: P & \text { by (Val Object) } \\
Q \triangleq[x, y: \operatorname{Int}, f: \operatorname{Int}] & Q<: P & \text { by (Sub Object) } \\
a \triangleq[x=1, y=1, f=\varsigma(s: Q) s \cdot x+s \cdot y] & a: Q & \text { by (Val Object) } \\
& \triangleq a \cdot f & \text { so } a: P
\end{array} \text { by subsumption }\right)
$$

But $b(p)$ must yield an execution error since p lacks a y method.
Hence method extraction is incompatible with subtyping, at least without much further complication or strong restrictions.

Classes, with Types

If $A \equiv\left[l_{i}: B_{i}{ }^{i \in 1 . . n}\right]$ is an object type, then $\operatorname{Class}(A)$ is the type of the classes for objects of type A :

$$
\begin{array}{ll}
\operatorname{Class}(A) \triangleq & {\left[\text { new: } A, l_{i}: A \rightarrow B_{i}^{i \in 1 . . n}\right]} \\
\text { new }: A \quad & \text { is a generator for objects of type } A . \\
l_{i}: A \rightarrow B_{i} \quad \text { is a pre-method for objects of type } A . \\
& \\
c: \operatorname{Class}(A) \triangleq \\
\quad\left[\text { new }=\varsigma(z: \operatorname{Class}(A))\left[l_{i}=\varsigma(x: A) z . l_{i}(x)^{i \in 1 . . n}\right],\right. \\
\left.\quad l_{i}=\lambda\left(x_{i}: A\right) b_{i}\left\{x_{i}\right\}^{i \in 1 . . n}\right] \\
\text { c.new }: A
\end{array}
$$

- Types are distinct from classes.
- More than one class may generate objects of a type.

Inheritance, with Types

Let $A \equiv\left[l_{i}: B_{i}{ }^{i \in 1 . . n}\right]$ and $A^{\prime} \equiv\left[l_{i}: B_{i}^{i \in 1 . . n}, l_{j}: B_{j}{ }^{j \in n+1 . m}\right]$, with $A^{\prime}<: A$.
Note that $\operatorname{Class}(A)$ and $\operatorname{Class}\left(A^{\prime}\right)$ are not related by subtyping.

Let $c: \operatorname{Class}(A)$, then for $i \in 1 . . n$

$$
\text { c. } l_{i}: A \rightarrow B_{i}<: A^{\prime} \rightarrow B_{i} .
$$

Hence $c . l_{i}$ is a good pre-method for a class of type $\operatorname{Class}\left(A^{\prime}\right)$.
We may define a subclass c ' of c :

$$
c^{\prime}: \operatorname{Class}\left(A^{\prime}\right) \triangleq\left[\text { new }=\ldots, l_{i}=c . l_{i}^{i \in 1 . . n}, l_{j}=\ldots{ }^{j \in n+1 . . m}\right]
$$

where class c^{\prime} inherits the methods l_{i} from class c.
So inheritance typechecks:
If $A^{\prime}<: A$ then a class for A^{\prime} may inherit from a class for A.

Class Types for Cells

$$
\begin{aligned}
& \text { Class }(\text { Cell }) \triangleq \\
& {[\text { new }: \text { Cell, }} \\
& \text { contents }: \text { Cell } \rightarrow \text { Nat, }, \\
& \text { set }: \text { Cell } \rightarrow \text { Nat } \rightarrow[]] \\
& \text { Class }(\text { GCell }) \triangleq \\
& {[\text { new }: G C e l l,} \\
& \text { contents }: \text { GCell } \rightarrow \text { Nat, } \\
& \text { set }: \text { GCell } \rightarrow \text { Nat } \rightarrow[], \\
& \text { get }: G C e l l \rightarrow N a t]
\end{aligned}
$$

Class $($ GCell $)<$: Class $($ Cell $)$ does not hold, but inheritance is possible:
Cell \rightarrow Nat $<:$ GCell \rightarrow Nat
Cell \rightarrow Nat $\rightarrow[]<:$ GCell \rightarrow Nat $\rightarrow[]$

In addition to a type theory, we have a simple typed proof system.
There are some subtleties in reasoning about objects.
Consider:

$$
\begin{array}{ll}
A & \triangleq[x: N a t, f: N a t] \\
a: A & \triangleq[x=1, f=1] \\
b: A & \triangleq[x=1, f=\varsigma(s: A) s . x]
\end{array}
$$

Informally, we may say that $a \cdot x=b \cdot x:$ Nat and $a . f=b . f:$ Nat.
So, do we have $a=b$?
It would follow that $(a . x:=2) \cdot f=(b . x:=2) \cdot f$ and then $1=2$.

Hence:

$$
a \neq b: A
$$

Still, as objects of $[x: N a t], a$ and b are indistinguishable from $[x=1]$.
Hence:

$$
a=b:[x: N a t]
$$

Finally, we may ask:

$$
a \stackrel{?}{=} b:[f: N a t]
$$

This is sound; it can be proved via bisimilarity.

In summary, there is a notion of typed equality that may support some interesting transformations (inlining of methods).

VARIANCE ANNOTATIONS

In order to gain expressiveness within a first-order setting, we extend the syntax of object types with variance annotations:

$$
\left[l_{i} \mathrm{v}_{i}: B_{i}{ }^{i \in 1 . . n}\right]
$$

Each v_{i} is a variance annotation; it is one of three symbols ${ }^{o},{ }^{+}$, and ${ }^{-}$. Intuitively,

- + means read-only: it prevents update, but allows covariant component subtyping;
- - means write-only: it prevents invocation, but allows contravariant component subtyping;
- ${ }^{o}$ means read-write: it allows both invocation and update, but requires exact matching in subtyping.

By convention, any omitted annotations are taken to be equal to ${ }^{\circ}$.

Subtyping with Variance Annotations

$$
\begin{array}{lll}
{\left[\ldots l^{0}: B \ldots\right]<:\left[\ldots l^{\circ}: B^{\prime} \ldots\right]} & \text { if } B \equiv B^{\prime} & \begin{array}{l}
\text { invariant } \\
\text { (read-write) }
\end{array} \\
{\left[\ldots l^{+}: B \ldots\right]<:\left[\ldots l^{+}: B^{\prime} \ldots\right]} & \text { if } B<: B^{\prime} & \begin{array}{l}
\text { covariant } \\
\text { (read-only) }
\end{array} \\
{\left[\ldots l^{\prime}: B \ldots\right]<:\left[\ldots l^{\prime}: B^{\prime} \ldots\right]} & \text { if } B^{\prime}<: B & \begin{array}{l}
\text { contravariant } \\
\text { (write-only) }
\end{array} \\
& & \text { invariant }<\text { : variant } \\
{\left[\ldots l^{o}: B \ldots\right]<:\left[\ldots l^{+}: B^{\prime} \ldots\right]} & \text { if } B<: B^{\prime} & \text { if } B^{\prime}<: B
\end{array}
$$

We get depth subtyping as well as width subtyping.

Subtyping Rules with Variance Annotations

We use an auxiliary judgment: $E \vdash \mathrm{v}_{i} B_{i}<: \mathrm{v}_{i}^{\prime} B_{i}$ '

- (Sub Invariant) An invariant component type on the right requires an identical one on the left.
- (Sub Covariant) A covariant component type on the right can be a supertype of a corresponding component type on the left, either covariant or invariant.
- (Sub Contravariant) A contravariant component type on the right can be a subtype of a corresponding component type on the left, either contravariant or invariant.

Typing Rules with Variance Annotations

The typing rules are easy modifications of the previous ones.
They enforce the read/write restrictions:

$$
\begin{aligned}
& \text { (Val Object) (where } A \equiv\left[l_{i} \mathrm{v}_{i}: B_{i}{ }^{i \in 1 . . n}\right] \text {) } \\
& E, x_{i}: A \vdash b_{i}: B_{i} \quad \forall i \in 1 . . n \\
& E \vdash\left[l_{i}=\varsigma\left(x_{i}: A\right) b_{i}{ }^{i \in 1 \ldots n}\right]: A \\
& \text { (Val Select) } \\
& E \vdash a:\left[l_{i} \mathrm{v}_{i}: B_{i}{ }^{i \in 1 . . n}\right] \quad \mathrm{v}_{j} \in\left\{{ }^{0}{ }^{\mathrm{O}}\right\} \quad j \in 1 . . n \\
& E \vdash a . l_{j}: B_{j} \\
& \text { (Val Update) (where } A \equiv\left[l_{i} \mathrm{v}_{i}: B_{i}{ }^{i \in 1 . . n}\right] \text {) } \\
& E \vdash a: A \quad E, x: A \vdash b: B_{j} \quad v_{j} \in\left\{{ }^{0},{ }^{-}\right\} \quad j \in 1 . . n \\
& E \vdash a . l_{j} \leqslant \zeta(x: A) b: A
\end{aligned}
$$

The rule (Val Object) is unchanged, since we add annotations only to object types, not to objects.

- Variance annotations can provide protection against updates from the outside.
- In addition, object components can be hidden by subsumption.

For example:

```
Let GCell \triangleq [contents:Nat, set:Nat }->\mathrm{ [], get: Nat]
    PGCell \triangleq [set:Nat }->[],\mathrm{ get:Nat]
    ProtectedGCell \triangleq [set + :Nat }->[],\mp@subsup{\mathrm{ get }}{}{+}:Nat
    gcell: GCell
then GCell <: PGCell <: ProtectedGCell
so gcell: ProtectedGCell.
```

Given a ProtectedGCell, one cannot access its contents directly.
From the inside, set and get can still update and read contents.

Protection for Classes

Using subtyping, we can provide protection for classes.
We may associate two separate interfaces with a class type:

- The first interface is the collection of methods that are available in instances.
- The second interface is the collection of methods that can be inherited in subclasses.

For an object type $A \equiv\left[l_{i}: B_{i}{ }^{i \in I}\right]$ with methods $l_{i}{ }^{i \in I}$ we consider:

- a restricted instance interface, determined by a set $I n s \subseteq I$, and
- a restricted subclass interface, determined by a set $S u b \subseteq I$.

For an object type $A \equiv\left[l_{i}: B_{i}{ }^{i \in I}\right]$, and Ins, $S u b \subseteq I$, we define:

$$
\operatorname{Class}(A)_{\text {Ins,Sub }} \triangleq\left[\text { new }^{+}:\left[l_{i}: B_{i}{ }^{i \in \operatorname{Ins}}\right], l_{i}: A \rightarrow B_{i}^{i \in S u b}\right]
$$

$\operatorname{Class}(A)<$: $\operatorname{Class}(A)_{\text {Ins,Sub }}$ holds, so we get protection by subsumption. Particular values of Ins and Sub correspond to common situations.

```
c: Class}(A\mp@subsup{)}{\varnothing,Sub}{
c:Class(A) Ins,\emptyset
c:Class(A) I,I
c: Class(A) Pub,Pub
c:Class(A)Pub,Pub\cupPro
```

is an abstract class based on A is a leaf class based on A is a concrete class based on A has public methods $l_{i}{ }^{i \in P u b}$ and private methods $l_{i}{ }^{i \in I-P u b}$ has public methods $l_{i}{ }^{i \in P u b}$, protected methods $l_{i}{ }^{i \in P r o}$, and private methods $l_{i}{ }^{i \in I-P u b \cup P r o}$

Class Types for Cells (with Protection)

```
ProtectedGCell \(\triangleq\left[\right.\) set \(^{+}: N a t \rightarrow[]\), get \(^{+}:\)Nat \(]\)
Class...(GCell) 气
    [new \({ }^{+}\): ProtectedGCell,
    set : GCell \(\rightarrow\) Nat \(\rightarrow\) [],
    get : GCell \(\rightarrow\) Nat \(]\)
\(\operatorname{Class}(G C e l l) \triangleq\)
    [new : GCell,
    contents: GCell \(\rightarrow\) Nat,
    set : GCell \(\rightarrow\) Nat \(\rightarrow\) [],
    get : GCell \(\rightarrow\) Nat \(]\)
Class(GCell) \(<:\) Class...(GCell)
```

(This is a variant on the general scheme.)

An invariant translation of function types:

$$
\varangle A \rightarrow B\rangle \triangleq[\arg : \varangle A \rrbracket, \text { val }: \varangle B\rangle]
$$

A covariant/contravariant translation, using annotations:

$$
\left.\varangle A \rightarrow B\rangle \triangleq\left[\arg ^{-}: \varangle A \rrbracket, \text { val }^{+}: \varangle B\right\rangle\right]
$$

A covariant/contravariant translation, using quantifiers:

$$
\boxtimes A \rightarrow B \rrbracket \triangleq \forall(X<: \llbracket A \rrbracket) \exists(Y<: \varangle B \rrbracket)[\arg : X, \text { val }: Y]
$$

where \forall is for polymorphism and \exists is for data abstraction.

Recursive ObJect Types

Recursive Types

Informally, we may want to define a recursive type as in:
Cell $\triangleq[$ contents $:$ Nat, set $: N a t \rightarrow$ Cell $]$
Formally, we write instead:

$$
\text { Cell } \triangleq \mu(X)[\text { contents }: \text { Nat, set }: \text { Nat } \rightarrow X]
$$

Intuitively, $\mu(X) A\{X\}$ is the solution for the equation $X=A\{X\}$.
There are at least two ways of formalizing this intuitive idea:
If $a: A$ and $A=B$ then $a: B$.
and:

$$
\begin{gathered}
\text { If } a: \mu(X) A\{X\} \text { then unfold }(a): A\{\mu(X) A\{X\}\} \text {. } \\
\text { If } a: A\{\mu(X) A\{X\}\} \text { then } \operatorname{fold}(\mu(X) A\{X\}, a): \mu(X) A\{X\} .
\end{gathered}
$$

Officially, we adopt the second way (but often omit fold and unfold.)

```
Cell \triangleq [contents:Nat, set :Nat }->\mathrm{ Cell]
cell:Cell \triangleq
    [contents = 0,
        set = }(x:\mathrm{ Cell ) }\lambda(n:Nat)x.contents:= n
```

The type Cell is a recursive type.
Now we can typecheck cell.set(3).contents.

Similarly, we can typecheck the calculator, using the type:

Calc \triangleq

$$
\mu(X)[\text { arg, acc : Real, enter }: \text { Real } \rightarrow X, \text { add, sub }: X \text {, equals : Real }]
$$

The basic subtyping rule for recursive types is:

$$
\begin{aligned}
& \mu(X) A\{X\}<: \mu(X) B\{X\} \\
& \quad \text { if }
\end{aligned}
$$

either $A\{X\}$ and $B\{X\}$ are equal for all X or $A\{X\}<: B\{Y\}$ for all X and Y such that $X<: Y$

There are variants, for example:

```
\(\mu(X) A\{X\}<: \mu(X) B\{X\}\)
        if
either \(A\{X\}\) and \(B\{X\}\) are equal for all \(X\)
or \(A\{X\}<: B\{\mu(X) B\{X\}\}\) for all \(X\) such that \(X<: \mu(X) B\{X\}\)
```

But $A\{X\}<: B\{X\}$ does not imply $\mu(X) A\{X\}<: \mu(X) B\{X\}$.

Subtyping Examples with Recursive Types

Because of the recursion, we do not get interesting subtypings.

```
Cell \triangleq [contents:Nat, set:Nat }->\mathrm{ Cell]
GCell \triangleq [contents : Nat, set : Nat }->\mathrm{ GCell, get : Nat]
```

Assume $X<: Y$.
We cannot derive:

$$
\begin{aligned}
& {[\text { contents : Nat, set : Nat } \rightarrow X \text {, get : Nat }]} \\
& \quad<: \\
& {[\text { contents : Nat, set }: \text { Nat } \rightarrow Y]}
\end{aligned}
$$

So we cannot obtain that GCell is a subtype of Cell.

The fact that GCell is not a subtype of Cell is unacceptable, but necessary for soundness.

Consider the following correct but somewhat strange GCell:

$$
\begin{aligned}
& \text { gcell': GCell } \triangleq \\
& {[\text { contents }=\varsigma(x: \text { Cell }) \text { x.set }(x . g e t) . \text { get }} \\
& \text { set }=\varsigma(x: \text { Cell }) \lambda(n: \text { Nat }) x . g e t:=n \\
& \text { get }=0]
\end{aligned}
$$

If GCell were a subtype of Cell then we would have:

```
gcell': Cell
gcell'':Cell \triangleq (gcell'.set := \lambda(n:Nat) cell)
```

where cell is a fixed element of Cell, without a get method.
Then we can write:

$$
m: \text { Nat } \triangleq \text { gcell'’.contents }
$$

But the computation of m yields a "message not understood" error.

Five Solutions (Overview)

- Avoid methods specialization, redefining GCell:

Cell $\triangleq[$ contents : Nat, set $:$ Nat \rightarrow Cell $]$
GCell $\triangleq[$ contents : Nat, set : Nat \rightarrow Cell, get : Nat]
\sim This is a frequent approach in common languages.
\sim It requires dynamic type tests after calls to the set method. E.g.,
typecase gcell.set(3)
when (x :GCell) x.get
else ...

- Add variance annotations:

$$
\begin{aligned}
& \text { Cell } \triangleq\left[\text { contents }: \text { Nat, } \text { set }^{+}: \text {Nat } \rightarrow \text { Cell }\right] \\
& \text { GCell } \triangleq\left[\text { contents }: \text { Nat, } \text { set }^{+}: \text {Nat } \rightarrow \text { GCell, get }: \text { Nat }\right]
\end{aligned}
$$

\sim This approach yields the desired subtypings.
\sim But it forbids even sound updates of the set method.
\sim It would require reconsidering the treatment of classes in order to support inheritance of the set method.

- Go back to an imperative framework, where the typing problem disappears because the result type of set is [].

```
Cell \triangleq [contents:Nat, set : Nat }->\mathrm{ []]
GCell \triangleq [contents:Nat, set:Nat }->\mathrm{ [], get : Nat]
```

~ This works sometimes.
\sim But methods that allocate a new object of the type of self still call for the use of recursive types:

UnCell \triangleq [contents : Nat, set : Nat \rightarrow [], undo : UnCell]

- Axiomatize some notion of Self types, and write:

$$
\begin{aligned}
& \text { Cell } \triangleq[\text { contents }: \text { Nat, set }: \text { Nat } \rightarrow \text { Self }] \\
& \text { GCell } \triangleq[\text { contents }: \text { Nat, set }: \text { Nat } \rightarrow \text { Self, get }: \text { Nat }]
\end{aligned}
$$

\sim But the rules for Self types are not trivial or obvious.

- Move up to higher-order calculi, and see what can be done there.
Cell $\triangleq \exists(Y<:$ Cell $)[$ contents $:$ Nat, set $:$ Nat $\rightarrow Y]$
GCell $\triangleq \exists(Y<:$ GCell $)[$ contents $:$ Nat, set $:$ Nat $\rightarrow Y$, get $:$ Nat $]$
~ The existential quantifiers yield covariance, so GCell $<$: Cell.
\sim Intuitively, the existentially quantified type is the type of self: the Self type.
\sim This technique is general, and suggests sound rules for primitive Self types.

We obtain:
~ subtyping with methods that return self,
\sim inheritance for methods that return self or that take arguments of the type of self ("binary methods"), but without subtyping.

TyPECASE

A Typecase Construct

Adding a typecase construct is one way of incorporating dynamic typing in a statically typed language.

There are several variants of this construct; we will study only one.

Our typecase construct evaluates a term to a result, and branches on the type of the result. We write:
typecase $a\left|(x: A) d_{1}\right| d_{2}$

- If a yields a result of type A, then (typecase $\left.a\left|(x: A) d_{1}\right| d_{2}\right)$ returns d_{1} with x replaced by this result.
- Otherwise, (typecase a|(x:A) $d_{1} \mid d_{2}$) returns d_{2}.
E.g.,
typecase gcell.set(3)
| (x:GCell) x.get
\mid x.contents
typecase gcell.set(3)
| (x:GCell) x.get
| 0
typecase gcell.set(3)
| (x:GCell) x.get
| ... (some error code or exception)
- In programming languages that include typecase, the type of a value is represented using a tag attached to the value.
typecase relies on this tag to perform run-time type discrimination.
- In contrast, in our operational semantics, typecase performs run-time type discrimination by constructing a typing derivation.
Operational semantics for typecase
(Red Typecase Match)
$\stackrel{\vdash a \rightsquigarrow v^{\prime} \quad \phi \vdash v^{\prime}: A \quad \vdash d_{1}\left\{v v^{\prime}\right\} \rightsquigarrow v}{ }$
\vdash typecase $a\left|(x: A) d_{1}\{x\}\right| d_{2} \rightsquigarrow v$
(Red Typecase Else)
$\vdash a \rightsquigarrow v^{\prime} \quad \nvdash v^{\prime}: A \quad \vdash d_{2} \rightsquigarrow v$
\vdash typecase $a\left|(x: A) d_{1}\right| d_{2} \rightsquigarrow v$
~ Our rules do not clearly suggest an efficient implementation.
\sim They have the advantage of being simple and general.

Typing rule for typecase

```
(Val Typecase)
E\vdasha:A,}\quadE,x:A\vdash\mp@subsup{d}{1}{}:D\quadE\vdash\mp@subsup{d}{2}{}:
    E\vdash typecase a }|(x:A)\mp@subsup{d}{1}{}|\mp@subsup{d}{2}{}:
```

The first hypothesis says that a is well-typed; the precise type (A^{\prime}) is irrelevant.
The body of the first branch, d_{1}, is typed under the assumption that x has type A.
The two branches have the same type, D, which is also the type of the whole typecase expression.

Although typecase permits dynamic typing, the static typing rules remain consistent. It is straightforward to extend our subject reduction proof to typecase.

Typecase: Discussion

typecase may seem simple, but it is considered problematic (both methodologically and theoretically):
\sim It violates the object abstraction, revealing information that may be regarded as private.
\sim It renders programs more fragile by introducing a form of dynamic failure when none of the branches apply.
~ It makes code less extensible: when adding another type one may have to revisit the typecase statements in existing code.
~ It violates uniformity (parametricity) principles.
Although typecase may be ultimately an unavoidable feature, its drawbacks require that it be used prudently.

The desire to reduce the uses of typecase has shaped much of the type structure of objectoriented languages.

The Language 0-1

- $\mathrm{O}-1$ is a language built out of constructs from object calculi.
\sim The main purpose of $\mathrm{O}-1$ is to help us assess the contributions of object calculi.
\sim In addition, $\mathrm{O}-1$ embodies a few intriguing language-design ideas.
~ We have studied more advanced languages that include Self types and parametric polymorphism.
- Both class-based and object-based constructs.
- First-order object types with subtyping and variance annotations.
- Classes with single inheritance.
- Method overridding and specialization.
- Recursion.
- Typecase. (To compensate for, e.g., lack of Self types.)
- Separation of interfaces from implementations.
- Separation of inheritance from subtyping.
- No public/private/protected/abstract, etc.,
- No cloning,
- No basic types, such as integers,
- No arrays and other data structures,
- No procedures,
- No concurrency.

Syntax of Types

Syntax of 0-1 types

```
A,B ::=
    X
    Top
    Object(X)[livi`: 㱚 }\mp@subsup{}{i}{i\in1..n}
    Class(A)
```

types
type variable
the biggest type
object type (l_{i} distinct)
class type

- Roughly, we may think Object $=\mu$.

But the fold/unfold coercions do not appear in the syntax of O1.

- Usually, ${ }^{+}$variance is for methods, and ${ }^{\mathrm{o}}$ variance is for fields.

Syntax of Programs

Syntax of 0-1 terms

$$
a, b, c::=
$$

$$
x
$$

$$
\operatorname{object}(x: A) l_{i}=b_{i}^{i \in 1 . . n} \text { end }
$$

a.l

$$
a . l:=b
$$

$$
\text { a.l }:=\operatorname{method}(x: A) b \text { end }
$$

new c
root
subclass of $c: C$ with $(x: A)$
$l_{i}=b_{i}^{i \in n+1 . . n+m}$
override $l_{i}=b_{i}^{i \in O v r \subseteq 1 . . n}$ end
$c^{\wedge} l(a)$
typecase a when $(x: A) b_{1}$ else b_{2} end
terms
variable
direct object construction
field selection / method invocation
update with a term
update with a method
object construction from a class
root class
subclass
additional attributes
overridden attributes
class selection
typecase

Comments

- Superclass attributes are inherited "automatically". (No copying premethods by hand as in the encodings of classes.)
- Inheritance "by hand" still possible by class selection $c^{\wedge} l(a)$.
- Classes are first-class values.
- Parametric classes can be written as functions that return classes.

Language Fragments

- We could drop the object-based constructs (object construction and method update).
The result would be a language expressive enough for traditional class-based programming.
- Alternatively, we could drop the class-based construct (root class, subclass, new, and class selection).
The result would be a little object-based language.

Abbreviations

Root \triangleq Class(Object(X)[])

class with $(x: A) l_{i}=b_{i}{ }^{i \in 1 . . n}$ end \triangleq subclass of root:Root with $(x: A) l_{i}=b_{i}{ }^{i \in 1 . . n}$ override end subclass of $c: C$ with $(x: A) \ldots$ super. $l \ldots$ end \triangleq subclass of $c: C$ with $(x: A) \ldots c^{\wedge} l(x) \ldots$ end
$\operatorname{object}(x: A) \ldots l$ copied from $c \ldots$ end \triangleq $\operatorname{object}(x: A) \ldots l=c^{\wedge} l(x) \ldots$ end
N.B.: conversely, subclass could be defined from class and $c^{\wedge} l$.

- We assume basic types (Bool, Int) and function types $(A \rightarrow B$, contravariant in A and covariant in B).

$$
\begin{aligned}
& \text { Point } \triangleq \operatorname{Object}(X)\left[x: \text { Int, } \text { eq }^{+}: X \rightarrow \text { Bool, }, m v^{+}: \text {Int } \rightarrow X\right] \\
& \text { CPoint } \triangleq \operatorname{Object}(X)\left[x: \text { Int, } c: \text { Color, } e q^{+}: \text {Point } \rightarrow \text { Bool, } m v^{+}: \text {Int } \rightarrow \text { Point }\right]
\end{aligned}
$$

- CPoint $<$: Point
- The type of $m v$ in CPoint is Int \rightarrow Point.

One can explore the effect of changing it to $\operatorname{Int} \rightarrow X$.

- The type of eq in CPoint is Point \rightarrow Bool.

If we were to change it to $X \rightarrow$ Bool we would lose the subtyping CPoint $<$: Point.

Class(Point)

pointClass: Class(Point) \triangleq
class with (self: Point)
$x=0$,
$e q=\mathbf{f u n}($ other: Point $)$ self. $x=$ other.x end, $m v=\mathbf{f u n}(d x$: Int $)$ self. $x:=$ self. $x+d x$ end
end

Class(CPoint)

```
cPointClass: Class(CPoint) \triangleq
    subclass of pointClass: Class(Point)
    with (self: CPoint)
        c = black
    override
        eq = fun(other: Point)
            typecase other
            when (other': CPoint) super.eq(other') and self.c = other'..c
            else false
            end
                end
    end
```


Comments

- The class c PointClass inherits x and $m v$ from its superclass pointClass.
- Although it could inherit eq as well, cPointClass overrides this method as follows.
\sim The definition of Point requires that $e q$ work with any argument other of type Point.
\sim In the eq code for cPointClass, the typecase on other determines whether other has a color.
~ If so, eq works as in pointClass and in addition tests the color of other.
~ If not, eq returns false.

Creating Objects

- We can use c PointClass to create color points of type CPoint:

```
cPoint:CPoint \triangleq new cPointClass
```

- But points of the same type can also be created independently:

```
cPoint': CPoint \triangleq
    object(self: CPoint)
        x=0,
        c=red,
        eq = fun(other: Point) other.eq(self) end,
        mv=cPointClass^mv(self)
```

 end
 - Calls to $m v$ lose the color information.
- In order to access the color of a point after it has been moved, a typecase is necessary:

```
movedColor:Color \triangleq
        typecase cPoint.mv(1)
        when (cp: CPoint) cp.c
        else black
        end
```


Alternative Types

- A stronger type of color points that would preserve type information on move is:

```
CPoint2 \triangleq
    Object(X)[x: Int, c: Color, eq}\mp@subsup{}{}{+}:\mathrm{ Point }->\mathrm{ Bool, mv }\mp@subsup{v}{}{+}:\mathrm{ Int }->X
```

CPoint $2<$: Point, by the read-only annotation on $m v$.

- To define a subclass for CPoint2, one must override $m v$. Subtyping does not imply inheritability!
- The new code for $m v$ may be just super. $m v$ followed by a typecase.

```
cPointClass2 : Class(CPoint2) \triangleq
    subclass of pointClass: Class(Point)
    with (self: CPoint2)
        c=black
    override
    eq = fun(other: Point) ... end,
    mv= fun(dx: Int)
            typecase super.mv(dx)
            when (res: CPoint2) res
            else ... (error)
            end
                end
end
```

- But typecase is no longer needed after a color point is moved:

```
cPoint2:CPoint2 \triangleq new cPoint2Class
movedColor 2:Color \triangleq cPoint2.mv(1).c
```

- By switching from CPoint to CPoint2 we have shifted typecase from the code that uses color points to the code that creates them.
- This shift may be attractive, for example because it may help in localizing the use of typecase.
- The rules of $\mathrm{O}-1$ are based on the following judgments:

Judgments

$E \vdash \diamond$	environment E is well-formed
$E \vdash A$	A is a well-formed type in E
$E \vdash A<: B$	A is a subtype of B in E
$E \vdash \cup A<: v^{\prime} B$	A is a subtype of B in E, with variance annotations v and v '
$E \vdash a: A$	a has type A in E

- The rules for environments are standard:

Environments

(Env \varnothing)	(Env $X<$:)	(Env x)
	$E \vdash A \quad X \notin \operatorname{dom}(E)$	$E \vdash A \quad x \notin \operatorname{dom}(E)$
$\overline{\varnothing \vdash}$	$E, X<: A \vdash \diamond$	$E, x: A \vdash \diamond$

Type Formation Rules

Types

(Type X) $E^{\prime}, X<: A, E^{\prime \prime} \vdash \diamond$	(Type Top) $E^{\prime}, X<: A, E^{\prime \prime} \vdash X$

(Type Object) $\left(l_{i}\right.$ distinct, $\left.v_{i} \in\left\{{ }^{\mathrm{O}-{ }^{-}}{ }^{+}\right\}\right)$
(Type Class) (where $\left.A \equiv \operatorname{Object}(X)\left[l_{i} \mathrm{v}_{i}: B_{i}\{X\}^{i \in 1 . . n}\right]\right)$
$\frac{E, X<: \mathbf{T o p} \vdash B_{i} \quad \forall i \in 1 . . n}{E \vdash \operatorname{Object}(X)\left[l_{i} \cup_{i}: B_{i}{ }^{i \in 1 . . n}\right]}$ $E \vdash A$
$E \vdash \operatorname{Class}(A)$

Subtyping Rules

- Note that there is no rule for subtyping class types.

Subtyping

Program Typing Rules

Terms

(Val Subsumption)	
$E \vdash a: A \quad E \vdash A<: B$	(Val $x)$ $E \vdash a: B$

(Val Object) $\quad\left(\right.$ where $\left.A \equiv \operatorname{Object}(X)\left[l_{i} \mathrm{v}_{i}: B_{i}\{X\}^{i \in 1 . . n}\right]\right)$
$\frac{E, x: A \vdash b_{i}: B_{i}\{A\} \quad \forall i \in 1 . . n}{E \vdash \operatorname{object}(x: A) l_{i}=b_{i}{ }^{i \in 1 . . n} \text { end }: A}$

$$
\begin{aligned}
& \text { (Val Select) } \quad\left(\text { where } A \equiv \boldsymbol{O b j e c t}(X)\left[l_{i} \mathrm{v}_{i}: B_{i}\{X\}^{i \in 1 . . n}\right]\right) \\
& E \vdash a: \\
& \text { A } \quad v_{j} \in\left\{{ }^{0}{ }^{+}\right\} \quad j \in 1 . . n \\
& E \vdash a . l_{j}: B_{j}\{A\} \\
& \text { (Val Update) } \quad\left(\text { where } A \equiv \operatorname{Object}(X)\left[l_{i} \mathrm{v}_{i}: B_{i}\{X\}^{i \in 1 . . n}\right]\right) \\
& E \vdash a: A \quad E \vdash b: B_{j}\{A\} \quad v_{j} \in\left\{{ }^{0},\right. \\
& \text { \} } j \in 1 . . n \\
& E \vdash a . l_{j}:=b: A \\
& \text { (Val Method Update) } \quad\left(\text { where } A \equiv \operatorname{Object}(X)\left[l_{i} \mathrm{v}_{i}: B_{i}\{X\}{ }^{i \in 1 . . n}\right]\right) \\
& E \vdash a . l_{j}:=\operatorname{method}(x: A) b \text { end }: A
\end{aligned}
$$

```
(Val New)
E\vdashc:Class(A)
    E\vdashnew c:A
```

(Val Root)

$$
E \vdash \diamond
$$

```
E\vdash root : Class(Object(X)[])
```

(Val Class Select) (where $\left.A \equiv \operatorname{Object}(X)\left[l_{i} \mathrm{v}_{i}: B_{i}\{X\}{ }^{i \in 1 . . n}\right]\right)$
$E \vdash a: A \quad E \vdash c: \operatorname{Class}(A) \quad j \in 1 . . n$

$$
E \vdash c^{\wedge} l_{j}(a): B_{j}\{A\}
$$

(Val Typecase)

$$
E \vdash a: A, \quad E, x: A \vdash b_{1}: D \quad E \vdash b_{2}: D
$$

$$
E \vdash \text { typecase } a \text { when }(x: A) b_{1} \text { else } b_{2} \text { end }: D
$$

```
(Val Subclass) (where \(A \equiv \boldsymbol{O b j e c t}(X)\left[l_{i} \mathrm{v}_{i}: B_{i}\{X\}^{i \in 1 . . n+m}\right], A^{\prime} \equiv \boldsymbol{O b j e c t}\left(X^{\prime}\right)\left[l_{i} \mathrm{v}_{i}{ }^{\prime}: B_{i}{ }^{\prime}\left\{X^{\prime}\right\}^{i \in 1 . . n}\right]\),
    Ovrœ1..n)
        \(E \vdash c^{\prime}: \operatorname{Class}\left(A^{\prime}\right) \quad E \vdash A<: A^{\prime}\)
        \(E \vdash B_{i},\left\{A A^{\prime}\right\}<: B_{i}\{A\} \quad \forall i \in 1 . . n-O v r\)
        \(E, x: A \vdash b_{i}: B_{i}\{A\} \quad \forall i \in O v r \cup n+1 . . n+m\)
    \(E \vdash\) subclass of \(c^{\prime}: \operatorname{Class}\left(A^{\prime}\right)\) with \((x: A) l_{i}=b_{i}{ }^{i \in n^{+1 . . n+m}}\) override \(l_{i}=b_{i}{ }^{i \in O v r}\) end :
    Class(A)
```

- A is the object type for the subclass.
- A^{\prime} is the object type for the superclass.
- Ovr is the set of indices of overridden methods.
- $E \vdash A<: A$ ' The "class rule", means that:
"type generated by subclass $<$: type generated by superclass" Allows "method specialiazation" $l_{i}^{+}: B_{i}<: l_{i}^{+}: B_{i}$ ' for $i \in O v r$
- $E \vdash B_{i}^{\prime}\left\{\left\{A^{\prime}\right\}<: B_{i}\{A\}\right.$ Toghether with $A<: A^{\prime}$ requires type invariance for an inherited method. If this condition does not hold, the method must be overridden.
- $E, x: A \vdash b_{i}: B_{i}\{A\}$ Checking the bodies of overridden and additional methods.

Translation

- We give a translation into a functional calculus (with all the features described earlier).
- A similar translation could be given into an appropriate imperative calculus.
- At the level of types, the translation is simple.
\sim We write $\varangle A \rrbracket$ for the translation of A.
\sim We map an object type $\operatorname{Object}(X)\left[l_{i} \cup_{i}: B_{i}{ }^{i \in 1 . n}\right]$ to a recursive object type $\left.\mu(X)\left[l_{i} \mathrm{v}_{i}: \boxtimes B_{i}\right\rangle^{i \in 1 . . n}\right]$.
\sim We map a class type $\left.\operatorname{Class}\left(\boldsymbol{O b j e c t}(X)\left[l_{i} \mathrm{v}_{i}: B_{i}\{X\}\right\}^{i \in 1 . . n}\right]\right)$ to an object type that contains components for pre-methods and a new component.

Translation of Types

Translation of $\mathbf{O}-1$ types

```
|X|}\triangleq
《Top》\triangleq Top
|Object(X)[\mp@subsup{l}{i}{}\mp@subsup{\textrm{v}}{i}{}:\mp@subsup{B}{i}{}\mp@subsup{}{}{i\in1..n}]|\triangleq\mu(X)[\mp@subsup{l}{i}{}\mp@subsup{\textrm{v}}{i}{}:\\mp@subsup{B}{i}{}|\mp@subsup{|}{}{i\in1..n}]
```



```
    where }A\equiv\operatorname{Object}(X)[\mp@subsup{l}{i}{}\mp@subsup{\nu}{i}{}:\mp@subsup{B}{i}{}{X},\mp@subsup{}{}{i\in1..n}
```

Translation of $\mathrm{O}-1$ environments

```
|\phi| \triangleq \varnothing
|E,X<:A》\triangleq |E\, X<:\A》
|E,x:A》\triangleq |E|, x:\A\
```


Translation of Programs

- Officially, the translation is guided by the type structure.
- Most of the clauses are straightforward.
- A class is mapped to an object with a collection of premethods plus a new method.
- new c is interpreted as an invocation of the new method of $\boxtimes c \rrbracket$.
(Simplified) Translation of $\mathbf{O} \mathbf{- 1}$ terms

$$
\begin{aligned}
& \langle x\rangle \triangleq x \\
& \text { 《object } \left.\left.(x: A) l_{i}=b_{i}{ }^{i \in 1 . . n} \text { end }\right\rangle \triangleq\left[l_{i}=\varsigma(x: \varangle A\rangle\right)\left\langle b_{i}\right\rangle^{i \in 1 . . n}\right] \\
& \| a . l\rangle \triangleq \| a\rangle . l \\
& \varangle a . l:=b\rangle \triangleq \varangle a\rangle . l:=\| b\rangle \\
& \text { «a.l:= method }(x: A) b \text { end }\rangle \triangleq\langle a\rangle . l \leqslant \varsigma(x: \boxtimes A \nabla)\langle b\rangle
\end{aligned}
$$

```
|new c|\triangleq|c|.new
|root\rangle\triangleq [new=[]]
|subclass of c':Class(A') with(x:A) l=\mp@subsup{b}{i}{\prime}}\mp@subsup{}{i\inn+1..n+m}{0}\mathrm{ override }\mp@subsup{l}{i}{}=\mp@subsup{b}{i}{}\mp@subsup{}{}{i\inOvr}\mathrm{ end》』
    [new=\zeta(z:\\mathbf{Class}(A)\rrbracket)[\mp@subsup{l}{i}{}=\varsigma(s:\A\)z.l}\mp@subsup{l}{i}{}(s)\mp@subsup{}{}{i\in1..n+m}]
    l}=|\mp@subsup{c}{}{\prime}\.\mp@subsup{l}{i}{\primei\in1..n-Ovr}
    l}=\lambda(x:\A|)《\mp@subsup{b}{i}{}|\,i\inOv\curvearrowleft~n+1..n+m
|c^l(a)|\triangleq|c|.l(|a|)
|typecase a when (x:A)\mp@subsup{b}{1}{}\mathrm{ else }\mp@subsup{b}{2}{}\mathrm{ end }\rangle\triangleq typecase }\langlea||(x:\A|)|\mp@subsup{b}{1}{}\rangle||\mp@subsup{b}{2}{}
```

－For a class subclass of $c^{\prime} \ldots$ end，the collection of pre－methods consists of the pre－methods of c＇that are not overridden，plus all the pre－methods given explicitly．
－The new method assembles the pre－methods into an object；new c is interpreted as an invo－ cation of the new method of $\langle c\rangle$ ．
－The construct $c^{\wedge} l(a)$ is interpreted as the extraction and the application of a pre－method．

- If $\mathrm{E} \vdash \mathrm{J}$ is valid in $\mathrm{O}-1$, then $\boxtimes \mathrm{E} \vdash \mathrm{J} \rrbracket$ is valid in the object calculus.
- The object subtyping rule relies on the following rule for recursive types:

```
(Sub Rec')
E\vdash\mu(X)A{X}\quadE\vdash\mu(Y)B{Y}\quadE,X<:\mu(Y)B{Y}\vdashA{X}<:B{\mu(Y)B{Y}}
    E\vdash\mu(X)A{X}<: }\mu(Y)B{Y
```

- The most interesting case is for subclass. We need to check:

```
|subclass of c':Class(A') with(x:A) l= l=\mp@subsup{b}{i}{}}\mp@subsup{}{}{i\inn+1..n+m}\mathrm{ override }\mp@subsup{l}{i}{}=\mp@subsup{b}{i}{}\mp@subsup{}{}{i\inOvr}\mathrm{ end》
: \Class(A)|
```


That is:

$$
\begin{aligned}
& {[\text { new }=\varsigma(z: 《 \operatorname{Class}(A)\rangle)\left[l_{i}=\varsigma(s: \varangle A \rrbracket) z . l_{i}(s)^{i \in 1 . . n+m}\right] \text {, }} \\
& \left.l_{i}=\| c^{\prime}\right\rangle . l_{i}^{i \in 1 . . n-O v r}, \\
& \left.l_{i}=\lambda(x: \boxtimes A \rrbracket) \varangle b_{i} \|^{i \in O v r \cup n+1 . . n+m}\right] \\
& \left.:\left[\text { new }^{+}: \varangle A \rrbracket, l_{i}^{+}: \varangle A \rrbracket \rightarrow\left\langle B_{i} \nabla\{\varangle A\rangle\right\}\right\}^{i \in 1 . . n}\right]
\end{aligned}
$$

\sim new checks by computation.
$\sim i \in O v r \cup n+1 . . n+m$ checks by one the (Val Subclass) hypotheses.
$\sim i \in 1 . . n-O v r$ (inherited methods) checks as follows:
$\left\|c^{\prime} \rrbracket:\right\| \operatorname{Class}\left(A^{\prime}\right) \rrbracket$ by hypothesis. Hence:
$\left\langle c^{\prime}\right\rangle \cdot l_{i}:\left\langle A^{\prime}\right\rangle \rightarrow\left\langle B_{i}^{\prime}\right\rangle\left\{\left\langle A^{\prime}\right\rangle\right\}$. Moreover:
$\left.\left.\left.\left.\varangle A^{\prime}\right\rangle \rightarrow\left\langle B_{i}{ }^{\prime}\right\rangle\left\{\left\langle A^{\prime}\right\rangle\right\}\right\}<: ~ \varangle A\right\rangle \rightarrow\left\langle B_{i}\right\rangle\{\langle A\rangle\rangle\right\}$ directly from hypotheses. So:
$\left\langle c^{\prime}\right\rangle . l_{i}:\{A\rangle \rightarrow\left\langle B_{i}\right\rangle\{\langle A \downarrow\rangle\}$ by subsumption.

Usefulness of the Translation

- The translation validates the typing rules of $\mathrm{O}-1$.

If $\mathrm{E} \vdash \mathrm{J}$ is valid in $\mathrm{O}-1$, then $\varangle \mathrm{E} \vdash \mathrm{J} \rrbracket$ is valid in the object calculus.

- The translation served as an important guide in finding sound typing rules for $\mathrm{O}-1$, and for "tweaking" them to make them both simpler and more general.
- In particular, typing rules for subclasses are so inherently complex that it is difficult to "guess" them correctly without the aid of some interpretation.
- Thus, we have succeeded in using object calculi as a platform for explaining a relatively rich object-oriented language and for validating its type rules.

POLYMORPHISM

Polymorphic values have (or can be instantiated to have) more than one type.
In particular, polymorphic functions can be applied to arguments of more than one type.
There are several kinds of polymorphism:

- Ad hoc polymorphism, as for the functions + and print.
- Subtype (or inclusion) polymorphism, as for operations on objects.
- Parametric polymorphism, as for the functions identity and append.
(See Strachey.)

Ad Hoc Polymorphism

Ad hoc polymorphism arises in many forms in practical languages.

- Functions like + and print run different code and behave in fairly different ways depending on the types of their arguments.
The notations + and print are overloaded.
- Ad hoc polymorphism is not "true" polymorphism in that the overloading is purely syntactic.
(E.g., it will not enhance the computational power of a language.)
- Overloading is sometimes combined, and confused, with implicit type coercions.
- Because of its ad hoc nature, there is not much general we can say about ad hoc polymorphism (except "be careful").

Subtype (or Inclusion) Polymorphism

Much as with ad hoc polymorphism, the invocation of a method on an object may run different code depending on the type of the object.

However,

- the polymorphism of languages with subtyping is systematic, and
- code that manipulates objects is uniform, although objects of different types may have different memory requirements.

Parametric polymorphism is usually considered the cleanest and purest form of polymorphism.

- Parametrically polymorphic code uses no type information.

This uniformity implies that parametrically polymorphic code often works with an extra level of indirection, or "boxing".

- Parametric polymorphism has a rich theory.
(See Girard, Reynolds, many others.)

Parametric polymorphism appears in a few languages:

- languages with generic functions,
- CLU,
- ML and its relatives,
- languages for logical proof systems.

Typically, these languages limit parametric polymorphism:

- it is sometimes eliminated at compile time or link time,
- it is usually less general than in theoretical presentations.

Some Advantages and Disadvantages of Parametric Polymorphism

Advantages:
~ less code duplication,
\sim stronger type information,
\sim in some contexts, more computational power.
Disadvantages:
~ run-time cost of extra indirections,
\sim complexity (for example, in combination with side-effects).
These disadvantages have in part been addressed in recent research.

Expressing Parametric Polymorphism

In the general case, parametric polymorphism can be expressed through universal type quantifiers.

For example:

$$
\begin{aligned}
& \forall(X) X \rightarrow X \\
& \forall(X) \forall(Y) X \times Y \rightarrow Y \times X \\
& \forall(X) \operatorname{List}(X) \rightarrow \operatorname{List}(X) \\
& \forall(X) X \\
& \forall(X)(X \rightarrow X \quad) \rightarrow(X \rightarrow X)
\end{aligned}
$$

the type of the identity function the type of a permutation function the type of the reverse function
a "very small" type the type of Church numerals

Writing Polymorphic Values

Type parameterization permits writing polymorphic expressions that have types with universal quantifiers.

For example:

$$
\begin{array}{ll}
\text { id }: \forall(X) X \rightarrow X \triangleq \lambda(X) \lambda(x: X) x & \text { the identity function } \\
\\
\begin{array}{ll}
\text { id }(\text { Int }): \text { Int } \rightarrow \text { Int } & \text { its instantiation to the type Int } \\
\text { id(Int })(3): \text { Int } & \text { its application to an integer }
\end{array} \\
\begin{array}{ll}
\operatorname{id}(\forall(X) X \rightarrow X):(\forall(X) X \rightarrow X) \rightarrow(\forall(X) X \rightarrow X) \\
\operatorname{id}(\forall(X) X \rightarrow X)(\text { id }): \forall(X) X \rightarrow X &
\end{array}
\end{array}
$$

Another example:

$$
\begin{aligned}
& p: \forall(X) \forall(Y) X \times Y \rightarrow Y \times X \triangleq \lambda(X) \lambda(Y) \lambda(u: X \times Y)\langle\operatorname{snd}(u), f s t(u)\rangle \\
& p(\text { Int }): \forall(Y) \text { Int } \times Y \rightarrow Y \times \text { Int } \\
& p(\text { Int })(\text { Bool }): \text { In } x \times \text { Bool } \rightarrow \text { Bool } \times \text { Int } \\
& p(\text { Int })(\text { Bool })(\langle 3, \text { true }\rangle): \text { Bool } \times \text { Int }
\end{aligned}
$$

Writing Polymorphic Values: Definitions

- The notations $b\{X\}$ and $B\{X\}$ show the free occurrences of X in b and in B, respectively.
- $b\{A\}$ stands for $b\{X \leftarrow A\}$ and $B\{A\}$ stands for $B\{X \leftarrow A\}$ when X is clear from context.
- A term $\lambda(X) b\{X\}$ represents a term b parameterized with respect to a type variable X; this is a type abstraction.
- Correspondingly, a term $a(A)$ is the application of a term a to a type A; this is a type application.
- $b\{A\}$ is an instantiation of the type abstraction $\lambda(X) b\{X\}$ for a specific type A. It is the result of a type application $(\lambda(X) b\{X\})(A)$.
- $\forall(X) B\{X\}$ is the type of those type abstractions $\lambda(X) b\{X\}$ that for any type A produce a result $b\{A\}$ of type $B\{A\}$.

(Type All)	(Val Fun2)	(Val Appl2)	
$E, X \vdash B$	$E, X \vdash b: B$	$E \vdash b: \forall(X) B\{X\}$	$E \vdash$
		A	
$E \vdash \forall(X) B$	$\frac{A \vdash \lambda(X) b: \forall(X) B}{}$	$E \vdash b(A): B\{A\}$	

- (Type All) forms a quantified type $\forall(X) B$ in E, provided that B is well-formed in E extended with X.
- (Val Fun2) constructs a type abstraction $\lambda(X) b$ of type $\forall(X) B$, provided that the body b has type B for an arbitrary type parameter X (which may occur in b and B).
- (Val Appl2) applies such a type abstraction to a type A.
- These rules should be complemented with standard rules for forming environments with type variables.

Intuitively, we may want to define the meaning of types inductively:

```
Int = the integers
A\timesB = the pairs of A's and B's
A->B = the functions from A to B
\forall(X)A = the intersection of }A\mathrm{ for all possible values of }
```

but this last clause assumes that we know in advance the set of sets over which X ranges!

- Reynolds first conjectured that this could be made to work, but later proved that substantial restrictions and changes are needed.
- Much research on the semantics of polymorphism followed; e.g.:

$$
\begin{aligned}
& \text { Int }=\text { the integers, plus an undefined value } \\
& A \times B=\text { the pairs of } A \text { 's and } B \text { 's } \\
& A \rightarrow B=\text { the "continuous" functions from } A \text { to } B \\
& \forall(X) A=\text { the intersection of } A \text { for all "ideals" } X
\end{aligned}
$$

ML-Style Polymorphism

In ML, parametric polymorphism is somewhat restricted:

- Type schemes are distinguished from ordinary, simple types (without quantifiers).

Two-level syntax of types

$A, B::=$	ordinary types
X	type variables
Int	base types
$A \rightarrow B$	function types
\ldots	
$C::=$	type schemes
A	ordinary types
$\forall(X) C$	quantified types

- Type quantification ranges over simple types, so $\lambda(X) b$ cannot be instantiated with a type scheme.

ML polymorphism is said to be predicative.
Predicative polymorphism is simpler semantically, and also has some practical appeal:

- Type instantiations and parameterizations need not be written explicitly in programs, but can be inferred.
- Type inference is decidable, and efficient in practice.

```
let r = ref[] in
    r:= [1];
    if head(!r)
        then ...
        else ...
        r is a ref to an empty list: }\forall(X)\operatorname{Ref}\operatorname{List}(X
    r is a ref to an integer list: Ref List(Int)
    but r is used as a ref to a boolean list!
```

- ML-style polymorphism often has problematic interactions with imperative features.
- These interactions have led to significant restrictions and to sophisticated type systems.
- In contrast, explicit polymorphism is more easily combined with imperative features.

The requirement for a function to work with an arbitrary parameter X is sometimes relaxed.

- Suppose that we want to write a filter function for a type $\operatorname{List}(X)$.

We would like to assume a boolean test operation on X.

- One solution is to let the filter function take the test as argument.

$$
\text { filter : } \forall(X)(X \rightarrow \text { Bool }) \rightarrow(\operatorname{List}(X) \rightarrow \operatorname{List}(X))
$$

- Another solution is to restrict the kind of X that can be passed, through a bound or constraint.
filter: $\forall(X$ with method test $:$ Bool $)(\operatorname{List}(X) \rightarrow$ List $(X))$
This idea leads to various forms of bounded polymorphism (as in CLU, Theta, Haskell, Mod-ula-3).
There is debate about their relative merits and expressiveness.

A Bounded Universal Quantifier

- We extend universally quantified types $\forall(X) B$ to bounded universally quantified types $\forall(X<: A) B$, where A is the bound on X.
- The bounded type abstraction $\lambda(X<: A) b\{X\}$ has type $\forall(X<: A) B\{X\}$ if, for any subtype A ' of A, the instantiation $b\left\{A^{\prime}\right\}$ has type $B\left\{A A^{\prime}\right\}$.

(Type All<:)	(Sub All)		
		E, X	
$E \vdash \forall(X<: A) B$	$E \vdash \forall(X<: A) B<: \forall\left(X<: A^{\prime}\right) B^{\prime}$		
(Val Fun2<:)		(Val Appl2<:)	
$E, X<: A \vdash b: B$		$E \vdash b: \forall(X<: A) B\{X\}$	$E \vdash A^{\prime}<: A$
$E \vdash \lambda(X<: A) b: \forall(X$	($<: A) B$	$E \vdash b\left(A^{\prime}\right)$	

(The subtyping relation is no longer decidable!)

Structural Update for Objects

When we combine bounded parametric polymorphism and objects, it is tempting to change the rule (Val Update) as follows:

$$
\begin{aligned}
& \text { (Val Structural Update) } \quad\left(\text { where } A \equiv\left[l_{i}: B_{i}{ }^{i \in 1 . . n}\right]\right) \\
& E \vdash a: C \quad E \vdash C<: A \quad E, x: C \vdash b: B_{j} \quad j \in 1 . . n \\
& E \vdash a . l_{j} \leqslant \varsigma(x: C) b: C
\end{aligned}
$$

The difference between (Val Update) and (Val Structural Update) can be seen when C is a type variable:

$$
\begin{gathered}
\lambda(C<:[l: N a t]) \lambda(a: C) \text { a.l:=3 }: \quad \forall(C<:[l: N a t]) C \rightarrow[l: N a t] \\
\text { via (Val Update }) \\
\lambda(C<:[l: N a t]) \lambda(a: C) \text { a.l:=3 }: \quad \forall(C<:[l: N a t]) C \rightarrow C \\
\text { via (Val Structural Update) }
\end{gathered}
$$

The new rule (Val Structural Update) appears intuitively sound.

- It implicitly relies on the invariance of object types, and on the assumption that every subtype of an object type is an object type.
- Such an assumption is quite easily realized in programming languages, and holds in formal systems such as ours.

But this assumption is false in standard denotational semantics where the subtype relation is simply the subset relation.

- In such semantics, $\forall(C<:[l: N a t]) C \rightarrow C$ contains only an identity function and its approximations.
- $\forall(C<:[l: N a t]) C \rightarrow C$ does not contain $\lambda(C<:[l: N a t]) \lambda(a: C)$ a.l: $=3$.

This difficulty suggests that one should proceed with caution.

Data Abstraction

Much like the universal quantifier gives parametric polymorphism, the existential quantifier gives a form of data abstraction.
The existentially quantified type $\exists(X) B\{X\}$ is the type of the pairs $\langle A, b\rangle$ where A is a type and b is a term of type $B \llbracket A\}$.

- The type $\exists(X) B\{X\}$ can be seen as an abstract data type with interface $B\{X\}$ and with representation type X.
- The pair $\langle A, b\rangle$ describes an element of the abstract data type with representation type A and implementation b.
(See Mitchell and Plotkin.)

For example, we may write the type:

$$
\exists(X)(\text { Int } \rightarrow X) \times(X \rightarrow \operatorname{Int}) \quad \text { the type of a "store" for an integer }
$$

An implementation of this type might be a pair of a sign bit and a natural number, an integer, or a natural number, for example.

A user of the implementation can access it only through the interface.

A Bounded Existential Quantifier

The existentially quantified type $\exists(X<: A) B\{X\}$ is the type of the pairs $\left\langle A^{\prime}, b\right\rangle$ where A^{\prime} is a subtype of A and b is a term of type $B\left\{A^{\prime}\right\}$.

- The type $\exists(X<: A) B\{X\}$ can be seen as a partially abstract data type with interface $B\{X\}$ and with representation type X known only to be a subtype of A.
- It is partially abstract in that it gives some information about the representation type, namely, a bound.
- The pair $\left\langle A^{\prime}, b\right\rangle$ describes an element of the partially abstract data type with representation type A^{\prime} and implementation b.

In order to be fully explicit, we write the pair $\left\langle A^{\prime}, b\right\rangle$ more verbosely:

```
pack }X<:A=A\mathrm{ ' with b{X}:B{X}
```

where $X<: A=A^{\prime}$ indicates that $X<: A$ and $X=A$ '.
An element c of type $\exists(X<: A) B\{X\}$ can be used in the construct:

```
open c as X<:A,x:B{X} in d{X,x}:D
```

where
$\sim d$ has access to the representation type X and the implementation x of c;
$\sim d$ produces a result of a type D that does not depend on X.
At evaluation time, if c is $\left\langle A^{\prime}, b\right\rangle$, then the result is $d\left\{A^{\prime}, b\right\}$ of type D.

For example, we may write:

$$
\begin{aligned}
& p: \exists(X<: I n t) X \times(X \rightarrow X) \triangleq \\
& \quad \text { pack } X<: \text { Int }=\text { Nat with }\left\langle 0, \text { succ }_{\text {Nat }}\right\rangle: X \times(X \rightarrow X) \\
& a: \text { Int } \triangleq \\
& \quad \text { open p as } X<: \text { Int }, x: X \times(X \rightarrow X) \text { in } \operatorname{snd}(x)(f s t(x)): \text { Int }
\end{aligned}
$$

and then $a=1$.

Rules for the Bounded Existential Quantifier

(Type Exists<:)	(Sub Exists)		
$E, X<: A \vdash B$		$\quad \frac{E \vdash A<: A, \quad E, X<: A \vdash B<: B^{\prime}}{E \vdash \exists(X<: A) B} \quad$	$E \vdash \exists(X<: A) B<: \exists\left(X<: A^{\prime}\right) B^{\prime}$
:---			

(Val Pack<:)

$$
E \vdash C<: A \quad E \vdash b\{C\}: B\{C\}
$$

$E \vdash$ pack $X<: A=C$ with $b\{X\}: B\{X\}: \exists(X<: A) B\{X\}$
(Val Open<:)
$E \vdash c: \exists(X<: A) B \quad E \vdash D \quad E, X<: A, x: B \vdash d: D$
$E \vdash$ open c as $X<: A, x: B$ in $d: D: D$

Objects, Parametric Polymorphism, and Data Albstraction

There have been some languages with reasonable, successful combinations of parametric polymorphism and data abstraction.

Less is known about how to add objects.

- Are objects redundant?
~ Objects provide a kind of polymorphism.
~ Objects provide a kind of data abstraction, too.
- How should objects interact with a module (or package) system?
(Cf. Modula-3 and Java.)
- Is type inference feasible for languages with both objects and parametric polymorphism?

There have been many proposals for object-oriented extensions to ML, and some for extensions of Java with parametric polymorphism.

Self Quantifier

Second-Order Calculi

Take a first-order object calculus with subtyping, and add bounded quantifiers:
Bounded universals: (contravariant in the bound)

$$
\begin{array}{lll}
E \vdash \forall(X<: A) B & \text { if } & E, X<: A \vdash B \\
E \vdash \forall(X<: A) B<: \forall\left(X<: A^{\prime}\right) B^{\prime} & \text { if } & E \vdash A^{\prime}<: A \text { and } E, X<: A^{\prime} \vdash B<: B^{\prime} \\
E \vdash \lambda(X<: A) b: \forall(X<: A) B & \text { if } & E, X<: A \vdash b: B \\
E \vdash b\left(A^{\prime}\right): B\left\{A^{\prime}\right\} & \text { if } & E \vdash b: \forall(X<: A) B\{X\} \text { and } E \vdash A^{\prime}<: A
\end{array}
$$

Bounded existentials: (covariant in the bound)

$$
\begin{array}{ll}
E \vdash \exists(X<: A) B & \text { if } \quad E, X<: A \vdash B \\
E \vdash \exists(X<: A) B<: \exists\left(X<: A^{\prime}\right) B, & \text { if } \quad E \vdash A<: A \\
E \vdash(\text { pack } X<: A=C, b\{X\}: B\{X\}): \exists(X<: A) B\{X\} \\
\quad \text { if } \quad E \vdash C<: A \text { and } E \vdash, X<: A \vdash B<: B \\
& E \vdash(\text { open } c \text { as } X<: A, x: B \text { in } d: D): D \\
\quad \text { if } E \vdash c: \exists(X<: A) B \text { and } E \vdash D \text { and } E, X<: A, x: B \vdash d: D
\end{array}
$$

Covariant Components

Suppose we have:

Point	$\triangleq[x, y:$ Real $]$
ColorPoint $<$: Point	$\triangleq[x, y:$ Real, $c:$ Color $]$
Circle	$\triangleq[$ center: Point, radius: Real $]$
ColorCircle	$\triangleq[$ center: ColorPoint, radius: Real $]$

Unfortunately, ColorCircle </: Circle, because of invariance. Now redefine:
Circle
$\triangleq \exists(X<:$ Point $)$ [center: X, radius: Real]
ColorCircle
$\triangleq \exists(X<$:ColorPoint $)$ [center: X, radius: Real]

Thus we gain ColorCircle $<$: Circle. But covariance in object types was supposed to be unsound, so we must have lost something.

We have lost the ability (roughly) to update the center component, since X is unknown. Therefore covariant components are (roughly) read-only components.

The center component can still be extracted out of the abstraction, by subsumption from X to ColorPoint.

Contravariant Components

There are techniques to obtain contravariant (write-only) components; but these are more complex. (A write-only component can still be read by its sibling methods.) Here is an overview.

$$
A \triangleq[l: B, \ldots] \quad \text { which we want contravariant in } B
$$

is transformed into:

$$
A^{\prime} \triangleq \ldots\left[l_{\text {upd }}: Y, l: B, \ldots\right] \quad \text { where } Y<:\left(A^{\prime} \rightarrow B\right) \rightarrow A^{\prime} \text { and } l_{\text {upd }} \text { updates } l
$$

A^{\prime} is still invariant in B, but any element of A^{\prime} can be subsumed into:

$$
A^{\prime \prime} \triangleq \ldots\left[l_{u p d}: Y, \ldots\right] \quad \text { contravariant in } B, \text { with } A^{\prime}<: A^{\prime \prime}
$$

The appropriate definitions are:

$$
\begin{aligned}
& A^{\prime} \triangleq \mu(X) \exists(Y<:(X \rightarrow B) \rightarrow X)\left[l_{u p d}: Y, l: B, \ldots\right] \\
& A^{\prime \prime} \triangleq \mu(X) \exists(Y<:(X \rightarrow B) \rightarrow X)\left[l_{u p d}: Y, \ldots\right]
\end{aligned}
$$

Then $o . l \leqslant \varsigma(s: A) b$ is simulated by a definable update $\left(o^{\prime}, l_{u p d}, \lambda\left(s: A^{\prime \prime}\right) b^{\prime \prime}\right)$ (i.e., roughly, o. $\left.l_{\text {upd }}(\lambda(s: A) b)\right)$ for appropriate transformations of $o: A$ into $o^{\prime}: A$ ' and b into $b^{\prime \prime}$.

Encodings based on object types alone may be undesirably invariant. Quantifiers can introduce the necessary degree of variance.

Variant product types can be define as:

$$
A \times^{\exists \exists} B \triangleq \exists(X<: A) \exists(Y<: B)[\text { sst }: X, \text { snd: } Y]
$$

With the property:

$$
A \times^{\exists \exists} B<: A^{\prime} \times^{\exists \exists} B^{\prime} \quad \text { if } A<: A^{\prime} \text { and } B<: B^{\prime}
$$

Similarly, but somewhat more surprisingly, we can obtain variant function types:

$$
A \rightarrow^{\forall \exists} B \triangleq \forall(X<: A) \exists(Y<: B)[\arg : X, \text { val: } Y]
$$

With the property:

$$
A \rightarrow{ }^{\forall \exists} B<: A^{\prime} \rightarrow{ }^{\forall \exists} B^{\prime} \quad \text { if } \quad A^{\prime}<: A \quad \text { and } B<: B^{\prime}
$$

Translation of the first-order λ-calculus with subtyping:

$$
\begin{aligned}
& \boxtimes A \rightarrow B \rrbracket \triangleq \forall(X<: \llbracket A \rrbracket) \exists(Y<: \llbracket B \rrbracket)[\arg : X, \text { val }: Y] \\
& \left\langle x_{A} \|_{\rho} \triangleq \rho(x)\right. \\
& \left.\varangle b_{A \rightarrow B}\left(a_{A}\right)\right\rangle_{\rho} \triangleq \\
& \text { open } \varangle b\rangle \rho(\mathbb{A}\rangle) \text { as } Y<: \varangle B\rangle, y:[\arg : \varangle A\rangle \text {, val: } Y] \\
& \text { in } \left.\left.(y \cdot \arg \leqslant \varsigma(x:[\arg : \varangle A\rangle, v a l: Y]) \varangle a \rrbracket_{\rho}\right) \text {.val for } Y, y, x \notin F V(\varangle a\rangle_{\rho}\right) \\
& \varangle \lambda(x: A) b_{B} \|_{\rho} \triangleq \\
& \lambda(X<: \llbracket A \rrbracket) \\
& \text { (pack } Y<: \backslash B \rrbracket=\langle B\rangle \text {, } \\
& {[\arg =\varsigma(x:[\arg : X, \text { val:} \| B\rangle]) x . \arg ,} \\
& \text { val } \left.=\varsigma(x:[\arg : X, \text { val: } \mathbb{B} \nabla]) \varangle b\rangle_{\rho}\{x \leftarrow x, \arg \}\right] \\
& \text { : }[\arg : X, \text { val:Y]) }
\end{aligned}
$$

Self Types

Recall that $\mu(X) B$ failed to give some expect subtyping behavior. We are now looking for a different quantifier, $\zeta(X) B$, with the expected behavior.
$P_{1} \triangleq \zeta($ Self $)\left[x: I n t, m v _x: I n t \rightarrow\right.$ Self $]$
$P_{2} \triangleq \zeta($ Self $)\left[x, y: I n t, m v _x, m v _y: I n t \rightarrow\right.$ Self $]$

Let $\quad P_{1}(X) \triangleq[x:$ Int, mv_x:Int $\rightarrow X]$
with $\quad P_{1}\left(P_{1}\right) \equiv\left[x: \operatorname{Int}, m v_{-} x: \operatorname{Int} \rightarrow P_{1}\right]$
movable 1-D points movable 2-D points
be the \boldsymbol{X}-unfolding of P_{1} the self-unfolding of P_{1}.

Some properties we expect for $\zeta(X) B$, are:

Subtyping.	E.g.:	$P_{2}<: P_{1}$
Creation (folding)	E.g.:	from $P_{1}\left(P_{1}\right)$ to P_{1}
Selection (unfolding)	E.g.:	$p_{1} . m v_{1} x:$ Int $\rightarrow P_{1}$

Update (refolding)
E.g.: from $p_{1}: P_{1}$ and a "Self-parametric" method such that for all $Y<: P_{1}$ and $x: P_{1}(Y)$ gives Int $\rightarrow Y$,
produce a new P_{1} with an updated $m \nu_{-} x$

The $\varsigma(X) B$ Quantifier

It turns out that Self can be formalized via a general quantifier, i.e., independently of object types. Define:

$$
\varsigma(X) B \triangleq \mu(Y) \exists(X<: Y) B(Y \text { not occurring in } B)
$$

The intuition is the following. Take $A<: A^{\prime}$ with $A_{\downarrow}^{\prime} A^{\prime}$:

Want:	$\quad[l: A, m: C]$	$<:$	
Do:	$\exists(X<: A)$	$[l: X, m: C]$	$<:$
D	$\exists\left(X<: A^{\prime}\right)$	$[l: X]$	

Want:
$\mu(Y)[l: Y, m: C]<:$

$$
\begin{equation*}
\mu(Y) \quad[l: Y] \tag{fails}
\end{equation*}
$$

$$
\begin{equation*}
\text { Do: } \quad \mu(Y) \exists(X<: Y)[l: X, m: C]<: \quad \mu(Y) \exists(X<: Y) \quad[l: X] \tag{holds}
\end{equation*}
$$

This way we can have, e.g. $P_{2}<: P_{1}$. We achieve subtyping at the cost of making certain fields covariant and, hence, essentially read-only. This suggests, in particular, that we will have difficulties in updating methods that return self.

(Note)

$\zeta(X) B$ satisfies the subtyping property:

$$
E \vdash \varsigma(X) B<: \varsigma(X) B^{\prime} \quad \text { if } \quad E, X \vdash B<: B^{\prime}
$$

even though we do not have, in general, $\mu(X) B<$: $\mu(X) B^{\prime}$.

$$
\begin{aligned}
& E, X \vdash B<: B^{\prime} \\
& \Rightarrow E, Z, Y<: Z, X<: Y \vdash B<: B^{\prime} \\
& \Rightarrow E, Z, Y<: Z \vdash \exists(X<: Y) B<: \exists(X<: Z) B^{\prime} \\
& \Rightarrow E \vdash \mu(Y) \exists(X<: Y) B<: \mu(Z) \exists(X<: Z) B^{\prime}
\end{aligned}
$$

by weakening, for fresh Y, Z
by (Sub Exists)
by (Sub Rec)

Building Elements of Type $\varsigma(X) B$

Modulo an unfolding, $\varsigma(X) B \equiv \mu(Y) \exists(X<: Y) B$ (for Y not in B) is the same as:

$$
\exists(X<: \varsigma(X) B) B
$$

An element of $\exists(X<: \zeta(X) B) B$ is a pair $\langle C, c\rangle$ consisting of a subtype C of $\zeta(X) B\{X\}$ and an element c of $B\{C\}$.

We denote by

$$
\operatorname{wrap}\langle C, c\rangle
$$

the injection of the pair $\langle C, c\rangle$ from $\exists(X<: \varsigma(X) B) B$ into $\varsigma(X) B$.

For example, suppose we have an element x of type $\zeta(X) X$. Then, choosing $\zeta(X) X$ as the required subtype of $\zeta(X) X$, we obtain $\operatorname{wrap}\langle\zeta(X) X, x\rangle: \zeta(X) X$. Therefore we can construct:

$$
\mu(x) \operatorname{wrap}\langle\zeta(X) X, x\rangle: \zeta(X) X
$$

The fully explicit version of $\operatorname{wrap}\langle C, c\rangle$ is written:

$$
\operatorname{wrap}(X<: \zeta(X) B=C) c \quad(\text { or } \operatorname{wrap}(X=\zeta(X) B) c \text { for } C \equiv \zeta(X) B)
$$

and it binds the name X to C in c.

Building a Memory Cell

Suppose we want to build a memory cell $m: M$ with a read operation $r d: N a t$ and a write operation $w r: N a t \rightarrow M$. We can define:

$$
M \triangleq \zeta(\text { Self })[r d: N a t, w r: N a t \rightarrow \text { Self }]
$$

where the $w r$ method should use its argument to update the $r d$ field. For convenience, we adopt the following abbreviation to unfold a Self quantifier:

$$
A(C) \triangleq B\{C\} \quad \text { whenever } \quad A \equiv \zeta(X) B\{X\} \text { and } C<: A
$$

For example we have $M(M) \equiv[r d: N a t, w r: N a t \rightarrow M]$.
Then we can define:

$$
\begin{aligned}
m: M \triangleq \quad & w r a p\langle M \\
& \quad r d=0 \\
& w r=\varsigma(s: M(M)) \lambda(n: N a t) \operatorname{wrap}\langle M, \text { s.rd:=n}\rangle]\rangle
\end{aligned}
$$

Derived Rules for $\varsigma(X) \boldsymbol{B}$

Formally, we can define an introduction construct ($\operatorname{wrap}(Y<: A=C) b\{Y\}$) and an elimination construct (use c as $Y<: A, y: B\{Y\}$ in $d: D$), for $\zeta(X) B$, such that:

```
(Type Self) (Sub Self)
    E,X<:Top\vdashB
```

(Val Wrap) (where $A \equiv S(X) B\{X\})$			
$E \vdash C<: A$	$E \vdash b\{C\}: B\{C\}$	\quad	(Val Use) (where $A \equiv S(X) B\{X\})$
:---:			
$E \vdash \operatorname{wrap}(Y<: A=C) b\{Y\}: A$	$\quad \frac{E \vdash c: A \quad E \vdash D \quad E, Y<: A, y: B\{Y\} \vdash d: D}{E \vdash \text { use c as } Y<: A, y: B\{Y\} \text { in d:D:D}}$		

(Plus the derived equational theory.)

Define, for $A \equiv \zeta(X) B\{X\}, C<: A$, and $b\{C\}: B\{C\}$:

$$
\operatorname{wrap}(Y<: A=C) b\{Y\} \triangleq \operatorname{fold}(A,(\operatorname{pack} Y<: A=C, b\{Y\}: B\{Y\}))
$$

and, for $c: A$ and $d\{Y, y\}: D$, where Y does not occur in D :

$$
\begin{aligned}
& (\text { use } c \text { as } Y<: A, y: B\{Y\} \text { in } d\{Y, y\}: D) \triangleq \\
& \quad(\text { open unfold }(c) \text { as } Y<: A, y: B\{Y\} \text { in } d\{Y, y\}: D)
\end{aligned}
$$

The ς Ob Calculus

At this point we may extract a minimal second-order object calculus. We discard the universal and existential quantifiers, and recursion, and we retain the ς quantifier and the object types:

$$
\begin{array}{cl}
A, B \quad:= & a, b
\end{array}::=
$$

Now that we have a general formulation of $\varsigma(X) B$, we can go back and consider its application to object types. We consider types of the special form:

$$
\zeta\left(X^{+}\right)\left[l_{i}: B_{i}\{X\}^{i \in 1 . . n}\right] \triangleq \zeta(X)\left[l_{i}: B_{i}\{X\}^{i \in 1 . . n}\right] \quad \text { when the } B_{i} \text { are covariant in } X
$$

Here, $\varsigma\left(X^{+}\right)\left[l_{i}: B_{i}\{X\}^{i \in 1 . . n}\right]$ are called ς-object types. Our goal is to discover their derived typing rules.

- The covariance requirement is necessary to get selection to work. An example of violation of covariance are "binary methods" such as:

$$
\zeta(\text { Self })[\ldots, \text { eq: Self } \rightarrow \text { Bool, } \ldots]
$$

(It turns out that p.eq cannot be given a type, because a contravariant Self occurrence is not able to escape the scope of the existential quantifier. A covariant Self occurrence can be eliminated by subsumption into the object type.)

- The covariance requirements rules out "nested" Self types, because of the invariance of object type components $\left(\varsigma(Y)\left[l_{2}: X\right]\right.$ is invariant in $\left.X\right)$:

$$
\varsigma(X)\left[l_{1}: \varsigma(Y)\left[l_{2}: X\right]\right]
$$

- These restrictions are common in languages that admit Self types.

Derived Rules for ς-Object Types

We have essentially the same rules for subtyping and construction. But now, the generic "use" elimination construct of ς-quantifiers can be specialized to obtain selection and update:

```
(Val ¢Select) (where A\equiv\zeta(X)[\mp@subsup{l}{i}{}:\mp@subsup{B}{i}{}{\mp@subsup{X}{}{+}\mp@subsup{}}{}{i\in1..n}])
E\vdasha:A j\in1..n
    E\vdash\mp@subsup{a}{A}{}\cdot\mp@subsup{l}{j}{}:\mp@subsup{B}{j}{}{{A}
```


where $\operatorname{wrap}(Y<: A, x: A(Y)) b$ is a "Self-parametric" method that must produce for every $Y<: A$ and $x: A(Y)$ (where x is self) a result of type $B_{j}\left\{Y^{+}\right\}$, parametrically in Y. In particular, it is unsound for the method to produce a result of type $B_{j}\{A\}$.
Hence the (already known) notion of Self-parametric methods falls out naturally in this framework, as a condition for a derived rule.

Assume $a: A$ with $A \equiv \zeta\left(X^{+}\right)\left[l_{i}: B_{i}\{X\}^{i \in 1 . . n}\right]$ and $A(X) \equiv\left[l_{i}: B_{i}\left\{X^{+}\right\}^{i \in 1 . . n}\right]$, and set, with some overloading of notation:

$$
\begin{aligned}
& a_{1} l_{j} \triangleq \\
&\left(\text { use a as } Z<: A, y: A(Z) \text { in } y . l_{j}: B_{i}\left\{A^{+}\right\}\right) \\
& \text {a. } l_{j}=(Y<: A, y: A(Y)) \varsigma(x: A(Y)) b\{Y, y, x\} \triangleq \\
&\left(\text { use a as } Z<: A, y: A(Z) \text { in } w r a p(Y<: A=Z)\left(y . l_{j}=\varsigma(x: A(Y)) b\{Y, y, x\}\right): A\right)
\end{aligned}
$$

We can finally give a type for the object-oriented natural numbers:

$$
N_{\mathrm{Ob}} \triangleq \varsigma\left(\text { Self }{ }^{+}\right)[\text {succ:Self, case: } \forall(Z) Z \rightarrow(\text { Self } \rightarrow Z) \rightarrow Z]
$$

Note that the covariance restriction is respected.
The zero numeral can then be typed as follows:

```
\(z^{2} \mathrm{ero}_{\mathrm{Ob}}: N_{\mathrm{Ob}} \triangleq\)
    \(w r a p\left(S e l f=N_{\mathrm{Ob}}\right)\)
        \([\) case \(=\lambda(Z) \lambda(z: Z) \lambda(f:\) Self \(\rightarrow Z) z\),
        succ \(=\varsigma\left(n: N_{\mathrm{Ob}}(\right.\) Self \(\left.)\right)\)
        wrap \(\langle\) Self, n.case \(:=\lambda(Z) \lambda(z: Z) \lambda(f:\) Self \(\rightarrow Z) f(w r a p\langle\) Self,n \(\rangle)\rangle]\)
```


The Type of the Calculator

$C \quad \triangleq \varsigma\left(S e l f^{+}\right)[$arg,acc: Real, enter: Real \rightarrow Self, add,sub: Self, equals: Real]
Calc $\triangleq \varsigma\left(S e l f{ }^{\dagger}\right)[$ enter: Real \rightarrow Self, add,sub: Self, equals: Real]

Then Calc $<$: C; we can hide \arg and acc from clients.

```
calculator: \(C \triangleq\)
    wrap \((\) Self \(=C)\)
    \([\arg =0.0\),
    \(a c c=0.0\),
    enter \(=\varsigma(s: C(\) Self \()) \lambda(n:\) Real \()\) wrap \(\langle\) Self, \(s . \arg :=n\rangle\),
    add \(=\varsigma(s: C(\) Self \())\)
        wrap \(\left\langle\right.\) Self, (s.acc \(:=\) s.equals).equals \(\leqslant \varsigma\left(s^{\prime}: C(\right.\) Self \(\left.\left.)\right) s^{\prime} . a c c+s^{\prime} . a r g\right\rangle\),
    \(s u b=\varsigma(s: C(\) Self \())\)
        wrap \(\left\langle\right.\) Self, (s.acc := s.equals).equals \(\leqslant \varsigma\left(s^{\prime}: C(\right.\) Self \(\left.)\right) s^{\prime}\).acc-s'.arg \(\rangle\),
    equals \(=\varsigma(s: C(\) Self \())\) s.arg \(]\)
```


Overriding and Self

If we want to update a method of a ς-object $o: A$, the new method must work for any possible Self $<: A$, because o might have been initially built as an element of an unknown $B<: A$.

This is a tough requirement if the method result involves the Self type, since we do not know the "true Self" of o.
(We have no such problem at object creation time, since the "true Self" is known then. But the same difficulty would likely surface if we were creating objects incrementally, adding one method at a time to extensible objects.)

Consider, for example, the type:

$$
A \triangleq S\left(\text { Self }{ }^{\dagger}\right)[n: I n t, m: \text { Self }] \quad \text { with } \quad A(\text { Self }) \equiv[n: I n t, m: \text { Self }]
$$

According to the rule (Val §Update), an updating method can use in its body the variables Self $<A$, and $x: A($ Self $)$, where x is the self of the new method.

Basically, for a method l with result type $B_{l}\{$ Self $\}$, the update rule requires that we construct a polymorphic function of type:

$$
\forall(\text { Self }<: A) A(\text { Self }) \rightarrow B_{l}\{\text { Self }\}
$$

For n, we have no problem in returning a $B_{n}\{$ Self $\} \equiv$ Int.
But for m, there is no obvious way of producing a $B_{m}\{$ Self $\} \equiv$ Self from $x: A($ Self $)$, except for $x . m$ which loops. And we cannot construct an element of an arbitrary Self $: A$.

Moreover, using $\forall($ Self $: A) A($ Sel $f) \rightarrow B\{A\}$, for example, would be unsound.
In conclusion, the (Val ς Update) rule, although sufficient for updating simple methods and fields, is not sufficient to allow us to usefully update methods that return a value of type Self, after object construction.

We introduce a special method called recoup with an associated run-time invariant. Recoup is a method that returns self immediately. The invariant asserts that the result of recoup is its host object. These simple assumptions have surprising consequences.

$$
\begin{aligned}
& A \triangleq \varsigma\left(\text { Self }{ }^{\dagger}\right)[r: \text { Self, } n: \text { Int, } m: \text { Self }] \quad \text { with } A(\text { Self }) \equiv[r: \text { Self, } n: \text { Int, } m: \text { Self }] \\
& a: A \triangleq \operatorname{wrap}(\text { Self }<: A=A)[r=\varsigma(x: A(\text { Self })) w r a p\langle\text { Self, } x\rangle, \ldots]: A
\end{aligned}
$$

Then, the following update on m typechecks, since $x . r$ has type Self:

$$
\text { a. } m \leqslant \varsigma(\text { Self }<: A, x: A(\text { Self }))(x . n:=3) . r: \quad A
$$

The reduction behavior of this term relies on the recoup invariant. I.e., recoup should be correctly initialized and not subsequently corrupted.

Intuitively, recoup allows us to recover a "parametric self" $x . r$ which equals the object a but has type Self $<: A$ (the "true Self") and not just type A (the "known Self").

In general, if A has the form $\varsigma\left(\right.$ Self $\left.{ }^{\dagger}\right)[r:$ Self, ...] then we can write u seful polymorphic functions of type:

$\forall($ Self $: A) A($ Self $) \rightarrow$ Self

that are not available without recoup. Such functions are parametric enough to be useful for method update.

In a programming language based on these notions, recoup could be introduced as a "builtin feature", so that the recoup invariant is guaranteed for all objects at all times.

Self Types

We now axiomatize Self types directly, taking Self as primitive.
In order to obtain a flexible type system, we need constructions that provide both covariance and contravariance.
\sim Both variances are necessary to define function types.
There are several possible choices at this point.
\sim One choice would be to take invariant object types plus the two bounded second-order quantifiers.
\sim Instead, we prefer to use variance annotations for object types. This choice is sensible because it increases expressiveness, delays the need to use quantifiers, and is relatively simple.

Object Types and Self

We consider object types with Self of the form:

```
Obj(X)[\mp@subsup{l}{i}{}\mp@subsup{\cup}{i}{}:\mp@subsup{B}{i}{}{\mp@subsup{X}{}{+}\mp@subsup{}}{}{i\in1..n}]
    where }B{\mp@subsup{X}{}{+}}\mathrm{ indicates that X occurs only covariantly in B
```

Obj binds a type variable X, which represents the Self type (the type of self), as in Cell $\triangleq \operatorname{Obj}(X)\left[\right.$ contents $^{0}:$ Nat, set $\left.{ }^{0}: N a t \rightarrow X\right]$.

Each v_{i} (a variance annotation) is one of ${ }^{-},{ }^{o}$, and ${ }^{+}$, for contravariance, invariance, and covariance, respectively.

- Invariant components are the familiar ones. They can be regarded, by subtyping, as either covariant or contravariant.
- Covariant components allow covariant subtyping, but prevent updating.
- Symmetrically, contravariant components allow contravariant subtyping, but prevent invocation.

Syntax of types

$$
\begin{array}{ll}
A, B::= & \text { types } \\
X & \text { type variable } \\
\text { Top } & \text { the biggest type } \\
\operatorname{Obj}(X)\left[l_{i} \cup_{i}: B_{i}{ }^{i \in 1 . . n}\right] & \text { object type } \\
& \left(l_{i} \text { distinct, } \cup_{i} \in\left\{-\stackrel{+}{+},{ }^{+}\right\}\right)
\end{array}
$$

Variant occurrences

$$
\begin{aligned}
& Y\left\{X^{+}\right\} \\
& \operatorname{Top}\left\{X^{+}\right\} \\
& \operatorname{Obj}(Y)\left[l_{i} \mathrm{v}_{i}: B_{i}^{i \in 1 . . n}\right]\left\{X^{+}\right\} \\
& Y\left\{X^{-}\right\} \\
& \operatorname{Top}\left\{X^{-}\right\} \\
& \operatorname{Obj}(Y)\left[l_{i} \mathrm{v}_{i}: B_{i}^{i \in 1 . . n}\right]\left\{X^{-}\right\}
\end{aligned}
$$

whether $X=Y$ or $X: Y$
always
if $X=Y$ or for all $i \in 1 . . n$:

$$
\begin{aligned}
& \text { if } \mathrm{v}_{i} \equiv^{+} \text {, then } B_{i}\left\{X^{+}\right\} \\
& \text {if } \mathrm{v}_{i} \equiv^{-} \text {, then } B_{i}\left\{X^{-}\right\} \\
& \text {if } \mathrm{v}_{i} \equiv^{\circ} \text {, then } X \notin F V\left(B_{i}\right)
\end{aligned}
$$

if X : Y
always
if $X=Y$ or for all $i \in 1 . . n$:

$$
\begin{aligned}
& \text { if } \mathrm{v}_{i} \equiv^{+} \text {, then } B_{i}\left\{X^{-}\right\} \\
& \text {if } \mathrm{v}_{i} \equiv^{-} \text {, then } B_{i}\left\{X^{+}\right\} \\
& \text {if } \mathrm{v}_{i} \equiv^{\circ} \text {, then } X \notin F V\left(B_{i}\right)
\end{aligned}
$$

if neither $A\left\{X^{+}\right\}$nor $A\left\{X^{-}\right\}$

Syntax of terms

$$
\begin{array}{ll}
a, b::= & \text { terms } \\
\quad x & \text { variable } \\
\text { obj(X=A)[l} \left.=\varsigma\left(x_{i}: X\right) b_{i}^{i \in 1 . . n}\right] & \text { object }\left(l_{i} \text { distinct }\right) \\
\text { a.l } & \text { method invocation } \\
\text { a.l } l=(Y<: A, y: Y) \varsigma(x: Y) b & \text { method update }
\end{array}
$$

An object has the form $\operatorname{obj}(X=A)\left[l_{i}=\varsigma\left(x_{i}: X\right) b_{i}{ }^{i \in 1 . . n}\right]$, where A is the chosen implementation of the Self type.

Variance information for this object is given as part of the type A.
All the variables x_{i} have type X (so the syntax is redundant).

Method update is written $a . l \leqslant(Y<: A, y: Y) \varsigma(x: Y) b$, where
$\sim a$ has type A,
$\sim Y$ denotes the unknown Self type of a,
$\sim y$ denotes the old self (a), and
$\sim x$ denotes self (at the time the updating method is invoked).
To understand the necessity of the parameter y, consider the case where the method body b has result type Y.

- This method body cannot return an arbitrary object of type A, because the type A may not be the true Self type of a.
- Since a itself has the true Self type, the method could soundly return it.
- But the typing does not work because a has type A rather than Y.
- To allow a to be returned, it is bound to y with type Y.

Abbreviations

$$
\begin{aligned}
& {\left[l_{i} \mathrm{v}_{i}: B_{i} \in{ }^{i \epsilon 1 . . n}\right] \quad \triangleq \operatorname{Obj}(X)\left[l_{i} \mathrm{v}_{i}: B_{i}{ }^{i \epsilon 1 . n}\right] \quad \text { for } X \notin F V\left(B_{i}\right), i \in 1 . . n} \\
& {\left[l_{i}: B_{i}{ }^{i \epsilon 1 . . n}\right] \quad \triangleq \operatorname{Obj}(X)\left[l_{i}^{0}: B_{i} \in 1 . . n\right]} \\
& {\left[l_{i}=\varsigma\left(x_{i}: A\right) b_{i}{ }^{i \epsilon 1 . . n}\right] \triangleq} \\
& \operatorname{obj}(X=A)\left[l_{i}=\varsigma\left(x_{i}: X\right) b_{i}{ }^{i \in 1 . . n}\right] \\
& a . l_{j} \leqslant \zeta(x: A) b \quad \triangleq a . l_{j} \leqslant(Y<: A, y: Y) \varsigma(x: Y) b \\
& \text { for } X \notin F V\left(B_{i}\right), i \in 1 . . n \\
& \text { for } X \notin F V\left(B_{i}\right), i \in 1 . . n \\
& \text { for } X \notin F V\left(b_{i}\right), i \in 1 . . n \\
& \text { for } Y, y \notin F V(b)
\end{aligned}
$$

Cell $\triangleq \operatorname{Obj}(X)[$ contents : Nat, set : Nat $\rightarrow X]$
cell:Cell §

$$
\begin{aligned}
& \quad[\text { contents }=0, \\
& \quad \text { set }=\varsigma(x: \text { Cell }) \lambda(n: \text { Nat }) \text { x.contents }:=n] \\
& \equiv \quad \text { obj }(X=\text { Cell }) \\
& \\
& \\
& \\
& \text { contents }=\varsigma(x: X) 0, \\
& \text { set }=\varsigma(x: X) \lambda(n: \text { Nat }) x . \text { contents } \leqslant(Y<: X, y: Y) \varsigma(z: Y) n]
\end{aligned}
$$

GCell $\triangleq \operatorname{Obj}(X)[$ contents : Nat, set $:$ Nat $\rightarrow X$, get : Nat $]$
GCell <: Cell

A difficulty arises when trying to update fields of type Self.
This difficulty is avoided by using the old-self parameter.

$$
\begin{aligned}
& \text { UnCell } \triangleq \text { Obj }(X)[\text { contents }: \text { Nat, set }: \text { Nat } \rightarrow X, \text { undo }: X] \\
& \text { uncell }: \text { UnCell } \triangleq \\
& \text { obj }(X=\text { UnCell }) \\
& {[\text { contents }=\varsigma(x: X) 0,} \\
& \text { set }=\varsigma(x: X) \lambda(n: \text { Nat }) \\
& \quad(x . u n d o \leqslant(Y<: X, y: Y) \varsigma(z: Y) y) \\
& . \text { contents } \leqslant(Y<: X, y: Y) \varsigma(z: Y) n, \\
& \text { undo }=\varsigma(x: X) x]
\end{aligned}
$$

The use of y in the update of undo is essential.

Operational Semantics

The operational semantics is given in terms of a reduction judgment, $\vdash a \rightsquigarrow v$.
The results are objects of the form $\operatorname{obj}(X=A)\left[l_{i}=\varsigma\left(x_{i}: X\right) b_{i}{ }^{i \in 1 . n}\right]$.

Operational semantics

$$
\begin{aligned}
& \text { (Red Object) (where } \left.v \equiv \operatorname{obj}(X=A)\left[l_{i}=\varsigma\left(x_{i}: X\right) b_{i}{ }^{i \in 1 . . n}\right]\right) \\
& \overline{\vdash v \rightsquigarrow v} \\
& \text { (Red Select) (where } \left.v^{\prime} \equiv \operatorname{obj}(X=A)\left[l_{i}=\varsigma\left(x_{i}: X\right) b_{i}\left\{X, x_{i}\right\}^{i \in 1 . . n}\right]\right) \\
& \vdash a \rightsquigarrow v^{\prime} \quad \vdash b_{j}\left\{\left\{A, v^{\prime}\right\} \rightsquigarrow v \quad j \in 1 . . n\right. \\
& \vdash a . l_{j} \rightsquigarrow v \\
& \text { (Red Update) (where } \left.v \equiv \operatorname{obj}(X=A)\left[l_{i}=\varsigma\left(x_{i}: X\right) b_{i}{ }^{i \in 1 . . n}\right]\right) \\
& \vdash a \rightsquigarrow v \quad j \in 1 . . n
\end{aligned}
$$

$\vdash a . l_{j} \leqslant\left(Y<: A^{\prime}, y: Y\right) \varsigma(x: Y) b\{Y, y\} \rightsquigarrow \operatorname{obj}(X=A)\left[l_{j}=\varsigma(x: X) b\{X, v\}, l_{i}=\varsigma\left(x_{i}: X\right) b_{i}{ }^{i \in 1 . . n-\{j\}}\right]$

Type Rules for Self

Judgments

$E \vdash \diamond$	well-formed environment judgment
$E \vdash A$	type judgment
$E \vdash A<: B$	subtyping judgment
$E \vdash \cup A<: v^{\prime} B$	subtyping judgment
$E \vdash a: A$	with variance
	value typing judgment

The rules for the judgments $E \vdash \diamond, E \vdash A$, and $E \vdash A<: B$ are standard, except of course for the new rules for object types.

Environments, types, and subtypes

(Sub Invariant)	(Sub Covariant)	(Sub Contravariant)
$E \vdash B$	$E \vdash B<$:	$E \vdash B^{\prime}<: B \quad v \in\left\{{ }^{0}\right.$,
	$B^{\prime} \quad \mathrm{v} \in\left\{\left\{^{\mathrm{o}}{ }^{+}\right\}\right.$	\}
$E \vdash{ }^{\circ} B<{ }^{\circ}{ }^{\circ} B$	$E \vdash \cup B<{ }^{+} B^{\prime}$	$E \vdash \cup B<{ }^{-} B^{\prime}$

- The formation rule for object types (Type Object) requires that all the component types be covariant in Self.
- The subtyping rule for object types (Sub Object) says, to a first approximation, that a longer object type A on the left is a subtype of a shorter object type A ' on the right.
~ Because of variance annotations, we use an auxiliary judgment and auxiliary rules.
- The type $\operatorname{Obj}(X)[\ldots]$ can be seen as an alternative to the recursive type $\mu(X)[\ldots]$, but with differences in subtyping.
\sim (Sub Object), with all components invariant, reads:

$$
\frac{E, X<: T o p \vdash B_{i}\left\{X^{+}\right\} \quad \forall i \in 1 . . n+m}{E \vdash \operatorname{Obj}(X)\left[l_{i}: B_{i}\{X\}^{i \in 1 . . n+m}\right]<: \operatorname{Obj}(X)\left[l_{i}: B_{i}\{X\}^{i \in 1 . . n}\right]}
$$

\sim An analogous property fails with μ instead of $O b j$.

Terms with typing annotations

- (Val Object) can be used for building an object of a type A from code for its methods.
\sim In that code, the variable X refers to the Self type; in checking the code, X is replaced with A, and self is assumed of type A.
~ Thus the object is built with knowledge that Self is A.
- (Val Select) treats method invocation, replacing the Self type X with a known type A for the object a whose method is invoked.
\sim The type A might not be the true type of a.
\sim The result type is obtained by examining a supertype A^{\prime} of A.
- (Val Update) requires that an updating method work with a partially unknown Self type Y, which is assumed to be a subtype of a type A of the object a being modified.
~ The updating method must be "parametric in Self": it must return self, the old self, or a modification of these.
\sim The result type is obtained by examining a supertype A^{\prime} of A.
(Val Select) and (Val Update) rely on the structural assumption that every subtype of an object type is an object type.
In order to understand them, it is useful to compare them with the following more obvious alternatives:

$$
\begin{aligned}
& \text { (Val Non-Structural Select) } \quad\left(\text { where } A \equiv \operatorname{Obj}(X)\left[l_{i} \mathrm{v}_{i}: B_{i}\{X\}^{i \epsilon 1 . . n}\right]\right) \\
& E \vdash a: A \quad v_{j} \in\left\{{ }^{0}{ }^{+}+\right\} \quad j \in 1 . . n \\
& E \vdash a . l_{j}: B_{j}\{A\} \\
& \text { (Val Non-Structural Update) (where } \left.\left.A \equiv \operatorname{Obj}(X)\left[l_{i} v_{i}: B_{i}\{X\}\right\}^{i \epsilon 1 . n}\right]\right) \\
& E \vdash a: A \quad E, Y<: A, y: Y, x: Y \vdash b: B_{j}\{Y\} \quad v_{j} \in\left\{\begin{array}{c}
0,- \\
\hline
\end{array} \quad j \in 1 . . n\right. \\
& E \vdash a . l_{j}=(Y<: A, y: Y) \varsigma(x: Y) b: A
\end{aligned}
$$

These are special cases of (Val Select) and (Val Update) for $A \equiv A^{\prime}$.
(Val Select) and (Val Update) are more general in that they allow A to be a variable.

Adding the Universal Quantifier

Syntax of type parameterization

$A, B::=$
$\forall(X<: A) B$
$a, b::=$
$\lambda(X<: A) b$
$a(A)$
types
(as before)
bounded universal type
terms
(as before)
type abstraction
type application

We add two rules to the operational semantics.

- According to these rules, evaluation stops at type abstractions and is triggered again by type applications.
- We let a type abstraction $\lambda(X<: A) b$ be a result.

Operational semantics for type parameterization

```
(Red Fun2) (where v\equiv\lambda(X<:A)b)
    -v\rightsquigarrowv
(Red Appl2)
\vdashb\rightsquigarrow\lambda(X<:A)c{X}\quad\vdashc{{A'}}\rightsquigarrow>
    \vdash b ( A ^ { \prime } ) \rightsquigarrow v
```


Quantifier rules

Variant occurrences for quantifiers

$(\forall(Y<: A) B)\left\{X^{+}\right\}$
if $X=Y$ or both $A\left\{X^{-}\right\}$and $B\left\{X^{+}\right\}$
$(\forall(Y<: A) B)\left\{X^{-}\right\}$
if $X=Y$ or both $A\left\{X^{+}\right\}$and $B\left\{X^{-}\right\}$

Theorem (Subject reduction)
If $\varnothing \vdash a: A$ and $\vdash a \rightsquigarrow v$, then $\varnothing \vdash v: A$.

As before, we associate a class type $\operatorname{Class}(A)$ with each object type A.

$$
\begin{aligned}
& A \equiv \operatorname{Obj}(X)\left[l_{i} v_{i}: B_{i}\{X\}^{i \in 1 . . n}\right] \\
& \operatorname{Class}(A) \triangleq \\
& \quad[\text { new: } A, \\
& \left.\quad l_{i}: \forall(X<: A) X \rightarrow B_{i}\{X\}^{i \in 1 . . n}\right] \\
& c: \operatorname{Class}(A) \triangleq \\
& \quad\left[\text { new }=\varsigma(z: \operatorname{Class}(A)) \text { obj }(X=A)\left[l_{i}=\varsigma(s: X) z . l_{i}(X)(s)^{i \in 1 . . n}\right],\right. \\
& \left.\quad l_{i}=\lambda(\operatorname{Self}<: A) \lambda(s: \operatorname{Self}) \ldots{ }^{i \in 1 . . n}\right]
\end{aligned}
$$

Now pre-methods have polymorphic types.

For example:

```
Class(Cell)\triangleq
    [new: Cell,
    contents: }\forall(\mathrm{ Self <:Cell) Self }->\mathrm{ Nat,
    set : }\forall(\mathrm{ Self <:Cell )Self }->\mathrm{ Nat }->\mathrm{ Self }
```

cellClass: Class(Cell) 气
$[$ new $=\varsigma(z: C l a s s(C e l l)) ~ o b j(S e l f=C e l l)$
$[$ contents $=\varsigma(s:$ Self $)$ z.contents $($ Self $)(s)$,
set $=\varsigma(s:$ Self $) z \cdot \operatorname{set}(\operatorname{Self})(s)]$,
contents $=\lambda($ Self $<:$ Cell $) \lambda(s:$ Self $) 0$,
set $=\lambda($ Self $<$ Cell $) \lambda(s:$ Self $) \lambda(n: N a t) s . c o n t e n t s:=n]$

We can now reconsider the inheritance relation between classes.
Suppose that we have $A^{\prime}<: A$:

$$
\begin{aligned}
& A^{\prime} \equiv \operatorname{Obj}(X)\left[l_{i} \mathrm{v}_{i}^{\prime}: B_{i}{ }^{\prime}\{X\}^{i \in 1 . . n+m}\right] \\
& \operatorname{Class}\left(A^{\prime}\right) \equiv\left[\text { new: } A^{\prime}, l_{i}: \forall\left(X<: A^{\prime}\right) X \rightarrow B_{i}^{\prime}\{X\}^{i \in 1 . . n+m}\right]
\end{aligned}
$$

We say that:

```
l}\mp@subsup{l}{i}{}\mathrm{ is inheritable from Class(A) into Class(A')
if and only if }X<:A,A'\mathrm{ implies }\mp@subsup{B}{i}{}{X}<:\mp@subsup{B}{i}{\prime}'{X},\mathrm{ for all i<1..n
```

- Inheritability is not an immediate consequence of $A^{\prime}<: A$.
- Inheritability is expected between a class type C and another class type C^{\prime} 'obtained as an extension of C.
- When l_{i} is inheritable, we have:

$$
\forall(X<: A) X \rightarrow B_{i}\{X\}<: \forall\left(X<: A^{\prime}\right) X \rightarrow B_{i}{ }^{\prime}\{X\}
$$

So, if $c: \operatorname{Class}(A)$ and l_{i} is inheritable, we have $c . l_{i}: \forall\left(X<: A^{\prime}\right) X \rightarrow B_{i}{ }^{\prime}\{X\}$. Then $c . l_{i}$ can be reused when building a class $c^{\prime}: \operatorname{Class}\left(A^{\prime}\right)$.

For example, set is inheritable from Class(Cell) to Class(GCell):

```
Class(GCell) \triangleq
    [new: GCell,
    contents: }\forall(\mathrm{ Self<:GCell) Self}->\mathrm{ Nat,
    set : }\forall(\mathrm{ Self }<:GCell) Self ->Nat ->Self
    get : }\forall(\mathrm{ Self <:GCell) Self}->Nat
gcellClass:Class(GCell) \triangleq
    [new = \varsigma(z:Class(GCell)) obj(Self=GCell)[...],
    contents = \lambda(Self ::GCell) }\lambda(s:\mathrm{ Self })0
    set = cellClass.set,
    get }=\lambda(\mathrm{ Self }<:GCell) \lambda(s:Self ) s.contents ]
```


Self Types And Higher-Order Object Calculi

Inheritance without Subtyping?

- Up to this point, subtyping justifies inheritance.
- This leads to a great conceptual economy.
- It corresponds well to the rules of most typed languages.
- But there are situations where one may want inheritance without subtyping.
- There are also a few languages that support inheritance without subtyping (e.g., Theta, TOOPLE, Emerald).

The Problem

Consider cells with an equality method:

```
CellEq \(\triangleq\)
    \(\mu(X)[\) contents : Nat, set : Nat \(\rightarrow X\), eq : \(X \rightarrow\) Bool \(]\)
CellSEq \(\triangleq\)
    \(\mu(X)[\) contents : Nat, set : Nat \(\rightarrow\) X, sign : Bool, eq : \(X \rightarrow\) Bool \(]\)
```

But then CellSEq is not a subtype of CellEq.
This situation is typical when there are binary methods, such as eq.

Giving up on subtyping is necessary for soundness.
On the other hand, it would be good still to be able to reuse code, for example the code $e q=$ $\varsigma(x) \lambda(y) x$.contents $=y$.contents.

Solutions

- Avoid contravariant occurrences of recursion variables, to preserve subtyping.

$$
\begin{aligned}
& \text { CellEq'} \triangleq \mu(X)[\ldots, \text { eq }: \text { Cell } \rightarrow \text { Bool }] \\
& \text { CellSEq' } \triangleq \mu(X)[\ldots, \text { sign }: \text { Bool, eq }: \text { Cell } \rightarrow \text { Bool }]
\end{aligned}
$$

- Axiomatize a primitive matching relation between types <\#, work out its theory, and relate it somehow to code reuse.

CellSeq < \# CellEq

(But the axioms are not trivial, and not unique.)

- Move up to higher-order calculi and see what can be done there.

There are two approaches:
~ F-bounded quantification (Cook et al.);
\sim higher-order subtyping (us).

- Let us define two type operators:

```
CellEqOp \(\triangleq\)
    \(\lambda(X)[\) contents : Nat, set : Nat \(\rightarrow X\), eq: \(X \rightarrow\) Bool \(]\)
CellSEqOp \(\triangleq\)
    \(\lambda(X)[\) contents : Nat, set \(: N a t \rightarrow X\), sign : Bool, eq : \(X \rightarrow\) Bool \(]\)
```

- We write:

CellEqOp :: $\quad T y \Rightarrow T y$
CellSEqOp $\quad:: \quad T y \Rightarrow T y$
to mean that these are type operators.

- Then, for each type X, we have:

CellSEqOp (X) <: $\operatorname{CellEqOp(X)}$

- This is higher-order subtyping: pointwise subtyping between type operators.
- We say that CellSEqOp is a suboperator of CellEqOp, and we write:

$$
\text { CellSEqOp }<: \text { CellEqOp }:: \quad T y \Rightarrow T y
$$

- Object types can be obtained as fixpoints of these operators:

Celleq \triangleq
$\mu(X)$ CellEqOp (X)
CellSEq 气
$\mu(X)$ CellSEqOp (X)

- So although CellSEq is not a subtype of CellEq, these types still have something in common: they are fixpoints of two suboperators of CellEqOp.
- We can then write polymorphic functions by quantifying over suboperators:

$$
\begin{aligned}
& e q F \triangleq \\
& \lambda(F< \\
& \quad\text { CellEqOp }:: \text { Ty } \Rightarrow \text { Ty }) \lambda(x: \mu(X) F(X)) \lambda(y: \mu(X) F(X)) \\
&: \forall(F<:\text { CellEqOp }:: T y \Rightarrow T y) \mu(X) F(X) \rightarrow \mu(X) F(X) \rightarrow \text { Bool }
\end{aligned}
$$

- This function can be instantiated at both CellEqOp and CellSEqOp.
- This function can also be used to write pre-methods for classes.
(For this we let pre-methods be polymorphic functions.)

Encoding ObJect Calculi

Objects vs. Procedures

- Object-oriented programming languages have introduced (or popularized) a number of ideas and techniques.
- In order to avoid premature commitments, so far we have avoided any explicit encoding of objects in terms of other notions.
- However, on a case-by-case basis, one can often emulate objects in some procedural languages.
Are object-oriented concepts reducible to procedural concepts?
\sim It is easy to emulate the operational semantics of objects.
~ It is a little harder to translate object types.
~ It is much harder, or impossible, to preserve subtyping.
\sim Apparently, this reduction is not feasible or attractive in practice.

The Translation Problem

- The problem is to find a translation from an object calculus to a λ-calculus:
\sim The object calculus should be reasonably expressive.
\sim The λ-calculus should be standard enough.
\sim The translation should be faithful; in particular it should preserve subtyping.
We prefer to deal with calculi rather than programming languages.
- The goal of explaining objects in terms of λ-calculi is not new.
\sim There have been a number of more or less successful attempts (by Kamin, Cardelli, Cook, Reddy, Mitchell, the John Hopkins group, Pierce, Turner, Hofmann, Remy, Bruce, ...).
\sim We will review some of them (fairly informally), and then see our translations (joint work with Ramesh Viswanathan.)

The Self-Application Semantics

- It is natural to try to program objects from records and functions. The self-application semantics is one of the more natural ways of doing this.
- All implementations of standard (single-dispatch) object-oriented languages are based on self-application. In the self-application semantics,
\sim methods are functions,
\sim objects are records,
\sim update is simply record update.
\sim On method invocation, the whole object is passed to the method as a parameter.

Untyped self-application interpretation

$$
\begin{array}{ll}
{\left[l_{i}=\varsigma\left(x_{i}\right) b_{i}^{i \in 1 . . n}\right] \triangleq\left\langle l_{i}=\lambda\left(x_{i}\right) b_{i}^{i \in 1 . . n}\right\rangle} & \left(l_{i} \text { distinct }\right) \\
o . l_{j} \triangleq o \cdot l_{j}(o) & (j \in 1 . . n) \\
o . l_{j} \leqslant \varsigma(y) b \triangleq o \cdot l_{j}:=\lambda(y) b & (j \in 1 . . n)
\end{array}
$$

The Self-Application Semantics (Typed)

- A typed version is obtained by representing object types as recursive record types:

$$
\left[l_{i}: B_{i}{ }^{i \in 1 . . n}\right] \triangleq \mu(X)\left\langle l_{i}: X \rightarrow B_{i}{ }^{i \in 1 . . n}\right\rangle
$$

Self-application interpretation

$$
\begin{align*}
& A \equiv {\left[l_{i}: B_{i}{ }^{i \in 1 . . n}\right] \triangleq } \tag{i}\\
& \mu(X)\left\langle l_{i}: X \rightarrow B_{i}{ }^{i \in 1 . . n}\right\rangle \\
& {\left[l_{i}=\varsigma\left(x_{i}: A\right) b_{i}^{i \in 1 . . n}\right] \triangleq \operatorname{fold}\left(A,\left\langle l_{i}=\lambda\left(x_{i}: A\right) b_{i}^{i \in 1 . . n}\right\rangle\right) } \\
& \text { o. } l_{j} \triangleq \operatorname{unfold}(o) \cdot l_{j}(o)(j \in 1 . . n) \\
& \text { o. } l_{j} \leqslant \varsigma(y: A) b \triangleq \operatorname{fold}\left(A, \text { unfold }(o) \cdot l_{j}:=\lambda(y: A) b\right)
\end{align*}
$$

- Unfortunately, the subtyping rule for object types fails to hold: a contravariant X occurs in all method types.

For systems with only field update, it is natural to separate fields and methods:

- The fields are grouped into a state record $s t$, separate from the method suite record $m t$.
- Methods receive st as a parameter on method invocation, instead of the whole object as in the self-application interpretation.
- The update operation modifies the $s t$ component and copies the $m t$ component.
- The method suite is bound recursively with a μ, so that each method can invoke the others.

Untyped state-application interpretation

$$
\begin{array}{ll}
{\left[f_{k}=b_{k}{ }^{k \in 1 . . m} \mid l_{i}=\varsigma\left(x_{i}\right) b_{i}{ }^{i \in 1 . . n}\right] \triangleq} & \left(f_{k}, l_{i}\right. \text { distinct) } \\
& \left\langle s t=\left\langle f_{k}=b_{k}{ }^{\left.k \in 1 . . m\rangle, m t=\mu(m)\left\langle l_{i}=\lambda(s) b_{i}{ }^{\prime i \in 1 . . n}\right\rangle\right\rangle}\right.\right. \\
& \text { (for } \\
o_{\circ} f_{j} \triangleq o \cdot s t \cdot f_{j} & \text { appropriate } \left.b_{i}{ }^{\prime}\right) \\
& (j \in 1 . . m) \\
o_{\circ} f_{j}:=b \triangleq\left\langle s t=\left(o \cdot s t \cdot f_{j}:=b\right), m t=o \cdot m t\right\rangle & \text { (external) } \\
& (j \in 1 . . m) \\
o . l_{j} \triangleq o \cdot m t \cdot l_{j}(o \cdot s t) & \text { (external) } \\
& \\
& \text { (jє1..n) } \\
& \text { (external) }
\end{array}
$$

- It is difficult to express the precise translation of method bodies $\left(b_{i}\right)$.
- Although it is fairly clear how to translate specific examples, it is hard to define a general interpretation, particularly without types.

Essentially this difficulty arises because self is split into two parts.

- Internal operations manipulate s directly, and are thus coded differently from external operations.
- Since the self parameter s gives access only to fields, internal method invocation is done through m.
- Methods that return self should produce a whole object, but s contains only fields, so a whole object must be regenerated.

Untyped state-application interpretation (continued)

in the context $\mu(m)\left\langle l_{i}=\lambda(s) \ldots\right\rangle$

$x_{i} f_{j} \triangleq s \cdot f_{j}$
$x_{i \cdot} f_{j}:=b \triangleq s \cdot f_{j}:=b$
$x_{i} \cdot l_{j} \triangleq m \cdot l_{j}(s)$
($j \in 1 . . m)$ (internal)
($j \in 1 . . m$) (internal)

The State-Application Semantics (Typed)

The state of an object, represented by a collection of fields $s t$, is hidden by existential abstraction, so external updates are not possible.

The troublesome method argument types are hidden as well, so this interpretation yields the desired subtypings.

$$
\left[l_{i}: B_{i}{ }^{i \in 1 . . n}\right] \triangleq \exists(X)\left\langle s t: X, m t:\left\langle l_{i}: X \rightarrow B_{i}{ }^{i \in 1 . . n}\right\rangle\right\rangle
$$

- In general case, code generation is driven by types.
- The encoding is rather laborious.
- Still, it accounts well for class-based languages where methods are separate from fields, and method update is usually forbidden.

State-application interpretation

This interpretation is often used to code objects within λ-calculi, for specific examples.

A typical application concerns movable color points:

```
CPoint \triangleq
    Obj(X)[x:Int, c:Color | mv:Int }->X
cPoint: CPoint \triangleq
    [x=0,c=\mathrm{ black | }mv=\varsigma(s:CPoint) \lambda(dx:Int) s\_x:=\mp@subsup{s}{\square}{}x+dx]
```

(Here X is the type of self, that is, the Self type of CPoint.)

The translation is:

```
CPoint \(\triangleq\)
    \(\mu(X)\langle x:\) Int, \(c:\) Color, \(m v:\) Int \(\rightarrow X\rangle\)
cPoint: CPoint \(\triangleq\)
    let rec init( \(x 0:\) Int, \(c 0:\) Color \()=\)
        \(\mu(s\) :CPoint \()\) fold (CPoint,
            \(\langle x=x 0, c=c 0\),
            \(m v=\lambda(d x:\) Int \()\) init \((\) unfold \((s) \cdot x+d x\), unfold \((s) \cdot c)\rangle)\)
    in init \((0\), black \()\)
```

- An auxiliary function init is used both for field initialization and for the creation of modified objects during update.
- Only internal field update is handled correctly.
- This translation achieves the desired effect, yielding the expected behavior for $c P$ oint and the expected subtypings for CPoint.
- If the code for $m v$ had been $\lambda(d x: I n t) f(s) x:=s_{a} x+d x$, where f is of appropriate type, it would not have been clear how to proceed.

Untyped split-method interpretation

$$
\begin{aligned}
& {\left[l_{i}=\zeta\left(x_{i}\right) b_{i}^{i \in 1 . . n}\right] \triangleq} \\
& \text { let rec create }\left(y_{i}^{i \in 1 . . n}\right)= \\
& \left\langle l_{i}^{s e l}=y_{i},\right. \\
& \left.l_{i}^{u p d}=\lambda\left(y_{i}{ }^{\prime}\right) \text { create }\left(y_{j}{ }^{j \in 1 . . i-1}, y_{i}{ }^{\prime}, y_{k}{ }^{k \in i+1 . . n}\right)^{i \in 1 . . n}\right\rangle \\
& \text { in create }\left(\lambda\left(x_{i}\right) b_{i}{ }^{i \in 1 . . n}\right) \\
& o . l_{j} \triangleq o \cdot l_{j}^{\text {sel }}(o) \\
& o . l_{j} \leqslant \varsigma(y) b \triangleq o \cdot l_{j}^{u p d}(\lambda(y) b)
\end{aligned}
$$

- A method l_{j} is represented by two record components, $l_{j}^{\text {sel }}$ and $l_{j}^{u p d}$.
- create takes a collection of functions and produces a record.

The uses of create are encapsulated within the definition of create.

- A method l_{j} is updated by supplying the new code for l_{j} to the function $l_{j}^{u p d}$. This code is passed on to create.
- A method l_{j} is invoked by applying the function $l_{j}^{\text {sel }}$ to o.

The Split-Method Semantics (Typed)

- A first attempt at typing this interpretation could be to set:

$$
\left[l_{i}: B_{i}{ }^{i \in 1 . . n}\right] \triangleq \mu(X)\left\langle l_{i}^{s e l}: X \rightarrow B_{i}{ }^{i \in 1 . . n}, l_{i}^{u p d}:\left(X \rightarrow B_{i}\right) \rightarrow X^{i \in 1 . . n}\right\rangle
$$

but this type contains contravariant occurrences of X. Subtypings fail.

- As a second attempt, we can use quantifiers to obtain covariance:

$$
\begin{aligned}
& {\left[l_{i}: B_{i}^{i \in 1 . n}\right] \triangleq} \\
& \quad \mu(Y) \exists(X<: Y)\left\langle l_{i}^{\text {sel }}: X \rightarrow B_{i}^{i \in 1 . . n}, l_{i}^{\text {upd }}:\left(X \rightarrow B_{i}\right) \rightarrow X^{i \in 1 . . n}\right\rangle
\end{aligned}
$$

\sim Now the interpretation validates the subtypings for object types, since all occurrences of X, bound by \exists, are covariant.
\sim Unfortunately, it is impossible to perform method invocations: after opening the \exists we do not have an appropriate argument of type X to pass to $l_{i}^{\text {sel }}$.
\sim But since this argument should be the object itself, we can solve the problem by adding a record component, r, bound recursively to the object:

$$
\begin{aligned}
& {\left[l_{i}: B_{i}{ }^{i \in 1 . . n}\right] \triangleq} \\
& \quad \mu(Y) \exists(X<: Y)\left\langle r: X, l_{i}^{\text {sel }}: X \rightarrow B_{i}^{i \in 1 . . n}, l_{i}^{\text {upd }}:\left(X \rightarrow B_{i}\right) \rightarrow X^{i \in 1 . . n}\right\rangle
\end{aligned}
$$

Split-method interpretation

$$
\begin{aligned}
A \equiv & {\left[l_{i}: B_{i}^{i \in 1 . . n}\right] \triangleq } \\
& \mu(Y) \exists(X<: Y) C\{X\}
\end{aligned}
$$

where
$C\{X\} \equiv\left\langle r: X, l_{i}^{\text {sel }}: X \rightarrow B_{i}{ }^{i \in 1 . . n}, l_{i}^{u p d}:\left(X \rightarrow B_{i}\right) \rightarrow X^{i \in 1 . . n}\right\rangle$
$\left[l_{i}=\varsigma\left(x_{i}: A\right) b_{i}{ }^{i \in 1 . . n}\right] \triangleq$
let rec create $\left(y_{i}: A \rightarrow B_{i}{ }^{i \in 1 . . n}\right): A=$
fold (A,
pack $X=A$
with

$$
\left.\left.\left.\begin{array}{l}
\left\langle r=\text { create }\left(y_{i}{ }^{i \in 1 . . n}\right),\right. \\
l_{i}^{\text {sel }}=y_{i} \\
l_{i}^{u p d . . n}=\lambda\left(y_{i}^{\prime}: A \rightarrow B_{i}\right) \text { create }\left(y_{j}\right. \\
j \in 1 . . i-1
\end{array}, y_{i}^{\prime}, y_{k}^{k \in i+1 . . n}\right)^{i \in 1 . . n}\right\rangle\right)
$$

: $C\{X\}$)
in create $\left(\lambda\left(x_{i}: A\right) b_{i}{ }^{i \in 1 . . n}\right)$
open unfold (o) as $X<: A, p: C\{X\}$
in $p \cdot l_{j}^{\text {sel }}(p \cdot r): B_{j}$
$o . l_{j} \leqslant \varsigma(y: A) b \triangleq$
open unfold (o) as $X<: A, p: C\{X\}$ in $p \cdot l_{j}^{u p d}(\lambda(y: A) b): A$

- We obtain both the expected semantics and the expected subtyping properties.
- The definition of the interpretation is syntax-directed.
- The interpretation covers all of the first-order object calculus (including method update).
- It extends naturally to other constructs:
~ variance annotations,
~ Self types (with some twists),
~ a limited form of method extraction (but in general method extraction is unsound),
~ imperative update,
~ imperative cloning.
- It suggests principles for reasoning about objects.

An Imperative Version

For an imperative split-method interpretation, it is not necessary to split methods, because updates can be handled imperatively.

The imperative version correctly deals with a cloning construct.

$$
\begin{aligned}
& {\left[f_{k}: B_{k}{ }^{k \in 1 . . m} \mid l_{i}: B_{i}{ }^{i \in 1 . . n}\right] \triangleq} \\
& \quad \mu(Y) \exists(X<: Y)\left\langle r: X, f_{k}: B_{k}{ }^{k \in 1 . . m}, l_{i}: X \rightarrow B_{i}^{i \in 1 . . n}, c l:\langle \rangle \rightarrow X\right\rangle
\end{aligned}
$$

Imperative self-application interpretation

$$
\begin{align*}
& A \equiv\left[f_{k}: B_{k}^{k \in 1 . . m} \mid l_{i}: B_{i}^{i \in 1 . . n}\right] \triangleq \\
& \mu(Y) \exists(X<: Y) C\{X\} \\
& \text { with } \\
& C\{X\} \equiv\left\langle r: X, f_{k}: B_{k}{ }^{k \in 1 . . m}, l_{i}: X \rightarrow B_{i}^{i \in 1 . . n}, c l:\langle \rangle \rightarrow X\right\rangle \\
& {\left[f_{k}=b_{k}^{k \in 1 . . m} \mid l_{i}=\zeta\left(x_{i}: A\right) b_{i}^{i \in 1 . . n}\right] \triangleq} \\
& \text { let rec create }\left(y_{k}: B_{k}^{k \in 1 . . m}, y_{i}: A \rightarrow B_{i}^{i \in 1 . . n}\right): A= \\
& \text { let } z: C\{A\}=\left\langle r=\operatorname{nil}(A), f_{k}=y_{k}{ }^{k \in 1 . . m}, l_{l}=y_{i}{ }^{i \in 1 . . n}, c l=\operatorname{nil}(\langle \rangle \rightarrow A)\right\rangle \\
& \text { in } z \cdot r:=\text { fold }(A, \text { pack } X<: A=A \text { with } z: C\{X\}) \text {; } \\
& z \cdot c l:=\lambda(x:\langle \rangle) \operatorname{create}\left(z \cdot f_{k}{ }^{k \in 1 . . m}, z \cdot l_{i}^{i \in 1 . . n}\right) \text {; } \\
& z \cdot r \\
& \text { in create }\left(b_{k}{ }^{k \in 1 . . m}, \lambda\left(x_{i}: A\right) b_{i}^{i \in 1 . . n}\right) \\
& o_{A} f_{j} \triangleq \text { open unfold }(o) \text { as } X<: A, p: C\{X\} \text { in } p \cdot f_{j}: B_{j} \\
& o_{A} f_{j}:=b \triangleq \\
& \text { open unfold (o) as } X<: A, p: C\{X\} \\
& \text { in fold }\left(A, \text { pack } X^{\prime}<: X=X \text { with } p \cdot f_{j}:=b: C\left\{X^{\prime}\right\}\right): A \\
& \text { (} f_{k}, l_{i} \text { distinct) } \\
& (j \in 1 . . m)
\end{align*}
$$

open unfold (o) as $X<: A, p: C\{X\}$
in $p \cdot l_{j}(p \cdot r): B_{j}$
$o . l_{j} \leqslant \varsigma(x: A) b \triangleq$
open unfold(o) as $X<: A, p: C\{X\}$
in fold (A,pack $X^{\prime}<: X=X$

$$
\text { with } \left.p \cdot l_{j}:=\lambda(x: A) b: C\left\{X^{\prime}\right\}\right): A
$$

clone $\left(o_{A}\right) \triangleq$
open unfold(o) as $X<: A, p: C\{X\}$
in $p \cdot c l(\rangle): A$

In our interpretations:

- Objects are records of functions, after all.
- Object types combine recursive types and existential types (with a recursion going through a bound!).
- The interpretations are direct and general enough to explain objects.
- But they are elaborate, and perhaps not definitive, and hence not a replacement for primitive objects.

MATCHING

- The subtyping relation between object types is the foundation of subclassing and inheritance . . . when it holds.
- Subtyping fails to hold between certain types that arise naturally in object-oriented programming. Typically, recursively defined object types with binary methods.
- F-bounded subtyping was invented to solve this kind of problem.
- A new programming construction, called "matching" has been proposed to solve the same problem, inspired by F-bounded subtyping.
- Matching achieves "covariant subtyping" for Self types. Contravariant subtyping still applies, otherwise.
- We argue that matching is a good idea, but that it should not be based on F-bounded subtyping. We show that a new interpretation of matching, based on higher-order subtyping, has better properties.
- A simple treatment of objects, classes, and inheritance is possible for covariant Self types (only).

Object Types

- Consider two types Inc and IncDec containing an integer field and some methods:

$$
\begin{array}{ll}
\text { Inc } & \triangleq \mu(\mathrm{X})\left[\mathrm{n}: \text { Int, } \mathrm{inc}^{+}: \mathrm{X}\right] \\
\text { IncDec } & \triangleq \mu(\mathrm{Y})\left[\mathrm{n}: \text { Int, } \mathrm{inc}^{+}: \mathrm{Y}, \operatorname{dec}^{+}: \mathrm{Y}\right]
\end{array}
$$

- A typical object of type Inc is:

$$
\begin{aligned}
& \mathrm{p}: \text { Inc } \triangleq \\
& \quad[\mathrm{n}=0, \\
& \quad \mathrm{inc}=\varsigma(\text { self: Inc }) \text { self. } \mathrm{n}:=\text { self. } \mathrm{n}+1]
\end{aligned}
$$

- Subtyping $(<:)$ is a reflexive and transitive relation on types, with subsumption:

$$
\text { if } \mathrm{a}: \mathrm{A} \text { and } \mathrm{A}<: \mathrm{B} \text { then } \mathrm{a}: \mathrm{B}
$$

- For object types, we have the subtyping rule:

$$
\begin{aligned}
& {\left[\mathrm{v}_{\mathrm{i}}: \mathrm{B}_{\mathrm{i}}{ }^{\mathrm{i} \in \mathrm{I}}, \mathrm{~m}_{\mathrm{j}}^{+}: \mathrm{C}_{\mathrm{j}}{ }^{\mathrm{j} \in \mathrm{~J}}\right] \quad<: \quad\left[\mathrm{v}_{\mathrm{i}}: \mathrm{B}_{\mathrm{i}}{ }^{\mathrm{i} \in \mathrm{I}^{\prime}}, \mathrm{m}_{\mathrm{j}}^{+}: \mathrm{C}_{\mathrm{j}}{ }^{\mathrm{j} \in \mathrm{~J}^{\prime}}\right]} \\
& \text { if } \mathrm{C}_{\mathrm{j}}<\mathrm{C}_{\mathrm{j}}{ }^{\prime} \text { for all } \mathrm{j} \in \mathrm{~J}^{\prime} \text {, with } \mathrm{I}^{\prime} \subseteq \mathrm{I} \text { and } \mathrm{J}^{\prime} \subseteq \mathrm{J}
\end{aligned}
$$

- For recursive types we have the subtyping rule:

$$
\begin{aligned}
& \mu(\mathrm{X}) \mathrm{A}\{\mathrm{X}\}<: \mu(\mathrm{Y}) \mathrm{B}\{\mathrm{Y}\} \\
& \quad \text { if } \mathrm{X}<: \mathrm{Y} \text { implies } \mathrm{A}\{\mathrm{X}\}<: \mathrm{B}\{\mathrm{Y}\}
\end{aligned}
$$

- Combining them, we obtain a derived rule for recursive object types:

$$
\begin{aligned}
& \mu(X)\left[\mathrm{v}_{\mathrm{i}}: \mathrm{B}_{\mathrm{i}}{ }^{\mathrm{i} \in \mathrm{I}}, \mathrm{~m}_{\mathrm{j}}^{+}: \mathrm{C}_{\mathrm{j}}\{\mathrm{X}\}^{\mathrm{j} \in \mathrm{~J}}\right]<: \mu(\mathrm{Y})\left[\mathrm{v}_{\mathrm{i}}: \mathrm{B}_{\mathrm{i}}{ }^{\mathrm{i} \in \mathrm{I}^{\prime}}, \mathrm{m}_{\mathrm{j}}^{+}: \mathrm{C}_{\mathrm{j}}^{\prime}\{\mathrm{Y}\}^{\mathrm{j} \in \mathrm{~J}^{\prime}}\right] \\
& \quad \text { if } \mathrm{X}<: \mathrm{Y} \text { implies } \mathrm{C}_{\mathrm{j}}\{\mathrm{X}\}<: \mathrm{C}_{\mathrm{j}}^{\prime}\{\mathrm{Y}\} \text { for all } \mathrm{j} \in \mathrm{~J}^{\prime}, \text { with } \mathrm{I}^{\prime} \subseteq \mathrm{I} \text { and } \mathrm{J}^{\prime} \subseteq \mathrm{J} \\
& \text { E.g.: IncDec }<: \text { Inc }
\end{aligned}
$$

Pre-Methods

- The subtyping relation (e.g. IncDec $<$: Inc) plays an important role in inheritance.
- Inheritance is obtained by reusing polymorphic code fragments.

$$
\begin{aligned}
& \text { pre-inc : } \forall(\mathrm{X}<: \text { Inc }) \mathrm{X} \rightarrow \mathrm{X} \triangleq \\
& \lambda(\mathrm{X}<: \text { Inc }) \lambda(\text { self: } \mathrm{X}) \text { self.n }:=\text { self.n }+1
\end{aligned}
$$

(using a "structural" rule)

- We call a code fragment such as pre-inc a pre-method.
- N.B. it is not enough to have pre-inc : Inc \rightarrow Inc if we want to inherit this pre-method in IncDec classes. Here polymorphism is essential.
- N.B. the body of pre-inc is typed by means of a structural rule for update, which is essential in many examples involving bounded quantification.
- We can specialize pre-inc to implement the method inc of type Inc or IncDec:

```
pre-inc(Inc) : Inc }->\mathrm{ Inc
pre-inc(IncDec): IncDec}->\mathrm{ IncDec
```

- Thus, we have reused pre-inc at different types, without retypechecking its code.
- Pre-method reuse can be systematized by collecting pre-methods into classes.
- A class for an object type A can be described as a collection of pre-methods and initial field values, plus a way of generating new objects of type A.
- In a class for an object type A, the pre-methods are parameterized over all subtypes of A, so that they can be reused (inherited) by any class for any subtype of A.
- Let A be a type of the form $\mu(X)\left[v_{i}: B_{i}{ }^{i \in I}, m_{j}^{+}: C_{j}\{X\}^{j \in J}\right]$. As part of a class for A, a pre-method for m_{j} would have the type $\forall(\mathrm{X}<: \mathrm{A}) \mathrm{X} \rightarrow \mathrm{C}_{\mathrm{j}}\{\mathrm{X}\}$. For example:

```
IncClass \triangleq
    [new }\mp@subsup{}{}{+}\mathrm{ : Inc,
    n: Int,
    inc: }\forall(\textrm{X}<:Inc)\textrm{X}->\textrm{X}
IncDecClass \triangleq
    [new+}\mp@subsup{}{}{+}:\mathrm{ IncDec,
    n: Int,
    inc: }\forall(\textrm{X}<:IncDec)X 隹
    dec:}\forall(\textrm{X}<:IncDec)X 便
```

 N.B.: inc: Inc \(\rightarrow\) Inc
 would not allow inheritance
 - A typical class of type IncClass reads:

```
incClass: IncClass \triangleq
    [new = \varsigma(classSelf: IncClass)
        [n= classSelf.n, inc = ¢(self:Inc) classSelf.inc(Inc)(self)]
    n = 0,
    inc = pre-inc]
```

The code for new is uniform: it assembles all the pre-methods into a new object.

- Inheritance is obtained by extracting a pre-method from a class and reusing it for constructing another class.

For example, the pre-method pre-inc of type $\forall(X<: I n c) X \rightarrow X$ in a class for Inc could be reused as a pre-method of type $\forall(X<: I n c D e c) X \rightarrow X$ in a class for IncDec:

```
incDecClass: IncDecClass \triangleq
    [new = \varsigma(classSelf: IncDecClass)[...],
    n}=0
    inc = incClass.inc,
    dec}=...
```

- This example of inheritance requires the subtyping:

$$
\forall(\mathrm{X}<: \mathrm{Inc}) \mathrm{X} \rightarrow \mathrm{X}<: \quad \forall(\mathrm{X}<: \operatorname{IncDec}) \mathrm{X} \rightarrow \mathrm{X}
$$

which follows from the subtyping rules for quantified types and function types:

$$
\begin{array}{ll}
\forall(\mathrm{X}<: \mathrm{A}) \mathrm{B}<: \forall\left(\mathrm{X}<: \mathrm{A}^{\prime}\right) \mathrm{B}^{\prime} & \text { if } \mathrm{A}^{\prime}<: \mathrm{A} \text { and if } \mathrm{X}<: \mathrm{A} \text { implies } \mathrm{B}<: \mathrm{B}^{\prime} \\
\mathrm{A} \rightarrow \mathrm{~B}<: \mathrm{A}^{\prime} \rightarrow \mathrm{B}^{\prime} & \text { if } \mathrm{A}^{\prime}<: \mathrm{A} \text { and } \mathrm{B}<: \mathrm{B}^{\prime}
\end{array}
$$

- In summary, inheritance from a class for Inc to a class for IncDec is enabled by the subtyping IncDec $<$: Inc.
- Unfortunately, inheritance is possible and desirable even in situations where such subtypings do not exist. These situations arise with binary methods.
- Consider a recursive object type Max, with a field n and a binary method max.

$$
\operatorname{Max} \triangleq \mu(X)\left[\mathrm{n}: \text { Int, } \max ^{+}: \mathrm{X} \rightarrow \mathrm{X}\right]
$$

Consider also a type MinMax with an additional binary method min:

$$
\text { MinMax } \triangleq \mu(Y)\left[\mathrm{n}: \text { Int, } \max ^{+}: \mathrm{Y} \rightarrow \mathrm{Y}, \min ^{+}: \mathrm{Y} \rightarrow \mathrm{Y}\right]
$$

- Problem:

MinMax \nless : Max

according to the rules we have adopted, since :

$$
Y<: X \nRightarrow \quad Y \rightarrow Y<: X \rightarrow X \quad \text { for } \max ^{+}
$$

Moreover, it would be unsound to assume $\operatorname{MinMax}<$: Max.

- Hence, the development of classes and inheritance developed for Inc and IncDec falters in presence of binary methods.

Looking for a New Relation

- If subtyping doesn't work, maybe some other relation between types will.
- A possible replacement for subtyping: matching.
- Recently, Bruce et al. proposed axiomatizing a relation between recursive object types, called matching.
- We write A < \# B to mean that A matches B; that is, that A is an "extended version" of B. We expect to have, for example:

```
IncDec<# Inc
MinMax <# Max
```

- In particular, we may write $\mathrm{X}<\# \mathrm{~A}$, where X is a variable. We may then quantify over all types that match a given one, as follows:

$$
\forall(\mathrm{X}<\# \mathrm{~A}) \mathrm{B}\{\mathrm{X}\}
$$

We call $\forall(\mathrm{X}<\# \mathrm{~A}) \mathrm{B}$ match-bounded quantification, and say that occurrences of X in B are match-bound.

- For recursive object types we have:

$$
\begin{aligned}
& \mu(\mathrm{X})\left[\mathrm{v}_{\mathrm{i}}: \mathrm{B}_{\mathrm{i}}{ }^{\mathrm{i} \in \mathrm{I}}, \mathrm{~m}_{\mathrm{j}}^{+}: \mathrm{C}_{\mathrm{j}}\{\mathrm{X}\}^{\mathrm{j} \in \mathrm{~J}}\right]<\# \mu(\mathrm{X})\left[\mathrm{v}_{\mathrm{i}}: \mathrm{B}_{\mathrm{i}}{ }^{\mathrm{i} \in \mathrm{I}}, \mathrm{~m}_{\mathrm{j}}^{+}: \mathrm{C}_{\mathrm{j}}\{\mathrm{X}\}^{\mathrm{j} \in \mathrm{~J}^{\prime}}\right] \\
& \text { if } \mathrm{I} \subseteq \mathrm{I} \text { and } \mathrm{J}^{\prime} \subseteq \mathrm{J}
\end{aligned}
$$

- Using match-bounded quantification, we can rewrite the polymorphic function pre-inc in terms of matching rather than subtyping:

```
pre-inc:}\forall(\textrm{X}<#\mathrm{ Inc ) X }->\textrm{X}
    \lambda(X<#Inc) }\lambda(\mathrm{ self:X) self.n := self.n+1
pre-inc(IncDec) : IncDec }->\mathrm{ IncDec
```

- Similarly, we can write a polymorphic version of the function pre-max:

```
pre-max:}\forall(\textrm{X}<#\mathrm{ Max )X }->\textrm{X}->\textrm{X}
    \lambda(X<#Max) }\lambda(\mathrm{ self:X) }\lambda\mathrm{ (other:X)
            if self.n>other.n then self else other
```

pre-max(MinMax) : MinMax \rightarrow MinMax \rightarrow MinMax \quad (didn't hold with $<$:)

- Thus, the use of match-bounded quantification enables us to express the polymorphism of both pre-max and pre-inc: contravariant and covariant occurrences of Self are treated uniformly.

Matching and Subsumption

- A subsumption-like property does not hold for matching; $\mathrm{A}<\# \mathrm{~B}$ is not quite as good as $\mathrm{A}<$: B. (Fortunately, subsumption was not needed in the examples above.)

```
a:A and A<# B need not imply a:B
```

- Thus, matching cannot completely replace subtyping. For example, forget that IncDec $<$: Inc and try to get by with IncDec < \# Inc. We could not typecheck:

$$
\begin{aligned}
& \text { inc: } \begin{array}{l}
\text { Inc } \rightarrow \text { Inc } \triangleq \\
\quad \lambda(\mathrm{x}: \operatorname{Inc}) \mathrm{x} . \mathrm{n}:=\mathrm{x} . \mathrm{n}+1 \\
\lambda(\mathrm{x}: \operatorname{IncDec}) \operatorname{inc}(\mathrm{x})
\end{array}
\end{aligned}
$$

We can circumvent this difficulty by turning inc into a polymorphic function of type $\forall(\mathrm{X}<\# \operatorname{Inc}) \mathrm{X} \rightarrow \mathrm{X}$, but this solution requires foresight, and is cumbersome:

```
pre-inc: }\forall(\textrm{X}<#\mathrm{ Inc ) X }->\textrm{X}
    \lambda(X<#Inc) }\lambda(\textrm{x}:\textrm{X})\textrm{x.n := x.n+1
\lambda(x:IncDec) pre-inc(IncDec)(x)
```


Matching and Classes

- We can now revise our treatment of classes, adapting it for matching.

```
MaxClass \(\triangleq\)
        [ \(\mathrm{new}^{+}\): Max,
    n: Int,
    \(\max : \forall(\mathrm{X}<\# \mathrm{Max}) \mathrm{X} \rightarrow \mathrm{X} \rightarrow \mathrm{X}]\)
MinMaxClass \(\triangleq\)
    [ \(\mathrm{new}^{+}\): MinMax,
    n : Int,
    max: \(\forall(\mathrm{X}<\#\) MinMax \() \mathrm{X} \rightarrow \mathrm{X} \rightarrow \mathrm{X}\),
    min: \(\forall(X<\#\) MinMax \() X \rightarrow X \rightarrow X]\)
```

- A typical class of type MaxClass reads:

```
maxClass: MaxClass \triangleq
    [new = ¢(classSelf: MaxClass)
    [n= classSelf.n, max = \varsigma(self:Max) classSelf.max(Max)(self)],
    n=0,
    max = pre-max]
```

- A typical (sub)class of type MinMaxClass reads:

$$
\begin{aligned}
& \operatorname{minMaxClass}: \text { MinMaxClass } \triangleq \\
& \quad[\text { new }=\varsigma(\text { classSelf: MinMaxClass })[\ldots], \\
& \mathrm{n}=0, \\
& \max =\operatorname{maxClass} . \max , \\
& \min =\ldots]
\end{aligned}
$$

- The implementation of max is taken from maxClass, that is, it is inherited. The inheritance typechecks assuming that

$$
\forall(\mathrm{X}<\# \operatorname{Max}) \mathrm{X} \rightarrow \mathrm{X} \rightarrow \mathrm{X}<: \quad \forall(\mathrm{X}<\# \text { MinMax }) \mathrm{X} \rightarrow \mathrm{X} \rightarrow \mathrm{X}
$$

- Thus, we are still using some subtyping and subsumption as a basis for inheritance.

Matching is attractive

- The fact that MinMax matches Max is reasonably intuitive.
- Matching handles contravariant Self and inheritance of binary methods.
- Matching is meant to be directly axiomatized as a relation between types. The typing rules of a programming language that includes matching can be explained directly.
- Matching is simple from the programmer's point of view, in comparison with more elaborate type-theoretic mechanisms that could be used in its place.

However...

- The notion of matching is ad hoc (e.g., is defined only for object types).
- We still have to figure out the exact typing rules and properties matching.
- The rules for matching vary in subtle but fundamental ways in different languages.
- What principles will allow us to derive the "right" rules for matching?
- A language based on matching should be given a set of type rules based on the source type system.
- The rules can be proven sound by a judgment-preserving translation into an object-calculus with higher-order subtyping.

MATCHING AS Higher-Order Subtyping

Higher-Order Subtyping

- Subtyping can be extended to operators, in a pointwise manner:

$$
\mathrm{F} \prec: \mathrm{G} \quad \text { if, for all } \mathrm{X}, \quad \mathrm{~F}(\mathrm{X})<: \mathrm{G}(\mathrm{X})
$$

- The property:

$$
\mathrm{A}_{\mathrm{Op}} \prec: \mathrm{B}_{\mathrm{Op}} \quad\left(\mathrm{~A}_{\mathrm{Op}} \text { is a suboperator of } \mathrm{B}_{\mathrm{Op}}\right)
$$

is seen as a statement that A extends B .

$$
\begin{aligned}
& \operatorname{MinMax}_{\mathrm{Op}} \equiv \lambda(\mathrm{X})\left[\mathrm{n}: \text { Int, } \max ^{+}: \mathrm{X} \rightarrow \mathrm{X}, \min ^{+}: \mathrm{X} \rightarrow \mathrm{X}\right] \\
& \prec: \lambda(\mathrm{X})\left[\mathrm{n}: \text { Int }, \max ^{+}: \mathrm{X} \rightarrow \mathrm{X}, \min ^{+}: \mathrm{X} \rightarrow \mathrm{X}\right] \equiv \mathrm{Max}_{\mathrm{Op}}
\end{aligned}
$$

- We obtain:

$$
\begin{array}{lll}
\operatorname{Max}_{\mathrm{Op}} \prec: \operatorname{Max}_{\mathrm{Op}} & & \\
\operatorname{MinMax}_{\mathrm{Op}} & (\forall \mathrm{X} . & {\left[\mathrm{n}: \operatorname{Int}, \max ^{+}: \mathrm{X} \rightarrow \mathrm{X}, \min ^{+}: \mathrm{X} \rightarrow \mathrm{X}\right]} \\
\prec: \operatorname{Max}_{\mathrm{Op}} & & \left.<:\left[\mathrm{n}: \operatorname{Int}, \max ^{+}: \mathrm{X} \rightarrow \mathrm{X}\right]\right)
\end{array}
$$

We can parameterize over all type operators X with the property that $\mathrm{X} \prec$: $\mathrm{Max}_{\mathrm{Op}}$.

$$
\forall\left(\mathrm{X} \prec: \mathrm{Max}_{\mathrm{Op}}\right) \mathrm{B}\{\mathrm{X}\}
$$

We need to be careful about how X is used in $B\{X\}$, because X is now a type operator. The idea is to take the fixpoint of X wherever necessary.

```
pre-max : \(\forall\left(\mathrm{X} \prec: \mathrm{Max}_{\mathrm{Op}}\right) \mathrm{X}^{*} \rightarrow \mathrm{X}^{*} \rightarrow \mathrm{X}^{*} \triangleq\)
    \(\lambda\left(\mathrm{X}<: \mathrm{Max}_{\mathrm{Op}}\right) \lambda\left(\right.\) self: \(\left.\mathrm{X}^{*}\right) \lambda\left(\right.\) other: \(\left.\mathrm{X}^{*}\right)\)
        if self.n>other.n then self else other
pre-max \(\left(\operatorname{MinMax}_{\text {Op }}\right): \operatorname{MinMax} \rightarrow\) MinMax \(\rightarrow\) MinMax
```

This typechecks, e.g.:

$$
\begin{aligned}
& X=X\left(X^{*}\right) \\
& X \prec: \operatorname{Max}_{\mathrm{Op}} \Rightarrow X\left(X^{*}\right)<: \operatorname{Max}_{\mathrm{Op}}\left(X^{*}\right) \\
& \text { self }: X^{*} \Rightarrow \text { self }: X\left(X^{*}\right) \Rightarrow \text { self }: \operatorname{Max}_{\mathrm{Op}}\left(X^{*}\right) \Rightarrow \text { self.n : Int }
\end{aligned}
$$

(In this derivation we have used the unfolding property $\mathrm{X}^{*}=\mathrm{X}\left(\mathrm{X}^{*}\right)$, but we can do without it by introducing explicit fold/unfold terms.)

- The central idea of the interpretation is:

$$
\begin{array}{ll}
\mathrm{A}<\# \mathrm{~B} & \approx \mathrm{~A}_{\mathrm{Op}} \prec: \mathrm{B}_{\mathrm{Op}} \\
\forall(\mathrm{X}<\# \mathrm{~A}) \mathrm{B}\{\mathrm{X}\} & \approx \forall\left(\mathrm{X}<: \mathrm{A}_{\mathrm{Op}}\right) \mathrm{B}\left\{\mathrm{X}^{*}\right\}
\end{array}
$$

We must be more careful about the $\mathrm{B}\left\{\mathrm{X}^{*}\right\}$ part, because X may occur both in type and operator contexts.

- We handle this problem by two translations for the two kinds of contexts:

$$
\begin{array}{ll}
\mathrm{A}<\# \mathrm{~B} & \approx \operatorname{Oper}\langle\mathrm{~A}\rangle<: \operatorname{Oper}\langle\mathrm{B}\rangle \\
\forall(\mathrm{X}<\# \mathrm{~A}) \mathrm{B} & \approx \quad \forall(\mathrm{X}<: \operatorname{Oper}\langle\mathrm{A}\rangle) \operatorname{Type}(\mathrm{B}\rangle
\end{array}
$$

- The two translations, Type (A) and $\operatorname{Oper}(\mathrm{A})$, can be summarized as follows. For object types of the source language, we set:

$$
\begin{aligned}
& \operatorname{Oper}(\mathrm{X}\rangle \approx \quad \text { (assuming that } \mathrm{X} \text { is match-bound) } \\
& \text { X } \\
& \operatorname{Oper}\left\langle\mu(\mathrm{X})\left[\mathrm{v}_{\mathrm{i}}: \mathrm{Bi}_{\mathrm{i}}{ }^{\mathrm{i} \mathrm{I}}, \mathrm{~m}_{\mathrm{j}}^{+}: \mathrm{C}_{\mathrm{j}}\{\mathrm{X}\}{ }^{\mathrm{j} \epsilon \mathrm{~J}}\right]\right\rangle \approx \\
& \lambda(\mathrm{X})\left[\mathrm{v}_{\mathrm{i}}: \text { Type }\left\langle\mathrm{B}_{\mathrm{i}}\right)^{\mathrm{i} \in \mathrm{I}}, \mathrm{~m}_{\mathrm{j}}^{+}: \text {Type }\left\langle\mathrm{C}_{\mathrm{j}}\{\mathrm{X}\}\right\rangle{ }^{\mathrm{j}\rfloor \mathrm{J}}\right] \\
& \text { Type }\langle\mathrm{X}\rangle \approx \quad \text { (when } \mathrm{X} \text { is match-bound) } \\
& \text { X* } \\
& \text { Type }\left\langle\mu(\mathrm{X})\left[\mathrm{v}_{\mathrm{i}}: \mathrm{B}_{\mathrm{i}}{ }^{\mathrm{i}}{ }^{\mathrm{E} \mathrm{I}}, \mathrm{~m}_{\mathrm{j}}{ }^{+}: \mathrm{C}_{\mathrm{j}}\{\mathrm{X}\}{ }^{\mathrm{j} \epsilon \mathrm{~J}}\right]\right\rangle \approx \\
& \mu(\mathrm{X})\left[\mathrm{v}_{\mathrm{i}}: T y p e\left\langle\mathrm{~B}_{\mathrm{i}}\right\rangle^{\mathrm{i} \in \mathrm{I}}, \mathrm{~m}_{\mathrm{j}}^{+}: \operatorname{Type}\left\langle\mathrm{C}_{\mathrm{j}}\{\mathrm{X}\}\right\rangle^{\mathrm{j} \epsilon \mathrm{~J}}\right]
\end{aligned}
$$

For other types, we set:

$$
\begin{array}{ll}
\text { Type }\langle\mathrm{X}\rangle & \approx \mathrm{X} \quad(\text { when } \mathrm{X} \text { is not match-bound }) \\
\operatorname{Type}\langle\mathrm{A} \rightarrow \mathrm{~B}\rangle & \approx \operatorname{Type}\langle\mathrm{A}\rangle \rightarrow \operatorname{Type}\langle\mathrm{B}\rangle \\
\operatorname{Type}\langle(\forall(\mathrm{X}<\# \mathrm{~A}) \mathrm{B}\rangle & \approx \forall(\mathrm{X}<: \operatorname{Oper}\langle\mathrm{A}\rangle) \operatorname{Type}\langle\mathrm{B}\rangle
\end{array}
$$

- For instance:

$$
\begin{gathered}
\text { Type }\langle\forall(\mathrm{X}<\# \mathrm{Max}) \forall(\mathrm{Y}<\# \mathrm{X}) \mathrm{X} \rightarrow \mathrm{Y}\rangle \approx \\
\forall\left(\mathrm{X}<\mathrm{Max}_{\mathrm{Op}}\right) \forall(\mathrm{Y} \prec: \mathrm{X}) \mathrm{X}^{*} \rightarrow \mathrm{Y}^{*}
\end{gathered}
$$

This translation is well-defined on type variables, so there are no problems with cascading quantifiers.

- A note about unfolding of recursive types:
\sim The higher-order interpretation does not use the unfolding property of recursive types for the target language; instead, it uses explicit fold and unfold primitives.
\sim On the other hand, the higher-order interpretation is incompatible with the unfolding property of recursive types in the source language, because $\operatorname{Oper}\langle\mu(\mathrm{X}) \mathrm{A}\{\mathrm{X}\}\rangle$ and $O p$ $\operatorname{er}\langle\mathrm{A}\{\mu(\mathrm{X}) \mathrm{A}\{\mathrm{X}\}\}\rangle$ are in general different type operators.
\sim Technically, the unfolding property of recursive types is not an essential feature and it is the origin of complications; we are fortunate to be able to drop it throughout.
- Reflexivity is now satisfied by all object types, including variables; for every object type A, we have:

$$
\mathrm{A}<\# \mathrm{~A} \quad \approx \quad \operatorname{Oper}\langle\mathrm{~A}\rangle<: \operatorname{Oper}\langle\mathrm{A}\rangle
$$

This follows from the reflexivity of \prec :.

- Similarly, transitivity is satisfied by all triples A, B, and C of object types, including variables:

$$
\begin{gathered}
\mathrm{A}<\# \mathrm{~B} \text { and } \mathrm{B}<\# \mathrm{C} \text { imply } \mathrm{A}<\# \mathrm{C} \approx \\
\operatorname{Oper}\langle\mathrm{~A}\rangle \prec: \operatorname{Oper}\langle\mathrm{B}\rangle \text { and } \operatorname{Oper}\langle\mathrm{B}\rangle \prec: \operatorname{Oper}\langle\mathrm{C}\rangle \\
\text { imply } \operatorname{Oper}\langle\mathrm{A}\rangle \prec: \operatorname{Oper}\langle\mathrm{C}\rangle
\end{gathered}
$$

This follows from the transitivity of $<$:.

Matching Self

- With the higher-order interpretation, the relation:

$$
\begin{aligned}
A \equiv & \mu(\text { Self })\left[v_{i}: B_{i}{ }_{i} \in \mathrm{I}, \mathrm{~m}_{\mathrm{j}}^{+}: \mathrm{C}_{\mathrm{j}}\{\text { Self }\}^{\mathrm{j} \in J}\right] \\
& <\# \mu(\text { Self })\left[\mathrm{v}_{\mathrm{i}}: \mathrm{B}_{\mathrm{i}}{ }^{i \in \mathrm{I}}, \mathrm{~m}_{\mathrm{j}}^{+}: \mathrm{C}_{\mathrm{j}}^{\prime}\{\text { Self }\}{ }^{\mathrm{j} \in \mathrm{~J}^{\prime}}\right] \equiv \mathrm{A}^{\prime}
\end{aligned}
$$

holds when the type operators corresponding to A and A ' are in the subtyping relation, that is, when:

$$
\begin{aligned}
& {\left[\mathrm{v}_{\mathrm{i}}: \text { Type }\left\langle\mathrm{B}_{\mathrm{i}}\right\rangle^{\mathrm{i} \in \mathrm{I}}, \mathrm{~m}_{\mathrm{j}}^{+}: \text {Type }\left\langle\mathrm{C}_{\mathrm{j}}\{\operatorname{Self}\}\right\rangle^{\mathrm{j} \in \mathrm{~J}}\right]} \\
& \quad< \\
& \quad<\left[\mathrm{v}_{\mathrm{i}}: \text { Type }\left\langle\mathrm{B}_{\mathrm{i}}\right\rangle^{\mathrm{i} \in \mathrm{I}}, \mathrm{~m}_{\mathrm{j}}^{+}: \text {Type }\left\langle\mathrm{C}_{\mathrm{j}}{ }^{\prime}\{\operatorname{Self}\}\right\rangle^{\mathrm{j} \in \mathrm{~J}^{\prime}}\right]
\end{aligned}
$$

For this, it suffices that, for every j in J ':

$$
\text { Type }\left\langle\mathrm{C}_{\mathrm{j}}\{\text { Self }\}\right\rangle<\text { Type }\left\langle\mathrm{C}_{\mathrm{j}}{ }^{\prime}\{\text { Self }\}\right\rangle
$$

Since Self is μ-bound, all the occurrences of Self are translated as Self*. Then, an occurrence of Self* on the left can be matched only by a corresponding occurrence of Self* on the right, since Self is arbitrary. In short,:

Self matches only itself.
.This makes it easy to glance at two object types and tell whether they match

Inheritance and Classes via Higher-Order Subtyping

- Applying our higher-order translation to MaxClass, we obtain:

```
MaxClass \(\triangleq\)
        [new \({ }^{+}\): Max,
    n: Int,
    \(\left.\max : \forall\left(\mathrm{X}<: \mathrm{Max}_{\mathrm{Op}}\right) \mathrm{X}^{*} \rightarrow \mathrm{X}^{*} \rightarrow \mathrm{X}^{*}\right]\)
```

The corresponding translation at the term level produces:

```
maxClass: MaxClass \(\triangleq\)
    [new \(=\varsigma\) (classSelf: MaxClass)
    fold(
        [ \(\mathrm{n}=\) classSelf.n,
        \(\max =\varsigma\left(\right.\) self: \(\left.\operatorname{Max}_{\mathrm{Op}}(\operatorname{Max})\right)\)
        classSelf.max( \(\left.\operatorname{Max}_{\mathrm{Op}}\right)(\) fold(self) \(\left.)\right]\) ),
    \(\mathrm{n}=0\),
    \(\max =\) pre-max \(]\)
```

```
pre-max:}\forall(\textrm{X}<:\mp@subsup{\textrm{Max}}{\textrm{Op}}{})\mp@subsup{\textrm{X}}{}{*}->\mp@subsup{\textrm{X}}{}{*}->\mp@subsup{\textrm{X}}{}{*}
    \lambda(X<:Max Op})\lambda(\mathrm{ self: X*) }\lambda(\mathrm{ other: }\mp@subsup{\textrm{X}}{}{*}
    if unfold(self).n>unfold(other).n then self else other
```

It is possible to check that pre-max is well typed.
The instantiations pre-max $\left(\mathrm{Max}_{\mathrm{Op}}\right)$ and pre-max $\left(\operatorname{MinMax}_{O p}\right)$ are both legal. Since pre-max has type $\forall\left(\mathrm{X} \prec: \mathrm{Max}_{\mathrm{Op}}\right) \mathrm{X}^{*} \rightarrow \mathrm{X}^{*} \rightarrow \mathrm{X}^{*}$, this pre-method can be used as a component of a class of type MaxClass.

Moreover, a higher-order version of the rule for quantifier subtyping yields:

$$
\forall\left(\mathrm{X} \prec: \mathrm{Max}_{\mathrm{Op}}\right) \mathrm{X}^{*} \rightarrow \mathrm{X}^{*} \rightarrow \mathrm{X}^{*}<: \quad \forall\left(\mathrm{X}<: \operatorname{MinMax}_{\mathrm{Op}}\right) \mathrm{X}^{*} \rightarrow \mathrm{X}^{*} \rightarrow \mathrm{X}^{*}
$$

so pre-max has type $\forall\left(\mathrm{X} \prec: \operatorname{MinMax}_{\mathrm{Op}}\right) \mathrm{X}^{*} \rightarrow \mathrm{X}^{*} \rightarrow \mathrm{X}^{*}$ by subsumption, and hence pre-max can be reused as a component of a class of type MinMaxClass.

- Note. We expect following typings:

```
if X<#Inc and x:X then x.n : Int
if X<#Inc and x:X and b:Int then x.n:=b : X
```

The higher-order interpretation induces the following term translations:

```
if X<:Inc
if X<:Inc
```

For the first typing, we have unfold(x):X(X*). Moreover, from $X<$ Inc $_{\text {Op }}$ we obtain $X\left(X^{*}\right)$ $<: \operatorname{Inc}_{\mathrm{Op}}\left(\mathrm{X}^{*}\right)=\left[\mathrm{n}: \operatorname{Int}, \mathrm{inc}: \mathrm{X}^{*}\right]$. Therefore, unfold(x):[n:Int, inc: $\left.\mathrm{X}^{*}\right]$, and unfold(x).n:Int.

For the second typing, we have again unfold(x):X(X*) with $X\left(X^{*}\right)<:\left[n: I n t\right.$, inc: $\left.X^{*}\right]$. We then use a typing rule for field update in the target language. This rule says that if $\mathrm{a}: \mathrm{A}, \mathrm{c}: \mathrm{C}$, and $\mathrm{A}<:[\mathrm{v}: \mathrm{C}, \ldots]$ then $(\mathrm{a} . \mathrm{v}:=\mathrm{c})$: A. In our case, we have unfold $(\mathrm{x}): \mathrm{X}\left(\mathrm{X}^{*}\right)$, $\mathrm{b}: \operatorname{Int}$, and $\mathrm{X}\left(\mathrm{X}^{*}\right)$ $<:\left[n: I n t\right.$, inc: $\left.X^{*}\right]$. We obtain (unfold(x).n:=b) : X $\left(X^{*}\right)$. Finally, by folding, we obtain fold(unfold(x).n:=b) : X^{*}.

MATCHING AS
 F-bounded SubTyPing

- We introduce a theory of type operators that will enable us to express various formal relationships between types. Alternatives interpretations of matching will become available.
- A type operator is a function from types to types.

$$
\begin{array}{ll}
\lambda(\mathrm{X}) \mathrm{B}\{\mathrm{X}\} & \text { maps each type } \mathrm{X} \text { to a corresponding type } \mathrm{B}\{\mathrm{X}\} \\
\mathrm{B}(\mathrm{~A}) & \text { applies the operator } B \text { to the type } \mathrm{A}
\end{array}
$$

- Notation for fixpoints:

F*	abbreviates	$\mu(X) F(X)$
A Op	abbreviates	$\lambda(X) D\{X\} \quad$ whenever $A \equiv \mu(X) D\{X\}$

- We obtain:

$$
\begin{array}{ll}
\operatorname{Max}_{\mathrm{Op}} & \equiv \lambda(\mathrm{X})\left[\mathrm{n}: \text { Int, } \max ^{+}: \mathrm{X} \rightarrow \mathrm{X}\right] \\
\operatorname{MinMax}_{\mathrm{Op}} & \equiv \lambda(\mathrm{Y})\left[\mathrm{n}: \text { Int, } \max ^{+}: \mathrm{Y} \rightarrow \mathrm{Y}, \min ^{+}: \mathrm{Y} \rightarrow \mathrm{Y}\right]
\end{array}
$$

- The unfolding property of recursive types yields:

$$
\begin{array}{ll}
\operatorname{Max}_{\mathrm{Op}} * & =\mu(\mathrm{X}) \operatorname{Max}_{\mathrm{Op}}(\mathrm{X})=\mu(\mathrm{X})\left[\mathrm{n}: I n t, \max ^{+}: \mathrm{X} \rightarrow \mathrm{X}\right]=\operatorname{Max} \\
\operatorname{Max}_{\mathrm{Op}}^{*} & =\operatorname{Max}_{\mathrm{Op}}\left(\mu(\mathrm{X}) \operatorname{Max}_{\mathrm{Op}}(\mathrm{X})\right)=\operatorname{Max} \\
\mathrm{Op} & (\operatorname{Max})
\end{array}
$$

- Note that $A_{O p}$ is defined in terms of the syntactic form $\mu(X) D\{X\}$ of A. In particular, the unfolding $D\{A\}$ of A is not necessarily in a form such that $D\{A\}_{\text {Op }}$ is defined. Even if $D\{A\}_{\text {op }}$ is defined, it need not equal A_{Op}. For example, consider:

$$
\begin{array}{lll}
\mathrm{D}\{\mathrm{X}\} & \triangleq \mu(\mathrm{Y}) \mathrm{X} \rightarrow \mathrm{Y} & \\
\mathrm{~A} & \triangleq \mu(\mathrm{X}) \mathrm{D}\{\mathrm{X}\} & \\
\mathrm{D}\{\mathrm{~A}\} & \equiv \mu(\mathrm{Y}) \mathrm{A} \rightarrow \mathrm{Y} & =\mathrm{A} \\
\mathrm{~A}_{\mathrm{Op}} & \equiv \lambda(\mathrm{X}) \mathrm{D}\{\mathrm{X}\} & \\
\mathrm{D}\{\mathrm{~A}\} & \equiv \lambda(\mathrm{Y}) \mathrm{A} \rightarrow \mathrm{Y} & \mathrm{~A}_{\mathrm{Op}}
\end{array}
$$

- Thus, we may have two types A and B such that $\mathrm{A}=\mathrm{B}$ but $\mathrm{A}_{\mathrm{Op}}: \mathrm{B}_{\mathrm{Op}}$ (when recursive types are taken equal up to unfolding). This is a sign of trouble to come.
- F-bounded subtyping was invented to support parameterization in the absence of subtyping.
- The property:

$$
\mathrm{A}<: \mathrm{B}_{\mathrm{Op}}(\mathrm{~A}) \quad\left(\mathrm{A} \text { is a pre-fixpoint of } \mathrm{B}_{\mathrm{Op}}\right)
$$

is seen as a statement that A extends B .

- This view is justified because, for example, a recursive object type A such that $\mathrm{A}<$: [n:Int, $\left.\max ^{+}: \mathrm{A} \rightarrow \mathrm{A}\right]$ often has the shape $\mu(\mathrm{Y})\left[\mathrm{n}:\right.$ Int, $\left.\max ^{+}: \mathrm{Y} \rightarrow \mathrm{Y}, \ldots\right]$.
- Both Max and MinMax are pre-fixpoints of $\mathrm{Max}_{\mathrm{Op}}$:

```
\(\operatorname{Max}<\) Max \(_{\text {Op }}\) (Max) ( = Max)
MinMax
    \(<: \operatorname{Max}_{\text {Op }}(\operatorname{MinMax}) \quad\left(=\left[\right.\right.\) n:Int, \(\max ^{+}: \operatorname{MinMax} \rightarrow\) MinMax \(\left.]\right)\)
```

So, we can parameterize over all types X with the property that $\mathrm{X}<: \operatorname{Max}_{\mathrm{Op}}(\mathrm{X})$.

$$
\forall\left(\mathrm{X}<: \operatorname{Max}_{\mathrm{Op}}(\mathrm{X})\right) \mathrm{B}\{\mathrm{X}\}
$$

This form of parameterization leads to a general typing of pre-max, and permits the inheritance of pre-max:

```
pre-max:}\forall(\textrm{X}<:\mp@subsup{\textrm{Max}}{\textrm{Op}}{(X)})\textrm{X}->\textrm{X}->\textrm{X}
    \lambda(X<:Max }\mp@subsup{\textrm{Mop}}{(\textrm{X}))}{(\mathrm{ (self:X) }\lambda\mathrm{ (other:X)}
        if self.n>other.n then self else other
pre-max(Max) : Max }->\mathrm{ Max }->\mathrm{ Max
pre-max(MinMax) : MinMax }->\mathrm{ MinMax }->\mathrm{ MinMax
```


The F-bounded Interpretation

- The central idea of the interpretation is:

$$
\begin{array}{ll}
\mathrm{A}<\# \mathrm{~B} & \approx \mathrm{~A}<: \mathrm{B}_{\mathrm{Op}}(\mathrm{~A}) \\
\forall(\mathrm{X}<\# \mathrm{~A}) \mathrm{B}\{\mathrm{X}\} & \approx \forall\left(\mathrm{X}<: \mathrm{A}_{\mathrm{Op}}(\mathrm{X})\right) \mathrm{B}\{\mathrm{X}\}
\end{array}
$$

- However, this interpretation is not defined when the right-hand side of $<\#$ is a variable, as in the case of cascading quantifiers:

$$
\forall(\mathrm{X}<\# \mathrm{~A}) \forall(\mathrm{Y}<\# \mathrm{X}) \ldots \quad \approx
$$

Since $\forall\left(\mathrm{X}<: \mathrm{A}_{\mathrm{Op}}(\mathrm{X})\right) \forall\left(\mathrm{Y}<: \mathrm{X}_{\mathrm{Op}}(\mathrm{Y})\right) \ldots$ does not make sense the type structure supported by this interpretation is somewhat irregular: type variables are not allowed in places where object types are allowed.

- We would expect $A<\#$ A to hold, e.g. to justifying the instantiation $f(A)$ of a polymorphic function $\mathrm{f}: \forall(\mathrm{X}<\# \mathrm{~A}) \mathrm{B}$. We have:

$$
\mathrm{A}<\# \mathrm{~A} \quad \approx \quad \mathrm{~A}<: \mathrm{A}_{\mathrm{Op}}(\mathrm{~A})
$$

with $\mathrm{A}=\mathrm{A}_{\mathrm{Op}}(\mathrm{A})$ by the unfolding property of recursive types. However, if A is a type variable X , then X_{Op} is not defined, so $\mathrm{X}<: \mathrm{X}_{\mathrm{Op}}(\mathrm{X})$ does not make sense. Hence, reflexivity does not hold in general.

- If A, B, and C are object types of the source language, then we would expect that $\mathrm{A}<\# \mathrm{~B}$ and B $<\#$ C imply A $<\#$ C; this would mean:

$$
\mathrm{A}<: \mathrm{B}_{\mathrm{Op}}(\mathrm{~A}) \text { and } \mathrm{B}<: \mathrm{C}_{\mathrm{Op}}(\mathrm{~B}) \text { imply } \mathrm{A}<: \mathrm{C}_{\mathrm{Op}}(\mathrm{~A})
$$

As in the case of reflexivity, we run into difficulties with type variables.

Counterexample to Transitivity

- Worse, transitivity fails even for closed types, with the following counterexample:

$$
\begin{aligned}
& \mathrm{A} \triangleq \mu(X)\left[\mathrm{p}^{+}: \mathrm{X} \rightarrow \text { Int, } \mathrm{q}: \text { Int }\right] \\
& \mathrm{B} \triangleq \mu(\mathrm{X})\left[\mathrm{p}^{+}: \mathrm{X} \rightarrow \text { Int }\right] \\
& \mathrm{C} \triangleq \mu(\mathrm{X})\left[\mathrm{p}^{+}: \mathrm{B} \rightarrow \text { Int }\right]
\end{aligned}
$$

We have both $\mathrm{A}<\# \mathrm{~B}$ and $\mathrm{B}<\# \mathrm{C}$, but we do not have $\mathrm{A}<\# \mathrm{C}$ (because $\left[\mathrm{p}^{+}: \mathrm{A} \rightarrow\right.$ Int, $\left.\mathrm{q}: \operatorname{Int}\right]<$: [$\mathrm{p}^{+}: \mathrm{B} \rightarrow$ Int] fails).

$$
\begin{array}{llr}
\mathrm{A} & =\left[\mathrm{p}^{+}: \mathrm{A} \rightarrow \text { Int, } \mathrm{q}: \text { Int }\right] & <: \\
\mathrm{B}_{\mathrm{Op}}(\mathrm{~A}) & =\left[\mathrm{p}^{+}: \mathrm{A} \rightarrow \text { Int }\right] & \\
& & \\
\mathrm{B} & =\left[\mathrm{p}^{+}: \mathrm{B} \rightarrow \text { Int }\right] & <: \\
\mathrm{C}_{\mathrm{Op}}(\mathrm{~B}) & =\left[\mathrm{p}^{+}: \mathrm{B} \rightarrow \text { Int }\right] & \\
\mathrm{A} & =\left[\mathrm{p}^{+}: \mathrm{A} \rightarrow \text { Int, q: Int }\right] & <: \\
\mathrm{C}_{\mathrm{Op}}(\mathrm{~A}) & =\left[\mathrm{p}^{+}: \mathrm{B} \rightarrow \text { Int }\right] &
\end{array}
$$

- We can trace this problem back to the definition of D_{Op}, which depends on the exact syntax of the type D. Because of the syntactic character of that definition, two equal types may behave differently with respect to matching.

In our example, we have $\mathrm{B}=\mathrm{C}$ by the unfolding property of recursive types. Despite the equality $\mathrm{B}=\mathrm{C}$, we have $\mathrm{A}<\# \mathrm{~B}$ but not $\mathrm{A}<\# \mathrm{C}$!

- According to the F-bounded interpretation, two types that look rather different may match. Consider two types A and A' such that:

$$
\begin{aligned}
\mathrm{A} \equiv & \equiv \mu(X)\left[\mathrm{v}_{\mathrm{i}}: \mathrm{B}_{\mathrm{i}}{ }^{\mathrm{i} \in \mathrm{I}}, \mathrm{~m}_{\mathrm{j}}^{+}: \mathrm{C}_{\mathrm{j}}\{\mathrm{X}\}^{\mathrm{j} \in \mathrm{~J}}\right] \\
& <\# \mu(\mathrm{X})\left[\mathrm{v}_{\mathrm{i}}: \mathrm{B}_{\mathrm{i}}^{\mathrm{i} \in \mathrm{I}}, \mathrm{~m}_{\mathrm{j}}^{+}: \mathrm{C}_{\mathrm{j}}^{\prime}\left\{\mathrm{X}^{\mathrm{j} \in \mathrm{~J}^{\prime}}\right] \equiv \mathrm{A}^{\prime}\right.
\end{aligned}
$$

This holds when $A<: A^{\prime}{ }_{O p}(A)$, that is, when $\left[v_{i}: B_{i}{ }^{i \in I}, m_{j}^{+}: C_{j}\{A\}^{j \in J}\right]<:\left[v_{i}: B_{i}{ }^{i \in I}, m_{j}{ }^{+}: C_{j}{ }^{\prime}\{A\}\right.$ $\left.j \in J^{\prime}\right]$. It suffices that, for every $j \in J^{\prime}$:

$$
\mathrm{C}_{\mathrm{j}}\{\mathrm{~A}\}<\mathrm{C}_{\mathrm{j}}^{\prime}\{\mathrm{A}\}
$$

- For example, we have:

$$
\mu(\mathrm{X})\left[\mathrm{v}: \operatorname{Int}, \mathrm{m}^{+}: \mathrm{X}\right]<\# \mu(\mathrm{X})\left[\mathrm{m}^{+}:[\mathrm{v}: \mathrm{Int}]\right]
$$

The variable X on the left matches the type [v:Int] on the right. Since X is the Self variable, we may say that Self matches not only Self but also other types (here [v:Int]). This treatment of Self is both sound and flexible. On the other hand, it can be difficult for a programmer to see whether two types match.

THE LANGUAGE O-3

- Many features of O-3 are familiar: for example, object types, class types, and single inheritance.
- The main new feature is a matching relation, written <\#. The matching relation is defined only between object types, and between variables bounded by object types.
\sim An object type $A \equiv \operatorname{Object}(X)[\ldots]$ matches another object type $B \equiv$ $\operatorname{Object}(X)[\ldots]($ written $A<\# B)$ when all the object components of B are literally present in A, including any occurrence of the common variable X.

$$
\begin{array}{lc}
\operatorname{Object}(X)[l: X \rightarrow X, m: X]<\# \operatorname{Object}(X)[l: X \rightarrow X] & \text { Yes } \\
\operatorname{Object}(X)[l: X \rightarrow X, m: X]<: \operatorname{Object}(X)[l: X \rightarrow X] & \text { No }
\end{array}
$$

- Matching is the basis for inheritance in $\mathrm{O}-3$. That is, if $A<\# B$, then a method of a class for B may be inherited as a method of a class for A.
~ In particular, binary methods can be inherited. For example, a method l of a class for $\operatorname{Object}(X)[l: X \rightarrow X]$ can be inherited as a method of a class for $\operatorname{Object}(X)[l: X \rightarrow X, m: X]$.
\sim Matching does not support subsumption: when a has type A and $A<\#$ B, it is not sound in general to infer that a has type B.
\sim We will have that if A and B are object types and $A<: B$, then $A<\# B$. Moreover, if all occurrences of Self in B are covariant and $A<\# B$, then $A<: B$.
- With the loss of subsumption, it is often necessary to parameterize over all types that match a given type.
\sim For example, a function with type $(\operatorname{Object}(X)[l: X \rightarrow X]) \rightarrow C$ may have to be rewritten, for flexibility, with type $\operatorname{All}(Y<\# \operatorname{Object}(X)$ $[l: X \rightarrow X]) Y \rightarrow C$, enabling the application to an object of type $\operatorname{Object}(X)[l: X \rightarrow X, m: X]$.
- No subtype relation appears in the syntax of O-3, although subtyping is still used in its type rules.

Syntax of Types

Syntax of 0-3 types

```
A,B::= types
    X
    Top
```



```
    Class(A)
    All(X<#A)B
```

types
type variable
maximum type
object type
class type
match-quantified type

Syntax of Programs

Syntax of O-3 terms

$$
a, b, \mathrm{c}::=
$$

$$
x
$$

$$
\operatorname{object}(x: X=A) l_{i}=b_{i}\{X, x\}^{i \in 1 . . n} \text { end }
$$

a.l
$a . l:=\operatorname{method}(x: X<\# A) b$ end
new c
root
subclass of $c: C$ with $(x: X<\# A)$
$l_{i}=b_{i}\{X, x\}^{i \in n+1 . . n+m}$
override $l_{i}=b_{i}\{X, x\}^{i \in O v r \subseteq 1 . . n}$ end
$c^{\wedge} l(A, a)$
fun $(X<\# A) b$ end
$b(A)$
terms
variable
direct object construction
field/method selection
update
object construction from a class
root class
subclass
additional attributes
overridden attributes
class selection
match-polymorphic abstraction match-polymorphic instantiation

Abbreviations

Root \triangleq
Class(Object(X)[])
class with $(x: X<\# A) l_{i}=b_{i}\{X, x\}^{i \in 1 . . n}$ end \triangleq
subclass of root:Root with $(x: X<\# A) l_{i}=b_{i}\{X, x\}^{i \in 1 . . n}$ override end
subclass of $c: C$ with $(x: X<\# A) \ldots$ super $l \ldots$ end \triangleq subclass of $c: C$ with $(x: X<\# A) \ldots c^{\wedge} l(X, x) \ldots$ end
$\operatorname{object}(x: X=A) \ldots l$ copied from $c \ldots$ end \triangleq $\operatorname{object}(x: X=A) \ldots l=c^{\wedge} l(X, x) \ldots$ end
a.l $:=b \triangleq$
a.l $:=\operatorname{method}(x: X<\# A) b$ end
where $X, x \notin \mathrm{FV}(b)$ and $a: A$, with A clear from context

```
Point\triangleq Object(X)[x: Int,eq}\mp@subsup{}{}{+}:X->\mathrm{ Bool, mv }\mp@subsup{v}{}{+}:\mathrm{ Int }->X
CPoint \triangleq Object(X)[x: Int, c: Color, eq}\mp@subsup{}{}{+}:X->\mathrm{ Bool, mv }\mp@subsup{}{}{+}:\mathrm{ Int }->X
```

\sim These definitions freely use covariant and contravariant occurrences of Self types. The liberal treatment of Self types in O-3 yields CPoint <\# Point.
\sim In O-1, the same definitions of Point and CPoint are valid, but they are less satisfactory because C Point $<$: Point fails; therefore the $\mathrm{O}-1$ definitions adopt a different type for eq.
\sim In O-2, contravariant occurrences of Self types are illegal; therefore the $\mathrm{O}-2$ definitions have a different type for $e q$, too.
\sim We define two classes pointClass and cPointClass that correspond to the types Point and CPoint, respectively:

```
pointClass: Class(Point) \triangleq
    class with (self: X<#Point)
\[
x=0,
\]
\[
e q=\mathbf{f u n}(\text { other }: X) \text { self } \cdot x=\text { other } x \mathbf{e n d},
\]
\[
m v=\operatorname{fun}(d x: \text { Int }) \text { self. } x:=\text { self. } x+d x \text { end }
\]
end
```

```
cPointClass: Class(CPoint) \(\triangleq\)
```

cPointClass: Class(CPoint) \triangleq
subclass of pointClass: Class(Point)
with (self: X<\#CPoint)
c=black
override
eq= fun(other: X) super.eq(other) and self.c = other.c end,
mv= fun(dx: Int) super.mv(dx).c:= red end
end

```
\(\sim\) The subclass \(c\) PointClass could have inherited both \(m v\) and eq. However, we chose to override both of these methods in order to adapt them to deal with colors.
\(\sim\) In contrast with the corresponding programs in \(\mathrm{O}-1\) and \(\mathrm{O}-2\), no uses of typecase are required in this code. The use of typecase is not needed for accessing the color of a point after moving it. (Typecase is needed in \(\mathrm{O}-1\) but not in \(\mathrm{O}-2\).) Specifically, the overriding code for \(m v\) does not need a typecase on the result of super. \(m v(d x)\) in the definition of cPointClass.
\(\sim\) Other code that moves color points does not need a typecase either:
```

cPoint:CPoint \triangleq new cPointClass
movedColor: Color \triangleqcPoint.mv(1).c

```
~ Moreover, O-3 allows us to specialize the binary method eq as we have done in the definition of \(c\) PointClass (unlike \(\mathrm{O}-2\) ). This specialization does not require dynamic typing: we can write super.eq(other) without first doing a typecase on other.
\(\sim\) Thus the treatment of points in \(\mathrm{O}-3\) circumvents the previous needs for dynamic typing. The price for this is the loss of the subtyping CPoint \(<\) : Point, and hence the loss of subsumption between CPoint and Point.

\section*{Example: Binary Trees}
```

Bin \triangleq
Object(X)[isLeaf: Bool, lft: X, rht: X, consLft: X }->\mathrm{ X, consRht: }X->X
binClass:Class(Bin) \triangleq
class with(self: X<\#Bin)
isLeaf = true,
lft = self.lft,
rht = self.rht,
consLft = fun(lft:X) ((self.isLeaf := false).lft := lft).rht := self end,
consRht = fun(rht:X) ((self.isLeaf := false).lft := self).rht := rht end
end
leaf: Bin \triangleq
new binClass

```
- The definition of the object type Bin is the same one we could have given in \(\mathrm{O}-1\), but it would be illegal in \(\mathrm{O}-2\) because of the contravariant occurrences of \(X\).
- The method bodies rely on some new facts about typing; in particular, if self has type \(X\) and \(X<\#\) Bin, then self.lft and self.isLeaf:=false have type \(X\).
- Let us consider now a type NatBin of binary trees with natural number components.

\section*{NatBin \(\triangleq\)}

Object( \((X)[n\) : Nat, isLeaf: Bool, lft: \(X\), rht: \(X\), consLft: \(X \rightarrow X\), consRht: \(X \rightarrow X]\)
- We have NatBin <\# Bin, although NatBin <<: Bin.
- If \(b\) has type Bin and \(n b\) has type NatBin, then b.consLft \((b)\) and \(n b . c o n s L f t(n b)\) are allowed, but \(b\).consLft( \(n b\) ) and \(n b\).consLft \((b)\) are not.
- The methods consLft and consRht can be used as binary operations on any pair of objects whose common type matches Bin. O-3 allows inheritance of consLft and consRht. A class for NatBin may inherit consLft and consRht from binClass.
- Because NatBin is not a subtype of Bin, generic operations must be explicitly parameterized over all types that match Bin. For example, we may write:
\[
\begin{aligned}
& \text { selfCons : } \operatorname{All}(X<\# \text { Bin }) X \rightarrow X \triangleq \\
& \quad \text { fun }(X<\# B i n) \text { fun }(x: X) x . \operatorname{consLft}(x) \text { end end } \\
& \text { selfCons }(\text { NatBin })(n b): \text { NatBin } \quad \text { for } n b: \text { NatBin }
\end{aligned}
\]
- Explicit parameterization must be used systematically in order to guarantee future flexibility in usage, especially for object types that contain binary methods.

\section*{Example: Cells}
- In this version, the proper methods are indicated with variance annotations \({ }^{+}\); the contents and backup attributes are fields.
```

Cell \triangleq
Object(X)[contents: Nat, get': Nat, set ': Nat->X]
cellClass:Class(Cell) \triangleq
class with(self: X<\#Cell)
contents = 0,
get = self.contents,
set = fun(n: Nat) self.contents:= n end
end

```

\section*{ReCell \(\triangleq\)}

Object \((X)\left[\right.\) contents: Nat, get \(^{+}:\)Nat, set \(^{+}:\)Nat \(\rightarrow X\), backup: Nat, restore \(\left.{ }^{+}: X\right]\) reCellClass: Class(ReCell) \(\triangleq\)
subclass of cellClass:Class(Cell)
with(self: \(X<\#\) ReCell)
\[
\text { backup }=0,
\]
\[
\text { restore }=\text { self.contents }:=\text { self.backup }
\]
override
set \(=\mathbf{f u n}(n:\) Nat \()\) cellClass \({ }^{\wedge} \operatorname{set}(X\), self.backup \(:=\) self.contents \()(n)\) end end
- We can also write a version of ReCell that uses method update instead of a backup field:
```

ReCell'\triangleq
Object(X)[contents: Nat, get ' : Nat, set }\mp@subsup{}{}{+}: Nat->X, restore: X]
reCellClass': Class(ReCell') \triangleq
subclass of cellClass:Class(Cell)
with(self: X<\#ReCell')
restore = self.contents :=0
override
set = fun(n:Nat)
let m=self.contents
in cellClass^}\operatorname{set}(X
self.restore := method(y:X) y.contents:=m end)
(n)
end
end
end

```
- We obtain ReCell \(<:\) Cell and ReCell' \(<:\) Cell, because of the covariance of \(X\) and the positive variance annotations on the method types of Cell where \(X\) occurs.
- On the other hand, we have also ReCell <\# Cell and ReCell' \(<\#\) Cell, and this does not depend on the variance annotations.
- A generic doubling function for all types that match Cell can be written as follows:
\[
\begin{aligned}
& \text { double : } \operatorname{All}(X<\# \text { Cell }) X \rightarrow X \triangleq \\
& \quad \text { fun }(X<\# \text { Cell }) \text { fun }(x: X) x . \operatorname{set}(2 * x . g e t) \text { end end }
\end{aligned}
\]

\section*{Judgments}
\begin{tabular}{ll}
\(E \vdash \diamond\) & environment \(E\) is well formed \\
\(E \vdash A\) & \(A\) is a well formed type in \(E\) \\
\(E \vdash A::\) Obj & \(A\) is a well formed object type in \(E\) \\
\(E \vdash A<: B\) & \(A\) is a subtype of \(B\) in \(E\) \\
\(E \vdash A<\# B\) & \(A\) matches \(B\) in \(E\) \\
\(E \vdash a: A\) & \(a\) has type \(A\) in \(E\)
\end{tabular}

\section*{Environments}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{(Env ¢)} & \multicolumn{2}{|l|}{(Env \(X<\) :)} & \multicolumn{2}{|l|}{(Env \(X<\#\) )} & \multicolumn{2}{|l|}{(Env \(x\) )} \\
\hline & \(E \vdash A\) & \(X \notin \operatorname{dom}(E)\) & \(E \vdash A:: O b j\) & \(X \notin \operatorname{dom}(E)\) & \(E \vdash A\) & \(x \notin \operatorname{dom}(E)\) \\
\hline \(\overline{\varnothing \vdash \diamond}\) & & : \(A \vdash \diamond\) & \multicolumn{2}{|c|}{\(E, X<\# A \vdash \diamond\)} & \multicolumn{2}{|r|}{\(E, x: A \vdash \diamond\)} \\
\hline
\end{tabular}

\section*{Type Formation Rules}

\section*{Types}
\begin{tabular}{llc} 
(Type Obj) & (Type \(X\) ) & (Type Top) \\
\(\frac{E \vdash A:: \text { Obj }}{E \vdash A}\) & & \(E^{\prime}, X<: A, E^{\prime \prime} \vdash \diamond\) \\
\(E^{\prime}, X<: A, E^{\prime \prime} \vdash X\) & & \(\frac{E \vdash \diamond}{E \vdash \text { Top }}\)
\end{tabular}
\begin{tabular}{ll} 
(Type Class) \(\left(\right.\) where \(\left.A \equiv \operatorname{Object}(X)\left[l_{i} \cup_{i}: B_{i}{ }^{i \in 1 . . n}\right]\right)\) & (Type All<\#) \\
\(E, X<\# A \vdash B_{i} \quad \forall i \in 1 . . n\) & \(E, X<\# A \vdash B\) \\
\hline\(E \vdash \operatorname{Class}(A)\) & \\
& \(E \vdash \operatorname{All}(X<\# A) B\)
\end{tabular}

\section*{Object Types}
\begin{tabular}{|c|c|}
\hline ( \(\operatorname{Obj} X\) ) & (Obj Object) ( \(l_{i}\) distinct, \(\mathrm{v}_{i} \in\left\{\begin{array}{l}0 \\ \left.,{ }^{-},+\right\}\end{array}\right)\) \\
\hline \(E^{\prime}, X<\# A, E^{\prime \prime} \vdash \diamond\) & \(E, X<: \mathbf{T o p} \vdash B_{i} \quad \forall i \in 1 . . n\) \\
\hline \(E^{\prime}, X<\# A, E^{\prime \prime} \vdash X:: O b j\) & \(E \vdash \operatorname{Object}(X)\left[l_{i} \mathrm{v}_{i}: B_{i}{ }^{i \in 1 . . n}\right]:: O b j\) \\
\hline
\end{tabular}
- The judgments for types and object types are connected by the (Type Obj) rule.

\section*{Subtyping Rules}

\section*{Subtyping}
\begin{tabular}{|c|c|c|c|c|}
\hline (Sub Refl) & (Sub Trans) & & \((\operatorname{Sub} X)\) & (Sub Top) \\
\hline \(E \vdash A\) & \(E \vdash A<: B\) & \(E \vdash B<: C\) & \(E^{\prime}, X<: A, E^{\prime \prime} \vdash \diamond\) & \(E \vdash A\) \\
\hline \(E \vdash A<: A\) & & & \(E^{\prime}, X<: A, E^{\prime \prime} \vdash X<: A\) & \(\overline{E \vdash A<: \mathbf{T o p}}\) \\
\hline
\end{tabular}
(Sub Object)
\[
E \vdash \operatorname{Object}(X)\left[l_{i} \cup_{i}: B_{i}{ }^{i \in 1 . . n+m}\right] \quad E \vdash \operatorname{Object}(Y)\left[l_{i} \cup_{i}^{\prime}: B_{i}{ }^{i \in 1 . . n}\right]
\]
\[
E, Y<: \mathbf{T o p}, X<: Y \vdash v_{i} B_{i}<: v_{i}^{\prime} B_{i}^{\prime} \quad \forall i \in 1 . . n \quad E, X<\text { Top } \vdash B_{i} \quad \forall i \in n+1 . . m
\]
\[
E \vdash \operatorname{Object}(X)\left[l_{i} \mathrm{v}_{i}: B_{i}{ }^{i \in 1 . . n+m}\right]<: \operatorname{Object}(Y)\left[l_{i} \mathrm{v}_{i}^{\prime}: B_{i}^{\prime}{ }^{\prime \in 1 . . n}\right]
\]
(Sub All<\#)
\[
\begin{gathered}
E \vdash A^{\prime}<\# A \quad E, X<\# A^{\prime} \vdash B<: B^{\prime} \\
E \vdash \operatorname{All}(X<\# A) B<: \operatorname{All}\left(X<\# A^{\prime}\right) B^{\prime}
\end{gathered}
\]
\begin{tabular}{|c|c|c|}
\hline (Sub Invariant) & (Sub Covariant) & (Sub Contravariant) \\
\hline \multirow[t]{2}{*}{\(E \vdash B\)} & \(E \vdash B<\) : & \(E \vdash B^{\prime}<: B \quad\) v \(\in\left\{{ }^{0}\right.\), \\
\hline & \(B^{,} \mathrm{v} \in\left\{{\left.\stackrel{0}{0}{ }^{+}\right\}}^{\text {a }}\right.\) & \} \\
\hline \(E \vdash{ }^{\circ} \mathrm{B}<:{ }^{\circ} \mathrm{B}\) & \(E \vdash\) ט \(B<{ }^{+}{ }^{+}{ }^{\prime}\) & \(E \vdash\) ט \(B<{ }^{-} B^{\prime}\) \\
\hline
\end{tabular}

\section*{Matching Rules}

\section*{Matching}


\section*{Program Typing Rules}

\section*{Terms}
\begin{tabular}{|c|c|c|c|}
\hline (Val Subsumption) & \multicolumn{3}{|l|}{(Val \(x\) )} \\
\hline \(E \vdash a: A \quad E \vdash A<: B\) & \(E^{\prime}, x: A, E^{\prime \prime} \vdash \diamond\) & & \\
\hline \(E \vdash a: B\) & \multicolumn{3}{|l|}{\(\overline{E^{\prime}, x: A, E^{\prime \prime} \vdash x: A}\)} \\
\hline \multicolumn{4}{|l|}{(Val Object) \(\quad\left(\right.\) where \(\left.A \equiv \operatorname{Object}(X)\left[l_{i} \mathrm{v}_{i}: B_{i}\{X\}^{i \in 1 . . n}\right]\right)\)} \\
\hline \(E, x: A \vdash b_{i}\{4\}: B_{i}\{4\}\) & \(\forall i \in 1 . . n\) & & \\
\hline \multicolumn{4}{|l|}{\(E \vdash \operatorname{object}(x: X=A) l_{i}=b_{i}\{X\}^{i \in 1 . . n}\) end : \(A\)} \\
\hline \multicolumn{4}{|l|}{(Val Select) (where \(\left.A \equiv \operatorname{Object}(X)\left[l_{i} \mathrm{v}_{i}: B_{i}\{X\}^{i \in 1 . . n}\right]\right)\)} \\
\hline \(E \vdash a: A, \quad E \vdash A^{\prime}<\# A\) & \(v_{j} \in\left\{{ }^{0},{ }^{+}\right\} \quad j \in 1 . . n\) & & \\
\hline \multicolumn{4}{|l|}{\(E \vdash a . l_{j}: B_{j}\left\{\left\{A^{\prime}\right\}\right.\)} \\
\hline \multicolumn{4}{|l|}{(Val Method Update) (where \(\left.A \equiv \operatorname{Object}(X)\left[l_{i} \mathrm{v}_{i}: B_{i}{ }^{i \in 1 . . n}\right]\right)\)} \\
\hline \(E \vdash a: A^{\prime} \quad E \vdash A^{\prime}<\# A\) & \(E, X<\# A \prime, x: X \vdash b: B_{j}\) & \(v_{j} \in\left\{{ }^{0},{ }^{-}\right\}\) & \(j \in 1 . . n\) \\
\hline
\end{tabular}

(Val Fun<\#)
\[
\frac{E, X<\# A \vdash b: B}{E \vdash \mathbf{f u n}(X<\# A) b \text { end }: \operatorname{All}(X<\# A) B}
\]
(Val Appl<\#)
\(\frac{E \vdash b: \mathbf{A l l}(X<\# A) B\{X\} \quad E \vdash A^{\prime}<\# A}{E \vdash b\left(A^{\prime}\right): B\left\{\left\{A^{\prime}\right\}\right.}\)
- We give a translation into a functional calculus:

Syntax of \(\boldsymbol{O b} \boldsymbol{b}_{\omega<: \mu}\)
\begin{tabular}{cc}
\(K, L::=\) & kinds \\
\(T y\) & types \\
\(K \Rightarrow L\) & operators from \(K\) to \(L\) \\
\(A, B::=\) & constructors \\
\(X\) & constructor variable \\
\(T o p\) & the biggest constructor at kind \(T y\) \\
{\(\left[l_{i} \mathrm{v}_{i}: B_{i}{ }^{i \in 1 . . n}\right]\)} & object type \(\left(l_{i}\right.\) distinct, \(\mathrm{v}_{i} \in\left\{\left\{^{0},-,+\right\}\right)\) \\
\(\forall(X<: A:: K) B\) & bounded universal type \\
\(\mu(X) A\) & recursive type \\
\(\lambda(X:: K) B\) & operator \\
\(B(A)\) & operator application
\end{tabular}
kinds
types
operators from \(K\) to \(L\)
constructors
constructor variable
the biggest constructor at kind Ty
object type ( \(l_{i}\) distinct, \(v_{i} \in\left\{\begin{array}{l}\left.\left.\mathrm{O},-{ }^{-},\right\}\right)\end{array}\right.\)
bounded universal type
recursive type
operator
operator application
\(x\)
\(\left[l=\varsigma\left(x_{i}: A_{i}\right) b_{i}{ }^{i \in 1 . . n}\right]\)
a.l
a. \(l \leqslant \varsigma(x: A) b\)
\(\lambda(X<: A:: K) b\)
\(b(A)\)
fold (A, a)
unfold (a)
variable
object formation ( \(l_{i}\) distinct)
method invocation
method update
constructor abstraction
constructor application
recursive fold
recursive unfold
- The symbol \(\cong\) means "informally translates to", with \(\cong_{T y}\) for translations that yield types, and \(\cong_{O p}\) for translations that yield operators.
- We represent the translation of a term \(a\) by \(\underline{a}\), the type translation of a type \(A\) by \(\underline{A}\), and its operator translation by \(\underline{\underline{A}}\).
- We say that a variable \(X\) is subtype-bound when it is introduced as \(X<: A\) for some \(A\); we say that \(X\) is match-bound when it is introduced as \(X<\# A\) for some \(A\).

\section*{Translation summary}
\[
X \cong_{O p} \quad X
\]
(where \(X\) is match-bound in the environment)
\(\operatorname{Object}(X)\left[l_{i} \mathrm{v}_{i}: B_{i}{ }^{i \in 1 \ldots n}\right] \cong_{O p} \quad \lambda(X)\left[l_{i} \mathrm{v}_{i}: \underline{B}_{i}^{i \in 1 \ldots n}\right]\)
\(X \cong_{T y} \quad X\)
\(X \cong_{T y} \quad X^{*}\)
Top \(\cong_{T y}\) Top
\(\operatorname{Object}(X)\left[l_{i} \mathrm{v}_{i}: B_{i}{ }^{i \in 1 . . n}\right] \cong_{T y} \quad\left(\lambda(X)\left[l_{i} \mathrm{v}_{i}: \underline{B}_{i}{ }^{i \in 1 . . n}\right]\right) *\)
\(\operatorname{Class}(A) \cong_{T y} \quad\left[n e w^{+}: \underline{A}, l_{i}^{+}: \forall(X<: \underline{A}) X^{*} \rightarrow \underline{B}_{i}^{i \in 1 . . n}\right]\)
where \(A \equiv \operatorname{Object}(X)\left[l_{i} \mathrm{v}_{i}: B_{i}{ }^{i \in \overline{1} . . n}\right]\)
\(\operatorname{All}(X<\# A) B \cong_{T y} \quad \forall(X<: \underline{A}) \underline{B}\)
```

x\congx
object(x:A) l}\mp@subsup{l}{i}{}=\mp@subsup{b}{i}{}{x\mp@subsup{}}{}{i\in1..n}\mathrm{ end }\cong\operatorname{fold}(A,[\mp@subsup{l}{i}{}=\varsigma(x:A(A))\mp@subsup{b}{i}{}{{\operatorname{fold}(A,x)}\mp@subsup{}}{}{i\in1..n}]
a.l}\mp@subsup{l}{j}{}\cong\operatorname{unfold}(a).\mp@subsup{l}{j}{
a.lj:= method}(x:A')b{x} end
fold(A
new c\congc.new
root \cong[new=\varsigma(z:[new }\mp@subsup{}{}{+}:\mu(X)[]])\mathrm{ fold (}\mu(X)[],[])
subclass of c':C' with(x:X<\#A) }\mp@subsup{l}{i}{}=\mp@subsup{b}{i}{i}\mp@subsup{}{}{i\inn+1..n+m}\mathrm{ override }\mp@subsup{l}{i}{\prime}=\mp@subsup{b}{i}{i}\mp@subsup{}{}{i\inOvr}\mathrm{ end }

```

```

 l}=\varsigma(z:\underline{C})\mp@subsup{\underline{c}}{}{\prime}.\mp@subsup{l}{i}{}\mp@subsup{}{}{i\in1..n-Ovr,
 l}=\varsigma(z:\underline{C})\lambda(X<:\underline{A
 where C \equiv\operatorname{Class}(A)
 c}\mp@subsup{c}{}{\wedge}\mp@subsup{l}{j}{}(\mp@subsup{A}{}{\prime},a)\congc\cdot\mp@subsup{l}{j}{}(\underline{A
fun(X<\#A)b end \cong\lambda(X<:A)
b(\mp@subsup{A}{}{\prime})\congb(A

```
- There are situations in programming where one would like to parameterize over all "extensions" of a recursive object type, rather than over all its subtypes.
- Both F-bounded subtyping and higher-order subtyping can be used in explaining the matching relation.
We have presented two interpretations of matching:
\[
\begin{array}{lll}
\mathrm{A}<\# \mathrm{~B} & \approx \mathrm{~A}<: \mathrm{B}_{\mathrm{Op}}(\mathrm{~A}) & \text { (F-bounded interpretation) } \\
\mathrm{A}<\# \mathrm{~B} & \approx \mathrm{~A}_{\mathrm{Op}}<: \mathrm{B}_{\mathrm{Op}} & \text { (higher-order interpretation) }
\end{array}
\]
- Both interpretations can be soundly adopted, but they require different assumptions and yield different rules. The higher-order interpretation validates reflexivity and transitivity.

Technically, the higher-order interpretation need not assume the equality of recursive types up to unfolding (which seems to be necessary for the F-bounded interpretation). This leads to a simpler underlying theory, especially at higher order.
- Thus, we believe that the higher-order interpretation is preferable; it should be a guiding principle for programming languages that attempt to capture the notion of type extension.
- Matching achieves "covariant subtyping" for Self types and inheritance of binary methods at the cost not validating subsumption.
- Subtyping is still useful when subsumption is needed. Moreover, matching is best understood as higher-order subtyping. Therefore, subtyping is still needed as a fundamental concept, even though the syntax of a programming language may rely only on matching.
- In order to give insight into type rules for object-oriented languages, translations must be judgment-preserving (in particular, type and subtype preserving).
- Translating object-oriented languages directly to typed \(\lambda\) calculi is just too hard. Object calculi provide a good stepping stone in this process, or an alternative endpoint.
- Translating object calculi into \(\lambda\)-calculi means, intuitively, "programming in object-oriented style within a procedural language". This is the hard part.
- Give insights into the nature of object-oriented computation.
- Objects = records of functions.

\(\longrightarrow\) easy translation
- Give insights into the nature of object-oriented typing and subsumption/coercion.
- Object types \(=\) recursive records-of-functions types.
\[
\left[l_{i}: B_{i}{ }^{i \in 1 . . n}\right] \triangleq \mu(X)\left\langle l_{i}: X \rightarrow B_{i}{ }^{i \in 1 . . n}\right\rangle
\]

\(=\) useful for semantic purposes, impractical for programming, loses the "oo-flavor"

\section*{Subtype-Preserving Translations}
- Give insights into the nature of subtyping for objects.
- Object types = recursive bounded existential types (!!).
\[
\left[l_{i}: B_{i}{ }^{i \in 1 . . n}\right] \triangleq \mu(Y) \exists(X<: Y)\left\langle r: X, l_{i}^{s e l}: X \rightarrow B_{i}{ }^{i \in 1 . . n}, l_{i}^{u p d}:\left(X \rightarrow B_{i}\right) \rightarrow X^{i \in 1 . . n}\right\rangle
\]


\section*{CONCLUSIONS}

\section*{Functions vs. Objects}
- Functions can be translated into objects.

Therefore, pure object-based languages are at least as expressive as procedural languages.
(Despite all the Smalltalk philosophy, to our knowledge nobody had proved that one can build functions from objects.)
- Conversely, using sophisticated type systems, it is possible to translate objects into functions.
(But this translation is difficult and not practical.)

\section*{Classes vs. Objects}
- Classes can be encoded in object calculi, easily and faithfully. Therefore, object-based languages are just as expressive as class-based ones.
(To our knowledge, nobody had shown that one can build type-correct classes out of objects.)
- Method update, a distinctly object-based construct, is tractable and can be useful.

\section*{Foundations}
- We can make sense of object-oriented constructs.
\(\sim\) Object calculi are simple enough to permit precise definitions and proofs.
\(\sim\) Object calculi are quite expressive and object-oriented.
- Object calculi are fundamental
\(\sim\) Subtype-preserving translations of object calculi into \(\lambda\)-calculi are hard.
\(\sim\) In contrast, subtype-preserving translations of \(\lambda\)-calculi into objectcalculi can be easily obtained.
\(\sim\) In this sense, object calculi are a more convenient foundation for object-oriented programming than \(\lambda\)-calculi.

\section*{Language Design}
- Object calculi are a good basis for designing rich objectoriented type systems (including polymorphism, Self types, etc.).
- Object-oriented languages can be shown sound by fairly direct translations into object calculi.

\section*{Future Areas}
- Typed \(\varsigma\)-calculi should be a good simple foundation for studying object-oriented specification and verification.
- They should also give us a formal platform for studying object-oriented concurrent languages (as opposed to "ordinary" concurrent languages).
- http://www.research.digital.com/SRC/ personal/Luca_Cardelli/TheoryOfObjects.html
- M.Abadi, L.Cardelli: A Theory of Objects. Springer, 1996.

\section*{Extra Slides}

\section*{Unsoundness of Naive Object Subtyping with Binary Methods}
```

$\operatorname{Max} \triangleq \mu(X)\left[n: I n t, \max ^{+}: X \rightarrow X\right]$
MinMax $\triangleq \mu(Y)\left[n: I n t, \max ^{+}: Y \rightarrow Y, \min ^{+}: Y \rightarrow Y\right]$

```

\section*{Consider:}
\[
\begin{aligned}
& \mathrm{m}: \operatorname{Max} \triangleq[\mathrm{n}=0, \max =\ldots] \\
& \mathrm{mm}: \operatorname{MinMax} \triangleq \\
& \quad[\mathrm{n}=0, \min =\ldots, \\
& \max =\varsigma(\mathrm{s}: \operatorname{MinMax}) \lambda(\mathrm{o}: \operatorname{MinMax}) \\
& \quad \quad \text { if o.min}(\mathrm{o}) . \mathrm{n}>\text { s.n then o else } \mathrm{s}]
\end{aligned}
\]

Assume MinMax <: Max, then:
```

mm : Max
(by subsumption)
mm.max(m) : Max

```

But (Eiffel, \(\mathrm{O}_{2}, \ldots\) ):
```

mm.max(m) }\rightsquigarrow\mathrm{ if m.min(m).n>mm.n then m else mm }\rightsquigarrow\mathrm{ CRASH!

```

\section*{Unsoundness of Covariant Object Types}

With record types, it is unsound to admit covariant subtyping of record components in presence of imperative field update. With object types, the essence of that couterexample can be reproduced even in a purely functional setting.
```

U [] The unit object type.
L\triangleq[l:U] An object type with just l.
L<:U
P\triangleq[x:U,f:U]
Q\triangleq [x:L,f:U]
Assume Q<:P by an (erroneous) covariant rule for object subtyping
q:Q\triangleq [x=[l=[]],f=\varsigma(s:Q) s.x.l]
then }\quadq:
hence q.x:=[]:P
by subsumption with Q<: P
that is [x=[],f=s(s:Q) s.x.l]:P
But
(q.x:=[]).f
fails!

```

It is unsound to have an operation that extracts a method as a function.
\[
\begin{aligned}
& \text { (Val Extract) (where } \left.A \equiv\left[l_{i}: B_{i}{ }^{i \in 1 . . n}\right]\right) \\
& E \vdash a: A \quad j \in 1 . . n \\
& E \vdash a \cdot l_{j}: A \rightarrow B_{j} \\
& \text { (Eval Extract) (where } \left.A \equiv\left[l_{i}: B_{i}{ }^{i \in 1 . . n}\right], a \equiv\left[l_{i}=\zeta\left(x_{i}: A^{\prime}\right) b_{i}{ }^{\left.i \in 1 . n^{n+m}\right]}\right]\right) \\
& E \vdash a: A \quad j \in 1 . . n \\
& \overline{E \vdash a \cdot l_{j} \leftrightarrow \lambda\left(x_{j}: A\right) b_{j}: A \rightarrow B_{j}} \\
& P \triangleq[f:[]] \\
& Q \triangleq[f:[], y:[]] \\
& Q<: P \\
& p: P \triangleq[f=[]] \\
& q: Q \triangleq[f=\varsigma(s: Q) s \cdot y, y=[]] \\
& \text { then } \quad q: P \\
& \text { hence } \quad q \cdot f: P \rightarrow[] \\
& \text { But } \quad q . f(p) \\
& \text { by subsumption with } Q<: P \\
& \text { that is } \lambda(s: Q) s . y: P \rightarrow[] \\
& \text { fails! }
\end{aligned}
\]

\section*{Unsoundness of a Naive Recursive Subtyping Rule}

Assume:
\[
A \equiv \mu(X) X \rightarrow N a t<: \mu(X) X \rightarrow \text { Int } \equiv B
\]

Let:
\[
\begin{aligned}
& f: N a t \rightarrow N a t \\
& a: A=\operatorname{fold}(A, \lambda(x: A) 3) \\
& b: B=\operatorname{fold}(B, \lambda(x: B)-3) \\
& c: A=\operatorname{fold}(A, \lambda(x: A) \operatorname{f(unfold}(x)(a)))
\end{aligned}
\]

Type-erased:
\[
\begin{aligned}
& =\lambda(x) 3 \\
& =\lambda(x)-3 \\
& =\lambda(x) f(x(a))
\end{aligned}
\]

\section*{By subsumption:}
\[
c: B
\]

Hence:
unfold \((c)(b)\) : Int Well-typed!
\(=c(b)\)
But:
\[
\operatorname{unfold}(c)(b)=f(-3) \quad \text { Error! }
\]

\section*{Operationally Sound Update}

\section*{Luca Cardelli}

Digital Equipment Corporation
Systems Research Center

\section*{Outline}
- The type rules necessary for "sufficiently polymorphic" update operations on records and objects are based on unusual operational assumptions.
- These update rules are sound operationally, but not denotationally (in standard models). They arise naturally in type systems for programming, and are not easily avoidable.
- Thus, we have a situation where operational semantics is clearly more advantageous than denotational semantics.
- However (to please the semanticists) I will show how these operationally-based type systems can be translated into type systems that are denotationally sound.

\section*{The polymorphic update problem}
L.Cardelli, P.Wegner
"The need for bounded quantification arises very frequently in object-oriented programming. Suppose we have the following types and functions:
\[
\begin{aligned}
& \text { type Point }=[x: \text { Int, } y: \text { Int }] \\
& \text { value } \text { moveX }_{0}=\lambda(p: \text { Point, dx: Int }) p . x:=p . x+d x ; p \\
& \text { value } \text { move } X=\lambda(P<: \text { Point }) \lambda(p: P, d x: \text { Int }) p . x:=p . x+d x ; p
\end{aligned}
\]

It is typical in (type-free) object-oriented programming to reuse functions like moveX on objects whose type was not known when moveX was defined. If we now define:
\[
\text { type Tile }=[x \text { : Int, } y: \text { Int, hor: Int, ver: Int }]
\]
we may want to use moveX to move tiles, not just points."
\[
\begin{array}{ll}
\text { Tile }<: \text { Point } & \\
\text { moveX }_{0}([x=0, y=0, \text { hor }=1, \text { ver }=1], 1) \cdot h o r & \text { fails }  \tag{fails}\\
\text { moveX }(\text { Tile })([x=0, y=0, \text { hor }=1, \text { ver }=1], 1) . \text { hor } & \text { succeeds }
\end{array}
\]
- In that paper, bounded quantification was justified as a way of handling polymorphic update, and was used in the context of imperative update.
- The examples were inspired by object-oriented applications. Object-oriented languages combine subtyping and polymorphism with state encapsulation, and hence with imperative update. Some form of polymorphic update is inevitable.
- Simplifying the situation a bit, let's consider the equivalent example in a functional setting. We might hope to achieve the following typing:
\[
\begin{aligned}
& \text { bump } \triangleq \lambda(P<: \text { Point }) \lambda(p: P) \text { p. } x:=p . x+1 \\
& \text { bump }: \forall(P<: \text { Point }) P \rightarrow P
\end{aligned}
\]

But ...

\section*{Neither semantically}

In standard models, the type \(\forall(P<:\) Point \() P \rightarrow P\) contains only the identity function.
Consider \(\{p\}\) for any \(p \in\) Point. If \(f: \forall(P<:\) Point \() P \rightarrow P\), then \(f(\{p\}):\{p\} \rightarrow\{p\}\), therefore \(f\) must map every point to itself, and must be the identity.

\section*{Nor parametrically}
M.Abadi, L.Cardelli, G.Plotkin

By parametricity (for bounded quantifiers), we can show that if \(f: \forall(P<:\) Point \() P \rightarrow P\), then \(\forall(P<:\) Point \() \forall(x: P) f(P)(x)={ }_{P} x\). Thus \(f\) is an identity.

\section*{Nor by standard typing rules}

As shown next ...

\section*{The simple rule for update}
(Val Simple Update)
\(E \vdash a:\left[l_{i}: B_{i}^{i \in 1 . . n}\right] \quad E \vdash b:\)
\(B_{j} \quad j \in 1 . . n\)
\(E \vdash a . l_{j}:=b:\left[l_{i}: B_{i}{ }^{i \in 1 . . n}\right]\)
- According to this rule, bump does not typecheck as desired:
\[
\text { bump } \triangleq \lambda(P<: \text { Point }) \lambda(p: P) \text { p. } x:=p . x+1
\]

We must go from \(p: P\) to \(p\) :Point by subsumption before we can apply the rule. Therefore we obtain only:
\[
\text { bump : } \forall(P<: \text { Point }) P \rightarrow \text { Point }
\]
(Val Structural Update)
\(E \vdash a: A \quad E \vdash A<:\left[l_{i}: B_{i}{ }^{i \in 1 . . n}\right] \quad E \vdash b: B_{j} \quad j \in 1 . . n\)
\[
E \vdash a \cdot l_{j}:=b: A
\]
- According to this rule, bump typechecks as desired, using the special case where \(A\) is a type variable.
\[
\begin{aligned}
& \text { bump } \triangleq \lambda(P<: \text { Point }) \lambda(p: P) \text { p.x }:=p \cdot x+1 \\
& \text { bump }: \forall(P<: \text { Point }) P \rightarrow P
\end{aligned}
\]
- Therefore, (Val Structural Update) is not sound in most semantic models, because it populates the type \(\forall(P<\) :Point \() P \rightarrow P\) with a non-identity function.
- However, (Val Structural Update) is in practice highly desirable, so the interesting question is under which conditions it is sound.

\section*{Can't allow too many subtypes}
- Suppose we had:
\[
\begin{aligned}
& \text { BoundedPoint } \triangleq\{x: 0 . .9, y: 0 . .9\} \\
& \text { BoundedPoint }<: \text { Point }
\end{aligned}
\]
then:
\[
\text { bump(BoundedPoint })(\{x=9, y=9\}): \text { BoundedPoint }
\]
unsound!
- To recover from this problem, the subtyping rule for records/objects must forbid certain subtypings:
(Sub Object)
\(\frac{E \vdash B_{i} \quad \forall i \in 1 . . m}{E \vdash\left[l_{i}: B_{i}{ }^{i \in 1 . . n+m}\right]<:\left[l_{i}: B_{i}{ }^{i \in 1 . . n}\right]}\)
- Therefore, for soundness, the rule for structural updates makes implicit assumptions about the subtype relationships that may exist.

\section*{Relevant rules for structural update}
(Sub Object)

(Val Subsumption)
\(\frac{E \vdash a: A \quad E \vdash A<: B}{E \vdash a: B}\)
(Val Structural Update)
\begin{tabular}{|c|c|c|c|c|c|}
\hline (Val Object) & & (Val Structur & Update) & & \\
\hline \(E \vdash b_{i}: B_{i}\) & \(\forall i \in 1 . . n\) & \(E \vdash a: A\) & \(E \vdash A<:\left[l_{i}: B_{i}{ }^{i \in 1 . n}\right]\) & \(E \vdash b: B_{j}\) & \(j \in 1 . . n\) \\
\hline \(\overline{E \vdash\left[l_{i}=b_{i}{ }^{i \in 1 . . n}\right]}\) & \(\left[l_{i}: B_{i}{ }^{i \in 1 . . n}\right]\) & & \(E \vdash a . l_{j}:=b\) & & \\
\hline
\end{tabular}
(Red Update)
\(\vdash a \rightsquigarrow\left[l_{i=v_{i}}^{i \in 1 . . n}\right] \quad \vdash b \rightsquigarrow v \quad j \in 1 . . n\)
\[
\vdash a \cdot l_{j}:=b \rightsquigarrow\left[l_{j}=v, l_{i}=v_{i}^{i \in 1 . . n-\{j\}}\right]
\]

\section*{Lemma (Structural subtyping)}

If \(E \vdash\left[l_{i}: B_{i}{ }^{i \epsilon}\right]<: C\) then either \(C \equiv T o p\), or \(C \equiv\left[l_{i}: B_{i}{ }^{i \epsilon J}\right]\) with \(J \subseteq I\).
If \(E \vdash C<:\left[l_{i}: B_{i}{ }^{i \epsilon J}\right]\) then either \(C \equiv\left[l_{i}: B_{i}{ }^{i \epsilon I}\right]\) with \(J \subseteq I\), or \(C \equiv X_{1}\) and \(E\) contains a chain \(X_{1}<: \ldots<: X_{p}<:\left[l_{i}: B_{i}{ }^{i \epsilon l}\right]\) with \(J \subseteq I\).

\section*{Proof}

By induction on the derivations of \(E \vdash\left[l_{i}: B_{i}{ }^{i \epsilon I}\right]<: C\) and \(E \vdash C<:\left[l_{i}: B_{i}{ }^{i \epsilon I}\right]\).

\section*{Soundness by subject reduction}

\section*{Theorem (Subject reduction)}

If \(\varnothing \vdash a: A\) and \(\vdash a \rightsquigarrow v\) then \(\varnothing \vdash v: A\).
Proof By induction on the derivation of \(\vdash a \rightsquigarrow v\).

\section*{Case (Red Update)}
\[
\left.\frac{\vdash c \rightsquigarrow\left[l_{i}=z_{i}^{i \in 1 . . n}\right] \quad \vdash b \rightsquigarrow w \quad j \in 1 . . n}{\vdash c . l_{j}:=b \rightsquigarrow\left[l_{j}=w, l_{i}=z_{i}\right.}{ }^{i \in 1 . . n-\{j\}}\right] \quad
\]

By hypothesis \(\varnothing \vdash c . l_{j}:=b: A\). This must have come from (1) an application of (Val Structural Update) with assumptions \(\varnothing \vdash c: C\), and \(\varnothing \vdash C<: D\) where \(D \equiv\left[l_{j}: B_{j}, \ldots\right]\), and \(\varnothing \vdash b\) : \(B_{j}\), and with conclusion \(\varnothing \vdash c . l_{j}:=b: C\), followed by (2) a number of subsumption steps implying \(\varnothing \vdash C<: A\) by transitivity.
By induction hypothesis, since \(\varnothing \vdash c: C\) and \(\vdash c \rightsquigarrow z \equiv\left[l_{i=z_{i}}^{i \in 1 . n}\right]\), we have \(\phi \vdash z: C\).
By induction hypothesis, since \(\varnothing \vdash b: B_{j}\) and \(\vdash b \rightsquigarrow w\), we have \(\phi \vdash w: B_{j}\).
Now, \(\varnothing \vdash z: C\) must have come from (1) an application of (Val Object) with assumptions \(\emptyset \vdash z_{i}: B_{i}^{\prime}\) and \(C^{\prime} \equiv\left[l_{i}^{\prime}: B_{i}^{\prime}{ }^{\prime \in 1 . . n}\right]\), and with conclusion \(\varnothing \vdash z: C^{\prime}\), followed by (2) a number of subsumption steps implying \(\varnothing \vdash C^{\prime}<: C\) by transitivity. By transitivity, \(\varnothing \vdash C^{\prime}<: D\). Hence by the Structural Subtyping Lemma, we must have \(B_{j} \equiv B_{j}^{\prime}\). Thus \(\varnothing \vdash w: B_{j}^{\prime}\). Then, by (Val Object), we obtain \(\varnothing \vdash\left[l_{j}=w, l_{i}=z_{i}{ }^{i \in 1 . . n-\{j\}}\right]: C^{\prime}\). Since \(\varnothing \vdash C^{\prime}<: A\) by transitivity, we have \(\phi \vdash\left[l_{j}=w, l_{i}=z_{i}^{i \in 1 . . n-\{j\}}\right]: A\) by subsumption.

\section*{Other structural rules}
- Rules based on structural assumptions (structural rules, for short) are not restricted to record/ object update. They also arise in:
\(\sim\) method invocation with Self types,
~ object cloning,
~ class encodings,
\(\sim\) unfolding recursive types.
- The following is one of the simplest examples of the phenomenon (although not very useful in itself):

\section*{A structural rule for product types}
- The following rule for pairing enables us to mix two pairs \(a\) and \(b\) of type \(C\) into a new pair of the same type. The only assumption on \(C\) is that it is a subtype of a product type \(B_{1} \times B_{2}\).
\[
\frac{E \vdash C<: B_{1} \times B_{2} \quad E \vdash a: C \quad E \vdash b: C}{E \vdash\langle f s t(a), \operatorname{snd}(b)\rangle: C}
\]

The soundness of this rule depends on the property that every subtype of a product type \(B_{1} \times B_{2}\) is itself a product type \(C_{1} \times C_{2}\).
- This property is true operationally for particular systems, but fails in any semantic model where subtyping is interpreted as the subset relation. Such a model would allow the set \(\{a, b\}\) as a subtype of \(B_{1} \times B_{2}\) whenever \(a\) and \(b\) are elements of \(B_{1} \times B_{2}\). If \(a\) and \(b\) are different, then \(\langle f s t(a)\) snd \((b)\rangle\) is not an element of \(\{a, b\}\). Note that \(\{a, b\}\) is not a product type.

\author{
M.Abadi, L.Cardelli, R.Viswanathan
}
- In the paper "An Interpretation of Objects and Object types" we give a translation of object types into ordinary types:
```

$\left[l_{i}: B_{i}{ }^{i \in 1 . . n}\right] \triangleq$
$\mu(Y) \exists(X<: Y)\left\langle r: X, l_{i}^{\text {sel }}: X \rightarrow B_{i}{ }^{i \in 1 . . n}, l_{i}^{u p d}:\left(X \rightarrow B_{i}\right) \rightarrow X^{i \in 1 . . n}\right\rangle$

```
this works fine for non-structural rules.
- In order to validate a structural update rule in the source calculus, we need a structural update rule in the target calculus. It turns out that the necessary rule is the following, which is operationally sound:
\[
\frac{E \vdash C<: \mu(X) B\{X\} \quad E \vdash a: C}{E \vdash \operatorname{unfold}(a): B\{C\}}
\]
- In the context of object types with Self types:
\[
\frac{\left.\begin{array}{l}
\text { (Val Select) } \\
E \vdash a: A \quad E \vdash A<: \operatorname{Obj}(X)\left[l_{i}: B_{i}\{X\}^{i \in 1 . . n}\right] \quad j \in 1 . . n \\
E \vdash a . l_{j}: B_{j}\{A\}
\end{array}\right)}{l}
\]

This structural rule is necessary to "encapsulate" structural update inside methods:
\[
\begin{aligned}
& A \triangleq \operatorname{Obj}(X)[n: \text { Int, bump: } X] \\
& \lambda(Y<: A) \lambda(y: Y) \text { y.bump } \\
& : \quad \forall(Y<: A) Y \rightarrow Y
\end{aligned}
\]

\section*{Structural rules and class encodings}

Types of the form \(\forall(X<: A) X \rightarrow B\{X\}\) are needed also for defining classes as collections of premethods. Each pre-method must work for all possible subclasses, parametrically in self, so that it can be inherited.
```

A\triangleq Obj(X)[l}\mp@subsup{l}{i}{}:\mp@subsup{B}{i}{}{X}, i\in1..\textrm{n}
Class}(A)\triangleq[new:A,\mp@subsup{l}{i}{}:\forall(X<:A)X->\mp@subsup{B}{i}{}{X}\mp@subsup{}}{}{\textrm{i}\in1..n}

```
Bump \(\triangleq \operatorname{Obj}(X)[n\) : Int, bump: \(X]\)
Class(Bump \() \triangleq[\) new: Bump, bump: \(\forall(X<:\) Bump \() X \rightarrow X]\)
\(c: \operatorname{Class}(\) Bump \() \triangleq\)
    \([\) new \(=\varsigma(c:\) Class \((\) Bump \())[n=0\), bump \(=\varsigma(s:\) Bump \()\) c.bump \((\) Bump \()(s)]\),
    bump \(=\lambda(X<:\) Bump \() \lambda(x: X) x . n:=x . n+1\}]\)
- In the context of imperative object calculi:
\[
\begin{array}{ll}
\begin{array}{l}
\text { (Val Clone) } \\
E \vdash a: A
\end{array} & E \vdash A<:\left[l_{i}: B_{i}^{i \in 1 . . n}\right] \quad j \in 1 . . n \\
E \vdash \operatorname{clone}(a): A
\end{array}
\]

This structural rule is necessary for bumping and returning a clone instead of the original object:
\[
\begin{aligned}
& \text { bump } \triangleq \lambda(P<: \text { Point }) \lambda(p: P) \text { clone }(p) \cdot x:=p . x+1 \\
& \text { bump }: \forall(P<: \text { Point }) P \rightarrow P
\end{aligned}
\]

\section*{Comments}
- Structural rules are quite satisfactory. The operational semantics is the right one, the typing rules are the right ones for writing useful programs, and the rules are sound for the semantics.
- We do not have a denotational semantics (yet?). (The paper "Operations on Records" by L.Cardelli and J.Mitchell contains a limited model for structural update; no general models seems to be known.)
- Even without a denotational semantcs, there is an operational semantics from which one could, hopefully, derive a theory of typed equality.
- Still, I would like to understand in what way a type like \(\forall(X<:\) Point \() X \rightarrow X\) does not mean what most people in this room might think.
- Insight may come from translating a calculus with structural rules, into one without structural rules for which we have a standard semantics.
- The "Penn translation" can be used to map \(\mathrm{F}_{<\text {: }}\) into F by threading coercion functions.
- Similarly, we can map an \(\mathrm{F}_{<:}\)-like calculus with structural rules into a normal \(\mathrm{F}_{<\text {:- }}\)-like calculus by threading update functions (c.f. M.Hofmann and B.Pierce: Positive \(<\) :).
- Example :
\[
\begin{aligned}
& f: \forall(X<:[l: \text { Int }]) X \rightarrow X \triangleq \\
& \quad \lambda(X<:[l: \text { Int }]) \lambda(x: X) x . l:=3 \\
& f([l: \text { Int }])
\end{aligned}
\]
(N.B. the update \(x . l:=3\) uses the structural rule)
translates to:
\[
\begin{aligned}
& f: \forall(X<:[l: \text { Int }])[l: X \rightarrow \text { Int } \rightarrow X] \rightarrow X \rightarrow X \triangleq \\
& \quad \lambda(X<:[l: \text { Int }]) \lambda\left(\pi_{X}:[l: X \rightarrow \text { Int } \rightarrow X]\right) \lambda(x: X) \pi_{X} \cdot l(x)(3) \\
& f([l: \text { Int }])([l=\lambda(x:[l: \text { Int }]) \lambda(y: \text { Int }) x . l:=y])
\end{aligned}
\]
(N.B. the update \(x . l:=y\) uses the non-structural rule)
- Next: a simplified, somewhat ad-hoc, calculus to formalize this translation.

\section*{Syntax}
\begin{tabular}{|c|c|}
\hline \(A, B\) :: \(=\) & types \\
\hline \(X\) & type variable \\
\hline \(\left[l_{i}: B_{i}{ }^{i \epsilon 1 . . n}\right]\) & object type ( \(l_{i}\) distinct) \\
\hline \(A \rightarrow B\) & function types \\
\hline \(\forall\left(X<:\left[l_{i}: B_{i}{ }^{i \epsilon 1 . n}\right]\right) B\) & bounded universal type \\
\hline \(a, b::=\) & terms \\
\hline \(x\) & variable \\
\hline \(\left[l_{i}=\varsigma\left(x_{i}: A_{i}\right) b_{i}{ }^{i \epsilon 1 . . n}\right]\) & object ( \(l_{i}\) distinct) \\
\hline a.l & method invocation \\
\hline a.l< \(k(x: A) b\) & method update \\
\hline \(\lambda(x: A) b\) & function \\
\hline \(b(a)\) & application \\
\hline \(\lambda\left(X<:\left[l_{i}: B_{i}{ }^{i \epsilon 1 . . n}\right]\right) b\) & polymorphic function \\
\hline \(b(A)\) & polymorphic instantiation \\
\hline
\end{tabular}
- We consider method update instead of field update ( \(\left.a_{A} . l:=b \triangleq a . l \leqslant \varsigma(x: A) b\right)\).
- We do not consider object types with Self types.
- We do not consider arbitrary bounds for type variables, only object-type bounds.

\section*{Environments}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\((E n v \varnothing)\)} & \multicolumn{2}{|l|}{(Env \(x\) )} & \multicolumn{2}{|l|}{(Env \(X<:\) )} \\
\hline & \(E \vdash A\) & \(x \notin \operatorname{dom}(E)\) & \(E \vdash A\) & \(X \notin \operatorname{dom}(E)\) \\
\hline \(\varnothing \vdash \diamond\) & & : \(A \vdash \diamond\) & & \(: A \vdash \diamond\) \\
\hline
\end{tabular}

\section*{Types}
\begin{tabular}{ll} 
(Type \(X<:\) ) & (Type Object) \(\quad\left(l_{i}\right.\) distinct) \\
\(\frac{E^{\prime}, X<: A, E^{\prime \prime} \vdash \diamond}{E^{\prime}, X<: A, E^{\prime \prime} \vdash X}\) & \(\frac{E \vdash B_{i} \quad \forall i \in 1 . . n}{E \vdash\left[l_{i}: B_{i}{ }^{i \in 1 . . n}\right]}\)
\end{tabular}
\begin{tabular}{ll} 
(Type Arrow) & (Type All<:) \\
\(\frac{E \vdash A \quad E \vdash B}{E \vdash A \rightarrow B}\)
\end{tabular}\(\quad \frac{E, X<: A \vdash B}{E \vdash \forall(X<: A) B}\)

\section*{Subtyping}
\begin{tabular}{l} 
(Sub Refl) \\
\(E \vdash A\) \\
\(E \vdash A<: A\)
\end{tabular}
\begin{tabular}{lc}
\begin{tabular}{l} 
(Sub \(X\) ) \\
\(E^{\prime}, X<: A, E^{\prime \prime} \vdash \diamond\)
\end{tabular} & \begin{tabular}{c} 
(Sub Object) \\
( \(l_{i}\) distinct) \\
\(E \vdash B_{i} \quad \forall i \in 1 . . n+m\)
\end{tabular} \\
\hline\(E^{\prime}, X<: A, E^{\prime \prime} \vdash X<: A\) & \(E \vdash\left[l_{i}: B_{i}{ }^{i \in 1 . . n+m}\right]<:\left[l_{i}: B_{i}{ }^{i \in 1 . . n}\right]\) \\
(Sub Arrow) \\
\(E \vdash A^{\prime}<: A \quad E \vdash B<: B^{\prime}\) \\
\hline\(E \vdash A \rightarrow B<: A^{\prime} \rightarrow B^{\prime}\)
\end{tabular}\(\quad \frac{E \vdash A^{\prime}<: A \quad E, X<: A^{\prime} \vdash B<: B^{\prime}}{E \vdash \forall(X<: A) B<: \forall\left(X<: A^{\prime}\right) B^{\prime}}\)

\section*{Typing}
\begin{tabular}{ll} 
(Val Subsumption) \\
\begin{tabular}{l}
\(E \vdash a: A \quad E \vdash A<: B\)
\end{tabular} & \begin{tabular}{l} 
(Val \(x)\) \\
\(E \vdash a: B\)
\end{tabular}
\end{tabular}
\begin{tabular}{lll} 
(Val Object) & (where \(\left.A \equiv\left[l_{i}: B_{i}^{i \in 1 . . n}\right]\right)\) & \\
\(E, x_{i}: A \vdash b_{i}: B_{i} \quad \forall i \in 1 . . n\) \\
\(E \vdash\left[l_{i}=\varsigma\left(x_{i}: A\right) b_{i}^{i \in 1 . . n}\right]: A\) & & \(\frac{E \vdash a:\left[l_{i}: B_{i}{ }^{i \in 1 . n}\right] \quad j \in 1 . . n}{E \vdash a . l_{j}: B_{j}}\)
\end{tabular}

\begin{tabular}{ll}
\begin{tabular}{l} 
(Val Fun) \\
\(E, x: A \vdash b: B\)
\end{tabular} & \begin{tabular}{l} 
(Val Appl) \\
\(E \vdash \lambda(x: A) b: A \rightarrow B\)
\end{tabular}
\end{tabular}
(Val Fun2<:)
\[
E, X<: A \vdash b: B
\]
\(E \vdash \lambda(X<: A) b: \forall(X<: A) B\)
(Val Appl2<:) where \(A^{\prime} \equiv\left[l_{i}: B_{i}{ }^{i \in 1 . . n}\right]\) or \(A^{\prime} \equiv Y\) )
\(E \vdash b(a): B\)
\[
E \vdash b: \forall(X<: A) B\{X\} \quad E \vdash A^{\prime}<: A
\]
\[
E \vdash b\left(A^{\prime}\right): B\left\{A^{\prime}\right\}
\]
- The source system for the translation is the one given above. The target system is the one given above minus the (Val Update \(X\) ) rule.
- Derivations in the source system can be translated to derivations that do not use (Val Update \(X\) ). The following tables give a slightly informal summary of the translation on derivations.

\section*{Translation of Environments}
\[
\begin{aligned}
& \varangle \phi\rangle \triangleq \phi \\
& \varangle E, x: A\rangle \triangleq\langle E\rangle, x: \varangle A\rangle \\
& \left.\left.\varangle E, X<\left[l_{i}: B_{i}^{i \in 1 . . n}\right]\right\rangle \triangleq\langle E\rangle, X<: \varangle\left[l_{i}: B_{i} \in 1 . . n\right]\right], \pi_{X}:\left[l_{i}: X \rightarrow\left(X \rightarrow\left\langle B_{i}\right\rangle\right) \rightarrow X^{i \in 1 . . n}\right]
\end{aligned}
\]
where each \(l_{i}: X \rightarrow\left(X \rightarrow\left\langle B_{i} \rrbracket\right) \rightarrow X\right.\) is an updator that takes an object of type \(X\), takes a pre-method for \(X\) (of type \(X \rightarrow\left\langle B_{i}\right\rangle\) ), updates the \(i\)-th method of the object, and returns the modified object of type \(X\).

\section*{Translation of Types}
\[
\begin{aligned}
& \varangle X\rangle \triangleq X \\
& \left.\varangle\left[l_{i}: B_{i}{ }^{i \in 1 . . n}\right] \rrbracket \triangleq\left[l_{i}: \boxtimes B_{i}\right\rangle^{i \in 1 . . n}\right] \\
& \varangle A \rightarrow B\rangle \triangleq \varangle A \rrbracket \rightarrow \varangle B\rangle \\
& \left.\left.\boxtimes \forall\left(X<:\left[l_{i}: B_{i}{ }^{i \in 1 . . n}\right]\right) B \rrbracket \triangleq \forall\left(X<: \varangle\left[l_{i}: B_{i}{ }^{i \in 1 . . n}\right]\right\rangle\right)\left[l_{i}: X \rightarrow\left(X \rightarrow \varangle B_{i}\right\rangle\right) \rightarrow X^{i \in 1 . . n}\right] \rightarrow \varangle B \rrbracket
\end{aligned}
\]
- N.B. the translation preserves subtyping. In particular:
\[
\left.\boxtimes \forall\left(X<:\left[l_{i}: B_{i}{ }^{i \in 1 . . n}\right]\right) B\right\rangle<: \quad \boxtimes \forall\left(X<:\left[l_{i}: B_{i}{ }^{i \in 1 . . n+m}\right]\right) B \rrbracket
\]
since:
\[
\begin{aligned}
& \forall\left(X<: \boxtimes\left[l_{i}: B_{i}^{i \in 1 . . n}\right] \rrbracket\right)\left[l_{i}: X \rightarrow\left(X \rightarrow\left\langle B_{i}\right\rangle\right) \rightarrow X^{i \in 1 . . n}\right] \rightarrow\langle B\rangle<: \\
& \left.\forall\left(X<: \boxtimes\left[l_{i}: B_{i}^{i \in 1 . . n+m}\right] \rrbracket\right)\left[l_{i}: X \rightarrow\left(X \rightarrow\left\langle B_{i}\right\rangle\right) \rightarrow X^{i \in 1 . . n+m}\right] \rightarrow \Delta B\right\rangle
\end{aligned}
\]
- We have a calculus with polymorphic update where quantifier and arrow types are contravariant on the left (c.f. Positive Subtyping).

\section*{Translation of Terms}
\(\langle x\rangle \triangleq x\)
\(\left.\left.\varangle\left[l_{i}=\left(x_{i}: A_{i}\right) b_{i}^{i \in 1 . . n}\right]\right\rangle \triangleq\left[l_{i}=\varsigma\left(x_{i}: \varangle A_{i}\right\rangle\right)\left\langle b_{i}\right\rangle^{i \in 1 . . n}\right]\)
\(\left.\left.\| a . l_{j}\right\rangle \triangleq \varangle a\right\rangle . l_{j}\)
\begin{tabular}{|c|c|}
\hline  & for (Val Update Obj) \\
\hline \(\left.\checkmark a . l=\varsigma(x: X) b\rangle \triangleq \pi_{X} \cdot l(\nabla a\rangle\right)(\lambda(x: X)\langle b\rangle)\) & for (Val Update \(X\) ) \\
\hline
\end{tabular}
\(\varangle \lambda(x: \mathrm{A}) b\rangle \triangleq \lambda(x: \llbracket A \nabla)\langle b\rangle\)
\(\varangle b(a)\rangle \triangleq \varangle b\rangle(\varangle a\rangle)\)
\(\left.\varangle \lambda\left(X<:\left[l_{i}: B_{i}^{i \in 1 . . n}\right]\right) b\right\rangle \triangleq\)
    \(\lambda\left(X<: 《\left[l_{i}: B_{i}{ }^{i \in 1 . . n}\right] \rrbracket\right) \lambda\left(\pi_{X}:\left[l_{i}: X \rightarrow\left(X \rightarrow\left\langle B_{i} \rrbracket\right) \rightarrow X^{i \in 1 . . n}\right]\right) \varangle b\right\rangle\)
\(\Delta b(A)\rangle \triangleq \quad\) for \(A=\left[l_{i}: B_{i}{ }^{i \in 1 . . n}\right]\)
    \(\varangle b\rangle(\varangle A \rrbracket)\left(\left[l_{i}=\lambda\left(x_{i}: \varangle A \rrbracket\right) \lambda\left(f: \backslash A \rrbracket \rightarrow\left\langle B_{i}\right\rangle\right) x_{.} l_{i} \leqslant \varsigma(z: \llbracket A \nabla) f(z)^{i \in 1 . . n}\right]\right)\)
\(\varangle b(Y) \rrbracket \triangleq \varangle b\rangle(Y)\left(\pi_{Y}\right)\)
- Structural rules for polymorphic update are sound for operational semantics. They work equally well for functional and imperative semantics.
- Structural rules can be translated into non structural rules. I have shown a translation for a restricted form of quantification.
- Theories of equality for systems with structural rules have not been studied directly yet. Similarly, theories of equality induced by the translation have not been studied.```

