
Talk December 19, 2007 4:08 pm 1

A Theory of Objects

Luca Cardelli
joint work with Martín Abadi

Digital Equipment Corporation
Systems Research Center

Sydney ’97

Talk December 19, 2007 4:08 pm 2

Outline
• Topic: a foundation for object-oriented languages based on

object calculi.

~ Interesting object-oriented features.

~ Modeling of those features.

• Plan:

1) Class-Based Languages

2) Object-Based Languages

3) Subtyping -- Advanced Features

4) A Language with Subtyping

5) Matching -- Advanced Features

6) A Language with Matching

Talk December 19, 2007 4:09 pm 3

OBJECT-ORIENTED FEATURES

Talk December 19, 2007 4:09 pm 4

Easy Language Features

The early days
• Integers and floats (occasionally, also booleans and voids).

• Monomorphic arrays (Fortran).

• Monomorphic trees (Lisp).

The days of structured programming
• Product types (records in Pascal, structs in C).

• Union types (variant records in Pascal, unions in C).

• Function/procedure types (often with various restrictions).

• Recursive types (typically via pointers).

End of the easy part
• Languages with rich user-definable types (Pascal, Algol68).

Talk December 19, 2007 4:09 pm 5

Hard Language Features

Four major innovations
• Objects and Subtyping (Simula 67).

• Abstract types (CLU).

• Polymorphism (ML).

• Modules (Modula 2).

Despite much progress, nobody really knows yet how to combine all these ingredients into co-
herent language designs.

Talk December 19, 2007 4:09 pm 6

Confusion

These four innovations are partially overlapping and certainly interact in interesting ways. It is
not clear which ones should be taken as more prominent. E.g.:

• Object-oriented languages have tried to incorporate type abstraction, polymorphism, and
modularization all at once. As a result, o-o languages are (generally) a mess. Much effort has
been dedicated to separating these notions back again.

• Claims have been made (at least initially) that objects can be subsumed by either higher-order
functions and polymorphism (ML camp), by data abstraction (CLU camp), or by modular-
ization (ADA camp). But later, subtyping features were adopted: ML => ML2000, CLU
=>Theta, ADA => ADA’95.

• One hard fact is that full-blown polymorphism can subsume data abstraction. But this kind
of polymorphism is more general than, e.g., ML’s, and it is not yet clear how to handle it in
practice.

• Modules can be used to obtain some form of polymorphism and data abstraction (ADA ge-
nerics, C++ templates) (Modula 2 opaque types), but not in full generality.

Talk December 19, 2007 4:09 pm 7

O-O Programming
• Goals

~ Data (state) abstraction.

~ Polymorphism.

~ Code reuse.

• Mechanisms

~ Objects with self (packages of data and code).

~ Subtyping and subsumption.

~ Classes and inheritance.

Talk December 19, 2007 4:09 pm 8

Objects
• Objects and object types

• Objects are packages of data (instance variables) and code (methods).

• Object types describe the shape of objects.

where a : A means that the program a has type A. So, myCell : CellType.

ObjectType CellType is
var contents: Integer;
method get(): Integer;
method set(n: Integer);

end;

object myCell: CellType is
var contents: Integer := 0;
method get(): Integer is return self.contents end;
method set(n: Integer) is self.contents := n end;

end;

Talk December 19, 2007 4:09 pm 9

Classes
• Classes are ways of describing and generating collections of objects of some type.

class cell for CellType is
var contents: Integer := 0;
method get(): Integer is return self.contents end;
method set(n: Integer) is self.contents := n end;

end;

var myCell: CellType := new cell;

procedure double(aCell: CellType) is
aCell.set(2 * aCell.get());

end;

Talk December 19, 2007 4:09 pm 10

Subtypes
• Subtypes can be formed by extension (of interface) from other types.

ReCellType is a subtype of CellType: an object of type ReCellType can be used in place of an
object of type CellType.

ObjectType ReCellType;
var contents: Integer;
var backup: Integer;
method get(): Integer;
method set(n: Integer);
method restore();

end;

Talk December 19, 2007 4:09 pm 11

Subclasses
• Subclasses are ways of describing classes incrementally, reusing code.

subclass reCell of cell for ReCellType is (Inherited:
var backup: Integer := 0; var contents
override set(n: Integer) is method get)

self.backup := self.contents;
super.set(n);

end;
method restore() is self.contents := self.backup end;

end;

Talk December 19, 2007 4:09 pm 12

Subtyping and subsumption
• Subtyping relation, A <: B

An object type is a subtype of any object type with fewer components.

(e.g.: ReCellType <: CellType)

• Subsumption rule

if a : A and A <: B then a : B

(e.g.: myReCell : CellType)

• Subclass rule
The type of the objects generated by a subclass
is a subtype of the type of the objects generated by a superclass.

c can be a subclass of d only if cType <: dType

(e.g.: reCell can indeed be declared as a subclass of cell)

Talk December 19, 2007 4:09 pm 13

A Touch of Skepticism
• Object-oriented languages have been plagued, possibly more

than languages of any other kind, by confusion and
unsoundness.

• How do we keep track of the interactions of the numerous
object-oriented features?

• How can we be sure that they all make sense, and that their
interactions make sense?

Talk December 19, 2007 4:09 pm 14

Why Objects?
• Who needs object-oriented languages, anyway?

~ Systems may be modeled by other paradigms.

~ Data abstraction can be achieved with plain abstract data types.

~ Reuse can be achieved by parameterization and modularization.

• Still, the object-oriented approach has been uniquely
successful:

~ Some of its features are not easy to explain as the union of well-
understood concepts.

~ It seems to integrate good design and implementation techniques in an
intuitive framework.

Talk December 19, 2007 4:09 pm 15

Foundations
• Many characteristics of object-oriented languages are

different presentations of a few general ideas. The situation is
analogous in procedural programming.

• The λ-calculus has provided a basic, flexible model, and a
better understanding of procedural languages.

• A Theory of Objects develops a calculus of objects, analogous
to the λ-calculus but independent.

~ The calculus is entirely based on objects, not on functions.

~ The calculus is useful because object types are not easily, or at all,
definable in most standard formalisms.

~ The calculus of objects is intended as a paradigm and a foundation for
object-oriented languages.

Talk December 19, 2007 4:10 pm 16

CLASS-BASED LANGUAGES

• Mainstream object-oriented languages are class-based.

• Some of them are Simula, Smalltalk, C++, Modula-3, and
Java.

• Class-based constructs vary significantly across languages.

• We cover only core features.

Talk December 19, 2007 4:10 pm 17

Basic Characteristics
• In the simplest class-based languages, there is no clear distinction

~ between classes and object types,

~ between subclasses and subtypes.

• Objects are generated from classes.

We write InstanceTypeOf(c) for the type of objects generated from class
c.

• The typical operations on objects are:

~ creation,

~ field selection and update,

~ method invocation.

• Class definitions are often incremental: a new class may inherit structure
and code from one or multiple existing classes.

Talk December 19, 2007 4:10 pm 18

Classes and Objects
• Classes are descriptions of objects.

• Example: storage cells.

• Classes generate objects.

• Objects can refer to themselves.

class cell is
var contents: Integer := 0;
method get(): Integer is

return self.contents;
end;
method set(n: Integer) is

self.contents := n;
end;

end;

Talk December 19, 2007 4:10 pm 19

Naive Storage Model

• Object = reference to a record of attributes.

 Naive storage model

contents
get
set

0
(code for get)
(code for set)

object

reference attribute record

Talk December 19, 2007 4:10 pm 20

Object Operations

• Object creation.

~ InstanceTypeOf(c) indicates the type of an object of class c.

• Field selection.

• Field update.

• Method invocation.

var myCell: InstanceTypeOf(cell) := new cell;

procedure double(aCell: InstanceTypeOf(cell)) is
aCell.set(2 * aCell.get());

end;

Talk December 19, 2007 4:10 pm 21

The Method-Suites Storage Model

• A more refined storage model for class-based languages.

 Method suites

contents 0
get
set

(code for get)
(code for set)

method suite

contents 1

field suite

Talk December 19, 2007 4:10 pm 22

Embedding vs. Delegation

• In the naive storage model, methods are embedded in objects.

• In the methods-suites storage model, methods are delegated to
the method suites.

contents
get
set

0
(code for get)
(code for set)

attribute record

contents 0
get
set

(code for get)
(code for set)

method suite

contents 1

field suite

Talk December 19, 2007 4:10 pm 23

Comparison of Storage Models

• Naive and method-suites models are semantically equivalent
for class-based languages.

• They are not equivalent (as we shall see) in object-based
languages, where the difference between embedding and
delegation is critical.

Talk December 19, 2007 4:10 pm 24

Method Lookup
• Method lookup is the process of finding the code to run on a

method invocation o.m(…). The details depend on the
language and the storage model.

• In class-based languages, method lookup gives the illusion
that methods are embedded in objects.

~ Method lookup and field selection look similar (o.x and o.m(...)).

~ Features that would distinguish embedding from delegation
implementations (e.g., method update) are usually avoided.

This hides the details of the storage model.

• Self is always the receiver: the object that appears to contain
the method being invoked.

Talk December 19, 2007 4:10 pm 25

Subclasses and Inheritance
• A subclass is a differential description of a class.

• The subclass relation is the partial order induced by the
subclass declarations.

• Example: restorable cells.
subclass reCell of cell is

var backup: Integer := 0;
override set(n: Integer) is

self.backup := self.contents;
super.set(n);

end;
method restore() is

self.contents := self.backup;
end;

end;

Talk December 19, 2007 4:10 pm 26

Subclasses and Self

• Because of subclasses, the meaning of self becomes dynamic.

• Because of subclasses, the concept of super becomes useful.

self.m(...)

super.m(...)

Talk December 19, 2007 4:10 pm 27

Subclasses and Naive Storage

• In the naive implementation, the existence of subclasses does
not cause any change in the storage model.

contents
get
set

0
(code for get)
(code for set)

attribute record

contents
get
set

0
(code for get)
(code for set)

attribute record

backup
restore

0
(code for restore)

aCell

aReCell

Talk December 19, 2007 4:10 pm 28

Subclasses and Method Suites

• Because of subclasses, the method-suites model has to be
reconsidered. In dynamically-typed class-based languages,
method suites are chained:

 Hierarchical method suites

contents 0 get
set

(code for get)
(code for set)

contents 0 set
restore

(new code for set)
(code for restore)

aCell

backup 0

aReCell

Talk December 19, 2007 4:10 pm 29

• In statically-typed class-based languages, however, the
method-suites model can be maintained in its original form.

 Collapsed method suites

contents 0
get
set

(code for get)
(code for set)

contents 0 set
restore

(new code for set)
(code for restore)

aCell

backup 0

aReCell get (code for get)

Talk December 19, 2007 4:10 pm 30

Embedding/Delegation View of Class Hierarchies

• Hierarchical method suites:

~ delegation (of objects to suites) combined with

~ delegation (of sub-suites to super-suites).

• Collapsed method suites:

~ delegation (of objects to suites) combined with

~ embedding (of super-suites in sub-suites).

Talk December 19, 2007 4:10 pm 31

Subclasses and Type Compatibility
• Subclasses are not just a mechanism to avoid rewriting

definitions.Consider the following code fragments:

~ An instance of reCell is assigned to a variable holding instances of cell.

~ An instance of reCell is passed to a procedure f that expects instances of cell.

• Both code fragments would be illegal in Pascal, since
InstanceTypeOf(cell) and InstanceTypeOf(reCell) do not
match.

var myCell: InstanceTypeOf(cell) := new cell;
var myReCell: InstanceTypeOf(reCell) := new reCell;
procedure f(x: InstanceTypeOf(cell)) is … end;

myCell := myReCell;

f(myReCell);

Talk December 19, 2007 4:10 pm 32

Polymorphism

• In object-oriented languages these code fragments are made
legal by the following rule, which embodies what is often
called (subtype) polymorphism:

or, from the point of view of the typechecker:

If c’ is a subclass of c, and o’ is an instance of c’,
then o’ is an instance of c.

If c’ is a subclass of c, and o’: InstanceTypeOf(c’),
then o’: InstanceTypeOf(c).

Talk December 19, 2007 4:10 pm 33

The Subtype Relation

• We analyze this further, by a reflexive and transitive subtype
relation (<:) between InstanceTypeOf types.

~ This subtype relation is intended, intuitively, as set inclusion between
sets of values.

~ For now we do not define the subtype relation precisely, but we
assume that it satisfies two properties:

If c’ is a subclass of c, and o’: InstanceTypeOf(c’),
then o’: InstanceTypeOf(c).

- If a : A, and A <: B, then a : B.
- InstanceTypeOf(c’) <: InstanceTypeOf(c)
 if and only if c’ is a subclass of c.

Talk December 19, 2007 4:10 pm 34

The Subtype Relation: Subsumption

If a : A, and A <: B, then a : B.

• This property, called subsumption, is the characteristic
property of subtype relations.

~ A value of type A can be viewed as a value of a type B.

~ We say that the value is subsumed from type A to type B.

Talk December 19, 2007 4:10 pm 35

Subclassing is Subtyping

InstanceTypeOf(c’) <: InstanceTypeOf(c)
if and only if c’ is a subclass of c.

• This property, which we may call subclassing-is-subtyping, is
the characteristic of classical class-based languages.

~ Since inheritance is connected with subclassing, we may read this as
an inheritance-is-subtyping property.

~ More recent class-based languages adopt a different, inheritance-is-
not-subtyping approach.

Talk December 19, 2007 4:10 pm 36

Static versus Dynamic Dispatch

• With the introduction of subsumption, we have to reexamine
the meaning of method invocation. For example, given the
code:

we should determine what is the meaning of x.set(3) during the
invocation of g.

• The declared type of x is InstanceTypeOf(cell), while its value
is myReCell, which is an instance of reCell.

procedure g(x: InstanceTypeOf(cell)) is
x.set(3);

end;
g(myReCell);

Talk December 19, 2007 4:10 pm 37

• Since set is overridden in reCell, there are two possibilities:

~ Static dispatch is based on the compile-time type information
available for x.

~ Dynamic dispatch is based on the run-time value of x.

• We may say that InstanceTypeOf(reCell) is the true type of x
during the execution of g(myReCell), and that the true type
determines the choice of method.

Static dispatch: x.set(3) runs the code of set from cell
Dynamic dispatch: x.set(3) runs the code of set from reCell

Talk December 19, 2007 4:10 pm 38

• Dynamic dispatch is found in all object-oriented languages, to
the point that it can be regarded as one of their defining
properties.

• Dynamic dispatch is an important component of object
abstraction.

~ Each object knows how to behave autonomously.

~ So the context does not need to examine the object and decide which
operation to apply.

Talk December 19, 2007 4:10 pm 39

• A consequence of dynamic dispatch is that subsumption
should have no run-time effect on objects.

~ For example, if subsumption from InstanceTypeOf(reCell) to
InstanceTypeOf(cell) coerced a reCell to a cell by cutting backup and
restore, then a dynamically dispatched invocation of set would fail.

~ The fact that subsumption has no run-time effect is both good for
efficiency and semantically necessary.

Talk December 19, 2007 4:10 pm 40

Class-Based Summary
• In analyzing the meaning and implementation of class-based

languages we end up inventing and analyzing sub-structures of
objects and classes.

• These substructures are independently interesting: they have
their own semantics, and can be combined in useful ways.

• What if these substructures were directly available to
programmers?

Talk December 19, 2007 4:10 pm 41

OBJECT-BASED LANGUAGES

• Slow to emerge.

• Simple and flexible.

• Usually untyped.

• Just objects and dynamic dispatch.

• When typed, just object types and subtyping.

• Direct object-to-object inheritance.

Talk December 19, 2007 4:10 pm 42

An Object, All by Itself

• Classes are replaced by object constructors.

• Object types are immediately useful.
ObjectType Cell is

var contents: Integer;
method get(): Integer;
method set(n: Integer);

end;

object cell: Cell is
var contents: Integer := 0;
method get(): Integer is return self.contents end;
method set(n: Integer) is self.contents := n end;

end;

Talk December 19, 2007 4:10 pm 43

An Object Generator

• Procedures as object generators.

• Quite similar to classes!

procedure newCell(m: Integer): Cell is
object cell: Cell is

var contents: Integer := m;
method get(): Integer is return self.contents end;
method set(n: Integer) is self.contents := n end;

end;
return cell;

end;

var cellInstance: Cell := newCell(0);

Talk December 19, 2007 4:10 pm 44

Decomposing Class-Based Features

• General idea: decompose class-based notions and
orthogonally recombine them.

• We have seen how to decompose simple classes into objects
and procedures.

• We will now investigate how to decompose inheritance.

~ Object generation by parameterization.

~ Vs. object generation by cloning and mutation.

Talk December 19, 2007 4:10 pm 45

Prototypes and Clones

• Classes describe objects.

• Prototypes describe objects and are objects.

• Regular objects are clones of prototypes.

• clone is a bit like new, but operates on objects instead of
classes.

var cellClone: Cell := clone cellInstance;

Talk December 19, 2007 4:10 pm 46

Mutation of Clones

• Clones are customized by mutation (e.g., update).

• Field update.

• Method update.

• Self-mutation possible.

cellClone.contents := 3;

cellClone.get :=
method (): Integer is

if self.contents < 0 then return 0 else return self.contents end;
end;

Talk December 19, 2007 4:10 pm 47

Self-Mutation

• Restorable cells with no backup field.
ObjectType ReCell is

var contents: Integer;
method get(): Integer;
method set(n: Integer);
method restore();

end;

Talk December 19, 2007 4:10 pm 48

• The set method updates the restore method!
object reCell: ReCell is

var contents: Integer := 0;
method get(): Integer is return self.contents end;
method set(n: Integer) is

let x = self.get();
self.restore := method () is self.contents := x end;
self.contents := n;

end;
method restore() is self.contents := 0 end;

end;

Talk December 19, 2007 4:10 pm 49

Forms of Mutation

• Method update is an example of a mutation operation. It is
simple and statically typable.

• Forms of mutation include:

~ Direct method update (Beta, NewtonScript, Obliq, Kevo, Garnet).

~ Dynamically removing and adding attributes (Self, Act1).

~ Swapping groups of methods (Self, Ellie).

Talk December 19, 2007 4:10 pm 50

Object-Based Inheritance
• Object generation can be obtained by procedures, but with no

real notion of inheritance.

• Object inheritance can be achieved by cloning (reuse) and
update (override), but with no shape change.

• How can one inherit with a change of shape?

• An option is object extension. But:

~ Not easy to typecheck.

~ Not easy to implement efficiently.

~ Provided rarely or restrictively.

Talk December 19, 2007 4:10 pm 51

Donors and Hosts

• General object-based inheritance: building new objects by
“reusing” attributes of existing objects.

• Two orthogonal aspects:

~ obtaining the attributes of a donor object, and

~ incorporating those attributes into a new host object.

• Four categories of object-based inheritance:

~ The attributes of a donor may be obtained implicitly or explicitly.

~ Orthogonally, those attributes may be either embedded into a host, or
delegated to a donor.

Talk December 19, 2007 4:10 pm 52

Implicit vs. Explicit Inheritance

• A difference in declaration.

• Implicit inheritance: one or more objects are designated as
the donors (explicitly!), and their attributes are implicitly
inherited.

• Explicit inheritance, individual attributes of one or more
donors are explicitly designated and inherited.

• Super and override make sense for implicit inheritance, not
for explicit inheritance.

Talk December 19, 2007 4:10 pm 53

• Intermediate possibility: explicitly designate a named
collection of attributes that, however, does not form a whole
object. E.g. mixin inheritance.

• (We can see implicit and explicit inheritance, as the extreme
points of a spectrum.)

Talk December 19, 2007 4:10 pm 54

Embedding vs. Delegation Inheritance

• A difference in execution.

• Embedding inheritance: the attributes inherited from a donor
become part of the host (in principle, at least).

• Delegation inheritance: the inherited attributes remain part of
the donor, and are accessed via an indirection from the host.

• Either way, self is the receiver.

• In embedding, host objects are independent of their donors. In
delegation, complex webs of dependencies may be created.

Talk December 19, 2007 4:10 pm 55

Embedding
• Host objects contain copies of the attributes of donor objects.

 Embedding

get
set

(code for get)
(code for set)

set
restore

(new code for set)
(code for restore)

aCell

aReCell

get (new code for get)

contents 0

backup 0
contents 0

Talk December 19, 2007 4:10 pm 56

Embedding-Based Languages

• Embedding provides the simplest explanation of the standard
semantics of self as the receiver.

• Embedding was described by Borning as part of one of the first
proposals for prototype-based languages.

• Recently, it has been adopted by languages like Kevo and
Obliq. We call these languages embedding-based
(concatenation-based, in Kevo terminology).

Talk December 19, 2007 4:10 pm 57

Embedding-Based Inheritance

• Embedding inheritance can be specified explicitly or
implicitly.

~ Explicit forms of embedding inheritance can be understood as
reassembling parts of old objects into new objects.

~ Implicit forms of embedding inheritance can be understood as ways
of concatenating or extending copies of existing objects with new
attributes.

Talk December 19, 2007 4:10 pm 58

Explicit Embedding Inheritance

• Individual methods and fields of specific objects (donors) are
copied into new objects (hosts).

• We write

embed o.m(…)

to embed the method m of object o into the current object.

• The meaning of embed cell.set(n) is to execute the set method
of cell with self bound to the current self, and not with self
bound to cell as in a normal invocation cell.set(n).

• Moreover, the code of set is embedded in reCellExp.

Talk December 19, 2007 4:10 pm 59

reCellExp

object cell: Cell is
var contents: Integer := 0;
method get(): Integer is return self.contents end;
method set(n: Integer) is self.contents := n end;

end;

object reCellExp: ReCell is
var contents: Integer := cell.contents;
var backup: Integer := 0;
method get(): Integer is

return embed cell.get();
end;
method set(n: Integer) is

self.backup := self.contents;
embed cell.set(n);

end;
method restore() is self.contents := self.backup end;

end;

Talk December 19, 2007 4:10 pm 60

• The code for get could be abbreviated to:

method get copied from cell;

Talk December 19, 2007 4:10 pm 61

Implicit Embedding Inheritance

• Whole objects (donors) are copied to form new objects (hosts).

• We write

object o: T extends o’

to designate a donor object o’ for o.

• As a consequence of this declaration, o is an object containing
a copy of the attributes of o’, with independent state.

Talk December 19, 2007 4:10 pm 62

reCellImp

object cell: Cell is
var contents: Integer := 0;
method get(): Integer is return self.contents end;
method set(n: Integer) is self.contents := n end;

end;

object reCellImp: ReCell extends cell is
var backup: Integer := 0;
override set(n: Integer) is

self.backup := self.contents;
embed super.set(n);

end;
method restore() is self.contents := self.backup end;

end;

Talk December 19, 2007 4:10 pm 63

Alternate reCellImp via method update

• We could define an equivalent object by a pure extension of
cell followed by a method update.

This code works because, with embedding, method update
affects only the object to which it is applied. (This is not true
for delegation.)

object reCellImp1: ReCell extends cell is
var backup: Integer := 0;
method restore() is self.contents := self.backup end;

end;

reCellImp1.set :=
method (n: Integer) is

self.backup := self.contents;
self.contents := n;

end;

Talk December 19, 2007 4:10 pm 64

Stand-alone reCell

• The definitions of both reCellImp and reCellExp can be seen
as convenient abbreviations:

object reCell: ReCell is
var contents: Integer := 0;
var backup: Integer := 0;
method get(): Integer is return self.contents end;
method set(n: Integer) is

self.backup := self.contents;
self.contents := n;

end;
method restore() is self.contents := self.backup end;

end;

Talk December 19, 2007 4:10 pm 65

Delegation
• Host objects contain links to the attributes of donor objects.

• Prototype-based languages that permit the sharing of attributes
across objects are called delegation-based.

• Operationally, delegation is the redirection of field access and
method invocation from an object or prototype to another, in
such a way that an object can be seen as an extension of
another.

• Note: similar to hierarchical method suites.

Talk December 19, 2007 4:10 pm 66

Delegation and Self

• A crucial aspect of delegation inheritance is the interaction of
donor links with the binding of self.

• On an invocation of a method called m, the code for m may be
found only in the donor cell. But the occurrences of self within
the code of m refer to the original receiver, not to the donor.

• Therefore, delegation is not redirected invocation.

Talk December 19, 2007 4:10 pm 67

Implicit Delegation Inheritance (Traditional Delegation)

• Whole objects (donors/parents) are shared to from new objects
(hosts/children).

• We write

object o: T child of o’

to designate a parent object o’ for o.

• As a consequence of this declaration, o is an object containing
a single parent link to o’, with parent state shared among
children. Parent links are followed in the search for attributes.

Talk December 19, 2007 4:10 pm 68

 (Single-parent) Delegation

get
set

(code for get)
(code for set)

set
restore

(new code for set)
(code for restore)

aCell

aReCell

contents 0

contents
backup

0
0

parent link

Talk December 19, 2007 4:10 pm 69

reCellImp

• A first attempt.
object cell: Cell is

var contents: Integer := 0;
method get(): Integer is return self.contents end;
method set(n: Integer) is self.contents := n end;

end;

object reCellImp’: ReCell child of cell is
var backup: Integer := 0;
override set(n: Integer) is

self.backup := self.contents;
delegate super.set(n);

end;
method restore() is self.contents := self.backup end;

end;

Talk December 19, 2007 4:10 pm 70

• This is almost identical to the code of reCellImp for
embedding.

• But for delegation, this definition is wrong: the contents field
is shared by all the children.

Talk December 19, 2007 4:10 pm 71

• A proper definition must include a local copy of the contents
field, overriding the contents field of the parent.

object reCellImp: ReCell child of cell is
override contents: Integer := cell.contents;
var backup: Integer := 0;
override set(n: Integer) is

self.backup := self.contents;
delegate super.set(n);

end;
method restore() is self.contents := self.backup end;

end;

Talk December 19, 2007 4:10 pm 72

• On an invocation of reCellImp.get(), the get method is found
only in the parent cell, but the occurrences of self within the
code of get refer to the original receiver, reCellImp, and not to
the parent, cell.

• Hence the result of get() is, as desired, the integer stored in the
contents field of reCellImp, not the one in the parent cell.

Talk December 19, 2007 4:10 pm 73

Explicit Delegation Inheritance

• Individual methods and fields of specific objects (donors) are
linked into new objects (hosts).

• We write

delegate o.m(…)

to execute the m method of o with self bound to the current self
(not to o).

• The difference between delegate and embed is that the former
obtains the method from the donor at the time of method
invocation, while the latter obtains it earlier, at the time of
object creation.

Talk December 19, 2007 4:10 pm 74

.

 (An example of) Delegation

get
set

(code for get)
(code for set)

set
restore

(new code for set)
(code for restore)

aCell

aReCell

contents 0

contents
backup

0
0

donor links

get –

Talk December 19, 2007 4:10 pm 75

reCellExp

object reCellExp: ReCell is
var contents: Integer := cell.contents;
var backup: Integer := 0;
method get(): Integer is return delegate cell.get() end;
method set(n: Integer) is

self.backup := self.contents;
delegate cell.set(n);

end;
method restore() is self.contents := self.backup end;

end;

Talk December 19, 2007 4:10 pm 76

• Explicit delegation provides a clean way of delegating
operations to multiple objects. It provides a clean semantics
for multiple donors.

Talk December 19, 2007 4:10 pm 77

Dynamic Inheritance
• Inheritance is called static when inherited attributes are fixed

for all time.

• It is dynamic when the collection of inherited attributes can be
updated dynamically (replaced, increased, decreased).

Talk December 19, 2007 4:10 pm 78

Mode Switching

• Although dynamic inheritance is in general a dangerous
feature, it enables rather elegant and disciplined programming
techniques.

• In particular, mode-switching is the special case of dynamic
inheritance where a collection of (inherited) attributes is
swapped with a similar collection of attributes. (This is even
typable.)

Talk December 19, 2007 4:10 pm 79

Delegation-Style Mode Switching

 Reparenting

get
set

(code for get)
(code for set)

set
restore

(new code for set)
(code for restore)

aCell

aReCell

contents 1

contents
backup

0
0

flip a parent link

get
set

(other code for get)
(other code for set)

contents 2

old parent new parent

Talk December 19, 2007 4:10 pm 80

Embedding-Style Mode Switching

 Method Update

set
restore

(code for set)
(code for restore)

get (code for get)
backup 0

contents 0

set
restore

(other code for set)
(code for restore)

get (other code for get)
backup 0

contents 0

flip a set of attributes

old object new object

Talk December 19, 2007 4:10 pm 81

Embedding vs. Delegation Summary
• In embedding inheritance, a freshly created host object

contains copies of donor attributes.

• Access to the inherited donor attributes is no different than
access to original attributes, and is quick.

• Storage use may be comparatively large, unless optimizations
are used.

Talk December 19, 2007 4:10 pm 82

• In delegation inheritance, a host object contains links to
external donor objects.

• During method invocation, the attribute-lookup procedure
must preserve the binding of self to the original receiver, even
while following the donor links.

~ This results in more complicated implementation and formal
modeling of method lookup.

~ It creates couplings between objects that may not be desirable in
certain (e.g. distributed) situations.

Talk December 19, 2007 4:10 pm 83

• In class-based languages the embedding and delegation
models are normally (mostly) equivalent.

• In object-based languages they are distinguishable.

~ In delegation, donors may contain fields, which may be updated; the
changes are seen by the inheriting hosts.

~ Similarly, the methods of a donor may be updated, and again the
changes are seen by the inheriting hosts.

Talk December 19, 2007 4:10 pm 84

~ It is often permitted to replace a donor link with another one in an
object; then all the inheritors of that object may change behavior.

~ Cloning is still taken to perform shallow copies of objects, without
copying the corresponding donors. Thus, all clones of an object come
to share its donors and therefore the mutable fields and methods of the
donors.

Talk December 19, 2007 4:10 pm 85

• Thus, embedding and delegation are two fundamentally
distinct ways of achieving inheritance with prototypes.

• Interesting languages exist that explore both possibilities.

Talk December 19, 2007 4:10 pm 86

Advantages of Delegation

• Space efficiency by sharing.

• Convenience in performing dynamic, pervasive changes to all
inheritors of an object.

• Well suited for integrated languages/environments.

Talk December 19, 2007 4:10 pm 87

Advantages of Embedding

• Delegation can be criticized because it creates dynamic webs
of dependencies that lead to fragile systems. Embedding is not
affected by this problem since objects remain autonomous.

• In embedding-based languages such as Kevo and Omega,
pervasive changes are achieved even without donor
hierarchies.

• Space efficiency, while essential, is best achieved behind the
scenes of the implementation.

~ Even delegation-based languages optimize cloning operations by
transparently sharing structures; the same techniques can be used to
optimize space in embedding-based languages.

Talk December 19, 2007 4:10 pm 88

Traits: from Prototypes back to Classes?
• Prototypes were initially intended to replace classes.

• Several prototype-based languages, however, seem to be
moving towards a more traditional approach based on class-
like structures.

• Prototypes-based languages like Omega, Self, and Cecil have
evolved usage-based distinctions between objects.

Talk December 19, 2007 4:10 pm 89

Different Kinds of Objects

• Trait objects.

• Prototype objects.

• Normal objects.

 Traits

contents 0

prototype

get
set

(code for get)
(code for set)

trait

contents 0

object

aCell

clone(aCell)

Talk December 19, 2007 4:10 pm 90

Embedding-Style Traits

 Traits

prototype

get
set

(code for get)
(code for set)

traits

object

aCell = s + t

cell = clone(aCell)

t

get
set

(code for get)
(code for set)

contents 0

get
set

(code for get)
(code for set)

contents 0

contents 0s

Talk December 19, 2007 4:10 pm 91

Traits are not Prototypes

• In the spirit of classless languages, traits and prototypes are
still ordinary objects. But there are distinctions:

~ Traits are intended only as the shared parents of normal objects: they
should not be used directly or cloned.

~ Prototypes are intended only as object (and prototype) generators via
cloning: they should not be used directly or modified.

~ Normal objects are intended only to be used and to carry local state:
they should rely on traits for their methods.

• These distinctions may be methodological or enforced: some
operations on traits and prototypes may be forbidden to protect
them from accidental damage.

Talk December 19, 2007 4:10 pm 92

Trait Treason

• This separation of roles violates the original spirit of
prototype-based languages: traits objects cannot function on
their own. They typically lack instance variables.

• With the separation between traits and other objects, we seem
to have come full circle back to class-based languages and to
the separation between classes and instances.

Talk December 19, 2007 4:10 pm 93

Object Constructions vs. Class Implementations

• The traits-prototypes partition in delegation-based languages
looks exactly like an implementation technique for classes.

• A similar traits-prototypes partition in embedding-based
languages corresponds to a different implementation
technique for classes that trades space for access speed.

• Class-based notions and techniques are not totally banned in
object-based languages. Rather, they resurface naturally.

Talk December 19, 2007 4:10 pm 94

Contributions of the Object-Based
Approach

• The achievement of object-based languages is to make clear
that classes are just one of the possible ways of generating
objects with common properties.

• Objects are more primitive than classes, and they should be
understood and explained before classes.

• Different class-like constructions can be used for different
purposes; hopefully, more flexibly than in strict class-based
languages.

Talk December 19, 2007 4:10 pm 95

Future Directions
• I look forward to the continued development of typed object-

based languages.

~ The notion of object type arise more naturally in object-based
languages.

~ Traits, method update, and mode switching are typable (general
reparenting is not easily typable).

• No need for dichotomy: object-based and class-based features
can be merged within a single language, based on the common
object-based semantics (Beta, O–1, O–2, O–3).

Talk December 19, 2007 4:10 pm 96

• Embedding-based languages seem to be a natural fit for
distributed-objects situations. E.g. COM vs. CORBA.

~ Objects are self-contained and are therefore localized.

~ For this reason, Obliq was designed as an embedding-based language.

Talk December 19, 2007 4:11 pm 97

ADVANCED SUBTYPING ISSUES

Talk December 19, 2007 4:11 pm 98

Covariance
• The type A×B is the type of pairs with left component of type A and right component of type

B. The operations fst(c) and snd(c) extract the left and right components, respectively, of an
element c of type A×B.

• We say that × is a covariant operator (in both arguments), because A×B varies in the same
sense as A or B:

We can justify this property as follows:

Argument for the covariance of A×B

A×B <: A’×B’ provided that A<:A’ and B<:B’

A pair Üa,bá with left component a of type A and right component b of type B, has type A×B. If
A<:A’ and B<:B’, then by subsumption we have a:A’ and b:B’, so that Üa,bá has also type A’×B’.
Therefore, any pair of type A×B has also type A’×B’ whenever A<:A’ and B<:B’. In other
words, the inclusion A×B <: A’×B’ between product types is valid whenever A<:A’ and B<:B’.

Talk December 19, 2007 4:11 pm 99

Contravariance

• The type A→B is the type of functions with argument type A and result type B.

• We say that → is a contravariant operator in its left argument, because A→B varies in the
opposite sense as A; the right argument is instead covariant:

Argument for the co/contravariance of A→B

• In the case of functions of multiple arguments, for example of type (A1×A2)→B, we have con-
travariance in both A1 and A2. This is because product, which is covariant in both of its argu-
ments, is found in a contravariant context.

A→B <: A’→B’ provided that A’<:A and B<:B’

If B<:B’, then a function f of type A→B produces results of type B’ by subsumption. If A’<:A,
then f accepts also arguments of type A’, since these have type A by subsumption. Therefore,
every function of type A→B has also type A’→B’ whenever A’<:A and B<:B’. In other words,
the inclusion A→B <: A’→B’ between function types is valid whenever A’<:A and B<:B’.

Talk December 19, 2007 4:11 pm 100

Invariance

• Consider pairs whose components can be updated; we indicate their type by AgB. Given
p:AgB, a:A, and b:B, we have operations getLft(p):A and getRht(p):B that extract compo-
nents, and operations setLft(p,a) and setRht(p,b) that destructively update components.

• The operator g does not enjoy any covariance or contravariance properties:

We say that g is an invariant operator (in both of its arguments).

Argument for the invariance of AgB

AgB <: A’gB’ provided that A=A’ and B=B’

If A<:A’ and B<:B’, can we covariantly allow AgB <: A’gB’? If we adopt this inclusion, then
from p:AgB we obtain p:A’gB’, and we can perform setLft(p,a’), for any a’:A’. After that,
getLft(p) might return an element of type A’ that is not an element of type A. Hence, the inclu-
sion AgB <: A’gB’ is not sound.

Conversely, if A”<:A and B”<:B, can we contravariantly allow AgB <: A”gB”? From p:AgB
we now obtain p:A”gB”, and we can incorrectly deduce that getLft(p):A”. Hence, the inclu-
sion AgB <: A”gB” is not sound either.

Talk December 19, 2007 4:11 pm 101

Method Specialization
In the simplest approach to overriding, an overriding method must have the same type as the
overridden method.

• This condition can be relaxed to allow method specialization:

An overriding method may adopt different argument and result types, specialized for the sub-
class.

• We still do not allow overriding and specialization of field types.

Fields are updatable, like the components of the type AgB, and therefore their types must be
invariant.

Talk December 19, 2007 4:11 pm 102

Suppose we use different argument and result types, A’ and B’, when overriding m:

• We are constrained by subsumption between InstanceTypeOf(c’) and InstanceTypeOf(c).

class c is
method m(x: A): B is … end;
method m1(x1: A1): B1 is … end;

end;

subclass c’ of c is
override m(x: A’): B’ is … end;

end;

Talk December 19, 2007 4:11 pm 103

Specialization on Override

• When o’ of InstanceTypeOf(c’) is subsumed into InstanceTypeOf(c) and o’.m(a) is invoked,
the argument may have static type A and the result must have static type B.

• Therefore, it is sufficient to require that B’<:B (covariantly) and that A<:A’ (contravariantly).

• This is called method specialization on override. The result type B is specialized to B’, while
the parameter type A is generalized to A’.

class c is
method m(x: A): B is … end;
method m1(x1: A1): B1 is … end;

end;

subclass c’ of c is
override m(x: A’): B’ is … end;

end;

Talk December 19, 2007 4:11 pm 104

Specialization on Inheritance

There is another form of method specialization that happens implicitly by inheritance.

• The occurrences of self in the methods of c can be considered of type InstanceTypeOf(c).

• When the methods of c are inherited by c’, the same occurrences of self can similarly be con-
sidered of type InstanceTypeOf(c’).

• Thus, the type of self is silently specialized on inheritance (covariantly!).

Talk December 19, 2007 4:11 pm 105

The Variance Controversy
It is controversial whether the types of arguments of methods should vary covariantly or contra-
variantly from classes to subclasses.

• The properties of the operators ×, →, and g follow inevitably from our assumptions.

The variance properties of method types follow inevitably by a similar analysis.

• We cannot take method argument types to vary covariantly, unless we change the meaning
of covariance, subtyping, or subsumption.

With our definitions, covariance of method argument types is unsound: if left unchecked, it
may lead to unpredictable behavior.

• Eiffel still favors covariance of method arguments. Unsound behavior is supposed to be
caught by global flow analysis.

• Covariance can be soundly adopted for multiple dispatch, but using a different set of type op-
erators.

Talk December 19, 2007 4:11 pm 106

Self Type Specialization
Class definitions are often recursive, in the sense that the definition of a class c may contain oc-
currences of InstanceTypeOf(c).

For example, we could have a class c containing a method m with result type InstanceTypeOf(c):

class c is
var x: Integer := 0;
method m(): InstanceTypeOf(c) is … self … end;

end;

subclass c’ of c is
var y: Integer := 0;

end;

Talk December 19, 2007 4:11 pm 107

On inheritance, recursive types are, by default, preserved exactly, just like other types.

• For instance, for o’ of class c’, we have that o’.m() has type InstanceTypeOf(c) and not, for
example, InstanceTypeOf(c’).

• In general, adopting InstanceTypeOf(c’) as the result type for the inherited method m in c’ is
unsound, because m may construct and return an instance of c that is not an instance of c’.

Suppose, though, that m returns self, perhaps after field updates.

• Then it would be sound to give the inherited method the result type InstanceTypeOf(c’).

• With this more precise typing, we avoid later uses of typecase.

• Limiting the result type to InstanceTypeOf(c) constitutes an unwarranted loss of information.

Talk December 19, 2007 4:11 pm 108

The Type Self
This argument leads to the notion of Self types.

• The keyword Self represents the type of self.

• Instead of giving the result type InstanceTypeOf(c) to m, we write:

• The typing of the code of m relies on the assumptions that Self is a subtype of InstanceTy-
peOf(c), and that self has type Self.

• When c’ is declared as a subclass of c, the result type of m is still taken to be Self.

Thus Self is automatically specialized on subclassing.

class c is
var x: Integer := 0;
method m(): Self is … self … end;

end;

Talk December 19, 2007 4:11 pm 109

Variance of the Type Self

• There are no drawbacks to extending classical class-based languages with Self as the result
type of methods.

~ We can even allow Self as the type of fields.

~ These extensions prevent loss of type information at no cost other than keeping track of
the type of self.

(See Eiffel and Sather.)

• A natural next step is to allow Self in contravariant (argument) positions.

~ This is what Eiffel set out to do (with some trouble).

~ The proper handling of Self in contravariant positions is a new development in class-based
languages.

Talk December 19, 2007 4:11 pm 110

Inheritance, Subclassing, Subtyping
One central characteristic of classical class-based languages is the strict correlation between in-
heritance, subclassing, and subtyping.

• A great economy of concepts and syntax is achieved by identifying these three relations.

• But here are situations in which inheritance, subclassing, and subtyping conflict.

Opportunities for code reuse are then limited.

Therefore, there has been an effort to separate these relations.

• The separation of subclassing and subtyping is now common.

• Other separations are more tentative.

Talk December 19, 2007 4:11 pm 111

Object Types
In the original formulation of classes (in Simula, for example), the type description of objects is
mixed with their implementation.

This conflicts with separating specifications from implementations.

Separation between specifications and implementations can be achieved by introducing types
for objects.

• Object types are independent of specific classes.

• Object types list attributes and their types,

but not their implementations.

• They are suitable to appear in interfaces, and to be implemented separately and in more than
one way.

(In Java, object types are in fact called interfaces.)

Talk December 19, 2007 4:11 pm 112

Recall the classes cell and reCell:

class cell is
var contents: Integer := 0;
method get(): Integer is return self.contents end;
method set(n: Integer) is self.contents := n end;

end;

subclass reCell of cell is
var backup: Integer := 0;
override set(n: Integer) is

self.backup := self.contents;
super.set(n);

end;
method restore() is self.contents := self.backup end;

end;

Talk December 19, 2007 4:11 pm 113

We introduce two object types Cell and ReCell that correspond to these classes.

• We write them as separate types (but we could introduce syntax to avoid repeating common
components).

ObjectType Cell is
var contents: Integer;
method get(): Integer;
method set(n: Integer);

end;

ObjectType ReCell is
var contents: Integer;
var backup: Integer;
method get(): Integer;
method set(n: Integer);
method restore();

end;

Talk December 19, 2007 4:11 pm 114

• We may still use ObjectTypeOf(cell) as a meta-notation for the object type Cell.

~ This type can be mechanically extracted from class cell.

~ Therefore, we may write either o: ObjectTypeOf(cell) or o: Cell.

• The main property we expect of ObjectTypeOf is that:

• Different classes cell and cell1 may happen to produce the same object type Cell, equal to Ob-
jectTypeOf(cell) and ObjectTypeOf(cell1).

• Therefore, objects having type Cell are required only to satisfy a certain protocol, indepen-
dently of attribute implementation.

new c : ObjectTypeOf(c) for any class c

Talk December 19, 2007 4:11 pm 115

Subtyping without Subclassing
When object types are independent of classes, we must provide an independent definition of
subtyping.

• There are several choices at this point:

~ whether subtyping is determined by type structure or by type names in declarations,

~ in the former case, what parts of the structure of types matter.

• We will use a particularly simple form of structural subtyping.

We assume, for two object types O and O’, that:

where a component of an object type is the name of a field or a method and its associated type.

So, for example, ReCell <: Cell.

O’ <: O if O’ has all the components that O has

Talk December 19, 2007 4:11 pm 116

Multiple Subtyping
With this definition of subtyping, object types naturally support multiple subtyping, because
components are assumed unordered.

For example, consider the object type:

Then we have both ReCell <: Cell and ReCell <: ReInteger.

ObjectType ReInteger is
var contents: Integer;
var backup: Integer;
method restore();

end;

Talk December 19, 2007 4:11 pm 117

Subclassing Implies Subtyping (Still)
With the new definition of subtyping we have:

• This holds simply because a subclass can only add new attributes to a class, and because we
require that overriding methods preserve the existing method types.

• Therefore, we have partially decoupled subclassing from subtyping, since subtyping does not
imply subclassing. Subclassing still implies subtyping, so all the previous uses of subsump-
tion are still allowed. But, since subsumption is based on subtyping and not subclassing, we
now have even more freedom in subsumption.

• In conclusion, the notion of subclassing-is-subtyping can be weakened to subclassing-im-
plies-subtyping without loss of expressiveness, and with a gain in separation between inter-
faces and implementations.

If c’ is a subclass of c then ObjectTypeOf(c’) <: ObjectTypeOf(c).

Talk December 19, 2007 4:11 pm 118

Subclassing without Subtyping
• We have seen how the partial decoupling of subtyping from subclassing increases the oppor-

tunities for subsumption.

• Another approach has emerged that increases the potential for inheritance by further separat-
ing subtyping from subclassing. This approach abandons completely the notion that subclass-
ing implies subtyping, and is known under the name inheritance-is-not-subtyping.

• It is largely motivated by the desire to handle contravariant (argument) occurrences of Self
so as to allow inheritance of methods with arguments of type Self; these methods arise natu-
rally in realistic examples.

• The price paid for this added flexibility in inheritance is decreased flexibility in subsumption.
When Self is used liberally in contravariant positions, subclasses do not necessarily induce
subtypes.

Talk December 19, 2007 4:11 pm 119

• Consider two types Max and MinMax for integers enriched with min and max methods. Each
of these types is defined recursively:

ObjectType Max is
var n: Integer;
method max(other: Max): Max;

end;

ObjectType MinMax is
var n: Integer;
method max(other: MinMax): MinMax;
method min(other: MinMax): MinMax;

end;

Talk December 19, 2007 4:11 pm 120

• Consider also two classes:

• The methods min and max are called binary because they operate on two objects: self and oth-
er; the type of other is given by a contravariant occurrence of Self. Notice that the method
max, which has an argument of type Self, is inherited from maxClass to minMaxClass.

class maxClass is
var n: Integer := 0;
method max(other: Self): Self is

if self.n>other.n then return self else return other end;
end;

end;

subclass minMaxClass of maxClass is
method min(other: Self): Self is

if self.n<other.n then return self else return other end;
end;

end;

Talk December 19, 2007 4:11 pm 121

• Intuitively the type Max corresponds to the class maxClass, and MinMax to minMaxClass.
To make this correspondence more precise, we must define the meaning of ObjectTypeOf for
classes containing occurrences of Self, so as to obtain ObjectType-Of(maxClass) = Max and
ObjectTypeOf(minMaxClass) = MinMax.

• For these equations to hold, we map the use of Self in a class to the use of recursion in an
object type. We also implicitly specialize Self for inherited methods; for example, we map
the use of Self in the inherited method max to MinMax. In short, we obtain that any instance
of maxClass has type Max, and any instance of minMaxClass has type MinMax.

Talk December 19, 2007 4:11 pm 122

• Although minMaxClass is a subclass of maxClass, MinMax cannot be a subtype of Max. Con-
sider the class:

• For any instance mm’ of minMaxClass’ we have mm’:MinMax. If MinMax were a subtype of
Max, then we would have also mm’:Max, and mm’.max(m) would be allowed for any m of
type Max. Since m may not have a min attribute, the overridden max method of mm’ may
break. Therefore:

• Thus, subclasses with contravariant occurrences of Self do not always induce subtypes.

subclass minMaxClass’ of minMaxClass is
override max(other: Self): Self is

if other.min(self)=other then return self else return other end;
end;

end;

MinMax <: Max does not hold

Talk December 19, 2007 4:11 pm 123

Type Parameters
• Type parameterization is a general technique for reusing the same piece of code at different

types. It is becoming common in modern object-oriented languages, partially independently
of object-oriented features.

• In conjunction with subtyping, type parameterization can be used to remedy some typing dif-
ficulties due to contravariance, for example in method specialization.

• Consider the following object types, where Vegetables <: Food (but not vice versa):

ObjectType Person is
…
method eat(food: Food);

end;

ObjectType Vegetarian is
…
method eat(food: Vegetables);

end;

Talk December 19, 2007 4:11 pm 124

• The intention is that a vegetarian is a person, so we would expect Vegetarian <: Person.

• However, this inclusion cannot hold because of the contravariance on the argument of the eat
method. If we erroneously assume Vegetarian <: Person, then a vegetarian can be subsumed
into Person, and can be made to eat meat.

• We can obtain some legal subsumptions between vegetarians and persons by converting the
corresponding object types into type operators parameterized on the type of food:

ObjectOperator PersonEating[F <: Food] is
…
method eat(food: F);

end;

ObjectOperator VegetarianEating[F <: Vegetables] is
…
method eat(food: F);

end;

Talk December 19, 2007 4:11 pm 125

• The mechanism used here is called bounded type parameterization. The variable F is a type
parameter, which can be instantiated with a type. A bound like F <: Vegetables limits the pos-
sible instantiations of F to subtypes of Vegetables.

• So, VegetarianEating[Vegetables] is a type; in contrast, VegetarianEating[Food] is not well-
formed. The type VegetarianEating[Vegetables] is an instance of VegetarianEating, and is
equal to the type Vegetarian.

• We have that:

because, for any F<:Vegetables, the two instances are included by the usual rules for subtyp-
ing.

• In particular, we obtain:

Vegetarian = VegetarianEating[Vegetables] <: PersonEating[Vegetables].

This inclusion can be useful for subsumption: it asserts, correctly, that a vegetarian is a person
that eats only vegetables.

for all F <: Vegetables, VegetarianEating[F] <: PersonEating[F]

Talk December 19, 2007 4:11 pm 126

• Related to bounded type parameters are bounded abstract types (also called partially abstract
types). Bounded abstract types offer a different solution to the problem of making Vegetarian
subtype of Person.

• We redefine our object types by adding the F parameter, subtype of Food, as one of the at-
tributes:

ObjectType Person is
type F <: Food;
…
var lunch: F;
method eat(food: F);

end;

ObjectType Vegetarian is
type F <: Vegetables;
…
var lunch: F;
method eat(food: F);

end;

Talk December 19, 2007 4:11 pm 127

• The meaning of the type component F<:Food in Person is that, given a person, we know that
it can eat some Food, but we do not know exactly of what kind. The lunch attribute provides
some food that a person can eat.

• We can build an object of type Person by choosing a specific subtype of Food, for example
F=Dessert, picking a dessert for the lunch field, and implementing a method with parameter
of type Dessert. We have that the resulting object is a Person, by forgetting the specific F that
we chose for its implementation.

• Now the inclusion Vegetarian <: Person holds. A vegetarian subsumed into Person can be
safely fed the lunch it carries with it, because originally the vegetarian was constructed with
F<:Vegetables.

• A limitation of this approach is that a person can be fed only the food it carries with it as a
component of type F, and not some food obtained independently.

Talk December 19, 2007 4:11 pm 128

Object Protocols
• Even when subclasses do not induce subtypes, we can find a relation between the type in-

duced by a class and the type induced by one of its subclasses. It just so happens that, unlike
subtyping, this relation does not enjoy the subsumption property. We now examine this new
relation between object types.

• We cannot usefully quantify over the subtypes of Max because of the failure of subtyping. A
parametric definition like:

• is not very useful; we could instantiate P by writing P[Max], but P[MinMax] would not be
well-formed.

ObjectOperator P[M <: Max] is … end;

Talk December 19, 2007 4:11 pm 129

• Still, any object that supports the MinMax protocol, in an intuitive sense, supports also the
Max protocol. There seems to be an opportunity for some kind of subprotocol relation that
may allow useful parameterization. In order to find this subprotocol relation, we introduce
two type operators, MaxProtocol and MinMaxProtocol:

ObjectOperator MaxProtocol[X] is
var n:Integer;
method max(other: X): X;

end;

ObjectOperator MinMaxProtocol[X] is
var n:Integer;
method max(other: X): X;
method min(other: X): X;

end;

Talk December 19, 2007 4:11 pm 130

• Generalizing from this example, we can always pass uniformly from a recursive type T to an
operator T-Protocol by abstracting over the recursive occurrences of T. The operator T-Pro-
tocol is a function on types; taking the fixpoint of T-Protocol yields back T.

• We find two formal relationships between Max and MinMax. First, MinMax is a post-fixpoint
of MaxProtocol, that is:

• Second, let ': denote the higher-order subtype relation between type operators:

• Then, the protocols of Max and MinMax satisfy:

MinMax <: MaxProtocol[MinMax]

P ': P’ iff P[T] <: P’[T] for all types T

MinMaxProtocol ': MaxProtocol

Talk December 19, 2007 4:11 pm 131

• Either of these two relationships can be taken as our hypothesized notion of subprotocol:

• The second relationship expresses a bit more directly the fact that there exists a subprotocol
relation, and that this is in fact a relation between operators, not between types.

• Whenever we have some property common to several types, we may think of parameterizing
over these types. So we may adopt one of the following forms of parameterization:

• Then we can instantiate P1 to P1[MinMax], and P2 to P2[MinMaxProtocol].

S subprotocol T if S <: T-Protocol[S]
or

S subprotocol T if S-Protocol ': T-Protocol

ObjectOperator P1[X <: MaxProtocol[X]] is … end;
ObjectOperator P2[P ': MaxProtocol] is … end;

Talk December 19, 2007 4:11 pm 132

• These two forms of parameterization seem to be equally expressive in practice. The first one
is called F-bounded parameterization. The second form is higher-order bounded parameter-
ization, defined via pointwise subtyping of type operators.

• Instead of working with type operators, a programming language supporting subprotocols
may conveniently define a matching relation (denoted by <#) directly over types. The prop-
erties of the matching relation are designed to correspond to the definition of subprotocol.
Depending on the choice of subprotocol relation, we have:

• With either definition we have MinMax <# Max.

S <# T if S <: T-Protocol[S] (F-bounded interpretation)
or

S <# T if S-Protocol ': T-Protocol (higher-order interpretation)

Talk December 19, 2007 4:11 pm 133

• Matching does not enjoy a subsumption property (that is, S <# T and s : S do not imply that s
: T); however, matching is useful for parameterizing over all the types that match a given one:

• The instantiation P3[MinMax] is legal.

• In summary, even in the presence of contravariant occurrences of Self, and in absence of sub-
typing, there can be inheritance of binary methods like max. Unfortunately, subsumption is
lost in this context, and quantification over subtypes is no longer very useful. These disad-
vantages are partially compensated by the existence of a subprotocol relation, and by the abil-
ity to parameterize with respect to this relation.

ObjectOperator P3[X <# Max] is … end;

Talk December 19, 2007 4:11 pm 134

Type Information, Lost and Found
Although subsumption has no run-time effect, it has the effect of reducing static knowledge of
the true type of an object.

• Imagine a root class with no attributes, such that all classes are subclasses of the root class.

Any object can be viewed, by subsumption, as a member of the root class. Then it is a useless
object with no attributes.

• When an object is subsumed from InstanceTypeOf(reCell) to InstanceTypeOf(cell), we lose
direct access to its backup field.

However, the field backup is still used, through self, by the body of the overriding method set.

• So, attributes forgotten by subsumption can still be used thanks to dynamic dispatch.

Talk December 19, 2007 4:11 pm 135

In purist object-oriented methodology, dynamic dispatch is the only mechanism for accessing
attributes forgotten by subsumption.

• This position is often taken on abstraction grounds: no knowledge should be obtainable about
objects except through their methods.

• In the purist approach, subsumption provides a simple and effective mechanism for hiding
private attributes.

When we create a reCell and give it to a client as a cell, we can be sure that the client cannot
directly affect the backup field.

Talk December 19, 2007 4:11 pm 136

Typecase
Most languages, however, provide some way of inspecting the type of an object and thus of re-
gaining access to its forgotten attributes.

• A procedure with parameter x of type InstanceTypeOf(cell) could contain the following code.

• The typecase statement binds x to c or to rc depending on the true (run-time) type of x.

• Previously inaccessible attributes can now be used in the rc branch.

typecase x
when rc: InstanceTypeOf(reCell) do … rc.restore() … ;
when c: InstanceTypeOf(cell) do … c.set(3) … ;

end;

Talk December 19, 2007 4:11 pm 137

The typecase mechanism is useful, but it is considered impure for several methodological rea-
sons (and also for theoretical ones).

• It violates the object abstraction, revealing information that may be regarded as private.

• It renders programs more fragile by introducing a form of dynamic failure when none of the
branches apply.

• It makes code less extensible: when adding a subclass one may have to revisit and extend the
typecase statements in existing code.

~ This is a bad property, in particular because the source code of commercial libraries may
not be available.

~ In the purist framework, the addition of a new subclass does not require recoding of exist-
ing classes.

Talk December 19, 2007 4:11 pm 138

Although typecase may be ultimately an unavoidable feature, its methodological drawbacks re-
quire that it be used prudently.

The desire to reduce the uses of typecase has shaped much of the type structure of object-ori-
ented languages.

• In particular, typecase on self is necessary for emulating objects in conventional languages
by records of procedures.

In contrast, the standard typing of methods in object-oriented languages avoids this need for
typecase.

• More sophisticated typings of methods are aimed at avoiding typecase also on method results
and on method arguments.

Talk December 19, 2007 4:11 pm 139

O-O SUMMARY

• Class-based: various implementation techniques based on
embedding and/or delegation. Self is the receiver.

• Object-based: various language mechanisms based on
embedding and/or delegation. Self is the receiver.

• Object-based can emulate class-based. (By traits, or by
otherwise reproducing the implementations techniques of
class-based languages.)

Talk December 19, 2007 4:11 pm 140

One Step Further
• Language analysis:

~ Class-based langs. → Object-based langs. → Object calculi

• Language synthesis:

~ Object calculi → Object-based langs. → Class-based langs.

Talk December 19, 2007 4:11 pm 141

Our Approach to Modeling
• We have identified embedding and delegation as underlying

many object-oriented features.

• In our object calculi, we choose embedding over delegation as
the principal object-oriented paradigm.

• The resulting calculi can model classes well, although they are
not class-based (since classes are not built-in).

• They can model delegation-style traits just as well, but not
“true” delegation. (Object calculi for delegation exist but are
more complex.)

Talk December 19, 2007 4:11 pm 142

Foundations
• Objects can emulate classes (by traits) and procedures (by

“stack frame objects”).

• Everything can indeed be an object.

Talk December 19, 2007 4:11 pm 143

A Taxonomy

Object-Oriented

Class-Based Object-Based

Closures Prototypes

Embedding Delegation

Implicit . . . Explicit Implicit . . . Explicit

Talk December 19, 2007 4:12 pm 144

TYPE SYSTEMS

(transparencies by Martín Abadi,
largely based on the paper

“Type Systems” by Luca Cardelli)

Talk December 19, 2007 4:12 pm 145

Types
A program variable can assume a range of values during the execution of a program.

An upper bound of such a range is called a type of the variable.

~ For example, a variable x of type Boolean is supposed to assume only boolean values dur-
ing every run of a program.

~ If x has type Boolean, then the boolean expression not(x) has a sensible meaning in every
run of the program.

Talk December 19, 2007 4:12 pm 146

Typed and Untyped Languages
Languages that do not restrict the range of variables are called untyped languages.

• Operations may be applied to inappropriate arguments: the result may be a fixed value, a
fault, an exception, or an unspecified effect.

• The pure λ-calculus is an extreme case of an untyped language where no fault ever occurs.

Languages where variables can be given (nontrivial) types are called typed languages.

• A type system is that component of a typed language that keeps track of the types of variables
and other program expressions.

• A language is typed by virtue of the existence of a type system for it, whether or not types
actually appear in the syntax of programs.

• Typed languages are explicitly typed if types are part of the syntax, and implicitly typed oth-
erwise.

Talk December 19, 2007 4:12 pm 147

Properties of Type Systems
Types have pragmatic characteristics that distinguish them from other kinds of program anno-
tations.

• They are more precise than comments.

• They are more easily mechanizable than formal specifications.

Some expected properties of type systems are:

• Types should be checkable, algorithmically.

• Type rules should be transparent: it should be possible to predict whether a program will
typecheck, or to see why it does not.

Talk December 19, 2007 4:12 pm 148

Type Soundness
One important purpose of a type system is to prevent the occurrence of execution errors during
the running of a program.

When this property holds for all of the program runs that can be expressed within a language,
the language is type sound.

• A fair amount of careful analysis is required to avoid false claims of type soundness.

• Even informal knowledge of the principles of type systems helps.

• A formal presentation of a type system permits a formal proof, and also provides an indepen-
dent specification for a typechecker.

Talk December 19, 2007 4:12 pm 149

Caveats
• These categories are somewhat simplistic: being typed, or being explicitly typed, can be seen

as a matter of degree.

• We will ignore some kinds of type information, for example:

~ untraced and traced (used for garbage collection),

~ static and dynamic (used in partial evaluation),

~ unclassified, secret, and top secret (used for confidentiality),

~ untrusted and trusted (used for integrity),

~

• Even the notion of execution error is difficult to make precise in a simple, general manner.

Talk December 19, 2007 4:12 pm 150

Advantages of Typed Languages
The use of types in programming has several practical benefits:

• Economy of execution

~ In the earliest high-level languages (e.g., FORTRAN), type information was introduced
for generating reasonable code for numeric computations.

~ In ML, accurate type information eliminates the need for nil-checking on pointer derefer-
encing.

Accurate type information at compile time leads to the application of the appropriate opera-
tions at run time without expensive tests.

• Economy of small-scale development

~ When a type system is well designed, typechecking can capture a large fraction of routine
programming errors.

~ The errors that occur are easier to debug, because large classes of other errors have been
ruled out.

~ Experienced programmers can adopt a style that causes some logical errors to be detected
by a typechecker.

Talk December 19, 2007 4:12 pm 151

• Economy of maintenance

~ Code written in untyped languages can be maintained only with great difficulty.

~ Even weakly checked unsafe languages are superior to safe but untyped languages.

• Economy of large-scale development

~ Teams of programmers can negotiate interfaces, then proceed separately to implement the
corresponding pieces of code.

~ Dependencies between pieces of code are minimized, and code can be locally rearranged
without fear of global effects.

These benefits can be achieved with informal specifications for interfaces, but typechecking
helps.

Talk December 19, 2007 4:12 pm 152

Execution Errors in More Detail
There are two kinds of execution errors:

• trapped errors cause the computation to stop immediately, e.g.,

~ division by zero,

~ accessing an illegal address,

• untrapped errors may go unnoticed (for a while), e.g.,

~ accessing data past the end of an array,

~ jumping to an address outside the instruction stream.

A program fragment is safe if it does not cause untrapped errors.

Languages where all program fragments are safe are safe languages.

Safety
Typed Untyped

Safe ML LISP (classic)
Unsafe C Assembler

Talk December 19, 2007 4:12 pm 153

Good Behavior
For any given language, we may designate a subset of the possible execution errors as forbid-
den errors.

The forbidden errors should include all of the untrapped errors, plus a subset of the trapped
errors.

A program fragment that does not cause forbidden errors has good behavior (or is well be-
haved).

A language where all of the (legal) programs have good behavior is called strongly checked.

• No untrapped errors occur.

• None of the forbidden trapped errors occur.

• Other trapped errors may occur; it is the programmer’s responsibility to avoid them.

Talk December 19, 2007 4:12 pm 154

Checking Good Behavior
Untyped languages may enforce good behavior by run time checks.

Typed languages (like ML and Pascal) can enforce good behavior by performing static
checks to prevent some programs from running.

~ These languages are statically checked.

~ The checking process is typechecking.

~ The algorithm that performs this check is the typechecker.

~ A program that passes the typechecker is said to be well typed.

Typed languages may also perform some dynamic checks.

Some languages take advantage of their static type structures to perform dynamic type tests (cf.
Java’s InstanceOf).

Talk December 19, 2007 4:12 pm 155

In reality, certain statically checked languages do not ensure safety.

These languages are weakly checked (or weakly typed): some unsafe operations are detect-
ed statically and some are not detected.

~ Pascal is unsafe only when untagged variant types and function parameters are used.

~ C has many unsafe and widely used features, such as pointer arithmetic and casting.

~ Modula-3 supports unsafe features, but only in modules that are explicitly marked as un-
safe.

Talk December 19, 2007 4:12 pm 156

Type Equivalence
Most type systems include a relation of type equivalence.

Are X and Y equivalent?

• When they fail to match by virtue of being distinct type names, we have by-name equiva-
lence.

• When they match by virtue of being associated with similar types, we have structural equiv-
alence.

type X = Real
type Y = Real

Talk December 19, 2007 4:12 pm 157

• Most compilers use a combination of by-name and structural equivalence (sometimes with-
out a satisfactory specification).

• Structural equivalence has several advantages:

~ It can be defined easily, without strange special cases.

~ It easily allows “anonymous” types.

~ It works well with data sent over a network, with persistent data.

~ It works well with program sources developed in pieces.

• Pure structural equivalence can be limited through branded types.

type X = Real brand Temperature
type Y = Real brand Speed

Talk December 19, 2007 4:12 pm 158

When Types Do Not Match: Coercions?
Many languages do not give up when a type mismatch occurs.

• Instead, they apply a coercion in the offending program.

• Sometimes the coercion happens at run time, with significant cost.

Languages vary in their use of coercions.

• For languages with lots of basic types (such as COBOL) frequent coercions are a necessity.

• Many languages allow coercions at least for numeric types.

Silent coercions have advantages and disadvantages:

• They free the programmer from tedious conversions.

• Typechecking becomes harder to predict, and can turn simple typos into serious mistakes.

• If a coercion does any allocation, then data structures may not be shared as intended.

Talk December 19, 2007 4:12 pm 159

The Language of Type Systems
A type system specifies the type rules of a programming language independently of particular
typechecking algorithms.

This is analogous to describing a syntax by a formal grammar, independently of particular
parsing algorithms (and as important!).

Type systems are formulated in terms of assertions called judgments.

A typical judgment has the form:

Here Γ is a static typing environment; for example, an ordered list of distinct variables and their
types, of the form , x1:A1, ..., xn:An.

The form of the assertion ℑ varies from judgment to judgment, but all the free variables of ℑ
must be declared in Γ.

Γ ∫ ℑ

Talk December 19, 2007 4:12 pm 160

The Typing Judgment
The typing judgment, which asserts that a term M has a type A with respect to a static typing
environment for the free variables of M.

It has the form:

Examples:

 ∫ true : Bool
, x:Nat ∫ x+1 : Nat

Γ ∫ M : A (M has type A in Γ)

Talk December 19, 2007 4:12 pm 161

Type Rules
Type rules are rules for deriving judgments.

A typical type rule has the form:

Examples:

(Rule name) (Annotations)
Γ1 ∫ ℑ1 ... Γn ∫ ℑn (Annotations)

Γ ∫ ℑ

(Val n) (n = 0, 1, ...) (Val +)
Γ ∫ Q Γ ∫ M : Nat Γ ∫ N : Nat

Γ ∫ n : Nat Γ ∫ M+N : Nat

(Env)

 ∫ Q

Talk December 19, 2007 4:12 pm 162

Type Derivations
A derivation in a given type system is a tree of judgments

~ with leaves at the top and a root at the bottom,

~ where each judgment is obtained from the ones immediately above it by some rule of the
system.

A valid judgment is one that can be obtained as the root of a derivation in a given type system.

 ∫ Q by (Env) ∫ Q by (Env)

 ∫ 1 : Nat by (Val n) ∫ 2 : Nat by (Val n)

 ∫ 1+2 : Nat by (Val +)

Talk December 19, 2007 4:12 pm 163

Well Typing and Type Soundness
In a given type system, a term M is well typed for an environment Γ, if there is a type A such that
Γ ∫ M : A is a valid judgment.

The discovery of a derivation (and hence of a type) for a term is called the type inference
problem. This problem can be very hard.

We can check the internal consistency of a type system by proving a type soundness theorem.

~ For denotational semantics, we expect that if ∫ M : A is valid, then [M] Ï [A] holds.

~ For operational semantics, we expect that if ∫ M : A and M reduces to M’ then ∫ M’ : A.

This theorem shows that well typing corresponds to a semantic notion of good behavior.

Talk December 19, 2007 4:12 pm 164

First-Order Type Systems
In this context, first-order means lacking type parameterization and type abstraction (like Pascal,
unlike ML).

Languages with higher-order functions can be first-order.

The type systems of most common languages are first-order.

A common mathematical example of a first-order language is the first-order typed λ-calculus,
called system F1.

The main changes from the untyped λ-calculus are:

• the addition of type annotations for bound variables (as in λx:A.x),

• the addition of basic types (such as Bool and Nat),

• the addition of types for functions, of the form A→B,

• the requirement that programs typecheck.

Talk December 19, 2007 4:12 pm 165

Syntax of F1

Judgments for F1

A,B ::=
K KÏBasic
A→B

types
basic types
function types

M,N ::=
x
λx:A.M
M N

terms
variable
function abstraction
function application

Γ ∫ Q
Γ ∫ A
Γ ∫ M : A

Γ is a well-formed environment
A is a well-formed type in Γ
M is a well-formed term of type A in Γ

Talk December 19, 2007 4:12 pm 166

Rules for F1

(Env) (Env x)
Γ ∫ A xÌdom(Γ)

 ∫ Q Γ, x:A ∫ Q

(Type Const) (Type Arrow)
Γ ∫

Q KÏBasic
Γ ∫ A Γ ∫ B

Γ ∫ K Γ ∫ A→B

(Val x) (Val Fun) (Val Appl)
Γ’, x:A, Γ” ∫ Q Γ, x:A ∫ M : B Γ ∫ M : A→B Γ ∫ N : A

Γ’, x:A, Γ” ∫ x:A Γ ∫ λx:A.M : A→B Γ ∫ M N : B

Talk December 19, 2007 4:12 pm 167

A derivation in F1

where the last two steps are by (Val Appl) and (Val Fun).

 ∫ Q by (Env) ∫ Q by (Env) ∫ Q by (Env) ∫ Q

 ∫ K by (Type Const) ∫ K by (Type Const) ∫ K by (Type Const) ∫ K

 ∫ K→K by (Type Arrow) ∫ K→K

, y:K→K ∫ Q by (Env x) , y:K→K ∫ Q

, y:K→K ∫ K by (Type Const) , y:K→K ∫ K

, y:K→K, z:K ∫ Q by (Env x) , y:K→K, z:K ∫ Q

, y:K→K, z:K ∫ y : K→K by (Val x) , y:K→K, z:K ∫ z : K

, y:K→K, z:K ∫ y(z) : K

, y:K→K ∫ λz:K.y(z) : K→K

Talk December 19, 2007 4:12 pm 168

Study of a First-Order Type System
• F1 allows some programming with higher-order functions.

For example, the Church numerals:

λx:K→K. λy:K. y

λx:K→K. λy:K. x(y)

λx:K→K. λy:K. x(x(y))

λx:K→K. λy:K. x(x(x(y)))

...

all typecheck with type (K→K)→(K→K)

• Some untyped terms cannot be annotated so that they typecheck in F1:

λx:?. x(x)

Talk December 19, 2007 4:12 pm 169

• We can prove type soundness theorems for F1.

In particular:

If ∫ M : A and M →l N then ∫ N : A.

~ Here →l is the trivial extension of the call-by-name operational semantics of the untyped
λ-calculus to F1.

~ This is called a subject reduction theorem.

~ This theorem implies, for example, that if ∫ M : A then M does not evaluate to λx:K. x(...),
where a non-function is being applied.

~ For richer type systems, subject reduction theorems can be hard.

Talk December 19, 2007 4:12 pm 170

Basic Types: Unit
We add a set of rules for each of several new type constructions, following a fairly regular
pattern.

We begin with some basic data types:

• the type Unit, whose only value is the constant unit,

• the type Bool, whose values are true and false,

• the type Nat, whose values are the natural numbers.

Unit Type

The Unit type is often used as a filler for uninteresting arguments and results. (It corresponds
to Void or Null in some languages.)

(Type Unit) (Val Unit)
Γ ∫ Q Γ ∫ Q

Γ ∫ Unit Γ ∫ unit : Unit

Talk December 19, 2007 4:12 pm 171

Basic Types: Booleans
Bool Type

ifA gives a hint to the typechecker that the result type should be A, and that types inferred for
N1 and N2 should be compared with A.

It is normally the task of a typechecker to synthesize A and similar type information.

(Type Bool) (Val True) (Val False)
Γ ∫ Q Γ ∫ Q Γ ∫ Q

Γ ∫ Bool Γ ∫ true : Bool Γ ∫ false :
Bool

(Val Cond)
Γ ∫ M : Bool Γ ∫ N1 : A Γ ∫ N2 : A

Γ ∫ (ifA M then N1 else N2) : A

Talk December 19, 2007 4:12 pm 172

Basic Types: Natural Numbers
Nat Type

(Type Nat) (Val Zero) (Val Succ)
Γ ∫ Q Γ ∫ Q Γ ∫ M : Nat

Γ ∫ Nat Γ ∫ 0 : Nat Γ ∫ succ M : Nat

(Val Pred) (Val IsZero)
Γ ∫ M : Nat Γ ∫ M : Nat

Γ ∫ pred M : Nat Γ ∫ isZero M : Bool

Talk December 19, 2007 4:12 pm 173

Structured Types: Products
A product type A1×A2 is the type of pairs of values with first component of type A1 and second
component of type A2.

These components can be extracted with the projections first and second, respectively.

Product Types

(Type Product) (Val Pair)
Γ ∫ A1 Γ ∫ A2 Γ ∫ M1 : A1 Γ ∫ M2 : A2

Γ ∫ A1×A2 Γ ∫ ÜM1,M2á : A1×A2

(Val First) (Val Second)
Γ ∫ M : A1×A2 Γ ∫ M : A1×A2

Γ ∫ first M : A1 Γ ∫ second M : A2

Talk December 19, 2007 4:12 pm 174

Instead of the projections, we can use a with statement.

~ The with statement decomposes a pair M and binds its components to two separate vari-
ables x1 and x2 in the scope N.

~ The with notation is related to pattern matching in ML, and also to Pascal’s with statement.

Product Types (Cont.)

(Val With)
Γ ∫ M : A1×A2 Γ, x1:A1, x2:A2 ∫ N : B

Γ ∫ (with (x1:A1, x2:A2) := M do N) : B

Talk December 19, 2007 4:12 pm 175

Structured Types: Unions
An element of a union type A1+A2 is an element of A1 tagged with a left token (created by
inLeft), or an element of A2 tagged with a right token (created by inRight).

The tags can be tested by isLeft and isRight, and the values extracted with asLeft and asRight.

Union Types

(Type Union) (Val inLeft) (Val inRight)
Γ ∫ A1 Γ ∫ A2 Γ ∫ M1 : A1 Γ ∫ A2 Γ ∫ A1 Γ ∫ M2 : A2

Γ ∫ A1+A2 Γ ∫ inLeftA2 M1 : A1+A2 Γ ∫ inRightA1 M2 : A1+A2

(Val isLeft) (Val isRight)
Γ ∫ M : A1+A2 Γ ∫ M : A1+A2

Γ ∫ isLeft M : Bool Γ ∫ isRight M : Bool

(Val asLeft) (Val asRight)
Γ ∫ M : A1+A2 Γ ∫ M : A1+A2

Γ ∫ asLeft M : A1 Γ ∫ asRight M : A2

Talk December 19, 2007 4:12 pm 176

The use of asLeft (and asRight) can give rise to errors:

~ Any result of asLeft must have type A1.

~ When asLeft is mistakenly applied to a right-tagged value, a trapped error or exception is
produced.

The case construct can replace isLeft, isRight, asLeft, asRight, and the related trapped errors.

It also eliminates any dependence on the Bool type.

Union Types (Cont.)

The case construct executes one of two branches depending on the tag of M, with the un-
tagged contents of M bound to x1 or x2 in the scope of N1 or N2, respectively.

(Val Case)
Γ ∫ M : A1+A2 Γ, x1:A1 ∫ N1 : B Γ, x2:A2 ∫ N2 : B

Γ ∫ (caseB M of x1:A1 then N1 | x2:A2 then N2) : B

Talk December 19, 2007 4:12 pm 177

Structured Types: Records
A record type is a named collection of types, with a value-level operation for extracting com-
ponents by name.

We ignore the order of the record components (and identify expressions that differ only in
this order).

Record Types

Product types A1×A2 can be defined as Record(first:A1, second:A2).

(Type Record) (li distinct) (Val Record) (li distinct)
Γ ∫ A1 ... Γ ∫ An Γ ∫ M1 : A1 ... Γ ∫ Mn : An

Γ ∫ Record(l1:A1, ..., ln:An) Γ ∫ record(l1=M1, ..., ln=Mn) : Record(l1:A1, ..., ln:An)

(Val Record Select)
Γ ∫ M : Record(l1:A1, ..., ln:An) jÏ1..n

Γ ∫ M.lj : Aj

(Val Record With)
Γ ∫ M : Record(l1:A1, ..., ln:An) Γ, x1:A1, ..., xn:An ∫ N : B

Γ ∫ (with (l1=x1:A1, ..., ln=xn:An) := M do N) : B

Talk December 19, 2007 4:12 pm 178

Structured Types: Variants
Variant types

(Type Variant) (li distinct) (Val Variant) (li distinct)
Γ ∫ A1 ... Γ ∫ An Γ ∫ A1 ... Γ ∫ An Γ ∫ Mj : Aj jÏ1..n

Γ ∫ Variant(l1:A1, ..., ln:An) Γ ∫ variant(l1:A1, ..., ln:An)(lj=Mj) : Variant(l1:A1, ..., ln:An)

(Val Variant Is)
Γ ∫ M : Variant(l1:A1, ..., ln:An) jÏ1..n

Γ ∫ M is lj : Bool

(Val Variant As)
Γ ∫ M : Variant(l1:A1, ..., ln:An) jÏ1..n

Γ ∫ M as lj : Aj

(Val Variant Case)
Γ ∫ M : Variant(l1:A1, ..., ln:An) Γ, x1:A1 ∫ N1 : B ... Γ, xn:An ∫ Nn : B

Γ ∫ (caseB M of l1=x1:A1 then N1 | ... | ln=xn:An then Nn) : B

Talk December 19, 2007 4:12 pm 179

Enumeration Types

Enumeration types, such as {red, green, blue}, can be defined as Variant(red:Unit,
green:Unit, blue:Unit).

Talk December 19, 2007 4:12 pm 180

Other First-Order Types
See L. Cardelli’s paper for a discussion of reference types and arrays.

Talk December 19, 2007 4:12 pm 181

Recursive Types
Instead of declaring recursive types, as in:

we use recursive types of the form µX.A, like:

Here X is a type variable. Intuitively, µX.A is the solution to recursive to the equation X=A
where X may occur in A. So for example:

This notation postpones the need for type declarations.

Anyway, with structural equivalence, we would want to say that the type X declared by X=A
“is” µX.A.

For writing rules for recursive types, we enrich environments with type variables.

type X = Unit + (Nat × X)

µX.(Unit + (Nat × X))

µX.(Unit + (Nat × X)) = Unit + (Nat × µX.(Unit + (Nat × X)))

Talk December 19, 2007 4:12 pm 182

Recursive Types

The operations unfold and fold are explicit coercions that map between a recursive type µX.A
and its unfolding A[µX.A/X].

These coercions do not have any run time effect. They are usually omitted from the syntax of
programming languages.

(Env X) (Type Rec)
Γ ∫ Q XÌdom(Γ) Γ, X ∫ A

Γ, X ∫ Q Γ ∫ µX.A

(Val Fold) (Val Unfold)
Γ ∫ M : A[µX.A/X] Γ ∫ M : µX.A

Γ ∫ foldµX.A M : µX.A Γ ∫ unfoldµX.A M : A[µX.A/X]

Talk December 19, 2007 4:12 pm 183

List Types
List Types

ListA @ µX.Unit+(A×X)

nilA : ListA @ fold(inLeft unit)

consA : A→ListA→ListA @ λhd:A. λtl:ListA. fold(inRight Ühd,tlá)

listCaseA,B : ListA→B→(A×ListA→B)→B @
λl:ListA. λn:B. λc:A×ListA→B.

case (unfold l) of unit:Unit then n | p:A×ListA then c p

Talk December 19, 2007 4:12 pm 184

Value-Level Recursion
Value-level recursion can be typechecked using recursive types.

Encoding of Divergence and Recursion via Recursive Types

®A : A @ (λx:B. (unfoldB x) x) (foldB (λx:B. (unfoldB x) x))

íA : (A→A)→A @
λ f:A→A. (λx:B. f ((unfoldB x) x)) (foldB (λx:B. f ((unfoldB x) x)))

where B 7 µX. X→A, for an arbitrary A

Talk December 19, 2007 4:12 pm 185

Untyped Programming via Recursive Types
Encoding the Untyped λ-calculus via Recursive Types

V @ µX.X→X the type of untyped λ-terms

äxã @ x translation ä-ã from untyped λ-terms to V elements
äλx.Mã @ foldV (λx:V.äMã)
äM Nã @ (unfoldV äMã) äNã

Talk December 19, 2007 4:12 pm 186

A Type System for an Imperative Language
Syntax of the imperative language

A ::=
Bool
Nat
Proc

types
boolean type
natural numbers type
procedure type

D ::=
proc I = C
var I : A = E

declarations
procedure declaration
variable declaration

C ::=
I := E
C1; C2

begin D in C end
call I
while E do C end

commands
assignment
sequential composition
block
procedure call
while loop

Talk December 19, 2007 4:12 pm 187

Judgments for the imperative language

E ::=
I
N
E1 + E2

E1 not= E2

expressions
identifier
numeral
sum of two numbers
inequality of two numbers

Γ ∫ Q
Γ ∫ A
Γ ∫ C
Γ ∫ E : A
Γ ∫ D a S

Γ is a well-formed environment
A is a well-formed type in Γ
C is a well-formed command in Γ
E is a well-formed expression of type A in Γ
D is a well-formed declaration of signature S in Γ

Talk December 19, 2007 4:12 pm 188

Type rules for the imperative language

(Env) (Env I)
Γ ∫ A IÌdom(Γ)

 ∫ Q Γ, I:A ∫ Q

(Type Bool) (Type Nat) (Type Proc)
Γ ∫ Q Γ ∫ Q Γ ∫ Q

Γ ∫ Bool Γ ∫ Nat Γ ∫ Proc

(Decl Proc) (Decl Var)
Γ ∫ C Γ ∫ E : A AÏ{Bool,Nat}

Γ ∫ (proc I = C) a (I : Proc) Γ ∫ (var I : A = E) a (I : A)

(Comm Assign) (Comm Sequence)
Γ ∫ I : A Γ ∫ E : A Γ ∫ C1 Γ ∫ C2

Γ ∫ I := E Γ ∫ C1 ; C2

Talk December 19, 2007 4:12 pm 189

(Comm Block) (Comm Call) (Comm While)
Γ ∫ D a (I : A) Γ, I:A ∫ C Γ ∫ I : Proc Γ ∫ E : Bool Γ ∫ C

Γ ∫ begin D in C end Γ ∫ call I Γ ∫ while E do C end

(Expr Identifier) (Expr Numeral)
Γ1, I:A, Γ2 ∫ Q Γ ∫ Q

Γ1, I:A, Γ2 ∫ I : A Γ ∫ N : Nat

(Expr Plus) (Expr NotEq)
Γ ∫ E1 : Nat Γ ∫ E2 : Nat Γ ∫ E1 : Nat Γ ∫ E2 : Nat

Γ ∫ E1 + E2 : Nat Γ ∫ E1 not= E2 : Bool

Talk December 19, 2007 4:12 pm 190

Type Inference
Type inference is the problem of finding a type A for a term M in a given typing environment Γ,
so that Γ ∫ M : A, if any such type exists.

• In systems with abundant type annotations, the type inference problem amounts to little more
than checking the annotations.

• The problem is not always trivial but, as in the case of F1, simple typechecking algorithms
may exist.

A harder problem, called type reconstruction, consists in starting with an untyped program
M, and finding an environment Γ, a type-annotated version M’ of M, and a type A such that
Γ ∫ M’ : A.

Talk December 19, 2007 4:12 pm 191

A Type Inference Algorithm for F1

Type(Γ, M) takes an environment Γ and a term M and produces the unique type of M, if M
has a type.

The instruction fail causes a global failure of the algorithm.

We assume that the initial environment parameter Γ is well formed.

Type inference algorithm for F1

Type(Γ, x) @
if x:A Ï Γ for some A then A else fail

Type(Γ, λx:A.M) @
if x Ì dom(Γ) then A→Type((Γ, x:A), M) else restart after renaming

Type(Γ, M N) @
if Type(Γ, M) 7 Type(Γ, N)→B for some B then B else fail

Talk December 19, 2007 4:12 pm 192

For example:

The algorithm for type inference in F1 is fundamental.

• It can be extended in straightforward ways to all of the first-order type structures studied ear-
lier.

• It is the basis of the typechecking algorithms of Pascal and similar procedural languages.

• It can be extended (though not always easily) to handle subtyping and higher-order con-
structs.

Type((, y:K→K), λz:K.y(z))
= K→Type((, y:K→K, z:K), y(z))
= K→(if Type((, y:K→K, z:K), y) 7

Type((, y:K→K, z:K), z)→B for some B
then B else fail)

= K→(if K→K 7 K→B for some B then B else fail)
= K→K

Talk December 19, 2007 4:12 pm 193

INTRODUCTION TO
OBJECT CALCULI

Talk December 19, 2007 4:12 pm 194

Understanding Objects
• Many characteristics of object-oriented languages are different presentations of a few general

ideas.

• The situation is analogous in procedural programming.

The λ-calculus has provided a basic, flexible model, and a better understanding of actual lan-
guages.

Talk December 19, 2007 4:12 pm 195

From Functions to Objects
• We develop a calculus of objects, analogous to the λ-calculus but independent.

~ It is entirely based on objects, not on functions.

~ We go in this direction because object types are not easily, or at all, definable in most stan-
dard formalisms.

• The calculus of objects is intended as a paradigm and a foundation for object-oriented lan-
guages.

Talk December 19, 2007 4:12 pm 196

• We have, in fact, a family of object calculi:

~ functional and imperative;

~ untyped, first-order, and higher-order.

Untyped and first-order object calculi
Calculus: ς Ob1 Ob1<: nn Ob1µ Ob1<:µ nn impς nn
objects ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
object types ¢ ¢ ¢ ¢ ¢ ¢ ¢
subtyping ¢ ¢ ¢ ¢ ¢
variance ¢
recursive types ¢ ¢ ¢
dynamic types ¢
side-effects ¢ ¢

Talk December 19, 2007 4:12 pm 197

Higher-order object calculi

There are several other calculi (e.g., Castagna’s, Fisher&Mitchell’s).

Calculus: Ob Obµ Ob<: Ob<:µ ςOb S SÓ nn Obω<:µ

objects ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
object types ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
subtyping ¢ ¢ ¢ ¢ ¢ ¢ ¢
variance • • ¢ ¢ ¢ ¢
recursive types ¢ ¢ ¢
dynamic types
side-effects ¢
quantified types ¢ ¢ ¢ ¢ ¢ ¢ ¢
Self types • ¢ ¢ ¢ ¢ •
structural rules ¢ ¢ ¢ ¢
type operators ¢

Talk December 19, 2007 4:12 pm 198

Object Calculi
As in λ-calculi, we have:

~ operational semantics,

~ denotational semantics,

~ (some) axiomatic semantics (due to M. Abadi and R. Leino),

~ type systems,

~ type inference algorithms (due to J. Palsberg, F. Henglein),

~ equational theories,

~ a theory of bisimilarity (due to A. Gordon and G. Rees),

~ examples,

~ (small) language translations,

~ guidance for language design.

Talk December 19, 2007 4:12 pm 199

The Role of “Functional” Object Calculi
• Functional object calculi are object calculi without side-effects (with or without syntax for

functions).

• We have developed both functional and imperative object calculi.

• Functional object calculi have simpler operational semantics.

• “Functional object calculus” sounds odd: objects are supposed to encapsulate state!

• However, many of the techniques developed in the context of functional calculi carry over to
imperative calculi.

• Sometimes the same code works functionally and imperatively. Often, imperative versions
require just a little more care.

Talk December 19, 2007 4:12 pm 200

Just Objects, No Classes

• Language analysis:

Class-based languages → Object-based languages → Object calculi

• Language synthesis:

Object calculi → Object-based languages → Class-based languages

Talk December 19, 2007 4:12 pm 201

Embedding and Delegation
• We have identified embedding and delegation as underlying many object-oriented features.

• In our object calculi, we choose embedding over delegation as the principal object-oriented
paradigm.

• The resulting calculi can model classes well, although they are not class-based (since classes
are not built-in).

• They can model delegation-style traits just as well, but not “true” delegation.

(Object calculi for delegation exist but are more complex.)

Talk July 17, 1997 4:50 pm 202

AN UNTYPED OBJECT CALCULUS

Talk July 17, 1997 4:50 pm 203

An Untyped Object Calculus: Syntax
An object is a collection of methods. (Their order does not matter.)

Each method has:

~ a bound variable for self (which denotes the object itself),

~ a body that produces a result.

The only operations on objects are:

~ method invocation,

~ method update.

Syntax of the ς-calculus
a,b ::= terms

x variable
[li=ς(xi)bi iÏ1..n] object (li distinct)
a.l method invocation
a.lfiüς(x)b method update

Talk July 17, 1997 4:50 pm 204

First Examples
An object o with two methods, l and m:

o @
[l = ς(x) [],
 m = ς(x) x.l]

• l returns an empty object.

• m invokes l through self.

A storage cell with two methods, contents and set:

cell @
[contents = ς(x) 0,
 set = ς(x) λ(n) x.contents fiü ς(y) n]

• contents returns 0.

• set updates contents through self.

Talk July 17, 1997 4:50 pm 205

An Untyped Object Calculus: Reduction
• The notation b îïñ c means that b reduces to c in one step.

• The substitution of a term c for the free occurrences of a variable x in a term b is written
bYx←cZ, or bYcZ when x is clear from context.

Let o 7 [li=ς(xi)bi iÏ1..n] (li distinct)

o.lj îïñ bjYxj←oZ (jÏ1..n)
o.ljfiüς(y)b îïñ [lj=ς(y)b, li=ς(xi)bi iÏ(1..n)-{j}] (jÏ1..n)

In addition, if a îïñ b then C[a] îïñ C[b] where C[-] is any context.

We are dealing with a calculus of objects, not of functions.

The semantics is deterministic (Church-Rosser).
It is not imperative or concurrent.

Talk July 17, 1997 4:50 pm 206

Some Example Reductions

Let o @ [l=ς(x)x.l] divergent method
then o.l îïñ x.lYx←oZ 7 o.l îïñ ...

Let o’ @ [l = ς(x)x] self-returning method
then o’.l îïñ xYx←o’Z 7 o’

Let o” @ [l = ς(y) (y.lfiüς(x)x)] self-modifying method
then o”.l îïñ (o”.lfiüς(x)x) îïñ o’

Talk July 17, 1997 4:50 pm 207

Static Scoping and Substitution, in Detail
Object scoping

Object substitution

FV(ς(y)b) @ FV(b)–{y}

FV(x)
FV([li=ς(xi)bi iÏ1..n])
FV(a.l)
FV(a.lfiüς(y)b)

@ {x}
@ ∪iÏ1..n FV(ς(xi)bi)
@ FV(a)
@ FV(a) ∪ FV(ς(y)b)

(ς(y)b)Yx←cZ @ ς(y’)(bYy←y’ZYx←cZ)
for y’ÌFV(ς(y)b)∪FV(c)∪{x}

xYx←cZ
yYx←cZ
[li=ς(xi)bi iÏ1..n]Yx←cZ
(a.l)Yx←cZ
(a.lfiüς(y)b)Yx←cZ

@ c
@ y for y = x
@ [li=(ς(xi)bi)Yx←cZ iÏ1..n]
@ (aYx←cZ).l
@ (aYx←cZ).lfiü((ς(y)b)Yx←cZ)

Talk July 17, 1997 4:50 pm 208

Notation
• A closed term is a term without free variables.

• We write b{x} to highlight that x may occur free in b.

• We write bYcZ, instead of bYx←cZ, when b{x} is present in the same context.

• We identify ς(x)b with ς(y)(bYx←yZ), for all y not occurring free in b.

(For example, we view ς(x)x and ς(y)y as the same method.)

• We identify any two objects that differ only in the order of their components.

(For example, [l1=ς(x1)b1, l2=ς(x2)b2] and [l2=ς(x2)b2, l1=ς(x1)b1] are the same object for us.)

Talk July 17, 1997 4:50 pm 209

Expressiveness
• Our calculus is based entirely on methods;

fields can be seen as methods that do not use their self parameter:

[..., l=b, ...] @ [..., l=ς(y)b, ...] for an unused y
 o.l:=b @ o.lfiüς(y)b for an unused y

Terminology

• Method update is the most exotic construct, but:

~ it leads to simpler rules, and

~ it corresponds to features of several languages.

object attributes
fields methods

object
operations

selection field selection method invocation
update field update method update

Talk July 17, 1997 4:50 pm 210

• In addition, we can represent:

~ basic data types,

~ functions,

~ recursive definitions,

~ classes and subclasses.

• Some operations on objects are not available:

~ method extraction,

~ object extension,

~ object concatenation,

because they are atypical and in conflict with subtyping.

Talk July 17, 1997 4:50 pm 211

Some Examples
These examples are:

• easy to write in the untyped calculus,

• patently object-oriented (in a variety of styles),

• sometimes hard to type.

Talk July 17, 1997 4:50 pm 212

A Cell

Let cell @
[contents = 0,
 set = ς(x) λ(n) x.contents := n]

Then cell.set(3)
 îïñ (λ(n)[contents = 0, set = ς(x) λ(n) x.contents := n]

 .contents:=n)(3)
 îïñ [contents = 0, set = ς(x)λ(n) x.contents := n]

 .contents:=3
 îïñ [contents = 3, set = ς(x) λ(n) x.contents := n]

and cell.set(3).contents
 îïñ ...
 îïñ 3

Talk July 17, 1997 4:50 pm 213

A Cell with an Accessor

gcell @
[contents = 0,
 set = ς(x) λ(n) x.contents := n,
 get = ς(x) x.contents]

• The get method fetches contents.

• A user of the cell may not even know about contents.

Talk July 17, 1997 4:50 pm 214

A Cell with Undo

uncell @
[contents = 0,
 set = ς(x) λ(n) (x.undo := x).contents := n,
 undo = ς(x) x]

• The undo method returns the cell before the latest call to set.

• The set method updates the undo method, keeping it up to date.

Talk July 17, 1997 4:50 pm 215

Geometric Points

For example, we can define unit2 @ origin2.mv_x(1).mv_y(1), and then we can compute unit2.x
= 1.

Intuitively, all operations possible on origin1 are possible on origin2.

Hence we would like to obtain a type system where a point like origin2 can be accepted in
any context expecting a point like origin1.

origin1 @
[x = 0,
 mv_x = ς(s) λ(dx) s.x := s.x+dx]

origin2 @
[x = 0, y = 0,
 mv_x = ς(s) λ(dx) s.x := s.x+dx,
 mv_y = ς(s) λ(dy) s.y := s.y+dy]

Talk July 17, 1997 4:50 pm 216

Object-Oriented Booleans
true and false are objects with methods if, then, and else.
Initially, then and else are set to diverge when invoked.

true @ [if = ς(x) x.then, then = ς(x) x.then, else = ς(x) x.else]
false @ [if = ς(x) x.else, then = ς(x) x.then, else = ς(x) x.else]

then and else are updated in the conditional expression:

cond(b,c,d) @ ((b.then:=c).else:=d).if

So:

cond(true, false, true) 7 ((true.then:=false).else:=true).if
 îïñ ([if = ς(x) x.then, then = false, else = ς(x) x.else].else:=true).if
 îïñ [if = ς(x) x.then, then = false, else = true].if
 îïñ [if = ς(x) x.then, then = false, else = true].then
 îïñ false

Talk July 17, 1997 4:50 pm 217

Object-Oriented Natural Numbers
• Each numeral has a case field that contains either λ(z)λ(s)z for zero, or λ(z)λ(s)s(x) for non-

zero, where x is the predecessor (self).

Informally: n.case(z)(s) = if n is zero then z else s(n-1)

• Each numeral has a succ method that can modify the case field to the non-zero version.

zero is a prototype for the other numerals:

zero @
[case = λ(z) λ(s) z,
 succ = ς(x) x.case := λ(z) λ(s) s(x)]

So:

zero 7 [case = λ(z) λ(s) z, succ = ...]
one @ zero.succ 7 [case = λ(z) λ(s) s(zero), succ = ...]
pred @ λ(n) n.case(zero)(λ(p)p)

Talk July 17, 1997 4:50 pm 218

A Calculator
The calculator uses method update for storing pending operations.

calculator @
[arg = 0.0,
 acc = 0.0,
 enter = ς(s) λ(n) s.arg := n,
 add = ς(s) (s.acc := s.equals).equals fiü ς(s’) s’.acc+s’.arg,
 sub = ς(s) (s.acc := s.equals).equals fiü ς(s’) s’.acc-s’.arg,
 equals = ς(s) s.arg]

We obtain the following calculator-style behavior:

calculator .enter(5.0) .equals=5.0
calculator .enter(5.0) .sub .enter(3.5) .equals=1.5
calculator .enter(5.0) .add .add .equals=15.0

Talk July 17, 1997 4:50 pm 219

Functions as Objects
A function is an object with two slots:

~ one for the argument (initially undefined),

~ one for the function code.

Translation of the untyped λ-calculus
äxã @ x
äλ(x)bã @

[arg = ς(x) x.arg,
 val = ς(x) äbãYx←x.argZ]

äb(a)ã @ (äbã.arg := äaã).val

Self variables get statically nested. A keyword self would not suffice.

Talk July 17, 1997 4:50 pm 220

The translation validates the β rule:

ä(λ(x)b)(a)ã îïññ äbYx←aZã

where îïññ is the reflexive and transitive closure of îïñ.

For example:

ä(λ(x)x)(y)ã @ ([arg = ς(x) x.arg, val = ς(x) x.arg].arg := y).val
 îïñ [arg = ς(x) y, val = ς(x) x.arg].val
 îïñ [arg = ς(x) y, val = ς(x) x.arg].arg
 îïñ y
 @ äyã

The translation has typed and imperative variants.

Talk July 17, 1997 4:50 pm 221

Functions as Objects, with Defaults
• λ(x=c)b{x} is a function with a single parameter x with default c.

• f(a) is a normal application of f to a, and f() is an application of f to its default.

For example, (λ(x=c)x)() = c and (λ(x=c)x)(a) = a.

Translation of default parameters

äλ(x=c)b{x}ã @ [arg=äcã, val=ς(x)äb{x}ãYx←x.argZ]

äb(a)ã @ äbã¢äaã where p¢q @ (p.arg:=q).val

äb()ã @ äbã.val

Talk July 17, 1997 4:50 pm 222

Recursion
The encoding of functions as objects yields fixpoint combinators for the object calculus.

However, more direct techniques for recursion exist.

In particular, we can define µ(x)b as follows:

and obtain the unfolding property µ(x)b{x} = bYµ(x)b{x}Z:

äµ(x)b{x}ã @
[rec=ς(x)äb{x}ãYx←x.recZ].rec

äµ(x)b{x}ã
7 [rec=ς(x)äb{x}ãYx←x.recZ].rec
= äb{x}ãYx←x.recZYx←[rec=ς(x)äb{x}ãYx←x.recZ]Z
7 äb{x}ãYx←[rec=ς(x)äb{x}ãYx←x.recZ].recZ
7 äb{x}ãYx←äµ(x)b{x}ãZ
7 äbYµ(x)b{x}Zã

Talk July 17, 1997 4:50 pm 223

Classes
A class is an object with:

~ a new method, for generating new objects,

~ code for methods for the objects generated from the class.

For generating the object:

o @ [li = ς(xi) bi iÏ1..n]

we use the class:

c @
[new = ς(z) [li = ς(x) z.li(x) iÏ1..n],
 li = λ(xi) bi iÏ1..n]

The method new is a generator. The call c.new yields o.

Each field li is a pre-method.

Talk July 17, 1997 4:50 pm 224

A Class for Cells
cellClass @

[new = ς(z)
[contents = ς(x) z.contents(x), set = ς(x) z.set(x)],

 contents = λ(x) 0,
 set = λ(x) λ(n) x.contents := n]

Writing the new method is tedious but straightforward.

Writing the pre-methods is like writing the corresponding methods.

cellClass.new yields a standard cell:
 [contents = 0, set = ς(x) λ(n) x.contents := n]

Talk July 17, 1997 4:50 pm 225

Inheritance
Inheritance is the reuse of pre-methods.

Given a class c with pre-methods c.li iÏ1..n
we may define a new class c’:

c’ @ [new=..., li=c.li iÏ1..n, lj=... jÏn+1..m]

We may say that c’ is a subclass of c.

Talk July 17, 1997 4:50 pm 226

Inheritance for Cells
cellClass @

[new = ς(z)
[contents = ς(x) z.contents(x), set = ς(x) z.set(x)],

 contents = λ(x) 0,
 set = λ(x) λ(n) x.contents := n]

uncellClass @
[new = ς(z) [...],
 contents = cellClass.contents,
 set = λ(x) cellClass.set(x.undo := x),
 undo = λ(x) x]

• The pre-method contents is inherited.

• The pre-method set is overridden, though using a call to super.

• The pre-method undo is added.

Talk July 17, 1997 4:50 pm 227

An Operational Semantics
The reduction rules given so far do not impose any evaluation order.

We now define a deterministic reduction system for the closed terms of the ς-calculus.

• Our intent is to describe an evaluation strategy of the sort commonly used in programming
languages.

~ A characteristic of such evaluation strategies is that they are weak in the sense that they do
not work under binders.

~ In our setting this means that when given an object [li=ς(xi)bi iÏ1..n] we defer reducing the
body bi until li is invoked.

Talk July 17, 1997 4:50 pm 228

An Operational Semantics: Results
• The purpose of the reduction system is to reduce every closed expression to a result.

• For the pure ς-calculus, we define a result to be a term of the form [li=ς(xi)bi iÏ1..n].

~ A result is itself an expression.

~ For example, both [l1=ς(x)[]] and [l2=ς(y)[l1=ς(x)[]].l1] are results.

~ (If we had constants such as natural numbers, we would include them among the results.)

• Our weak reduction relation is denoted Òñ.

• We write ∫ a Òñ v to mean that a reduces to a result v, or that v is the result of a.

• This relation is axiomatized with three rules.

Talk July 17, 1997 4:50 pm 229

Operational semantics

(Red Object) (where v 7 [li=ς(xi)bi iÏ1..n])

∫ v Òñ v

(Red Select) (where v’ 7 [li=ς(xi)bi{xi} iÏ1..n])
∫ a Òñ v’ ∫ bjYv’Z Òñ v jÏ1..n

∫ a.lj Òñ v

(Red Update)
∫ a Òñ [li=ς(xi)bi iÏ1..n] jÏ1..n

∫ a.lj fiü ς(x)b Òñ [lj=ς(x)b, li=ς(xi)bi iÏ(1..n)–{j}]

Talk July 17, 1997 4:50 pm 230

1. Results are not reduced further.

2. In order to evaluate a.lj we should first calculate the result of a, check that it is in the form
[li=ς(xi)bi{xi} iÏ1..n] with jÏ1..n, and then evaluate bjY[li=ς(xi)bi iÏ1..n]Z.

3. In order to evaluate a.lj fiü ς(x)b we should first calculate the result of a, check that it is in
the form [li=ς(xi)bi iÏ1..n] with jÏ1..n, and return [lj=ς(x)b, li=ς(xi)bi iÏ(1..n)–{j}]. We do not com-
pute inside b or the bi.

The reduction system is deterministic:

If ∫ a Òñ v and ∫ a Òñ v’, then v 7 v’.

The rules for Òñ immediately suggest an algorithm for reduction, which constitutes an inter-
preter for ς-terms.

Talk July 17, 1997 4:50 pm 231

The next proposition says that Òñ is sound with respect to îïññ.

Proposition (Soundness of weak reduction)
If ∫ a Òñ v, then a îïññ v.

M

Further, Òñ is complete with respect to îïññ, in the following sense:

Theorem (Completeness of weak reduction)
Let a be a closed term and v be a result.
If a îïññ v, then there exists v’ such that ∫ a Òñ v’.

M

This theorem was proved by Melliès.

Talk July 17, 1997 4:50 pm 232

An Interpreter
The rules for Òñ immediately suggest an algorithm for reduction, which constitutes an inter-
preter for ς-terms.

The algorithm takes a closed term and, if it converges, produces a result or the token wrong,
which represents a computation error.

• Outcome(c) is the outcome of running the algorithm on input c, assuming the algorithm ter-
minates.

• The algorithm implements the operational semantics in the sense that ∫ c Òñ v if and only if
Outcome(c) 7 v and v is not wrong.

• The algorithm either diverges or terminates with a result or with wrong, but it does not get
stuck.

Talk July 17, 1997 4:50 pm 233

Outcome([li=ς(xi)bi iÏ1..n]) @
[li=ς(xi)bi iÏ1..n]

Outcome(a.lj) @
let o = Outcome(a)
in if o is of the form [li=ς(xi)bi{xi} iÏ1..n] with jÏ1..n

then Outcome(bjYoZ)
else wrong

Outcome(a.lj fiü ς(x)b) @
let o = Outcome(a)
in if o is of the form [li=ς(xi)bi iÏ1..n] with jÏ1..n

then [lj=ς(x)b, li=ς(xi)bi iÏ(1..n)–{j}]
else wrong

Talk July 17, 1997 4:36 pm 234

OBJECTS AND
IMPERATIVE FEATURES

Talk July 17, 1997 4:36 pm 235

An Imperative Untyped Object Calculus
• An object is still a collection of methods.

• Method update works by side-effect (“in-place”).

• Some new operations make sense:

~ let (for controlling execution order),

~ object cloning (“shallow copying”).

Syntax of the impς-calculus
a,b ::= programs

... (as before)
let x = a in b let
clone(a) cloning

• The semantics is given in terms of stacks and stores.

Talk July 17, 1997 4:36 pm 236

Order of Evaluation
We adopt the following order of evaluation:

• The ς binders suspend evaluation in object creation.

• The method update afiüς(y)b evaluates a, but the ς binder suspends the evaluation of the new
method body b.

• The method invocation a.l triggers the evaluation of a (and of further expressions).

• The cloning clone(a) triggers the evaluation of a.

• let x = a in b evaluates a then b.

With the introduction of side-effects, order of evaluation affects not just termination but also
output.

Talk July 17, 1997 4:36 pm 237

Fields, Revisited
Fields need not be primitive in functional calculi, because there we can regard a field as a meth-
od that does not use its self parameter.

So we could try, again:

In both field definition and field update, the implicit ς(x) binder suspends evaluation of the field
until selection.

• This semantics is inefficient, because at every access the suspended fields are reevaluated.

• This semantics is inadequate, because at every access the side-effects of suspended fields are
repeated.

field: […, l=b, …] @ […, l=ς(x)b, …] for xÌFV(b)
field selection: o.l @ o.l
field update: o.l:=b @ o.lfiüς(x)b for xÌFV(b)

Talk July 17, 1997 4:36 pm 238

Fields via Let
So we consider an alternative definition for fields, based on let.

The let construct gives us a way of controlling execution flow:

An object with fields:
[li=bi iÏ1..n, lj=ς(xj)bj jÏn+1..n+m] @

let y1=b1 in … let yn=bn in [li=ς(y0)yi iÏ1..n, lj=ς(xj)bj
jÏn+1..n+m]

 for yiÌFV(bk kÏ1..n+m), yi distinct, iÏ0..n

A field selection:
a.l @ a.l

A field update:
a.l:=b @ let y1=a in let y2=b in y1.lfiüς(y0)y2

 for yiÌFV(b), yi distinct, iÏ0..2

Talk July 17, 1997 4:36 pm 239

Let via Fields
Conversely, let and sequencing can be defined using fields:

Thus we have a choice between a calculus with fields, field selection, and field update, and
one with let (impς).

• These calculi are inter-translatable.

• We adopt impς as primitive because it is more economical and it enables easier comparisons
with our other calculi.

let x=a in b{x} @ [def=a, val=ς(x)bYx.def Z].val
a; b @ [fst=a, snd=b].snd

Talk July 17, 1997 4:36 pm 240

A Cell with Undo (Revisited)
uncell @

[contents = 0,
 set = ς(x) λ(n) (x.undo := x).contents := n,
 undo = ς(x) x]

• The undo method returns the cell before the latest call to set.

• The set method updates the undo method, keeping it up to date.

The previous code works only if update has a functional semantics.
An imperative version is:

uncell @
[contents = 0,
 set = ς(x) λ(n)

let y = clone(x)
in (x.undo := y).contents := n,

 undo = ς(x) x]

(Or write a top-level definition: let uncell = [...] ;.)

Talk July 17, 1997 4:36 pm 241

A Prime-Number Sieve
The next example is an implementation of the prime-number sieve.

This example is meant to illustrate advanced usage of object-oriented features, and not nec-
essarily transparent programming style.

let sieve =
[m = ς(s) λ(n)

let sieve’ = clone(s)
in s.prime := n;

s.next := sieve’;
s.m fiü ς(s’) λ(n’)

case (n’ mod n)
when 0 do [],
when p+1 do sieve’.m(n’);

[],
 prime = ς(x) x.prime,
 next = ς(x) x.next];

Talk July 17, 1997 4:36 pm 242

• The sieve starts as a root object which, whenever it receives a prime p, splits itself into a filter
for multiples of p, and a clone of itself.

• As filters accumulate in a pipeline, they prevent multiples of known primes from reaching the
root object.

• After the integers from 2 to n have been fed to the sieve, there are as many filter objects as
there are primes smaller than or equal to n, plus a root object.

• Each prime is stored in its filter; the n-th prime can be recovered by scanning the pipeline for
the n-th filter.

• The sieve is used, for example, in the following way:

for i in 1..99 do sieve.m(i.succ); (accumulate the primes ð 100)
sieve.next.next.prime (returns the third prime)

Talk July 17, 1997 4:36 pm 243

Procedures as Imperative Objects

Translation of an imperative λ-calculus
äxã @ x
äx := aã @

let y = äaã
in x.arg := y

äλ(x)bã @
[arg = ς(x) x.arg,
 val = ς(x) äbãYx←x.argZ]

äb(a)ã @
let f = clone(äbã)
in let y = äaã
in (f.arg := y).val

Cloning on application corresponds to allocating a new stack frame.

Talk July 17, 1997 4:36 pm 244

Imperative Operational Semantics
We give an operational semantics that relates terms to results in a global store.

We say that a term b reduces to a result v to mean that, operationally, b yields v.

Object terms reduce to object results consisting of sequences of store locations, one location
for each object component:

[li=ιi iÏ1..n]

To imitate usual implementations, we do not rely on substitutions. The semantics is based on
stacks and closures.

• A stack associates variables with results.

• A closure is a pair of a method together with a stack that is used for the reduction of the meth-
od body.

• A store maps locations to method closures.

Talk July 17, 1997 4:36 pm 245

The operational semantics is expressed in terms of a relation that relates a store σ, a stack S,
a term b, a result v, and another store σ’.

This relation is written:

This means that with the store σ and the stack S, the term b reduces to a result v, yielding an
updated store σ’. The stack does not change.

We represent stacks and stores as finite sequences.

• ιi÷ïñmi iÏ1..n is the store that maps the location ιi to the closure mi,
for iÏ1..n.

• σ.ιjóï◊m is the result of storing m in the location ιj of σ,
so if σ 7 ιi÷ïñmi iÏ1..n and jÏ1..n then σ.ιjóï◊m 7 ιj÷ïñm, ιi÷ïñmi iÏ1..n–{j}.

σ°S ∫ b Òñ v°σ’

Talk July 17, 1997 4:36 pm 246

Operational semantics

ι
v ::= [li=ιi iÏ1..n]
σ ::= ιi÷ïñÜς(xi)bi,Siá iÏ1..n

S ::= xi÷ïñvi iÏ1..n

store location (e.g., an integer)
result (li distinct)
store (ιi distinct)
stack (xi distinct)

σ ∫ Q
σ°S ∫ Q
σ°S ∫ a Òñ v°σ’

well-formed store judgment
well-formed stack judgment
term reduction judgment

(Store) (Store ι)
σ°S ∫ Q ιÌdom(σ)

 ∫ Q σ, ι÷ïñÜς(x)b,Sá ∫ Q

(Stack) (Stack x) (li, ιi distinct)
σ ∫ Q σ°S ∫ Q xÌdom(S) ÓiÏ1..n

σ° ∫ Q σ°(S, x÷ïñ[li=ιi iÏ1..n]) ∫ Q

Talk July 17, 1997 4:36 pm 247

(Red x)
σ°(S’, x÷ïñv, S”) ∫ Q

σ°(S’, x÷ïñv, S”) ∫ x Òñ v°σ

(Red Object) (li, ιi distinct)
σ°S ∫ Q ιiÌdom(σ) ÓiÏ1..n

σ°S ∫ [li=ς(xi)bi iÏ1..n] Òñ [li=ιi iÏ1..n]°(σ, ιi÷ïñÜς(xi)bi,Sá iÏ1..n)

(Red Select)
σ°S ∫ a Òñ [li=ιi iÏ1..n]°σ’ σ’(ιj) = Üς(xj)bj,S’á xjÌdom(S’) jÏ1..n

σ’°(S’, xj÷ïñ[li=ιi iÏ1..n]) ∫ bj Òñ v°σ”

σ°S ∫ a.lj Òñ v°σ”

(Red Update)
σ°S ∫ a Òñ [li=ιi iÏ1..n]°σ’ jÏ1..n ιjÏdom(σ’)

σ°S ∫ a.ljfiüς(x)b Òñ [li=ιi iÏ1..n]°(σ’.ιjóï◊Üς(x)b,Sá)

(Red Clone) (ιi’ distinct)
σ°S ∫ a Òñ [li=ιi iÏ1..n]°σ’ ιiÏdom(σ’) ιi’Ìdom(σ’) ÓiÏ1..n

σ°S ∫ clone(a) Òñ [li=ιi’ iÏ1..n]°(σ’, ιi’÷ïñσ’(ιi) iÏ1..n)

Talk July 17, 1997 4:36 pm 248

A variable reduces to the result it denotes in the current stack.

An object reduces to a fresh collection of locations, while the store is extended to associate
method closures to those locations.

A selection operation reduces its object to a result, and activates the appropriate method clo-
sure.

An update operation reduces its object to a result, and updates the appropriate store location
with a new method closure.

A cloning operation reduces its object to a result; then it allocates a collection of locations
and maps them to the method closures from the object.

A let reduces to the result of reducing its body in a stack extended with the bound variable
and the result of its associated term.

(Red Let)
σ°S ∫ a Òñ v’°σ’ σ’°(S, x÷ïñv’) ∫ b Òñ v”°σ”

σ°S ∫ let x=a in b Òñ v”°σ”

Talk July 17, 1997 4:36 pm 249

Example Executions
• The first example is a simple terminating reduction.

• The next one is a divergent reduction.

An attempt to prove a judgment of the form ° ∫ [l=ς(x)x.l].l Òñ ?°? yields an incomplete
derivation.

An infinite branch has a repeating pattern.

° ∫ [l=ς(x)[]] Òñ [l=0]°(0÷ïñÜς(x)[],á) by (Red Object)
(0÷ïñÜς(x)[],á)°(x÷ïñ[l=0]) ∫ [] Òñ []°(0÷ïñÜς(x)[],á) by (Red Object)

° ∫ [l=ς(x)[]].l Òñ []°(0÷ïñÜς(x)[],á) (Red Select)

° ∫ [l=ς(x)x.l] Òñ [l=0]°(0÷ïñÜς(x)x.l,á) by (Red Object)
(0÷ïñÜς(x)x.l,á)°(x÷ïñ[l=0]) ∫ x Òñ [l=0]°(0÷ïñÜς(x)x.l,á) by (Red x)
 … …
(0÷ïñÜς(x)x.l,á)°(x÷ïñ[l=0]) ∫ x.l Òñ ?°? by (Red Select)

(0÷ïñÜς(x)x.l,á)°(x÷ïñ[l=0]) ∫ x.l Òñ ?°? (Red Select)
° ∫ [l=ς(x)x.l].l Òñ ?°? (Red Select)

Talk July 17, 1997 4:36 pm 250

• As a variation of this example, we can have a divergent reduction that keeps allocating stor-
age.

Read from the bottom up, the derivation for this reduction has judgments with increasingly
large stores, σ0, σ1, …:

σ0 @ 0÷ïñÜς(x)clone(x).l, á

σ1 @ σ0, 1÷ïñÜς(x)clone(x).l, á

° ∫ [l=ς(x)clone(x).l] Òñ [l=0]°σ0 by (Red Object)
σ0°(x÷ïñ[l=0]) ∫ x Òñ [l=0]°σ0 by (Red x)

σ0°(x÷ïñ[l=0]) ∫ clone(x) Òñ [l=1]°σ1 (Red Clone)
 … …
σ1°(x÷ïñ[l=0]) ∫ clone(x).l Òñ ?°? by (Red Select)

σ0°(x÷ïñ[l=0]) ∫ clone(x).l Òñ ?°? (Red Select)
° ∫ [l=ς(x)clone(x).l].l Òñ ?°? (Red Select)

Talk July 17, 1997 4:36 pm 251

• Another sort of incomplete derivation arises from dynamic errors.

In the next example, the error consists in attempting to invoke a method from an object that
does not have it.

° ∫ [] Òñ []° by (Red Object)
STUCK

° ∫ [].l Òñ ?°? (Red Select)

Talk July 17, 1997 4:36 pm 252

• The final example illustrates method updating, and creating loops:

The store σ1 contains a loop: it maps the index 0 to a closure that binds the variable x to a
value that contains index 0.

An attempt to read out the result of [l=ς(x)x.lfiüς(y)x].l by “inlining” the store and stack map-
pings would produce the infinite term [l=ς(y)[l=ς(y)[l=ς(y)…]]].

These loops are characteristic of imperative semantics.

Loops in the store complicate reasoning about programs and proofs of type soundness.

σ0 @ 0÷ïñÜς(x)x.lfiüς(y)x, á

σ1 @ 0÷ïñÜς(y)x, (x÷ïñ[l=0])á

° ∫ [l=ς(x)x.lfiüς(y)x] Òñ [l=0]°σ0 by (Red Object)
σ0°(x÷ïñ[l=0]) ∫ x Òñ [l=0]°σ0 by (Red x)

σ0°(x÷ïñ[l=0]) ∫ x.lfiüς(y)x Òñ [l=0]°σ1 (Red Update)
° ∫ [l=ς(x)x.lfiüς(y)x].l Òñ [l=0]°σ1 (Red Select)

Talk July 17, 1997 4:36 pm 253

Classes
The treatment classes carries over, with some twists.

Consider a class:

The class c evaluates to a set of locations [new=ι0, li=ιi iÏ1..n] pointing to closures for new and
the pre-methods li.

• When c.new is invoked, a set of locations is allocated for the new object, containing closures
for its methods.

• These closures contain the code ς(s)z.li(s), where z is bound to [new=ι0, li=ιi iÏ1..n].

• When a method of the new object is invoked, the corresponding pre-method is fetched from
the class and applied to the object.

let c =
[new=ς(z)[li=ς(s)z.li(s) iÏ1..n],
 li=ς(z)λ(s)bi iÏ1..n];

Talk July 17, 1997 4:36 pm 254

Subclasses
Consider a subclass:

When the pre-method lj is inherited from c to c’, the evaluation of c.lj is suspended by ς(z).

• Therefore, whenever the method lj is invoked on an instance of c’, the pre-method lj is fetched
from c.

• The binders ς(z) suspend evaluation and achieve this dynamic lookup of pre-methods inher-
ited from c.

• When c’.new is invoked, the methods of the new object refer to c’ and, indirectly, to c.

let c’ =
[new=ς(z)[li=ς(s)z.li(s) iÏ1..n+m],
 lj=ς(z)c.lj jÏ1..n,
 lk=ς(z)λ(s)bk kÏn+1..n+m];

Talk July 17, 1997 4:36 pm 255

Global Change
Suppose that, after c and c’ have been created, and after instances of c and c’ have been allo-
cated, we replace the pre-method l1 of c.

• The instances of c reflect the change, because each method invocation goes back to c to fetch
the pre-method.

• The instances of c’ also reflect the change, via the indirection through c’.

• So the default effect of replacing a pre-method in a class is to modify the behavior of all in-
stances of the class and of classes that inherited the pre-method.

• This default is inhibited by independent updates to objects and to inheriting classes.

Our definition of classes is designed for this global-change effect.

Talk July 17, 1997 4:36 pm 256

Or No Global Change
If one is not interested in global change, one can optimize the definition and remove some of
the run-time indirections.

• In particular, we can replace the proper method lj=ς(z)c.lj in the subclass c’ with a field lj=c.lj.

Then a change to c.lj after the definition of c’ will not affect c’ or instances of c’.

• Similarly, we can make c.new evaluate the pre-methods of c, so that a change to c will not
affect existing instances.

Talk July 17, 1997 4:36 pm 257

Combining these techniques, we obtain the following eager variants e and e’ of c and c’:

let e =
[new=ς(z)let w1=z.l1 in … let wn=z.ln in [li=ς(s)wi(s) iÏ1..n],
 li=ς(z)λ(s)bi iÏ1..n];

let e’ =
[new=ς(z)let w1=z.l1 in … let wn+m=z.ln+m in

[li=ς(s)wi(s) iÏ1..n+m],
 lj=e.lj jÏ1..n,
 lk=ς(z)λ(s)bk kÏn+1..n+m];

Talk July 17, 1997 4:36 pm 258

Imperative Examples of Classes
We define classes cp1 and cp2 for one-dimensional and two-dimensional points:

let cp1 =
[new = ς(z)[…],
 x = ς(z) λ(s) 0,
 mv_x = ς(z) λ(s) λ(dx) s.x := s.x+dx];

let cp2 =
[new = ς(z)[…],
 x = ς(z) cp1.x,
 y = ς(z) λ(s) 0,
 mv_x = ς(z) cp1.mv_x,
 mv_y = ς(z) λ(s) λ(dy) s.y := s.y+dy]

Talk July 17, 1997 4:36 pm 259

We define points p1 and p2 by generating them from cp1 and cp2:

We change the mv_x pre-method of cp1 so that it does not set the x coordinate of a point to a
negative number:

• The update is seen by p1 because p1 was generated from cp1.

• The update is seen also by p2 because p2 was generated from cp2 which inherited mv_x from
cp1:

let p1 = cp1.new;
let p2 = cp2.new;

cp1.mv_x fiü ς(z) λ(s) λ(dx) s.x := max(s.x+dx, 0)

p1.mv_x(–3).x = 0
p2.mv_x(–3).x = 0

Talk July 17, 1997 4:36 pm 260

A FIRST-ORDER TYPE SYSTEM
FOR OBJECTS

Talk July 17, 1997 4:36 pm 261

Object Types and Subtyping
An object type is a set of method names and of result types:

[li:Bi iÏ1..n]

An object has type [li:Bi iÏ1..n] if it has at least the methods liiÏ1..n, with:

• a self parameter of some type A <: [li:Bi iÏ1..n], and

• a result of type Bi.

For example, [] and [l1 : [], l2 : []] are object types.

Talk July 17, 1997 4:36 pm 262

Subtyping
An object type with more methods is a subtype of one with fewer:

[li:Bi iÏ1..n+m] <: [li:Bi iÏ1..n]

For example, we have:

[l1 : [], l2 : []] <: [l1 : []] <: []

A longer object can be used instead of a shorter one by subsumption:

a:A ∧ A<:B ⇒ a:B

Talk July 17, 1997 4:36 pm 263

A First-Order Type System
Environments:

E 7 xi:Ai iÏ1..n

Judgments:

E ∫ Q environment E is well-formed
E ∫ A A is a type in E
E ∫ A <: B A is a subtype of B in E
E ∫ a : A a has type A in E

Types:

A,B ::= Top the biggest type
[li:Bi iÏ1..n] object type

Terms: as for the untyped calculus (but with types for variables).

Talk July 17, 1997 4:36 pm 264

First-order type rules for the ς-calculus: rules for objects

(Type Object) (li distinct) (Sub Object) (li distinct)
E ∫ Bi ÓiÏ1..n E ∫ Bi ÓiÏ1..n+m

E ∫ [li:Bi iÏ1..n] E ∫ [li:Bi iÏ1..n+m] <: [li:Bi iÏ1..n]

(Val Object) (where A 7 [li:Bi iÏ1..n])
E, xi:A ∫ bi : Bi ÓiÏ1..n

E ∫ [li=ς(xi:A)bi iÏ1..n] : A

(Val Select) (Val Update) (where A 7 [li:Bi iÏ1..n])
E ∫ a : [li:Bi iÏ1..n] jÏ1..n E ∫ a : A E, x:A ∫ b : Bj jÏ1..n

E ∫ a.lj : Bj E ∫ a.ljfiüς(x:A)b : A

(Val Clone) (where A 7 [li:Bi iÏ1..n])
E ∫ a : A

E ∫ clone(a) : A

Talk July 17, 1997 4:36 pm 265

First-order type rules for the ς-calculus: standard rules

(Env) (Env x) (Val x)
E ∫ A xÌdom(E) E’,x:A,E” ∫ Q

 ∫ Q E,x:A ∫ Q E’,x:A,E” ∫ x:A

(Sub Refl) (Sub Trans) (Val Subsumption)
E ∫ A E ∫ A <: B E ∫ B <: C E ∫ a : A E ∫ A <: B

E ∫ A <: A E ∫ A <: C E ∫ a : B

(Type Top) (Sub Top)
E ∫ Q E ∫ A

E ∫ Top E ∫ A <: Top

(Val Let)
E ∫ a : A E, x:A ∫ b : B

E ∫ let x=a in b : B

Talk July 17, 1997 4:36 pm 266

An Operational Semantics (with Types)
We extend the functional operational semantics to typed terms.

A result is a term of the form [li=ς(xi:Ai)bi iÏ1..n].

Operational semantics

(Red Object) (where v 7 [li=ς(xi:Ai)bi iÏ1..n])

∫ v Òñ v

(Red Select) (where v’ 7 [li=ς(xi:Ai)bi{xi} iÏ1..n])
∫ a Òñ v’ ∫ bjYv’Z Òñ v jÏ1..n

∫ a.lj Òñ v

(Red Update)
∫ a Òñ [li=ς(xi:Ai)bi iÏ1..n] jÏ1..n

∫ a.lj fiü ς(x:A)b Òñ [lj=ς(x:Aj)b, li=ς(xi:Ai)bi iÏ(1..n)–{j}]

Talk July 17, 1997 4:36 pm 267

A Typed Divergent Term
The first-order object calculus is not normalizing: there are typable terms whose evaluation does
not terminate.

For example, the untyped term [l=ς(x)x.l].l can be annotated to obtain the typed term
[l=ς(x:[l:[]])x.l].l, which is typable as follows.

(Val Object) enables us to assume that the self variable x has the type [l:[]] when checking that
the body x.l of the method l has the type [].

 ∫ Q (Env)
 ∫ [] (Type Object) with n = 0

 ∫ [l:[]] (Type Object) with n = 1
, x:[l:[]] ∫ Q (Env x)

, x:[l:[]] ∫ x : [l:[]] (Val x)
, x:[l:[]] ∫ x.l : [] (Val Select)

 ∫ [l=ς(x:[l:[]])x.l] : [l:[]] (Val Object) with n = 1
 ∫ [l=ς(x:[l:[]])x.l].l : [] (Val Select)

Talk July 17, 1997 4:36 pm 268

Typed Object-Oriented Booleans
Notation

• x : A @ a stands for x @ a and E ∫ a : A
where E is determined from the preceding context.

We do not have a single type for our booleans; instead, we have a type BoolA for every type A.
BoolA @ [if : A, then : A, else : A]

trueA : BoolA @
[if = ς(x:BoolA) x.then,
 then = ς(x:BoolA) x.then,
 else = ς(x:BoolA) x.else]

falseA : BoolA @
[if = ς(x:BoolA) x.else, ...]

Talk July 17, 1997 4:36 pm 269

The terms of type BoolA can be used in conditional expressions whose result type is A.

For c and d of type A, and fresh variable x, we define:

ifA b then c else d : A @
((b.then fiü ς(x:BoolA)c).else fiü ς(x:BoolA) d).if

Moreover, we get some subtypings, for example:

[if : A, then : A, else : A] <: [if : A] <: []
[if : A, then : A, else : A] <: [else : A] <: []

Talk July 17, 1997 4:36 pm 270

Typed Cells
• We assume an imperative semantics (in order to postpone the use of recursive types).

• If set works by side-effect, its result type can be uninformative.
(We can write x.set(3) ; x.contents instead of x.set(3).contents.)

Assuming a type Nat and function types, we let:

Cell @ [contents : Nat, set : Nat → []]
GCell @ [contents : Nat, set : Nat → [], get : Nat]

We get:

GCell <: Cell
cell @ [contents = 0, set = ς(x:Cell) λ(n:Nat) x.contents := n]

has type Cell
gcell @ [..., get = ς(x:GCell) x.contents]

has types GCell and Cell

Talk July 17, 1997 4:36 pm 271

Some Results
For the functional calculus (named Ob1<:):

Each well-typed term has a minimum type:

Theorem (Minimum types)
If E ∫ a : A then there exists B such that E ∫ a : B and,
for any A’, if E ∫ a : A’ then E ∫ B <: A’.

The type system is sound for the operational semantics:

Theorem (Subject reduction)
If ∫ a : C
and ∫ a Òñ v
then ∫ v : C.

Talk July 17, 1997 4:36 pm 272

Minimum Types
Because of subsumption, terms do not have unique types.

However, a weaker property holds: every term has a minimum type (if it has a type at all).

The minimum-types property is potentially useful for developing typechecking algorithms:

~ It guarantees the existence of a “best” type for each typable term.

~ Its proof suggests how to calculate this “best” type.

Talk July 17, 1997 4:36 pm 273

For proving the minimum-types property for Ob1<:, we consider a modified system
(MinOb1<:) obtained by:

~ removing (Val Subsumption), and

~ modifying the (Val Object) and (Val Update) rules as follows:

Modified rules

Typing in MinOb1<: is unique, as we show next.

We can extract from MinOb1<: a typechecking algorithm that, given any E and a, computes
the type A such that E ∫ a : A if one exists.

(Val Min Object) (where A 7 [li:Bi iÏ1..n])
E, xi:A ∫ bi : Bi’ ∫ Bi’ <: Bi ÓiÏ1..n

E ∫ [li=ς(xi:A)bi iÏ1..n] : A

(Val Min Update) (where A 7 [li:Bi iÏ1..n])
E ∫ a : A’ ∫ A’ <: A E, x:A ∫ b : Bj’ ∫ Bj’ <: Bj jÏ1..n

E ∫ a.ljfiüς(x:A)b : A

Talk July 17, 1997 4:36 pm 274

The next three propositions are proved by easy inductions on the derivations of E ∫ a : A in
MinOb1<:.

Proposition (MinOb1<: typings are Ob1<: typings)
If E ∫ a : A is derivable in MinOb1<:,
then it is also derivable in Ob1<:.

M

Proposition (MinOb1<: has unique types)
If E ∫ a : A and E ∫ a : A’ are derivable in MinOb1<:,
then A 7 A’.

M

Proposition (MinOb1<: has smaller types than Ob1<:)
If E ∫ a : A is derivable in Ob1<:,
then E ∫ a : A’ is derivable in MinOb1<: for some A’ such that
E ∫ A’ <: A is derivable (in either system).

M

We obtain:

Talk July 17, 1997 4:36 pm 275

Proposition (Ob1<: has minimum types)
In Ob1<:, if E ∫ a : A
then there exists B such that E ∫ a : B and, for any A’,
if E ∫ a : A’ then E ∫ B <: A’.

Proof

Assume E ∫ a : A. So E ∫ a : B is derivable in MinOb1<: for some B such that E ∫ B <: A.
Hence, E ∫ a : B is also derivable in Ob1<:.
If E ∫ a : A’, then E ∫ a : B’ is also derivable in MinOb1<: for some B’ such that E ∫ B’ <: A’.
Finally, B 7 B’, so E ∫ B <: A’.

M

Talk July 17, 1997 4:36 pm 276

Lack of type annotations in ς-binders destroys the minimum-types property. For example, let:

then:

but A and A’ have no common subtype.

This example also shows that minimum typing is lost for objects with fields (where the ς-
binders are omitted entirely).

The term a.l:=[] typechecks using ∫ a : A but not using ∫ a : A’.

Naive type inference algorithms might find the type A’ for a, and fail to find any type for
a.l:=[]. This poses problems for type inference.

(But see Palsberg’s work.)

A 7 [l:[]]
A’ 7 [l:A]
a 7 [l=ς(x)[l=ς(x)[]]]

 ∫ a : A and ∫ a : A’

Talk July 17, 1997 4:36 pm 277

In contrast, with annotations, both

 ∫ [l=ς(x:A)[l=ς(x:A)[]]] : A

and

 ∫ [l=ς(x:A’)[l=ς(x:A)[]]] : A’

are minimum typings.

The former typing can be used to construct a typing for a.l:=[].

Talk July 17, 1997 4:36 pm 278

Subject Reduction
We start the proof with two standard lemmas.

Lemma (Bound weakening)
If E, x:D, E’ ∫ ℑ and E ∫ D’ <: D, then E, x:D’, E’ ∫ ℑ.

M

Lemma (Substitution)
If E, x:D, E’ ∫ ℑ{x} and E ∫ d : D, then E, E’ ∫ ℑYdZ.

M

Using these lemmas, we obtain:

Theorem (Subject reduction)
Let c be a closed term and v be a result, and assume ∫ c Òñ v.
If ∫ c : C, then ∫ v : C.

Proof

The proof is by induction on the derivation of ∫ c Òñ v.

Case (Red Object)
This case is trivial, since c = v.

Talk July 17, 1997 4:36 pm 279

Case (Red Select)
Suppose ∫ a Òñ [li=ς(xi:Ai)bi{xi} iÏ1..n] and ∫ bjY[li=ς(xi:Ai)bi{xi} iÏ1..n]Z Òñ v have yielded
∫ a.lj Òñ v.
Assume that ∫ a.lj : C.
This must have come from an application of (Val Select)

~ with assumption ∫ a : A where A has the form [lj:Bj, …], and

~ with conclusion ∫ a.lj : Bj,

followed by a number of subsumption steps implying ∫ Bj <: C by transitivity.
By induction hypothesis, we have ∫ [li=ς(xi:Ai)bi{xi} iÏ1..n] : A.
This implies that there exists A’ such that ∫ A’ <: A, that all Ai equal A’, that ∫
[li=ς(xi:A’)bi{xi} iÏ1..n] : A’, and that , xj:A’ ∫ bj : Bj.
By a lemma, it follows that ∫ bjY[li=ς(xi:A’)bi{xi} iÏ1..n]Z : Bj.
By induction hypothesis, we obtain ∫ v : Bj so, by subsumption, ∫ v : C.

Talk July 17, 1997 4:36 pm 280

Case (Red Update)
Suppose ∫ a Òñ [li=ς(xi:Ai)bi iÏ1..n] has yielded ∫ a.lj fiü ς(x:A)b Òñ [lj=ς(x:Aj)b,
li=ς(xi:Ai)bi iÏ(1..n)–{j}].
Assume that ∫ a.lj fiü ς(x:A)b : C.
This must have come from an application of (Val Update)

~ with assumptions ∫ a : A and , x:A ∫ b : B where A has the form [lj:B, …], and

~ with conclusion ∫ a.lj fiü ς(x:A)b : A,

followed by a number of subsumption steps implying ∫ A <: C by transitivity.
By induction hypothesis, we have ∫ [li=ς(xi:Ai)bi iÏ1..n] : A.
This implies that Aj has the form [lj:B, li:Bi iÏ(1..n)–{j}], that ∫ Aj <: A, that Ai equals Aj, and
that , xi:Aj ∫ bi : Bi for all i.
By a lemma, it follows that , x:Aj ∫ b : B.
Therefore by (Val Object), ∫ [lj=ς(x:Aj)b, li=ς(xi:Aj)bi iÏ(1..n)–{j}] : Aj.
We obtain ∫ [lj=ς(x:Aj)b, li=ς(xi:Aj)bi iÏ(1..n)–{j}] : C by subsumption.

M

Talk July 17, 1997 4:36 pm 281

The proof of subject reduction is simply a sanity check.

It is an easy proof, with just one subtle point: the proof would have failed if we had defined
(Red Update) so that

∫ a.lj fiü ς(x:A)b Òñ [lj=ς(x:A)b, li=ς(xi:Ai)bi iÏ(1..n)–{j}]

with an A instead of an Aj in the bound for x.

Talk July 17, 1997 4:36 pm 282

Type Soundness
The subject reduction theorem does not rule out that the execution of a well-typed program
may not terminate or may get stuck.

We can prove that the latter is in fact not possible:

• If the reduction does not diverge, then it produces a result of the correct type without getting
stuck.

• This absence of stuck states is often called type soundness.

Talk July 17, 1997 4:36 pm 283

In order to formulate a type soundness result, we reconsider the function Outcome:

Outcome([li=ς(xi:Ai)bi iÏ1..n]) @
[li=ς(xi:Ai)bi iÏ1..n]

Outcome(a.lj) @
let o = Outcome(a)
in if o is of the form [li=ς(xi:Ai)bi{xi} iÏ1..n] with jÏ1..n

then Outcome(bjYoZ)
else wrong

Outcome(a.lj fiü ς(x:A)b) @
let o = Outcome(a)
in if o is of the form [li=ς(xi:Ai)bi iÏ1..n] with jÏ1..n

then [lj=ς(x:Aj)b, li=ς(xi:Ai)bi iÏ(1..n)–{j}]
else wrong

Talk July 17, 1997 4:36 pm 284

If Outcome(c) is defined, then it is either wrong or a result.

We obtain:

Theorem (Reductions cannot go wrong)
If ∫ c : C and Outcome(c) is defined, then ∫ Outcome(c) : C, hence Outcome(c) ¦ wrong.

The proof is by induction on the execution of Outcome(c), and is very similar to the proof of
subject reduction.

Talk July 17, 1997 4:36 pm 285

Unsoundness of Covariance
Object types are invariant (not co/contravariant) in components.

U @ [] (the unit object type)
L @ [l:U] (an object type with just l)
L <: U

P @ [x:U, f:U]
Q @ [x:L, f:U]
Assume Q <: P by an (erroneous) covariant rule.

q : Q @ [x = [l=[]], f = ς(s:Q) s.x.l]
then q : P by subsumption with Q <: P
hence q.x:=[] : P that is [x = [], f = ς(s:Q) s.x.l] : P

But (q.x:=[]).f fails!

Talk July 17, 1997 4:36 pm 286

Unsoundness of Method Extraction
Let us imagine an operation for extracting a method from an object.

It may seem natural to give the following rules for this operation:

These rules amount to interpreting an object type A 7 [li:Bi iÏ1..n] as a recursively defined record-
of-functions type A 7 Üli:A→Bi iÏ1..ná.

(Val Extract) (where A 7 [li:Bi iÏ1..n])
E ∫ a : A jÏ1..n

E ∫ a†lj : A→Bj

(Red Extract)
∫ a Òñ [li=ς(xi:Ai)bi iÏ1..n] jÏ1..n

∫ a†lj Òñ λ(xj:Aj)bj

Talk July 17, 1997 4:36 pm 287

Method extraction is unsound, as the following example shows:

But b(p) must yield an execution error since p lacks a y method.

Hence method extraction is incompatible with subtyping, at least without much further com-
plication or strong restrictions.

P @ [x:Int, f:Int]
p @ [x=1, f=1] p : P by (Val Object)
Q @ [x,y:Int, f:Int] Q <: P by (Sub Object)
a @ [x=1, y=1, f=ς(s:Q)s.x+s.y] a : Q by (Val Object),

so a : P by subsumption
b @ a†f b : P→Int by (Val Extract),

and b(p) : Int

Talk July 17, 1997 4:36 pm 288

Classes, with Types
If A 7 [li:Bi iÏ1..n] is an object type,
then Class(A) is the type of the classes for objects of type A:

Class(A) @ [new:A, li:A→Bi iÏ1..n]

new:A is a generator for objects of type A.
li:A→Bi is a pre-method for objects of type A.

c : Class(A) @
[new = ς(z:Class(A)) [li = ς(x:A) z.li(x) iÏ1..n],

 li = λ(xi:A) bi{xi} iÏ1..n]
c.new : A

• Types are distinct from classes.

• More than one class may generate objects of a type.

Talk July 17, 1997 4:36 pm 289

Inheritance, with Types
Let A 7 [li:Bi iÏ1..n] and A’ 7 [li:Bi iÏ1..n, lj:Bj jÏn+1..m], with A’ <: A.

Note that Class(A) and Class(A’) are not related by subtyping.

Let c: Class(A), then for iÏ1..n

c.li: A→Bi <: A’→Bi.

Hence c.li is a good pre-method for a class of type Class(A’).

We may define a subclass c’ of c:

c’ : Class(A’) @ [new=..., li=c.li iÏ1..n, lj=... jÏn+1..m]

where class c’ inherits the methods li from class c.

So inheritance typechecks:

If A’<:A then a class for A’ may inherit from a class for A.

Talk July 17, 1997 4:36 pm 290

Class Types for Cells
Class(Cell) @

[new : Cell,
 contents : Cell → Nat,
 set : Cell → Nat → []]

Class(GCell) @
[new : GCell,
 contents : GCell → Nat,
 set : GCell → Nat → [],
 get : GCell → Nat]

Class(GCell) <: Class(Cell) does not hold, but inheritance is possible:

Cell → Nat <: GCell → Nat
Cell → Nat → [] <: GCell → Nat → []

Talk July 17, 1997 4:36 pm 291

Typed Reasoning
In addition to a type theory, we have a simple typed proof system.

There are some subtleties in reasoning about objects.

Consider:

A @ [x : Nat, f : Nat]
a : A @ [x = 1, f = 1]
b : A @ [x = 1, f = ς(s:A) s.x]

Informally, we may say that a.x = b.x : Nat and a.f = b.f : Nat.

So, do we have a = b?

It would follow that (a.x:=2).f = (b.x:=2).f

and then 1 = 2.

Hence:

a ≠ b : A

Talk July 17, 1997 4:36 pm 292

Still, as objects of [x : Nat], a and b are indistinguishable from [x = 1].

Hence:

a = b : [x : Nat]

Finally, we may ask:

a m b : [f : Nat]

This is sound; it can be proved via bisimilarity.

In summary, there is a notion of typed equality that may support some interesting transfor-
mations (inlining of methods).

Talk July 17, 1997 4:36 pm 293

VARIANCE ANNOTATIONS

Talk July 17, 1997 4:36 pm 294

Variance Annotations
In order to gain expressiveness within a first-order setting,
we extend the syntax of object types with variance annotations:

Each υi is a variance annotation; it is one of three symbols o, +, and –.

Intuitively,

• + means read-only: it prevents update, but
allows covariant component subtyping;

• – means write-only: it prevents invocation, but
allows contravariant component subtyping;

• o means read-write: it allows both invocation and update, but
requires exact matching in subtyping.

By convention, any omitted annotations are taken to be equal to o.

[liυi:Bi iÏ1..n]

Talk July 17, 1997 4:36 pm 295

Subtyping with Variance Annotations

[... lo:B ...] <: [... lo:B’ ...] if B 7 B’ invariant
(read-write)

[... l+:B ...] <: [... l+:B’ ...] if B <: B’ covariant
(read-only)

[... l–:B ...] <: [... l–:B’ ...] if B’ <: B contravariant
(write-only)

[... lo:B ...] <: [... l+:B’ ...] if B <: B’ invariant <: variant
[... lo:B ...] <: [... l–:B’ ...] if B’ <: B

We get depth subtyping as well as width subtyping.

Talk July 17, 1997 4:36 pm 296

Subtyping Rules with Variance Annotations
We use an auxiliary judgment: E ∫ υi Bi <: υi’ Bi’

• (Sub Invariant) An invariant component type on the right requires an identical one on the left.

• (Sub Covariant) A covariant component type on the right can be a supertype of a correspond-
ing component type on the left, either covariant or invariant.

• (Sub Contravariant) A contravariant component type on the right can be a subtype of a cor-
responding component type on the left, either contravariant or invariant.

(Sub Object)
E ∫ υi Bi <: υi’ Bi’ ÓiÏ1..n

E ∫ [liυi:Bi iÏ1..n+m] <: [liυi’:Bi’ iÏ1..n]

(Sub Invariant) (Sub Covariant) (Sub Contravariant)
E ∫ B E ∫ B <: B’ υÏ{o,+} E ∫ B’ <: B υÏ{o,–}

E ∫ o B <: o B E ∫ υ B <: + B’ E ∫ υ B <: – B’

Talk July 17, 1997 4:36 pm 297

Typing Rules with Variance Annotations
The typing rules are easy modifications of the previous ones.

They enforce the read/write restrictions:

The rule (Val Object) is unchanged, since we add annotations only to object types, not to objects.

(Val Object) (where A 7 [liυi:Bi iÏ1..n])
E, xi:A ∫ bi : Bi ÓiÏ1..n

E ∫ [li=ς(xi:A)bi iÏ1..n] : A

(Val Select)
E ∫ a : [liυi:Bi iÏ1..n] υjÏ{o,+} jÏ1..n

E ∫ a.lj : Bj

(Val Update) (where A 7 [liυi:Bi iÏ1..n])
E ∫ a : A E, x:A ∫ b : Bj υjÏ{o,–} jÏ1..n

E ∫ a.ljfiüς(x:A)b : A

Talk July 17, 1997 4:36 pm 298

Protection by Subtyping
• Variance annotations can provide protection against updates from the outside.

• In addition, object components can be hidden by subsumption.

For example:

Let GCell @ [contents : Nat, set : Nat → [], get : Nat]
PGCell @ [set : Nat → [], get : Nat]
ProtectedGCell @ [set+ : Nat → [], get+ : Nat]
gcell : GCell

then GCell <: PGCell <: ProtectedGCell
so gcell : ProtectedGCell.

Given a ProtectedGCell, one cannot access its contents directly.

From the inside, set and get can still update and read contents.

Talk July 17, 1997 4:36 pm 299

Protection for Classes
Using subtyping, we can provide protection for classes.

We may associate two separate interfaces with a class type:

• The first interface is the collection of methods that are available in instances.

• The second interface is the collection of methods that can be inherited in subclasses.

For an object type A 7 [li:Bi iÏI] with methods li iÏI we consider:

• a restricted instance interface, determined by a set Ins ⊆ I, and

• a restricted subclass interface, determined by a set Sub ⊆ I.

Talk July 17, 1997 4:36 pm 300

For an object type A 7 [li:Bi iÏI], and Ins, Sub ⊆ I, we define:

Class(A) <: Class(A)Ins,Sub holds, so we get protection by subsumption.

Particular values of Ins and Sub correspond to common situations.

Class(A)Ins,Sub @ [new+ :[li:Bi iÏIns], li:A→Bi iÏSub]

c : Class(A),Sub is an abstract class based on A
c : Class(A)Ins, is a leaf class based on A
c : Class(A)I,I is a concrete class based on A
c : Class(A)Pub,Pub has public methods li iÏPub

and private methods li iÏI–Pub

c : Class(A)Pub,Pub∪Pro has public methods li iÏPub,
protected methods li iÏPro,
and private methods li iÏI–Pub∪Pro

Talk July 17, 1997 4:36 pm 301

Class Types for Cells (with Protection)
ProtectedGCell @ [set+ : Nat → [], get+ : Nat]

Class...(GCell) @
[new+ : ProtectedGCell,
 set : GCell → Nat → [],
 get : GCell → Nat]

Class(GCell) @
[new : GCell,
 contents : GCell → Nat,
 set : GCell → Nat → [],
 get : GCell → Nat]

Class(GCell) <: Class...(GCell)

(This is a variant on the general scheme.)

Talk July 17, 1997 4:36 pm 302

Encoding Function Types
An invariant translation of function types:

äA→Bã @ [arg : äAã, val : äBã]

A covariant/contravariant translation, using annotations:

äA→Bã @ [arg– : äAã, val+ : äBã]

A covariant/contravariant translation, using quantifiers:

äA→Bã @ Ó(X<:äAã) Ô(Y<:äBã) [arg : X, val : Y]

where Ó is for polymorphism and Ô is for data abstraction.

Talk July 17, 1997 4:36 pm 303

RECURSIVE OBJECT TYPES

Talk July 17, 1997 4:36 pm 304

Recursive Types
Informally, we may want to define a recursive type as in:

Cell @ [contents : Nat, set : Nat → Cell]

Formally, we write instead:

Cell @ µ(X)[contents : Nat, set : Nat → X]

Intuitively, µ(X)A{X} is the solution for the equation X = A{X}.

There are at least two ways of formalizing this intuitive idea:

If a : A and A = B then a : B.

and:

If a : µ(X)A{X} then unfold(a) : AYµ(X)A{X}Z.
If a : AYµ(X)A{X}Z then fold(µ(X)A{X}, a) : µ(X)A{X}.

Officially, we adopt the second way (but often omit fold and unfold.)

Talk July 17, 1997 4:36 pm 305

Typing Examples with Recursive Types

Cell @ [contents : Nat, set : Nat → Cell]
cell : Cell @

[contents = 0,
 set = ς(x:Cell) λ(n:Nat) x.contents := n]

The type Cell is a recursive type.

Now we can typecheck cell.set(3).contents.

Similarly, we can typecheck the calculator, using the type:

Calc @
µ(X)[arg, acc : Real, enter : Real→X, add, sub : X, equals : Real]

Talk July 17, 1997 4:36 pm 306

Subtyping Recursive Types
The basic subtyping rule for recursive types is:

µ(X)A{X} <: µ(X)B{X}
if

either A{X} and B{X} are equal for all X
or A{X} <: BYYZ for all X and Y such that X <: Y

There are variants, for example:

µ(X)A{X} <: µ(X)B{X}
if

either A{X} and B{X} are equal for all X
or A{X} <: BYµ(X)B{X}Z for all X such that X <: µ(X)B{X}

But A{X} <: B{X} does not imply µ(X)A{X} <: µ(X)B{X}.

Talk July 17, 1997 4:36 pm 307

Subtyping Examples with Recursive Types
Because of the recursion, we do not get interesting subtypings.

Cell @ [contents : Nat, set : Nat → Cell]
GCell @ [contents : Nat, set : Nat → GCell, get : Nat]

Assume X <: Y.

We cannot derive:

[contents : Nat, set : Nat → X, get : Nat]
<:

[contents : Nat, set : Nat → Y]

So we cannot obtain that GCell is a subtype of Cell.

Talk July 17, 1997 4:36 pm 308

The fact that GCell is not a subtype of Cell is unacceptable, but
necessary for soundness.

Consider the following correct but somewhat strange GCell:

gcell’ : GCell @
[contents = ς(x:Cell) x.set(x.get).get,
 set = ς(x:Cell) λ(n:Nat) x.get := n,
 get = 0]

If GCell were a subtype of Cell then we would have:

gcell’ : Cell
gcell’’ : Cell @ (gcell’.set := λ(n:Nat) cell)

where cell is a fixed element of Cell, without a get method.
Then we can write:

m : Nat @ gcell’’.contents

But the computation of m yields a “message not understood” error.

Talk July 17, 1997 4:36 pm 309

Five Solutions (Overview)
• Avoid methods specialization, redefining GCell:

Cell @ [contents : Nat, set : Nat → Cell]
GCell @ [contents : Nat, set : Nat → Cell, get : Nat]

~ This is a frequent approach in common languages.

~ It requires dynamic type tests after calls to the set method.
E.g.,

typecase gcell.set(3)
when (x:GCell) x.get
else ...

Talk July 17, 1997 4:36 pm 310

• Add variance annotations:

Cell @ [contents : Nat, set+ : Nat → Cell]
GCell @ [contents : Nat, set+ : Nat → GCell, get : Nat]

~ This approach yields the desired subtypings.

~ But it forbids even sound updates of the set method.

~ It would require reconsidering the treatment of classes in order to support inheritance of
the set method.

Talk July 17, 1997 4:36 pm 311

• Go back to an imperative framework, where the typing problem disappears because the result
type of set is [].

Cell @ [contents : Nat, set : Nat → []]
GCell @ [contents : Nat, set : Nat → [], get : Nat]

~ This works sometimes.

~ But methods that allocate a new object of the type of self still call for the use of recursive
types:

UnCell @ [contents : Nat, set : Nat → [], undo : UnCell]

Talk July 17, 1997 4:36 pm 312

• Axiomatize some notion of Self types, and write:

Cell @ [contents : Nat, set : Nat → Self]
GCell @ [contents : Nat, set : Nat → Self, get : Nat]

~ But the rules for Self types are not trivial or obvious.

Talk July 17, 1997 4:36 pm 313

• Move up to higher-order calculi, and see what can be done there.

Cell @ Ô(Y<:Cell) [contents : Nat, set : Nat → Y]
GCell @ Ô(Y<:GCell) [contents : Nat, set : Nat → Y, get : Nat]

~ The existential quantifiers yield covariance, so GCell <: Cell.

~ Intuitively, the existentially quantified type is the type of self:
the Self type.

~ This technique is general, and suggests sound rules for primitive Self types.

We obtain:

~ subtyping with methods that return self,

~ inheritance for methods that return self or that take arguments of the type of self (“binary
methods”), but without subtyping.

Talk July 17, 1997 4:36 pm 314

TYPECASE

Talk July 17, 1997 4:36 pm 315

A Typecase Construct
Adding a typecase construct is one way of incorporating dynamic typing in a statically typed
language.

There are several variants of this construct; we will study only one.

Our typecase construct evaluates a term to a result, and branches on the type of the result. We
write:

• If a yields a result of type A, then (typecase a|(x:A)d1|d2) returns d1 with x replaced by this
result.

• Otherwise, (typecase a|(x:A)d1|d2) returns d2.

typecase a | (x:A)d1 | d2

Talk July 17, 1997 4:36 pm 316

E.g.,

typecase gcell.set(3)
| (x:GCell) x.get
| x.contents

typecase gcell.set(3)
| (x:GCell) x.get
| 0

typecase gcell.set(3)
| (x:GCell) x.get
| ... (some error code or exception)

Talk July 17, 1997 4:36 pm 317

Typecase: Operational Semantics
• In programming languages that include typecase, the type of a value is represented using a

tag attached to the value.

typecase relies on this tag to perform run-time type discrimination.

• In contrast, in our operational semantics, typecase performs run-time type discrimination by
constructing a typing derivation.

Operational semantics for typecase

~ Our rules do not clearly suggest an efficient implementation.

~ They have the advantage of being simple and general.

(Red Typecase Match)
∫ a Òñ v’ ∫ v’ : A ∫ d1Yv’Z Òñ v

∫ typecase a|(x:A)d1{x}|d2 Òñ v

(Red Typecase Else)
∫ a Òñ v’ º v’ : A ∫ d2 Òñ v

∫ typecase a|(x:A)d1|d2 Òñ v

Talk July 17, 1997 4:36 pm 318

Typecase: Typing
Typing rule for typecase

The first hypothesis says that a is well-typed; the precise type (A’) is irrelevant.

The body of the first branch, d1, is typed under the assumption that x has type A.

The two branches have the same type, D, which is also the type of the whole typecase expres-
sion.

Although typecase permits dynamic typing, the static typing rules remain consistent.

It is straightforward to extend our subject reduction proof to typecase.

(Val Typecase)
E ∫ a : A’ E, x:A ∫ d1 : D E ∫ d2 : D

E ∫ typecase a|(x:A)d1|d2 : D

Talk July 17, 1997 4:36 pm 319

Typecase: Discussion
typecase may seem simple, but it is considered problematic (both methodologically and the-
oretically):

~ It violates the object abstraction, revealing information that may be regarded as private.

~ It renders programs more fragile by introducing a form of dynamic failure when none of
the branches apply.

~ It makes code less extensible: when adding another type one may have to revisit the type-
case statements in existing code.

~ It violates uniformity (parametricity) principles.

Although typecase may be ultimately an unavoidable feature, its drawbacks require that it be
used prudently.

The desire to reduce the uses of typecase has shaped much of the type structure of object-
oriented languages.

Talk July 17, 1997 9:57 pm 320

THE LANGUAGE O–1

Talk July 17, 1997 9:57 pm 321

Synthesis of a Language
• O–1 is a language built out of constructs from object calculi.

~ The main purpose of O–1 is to help us assess the contributions of
object calculi.

~ In addition, O–1 embodies a few intriguing language-design ideas.

~ We have studied more advanced languages that include Self types and
parametric polymorphism.

Talk July 17, 1997 9:57 pm 322

Some Features of O–1
• Both class-based and object-based constructs.

• First-order object types with subtyping and variance
annotations.

• Classes with single inheritance.

• Method overridding and specialization.

• Recursion.

• Typecase. (To compensate for, e.g., lack of Self types.)

• Separation of interfaces from implementations.

• Separation of inheritance from subtyping.

Talk July 17, 1997 9:57 pm 323

Some Non-Features of O–1
• No public/private/protected/abstract, etc.,

• No cloning,

• No basic types, such as integers,

• No arrays and other data structures,

• No procedures,

• No concurrency.

Talk July 17, 1997 9:57 pm 324

Syntax of Types
Syntax of O–1 types

• Roughly, we may think Object = µ.
But the fold/unfold coercions do not appear in the syntax of O–
1.

• Usually, + variance is for methods, and o variance is for fields.

A,B ::=
X
Top
Object(X)[liυi:Bi iÏ1..n]
Class(A)

types
type variable
the biggest type
object type (li distinct)
class type

Talk July 17, 1997 9:57 pm 325

Syntax of Programs
Syntax of O–1 terms

a,b,c ::=
x
object(x:A) li=bi iÏ1..n end

terms
variable
direct object construction

a.l field selection / method invocation
a.l := b
a.l := method(x:A) b end

update with a term
update with a method

new c
root

object construction from a class
root class

subclass of c:C with(x:A)
li=bi iÏn+1..n+m
override li=bi iÏOvr⊆1..n end

subclass
additional attributes
overridden attributes

c^l(a)
typecase a when (x:A)b1 else b2 end

class selection
typecase

Talk July 17, 1997 9:57 pm 326

Comments

• Superclass attributes are inherited “automatically”.
(No copying premethods by hand as in the encodings of
classes.)

• Inheritance “by hand” still possible by class selection c^l(a).

• Classes are first-class values.

• Parametric classes can be written as functions that return
classes.

Talk July 17, 1997 9:57 pm 327

Language Fragments

• We could drop the object-based constructs (object
construction and method update).
The result would be a language expressive enough for
traditional class-based programming.

• Alternatively, we could drop the class-based construct (root
class, subclass, new, and class selection).
The result would be a little object-based language.

Talk July 17, 1997 9:57 pm 328

Abbreviations

N.B.: conversely, subclass could be defined from class and c^l.

Root @
Class(Object(X)[])

class with(x:A) li=bi iÏ1..n end @
subclass of root:Root with(x:A) li=bi iÏ1..n override end

subclass of c:C with (x:A) … super.l … end @
subclass of c:C with (x:A) … c^l(x) … end

object(x:A) … l copied from c … end @
object(x:A) … l=c^l(x) … end

Talk July 17, 1997 9:57 pm 329

Examples: Types and Classes
• We assume basic types (Bool, Int) and function types (A→B,

contravariant in A and covariant in B).

• CPoint <: Point

• The type of mv in CPoint is Int→Point.
One can explore the effect of changing it to Int→X.

• The type of eq in CPoint is Point→Bool.
If we were to change it to X→Bool we would lose the
subtyping CPoint <: Point.

Point @ Object(X)[x: Int, eq+: X→Bool, mv+: Int→X]

CPoint @ Object(X)[x: Int, c: Color, eq+: Point→Bool, mv+: Int→Point]

Talk July 17, 1997 9:57 pm 330

Class(Point)

pointClass : Class(Point) @
class with (self: Point)

x = 0,
eq = fun(other: Point) self.x = other.x end,
mv = fun(dx: Int) self.x := self.x+dx end

end

Talk July 17, 1997 9:57 pm 331

Class(CPoint)

cPointClass : Class(CPoint) @
subclass of pointClass: Class(Point)
with (self: CPoint)

c = black
override

eq = fun(other: Point)
typecase other
when (other’: CPoint) super.eq(other’) and self.c = other’.c
else false
end

 end
end

Talk July 17, 1997 9:57 pm 332

Comments

• The class cPointClass inherits x and mv from its superclass
pointClass.

• Although it could inherit eq as well, cPointClass overrides this
method as follows.

~ The definition of Point requires that eq work with any argument other
of type Point.

~ In the eq code for cPointClass, the typecase on other determines
whether other has a color.

~ If so, eq works as in pointClass and in addition tests the color of other.

~ If not, eq returns false.

Talk July 17, 1997 9:57 pm 333

Creating Objects

• We can use cPointClass to create color points of type CPoint:

• But points of the same type can also be created independently:

cPoint : CPoint @ new cPointClass

cPoint’ : CPoint @
object(self: CPoint)

x = 0,
c = red,
eq = fun(other: Point) other.eq(self) end,
mv = cPointClass^mv(self)

end

Talk July 17, 1997 9:57 pm 334

Using Objects

• Calls to mv lose the color information.

• In order to access the color of a point after it has been moved,
a typecase is necessary:

movedColor : Color @
typecase cPoint.mv(1)
when (cp: CPoint) cp.c
else black
end

Talk July 17, 1997 9:57 pm 335

Alternative Types

• A stronger type of color points that would preserve type
information on move is:

CPoint2 <: Point, by the read-only annotation on mv.

• To define a subclass for CPoint2, one must override mv.
Subtyping does not imply inheritability!

• The new code for mv may be just super.mv followed by a
typecase.

CPoint2 @
Object(X)[x: Int, c: Color, eq+: Point→Bool, mv+: Int→X]

Talk July 17, 1997 9:57 pm 336

cPointClass2 : Class(CPoint2) @
subclass of pointClass: Class(Point)
with (self: CPoint2)

c = black
override

eq = fun(other: Point) ... end,
mv = fun(dx: Int)

typecase super.mv(dx)
when (res: CPoint2) res
else … (error)
end

end
end

Talk July 17, 1997 9:57 pm 337

• But typecase is no longer needed after a color point is moved:

• By switching from CPoint to CPoint2 we have shifted
typecase from the code that uses color points to the code that
creates them.

• This shift may be attractive, for example because it may help
in localizing the use of typecase.

cPoint2 : CPoint2 @ new cPoint2Class

movedColor2 : Color @ cPoint2.mv(1).c

Talk July 17, 1997 9:57 pm 338

Typing
• The rules of O–1 are based on the following judgments:

Judgments

• The rules for environments are standard:

Environments

E ∫ Q environment E is well-formed
E ∫ A A is a well-formed type in E
E ∫ A <: B A is a subtype of B in E
E ∫ υA <: υ’B A is a subtype of B in E, with variance annotations υ and υ’
E ∫ a : A a has type A in E

(Env) (Env X<:) (Env x)
E ∫ A XÌdom(E) E ∫ A xÌdom(E)

 ∫ Q E, X<:A ∫ Q E, x:A ∫ Q

Talk July 17, 1997 9:57 pm 339

Type Formation Rules

Types

(Type X) (Type Top)
E’, X<:A, E” ∫ Q E ∫ Q

E’, X<:A, E” ∫ X E ∫ Top

(Type Object) (li distinct, υiÏ{o,–,+}) (Type Class) (where A 7 Object(X)[liυi:Bi{X} iÏ1..n])
E, X<:Top ∫ Bi ÓiÏ1..n E ∫ A

E ∫ Object(X)[liυi:Bi iÏ1..n] E ∫ Class(A)

Talk July 17, 1997 9:57 pm 340

Subtyping Rules

• Note that there is no rule for subtyping class types.

Subtyping

(Sub Refl) (Sub Trans) (Sub X) (Sub Top)
E ∫ A E ∫ A <: B E ∫ B <: C E’, X<:A, E” ∫ Q E ∫ A

E ∫ A <: A E ∫ A <: C E’, X<:A, E” ∫ X <: A E ∫ A <: Top

(Sub Object) (where A 7 Object(X)[liυi:Bi{X} iÏ1..n+m], A’ 7 Object(X’)[liυi’:Bi’{X’} iÏ1..n])
E ∫ A E ∫ A’ E, X<:A’ ∫ υi Bi{X} <: υi’ Bi’YA’Z Ó iÏ1..n

E ∫ A <: A’

(Sub Invariant) (Sub Covariant) (Sub Contravariant)
E ∫ B E ∫ B <:

B’ υÏ{o,+}
E ∫ B’ <: B υÏ{o,–

}

E ∫ o B <: o B E ∫ υ B <: + B’ E ∫ υ B <: – B’

Talk July 17, 1997 9:57 pm 341

Program Typing Rules

Terms

(Val Subsumption) (Val x)
E ∫ a : A E ∫ A <: B E’, x:A, E” ∫ Q

E ∫ a : B E’, x:A, E” ∫ x : A

(Val Object) (where A 7 Object(X)[liυi:Bi{X} iÏ1..n])
E, x:A ∫ bi : BiYAZ ÓiÏ1..n

E ∫ object(x:A) li=bi iÏ1..n end : A

Talk July 17, 1997 9:57 pm 342

(Val Select) (where A 7 Object(X)[liυi:Bi{X} iÏ1..n])
E ∫ a :

A υjÏ{o,+} jÏ1..n

E ∫ a.lj : BjYAZ

(Val Update) (where A 7 Object(X)[liυi:Bi{X} iÏ1..n])
E ∫ a : A E ∫ b : BjYAZ υjÏ{o,–

} jÏ1..n

E ∫ a.lj := b : A

(Val Method Update) (where A 7 Object(X)[liυi:Bi{X} iÏ1..n])
E ∫ a : A E, x:A ∫ b : BjYAZ υjÏ{o,–} jÏ1..n

E ∫ a.lj := method(x:A)b end : A

Talk July 17, 1997 9:57 pm 343

(Val New)
E ∫ c : Class(A)

E ∫ new c : A

(Val Root)
E ∫ Q

E ∫ root : Class(Object(X)[])

(Val Class Select) (where A 7 Object(X)[liυi:Bi{X} iÏ1..n])
E ∫ a : A E ∫ c : Class(A) jÏ1..n

E ∫ c^lj(a) : BjYAZ

(Val Typecase)
E ∫ a : A’ E, x:A ∫ b1 : D E ∫ b2 : D

E ∫ typecase a when (x:A)b1 else b2 end : D

Talk July 17, 1997 9:57 pm 344

• A is the object type for the subclass.

• A’ is the object type for the superclass.

• Ovr is the set of indices of overridden methods.

• E ∫ A <: A’ The “class rule”, means that:
 “type generated by subclass <: type generated by superclass”
 Allows “method specialiazation” li+:Bi <: li+:Bi’ for iÏOvr

• E ∫ Bi’YA’Z <: BiYAZ Toghether with A <: A’ requires type invariance for an inherited meth-
od. If this condition does not hold, the method must be overridden.

• E, x:A ∫ bi : BiYAZ Checking the bodies of overridden and additional methods.

(Val Subclass) (where A 7 Object(X)[liυi:Bi{X} iÏ1..n+m], A’ 7 Object(X’)[liυi’:Bi’{X’} iÏ1..n],
 Ovr⊆1..n)

E ∫ c’ : Class(A’) E ∫ A <: A’
E ∫ Bi’YA’Z <: BiYAZ ÓiÏ1..n–Ovr

E, x:A ∫ bi : BiYAZ ÓiÏOvr∪n+1..n+m

E ∫ subclass of c’:Class(A’) with(x:A) li=bi iÏn+1..n+m override li=bi iÏOvr end :
Class(A)

Talk July 17, 1997 9:57 pm 345

Translation
• We give a translation into a functional calculus (with all the

features described earlier).

• A similar translation could be given into an appropriate
imperative calculus.

• At the level of types, the translation is simple.

~ We write äAã for the translation of A.

~ We map an object type Object(X)[liυi:Bi iÏ1..n] to a recursive object
type µ(X)[liυi:äBiã iÏ1..n].

~ We map a class type Class(Object(X)[liυi:Bi{X} iÏ1..n]) to an object
type that contains components for pre-methods and a new component.

Talk July 17, 1997 9:57 pm 346

Translation of Types

Translation of O–1 types

Translation of O–1 environments

äXã @ X

äTopã @ Top

äObject(X)[liυi:Bi iÏ1..n]ã @ µ(X)[liυi:äBiã iÏ1..n]

äClass(A)ã @ [new+:äAã, li
+:äAã→äBiãYäAãZ iÏ1..n]

where A 7 Object(X)[liυi:Bi{X} iÏ1..n]

äã @

äE, X<:Aã @ äEã, X<:äAã

äE, x:Aã @ äEã, x:äAã

Talk July 17, 1997 9:57 pm 347

 Translation of Programs

• Officially, the translation is guided by the type structure.

• Most of the clauses are straightforward.

• A class is mapped to an object with a collection of pre-
methods plus a new method.

• new c is interpreted as an invocation of the new method of äcã.

Talk July 17, 1997 9:57 pm 348

(Simplified) Translation of O–1 terms

äxã @ x

äobject(x:A) li=bi iÏ1..n endã @ [li=ς(x:äAã)äbiã iÏ1..n]

äa.lã @ äaã.l

äa.l := bã @ äaã.l:=äbã

äa.l := method(x:A) b endã @ äaã.lfiüς(x:äAã)äbã

Talk July 17, 1997 9:57 pm 349

• For a class subclass of c’ … end, the collection of pre-methods consists of the pre-methods
of c’ that are not overridden, plus all the pre-methods given explicitly.

• The new method assembles the pre-methods into an object; new c is interpreted as an invo-
cation of the new method of äcã.

• The construct c^l(a) is interpreted as the extraction and the application of a pre-method.

änew cã @ äcã.new

ärootã @ [new=[]]

äsubclass of c’:Class(A’) with(x:A) li=bi iÏn+1..n+m override li=bi iÏOvr endã @
[new=ς(z:äClass(A)ã)[li=ς(s:äAã)z.li(s) iÏ1..n+m],
 li=äc’ã.li iÏ1..n–Ovr,
 li=λ(x:äAã)äbiã iÏOvr∪n+1..n+m]

äc^l(a)ã @ äcã.l(äaã)

ätypecase a when (x:A)b1 else b2 endã @ typecase äaã | (x:äAã)äb1ã | äb2ã

Talk July 17, 1997 9:57 pm 350

Soundness

• If E ∫ J is valid in O–1, then äE ∫ Jã is valid in the object
calculus.

• The object subtyping rule relies on the following rule for
recursive types:

• The most interesting case is for subclass. We need to check:

äsubclass of c’:Class(A’) with(x:A) li=bi iÏn+1..n+m override li=bi iÏOvr endã
: äClass(A)ã

(Sub Rec’)
E ∫ µ(X)A{X} E ∫ µ(Y)B{Y} E, X<:µ(Y)B{Y} ∫ A{X} <: BYµ(Y)B{Y}Z

E ∫ µ(X)A{X} <: µ(Y)B{Y}

Talk July 17, 1997 9:57 pm 351

That is:

[new=ς(z:äClass(A)ã)[li=ς(s:äAã)z.li(s) iÏ1..n+m],
 li=äc’ã.li iÏ1..n–Ovr,
 li=λ(x:äAã)äbiã iÏOvr∪n+1..n+m]

: [new+:äAã, li
+:äAã→äBiãYäAãZ iÏ1..n]

~ new checks by computation.

~ iÏOvr∪n+1..n+m checks by one the (Val Subclass) hypotheses.

~ iÏ1..n–Ovr (inherited methods) checks as follows:
äc’ã : äClass(A’)ã by hypothesis. Hence:
äc’ã.li : äA’ã→äBi’ãYäA’ãZ. Moreover:
äA’ã→äBi’ãYäA’ãZ <: äAã→äBiãYäAãZ directly from hypotheses. So:
äc’ã.li : äAã→äBiãYäAãZ by subsumption.

Talk July 17, 1997 9:57 pm 352

Usefulness of the Translation

• The translation validates the typing rules of O–1.
If E ∫ J is valid in O–1, then äE ∫ Jã is valid in the object
calculus.

• The translation served as an important guide in finding sound
typing rules for O–1, and for “tweaking” them to make them
both simpler and more general.

• In particular, typing rules for subclasses are so inherently
complex that it is difficult to “guess” them correctly without
the aid of some interpretation.

• Thus, we have succeeded in using object calculi as a platform
for explaining a relatively rich object-oriented language and
for validating its type rules.

Talk July 17, 1997 9:50 pm 353

POLYMORPHISM

Talk July 17, 1997 9:50 pm 354

Types of Polymorphism
Polymorphic values have (or can be instantiated to have) more than one type.

In particular, polymorphic functions can be applied to arguments of more than one type.

There are several kinds of polymorphism:

• Ad hoc polymorphism,

as for the functions + and print.

• Subtype (or inclusion) polymorphism,

as for operations on objects.

• Parametric polymorphism,

as for the functions identity and append.

(See Strachey.)

Talk July 17, 1997 9:50 pm 355

Ad Hoc Polymorphism
Ad hoc polymorphism arises in many forms in practical languages.

• Functions like + and print run different code and behave in fairly different ways depending
on the types of their arguments.

The notations + and print are overloaded.

• Ad hoc polymorphism is not “true” polymorphism in that the overloading is purely syntactic.

(E.g., it will not enhance the computational power of a language.)

• Overloading is sometimes combined, and confused, with implicit type coercions.

• Because of its ad hoc nature, there is not much general we can say about ad hoc polymor-
phism (except “be careful”).

Talk July 17, 1997 9:50 pm 356

Subtype (or Inclusion) Polymorphism
Much as with ad hoc polymorphism, the invocation of a method on an object may run different
code depending on the type of the object.

However,

• the polymorphism of languages with subtyping is systematic, and

• code that manipulates objects is uniform, although objects of different types may have differ-
ent memory requirements.

Talk July 17, 1997 9:50 pm 357

Parametric Polymorphism
Parametric polymorphism is usually considered the cleanest and purest form of polymorphism.

• Parametrically polymorphic code uses no type information.

This uniformity implies that parametrically polymorphic code often works with an extra level
of indirection, or “boxing”.

• Parametric polymorphism has a rich theory.

(See Girard, Reynolds, many others.)

Talk July 17, 1997 9:50 pm 358

Languages with Parametric Polymorphism
Parametric polymorphism appears in a few languages:

• languages with generic functions,

• CLU,

• ML and its relatives,

• languages for logical proof systems.

Typically, these languages limit parametric polymorphism:

• it is sometimes eliminated at compile time or link time,

• it is usually less general than in theoretical presentations.

Talk July 17, 1997 9:50 pm 359

Some Advantages and Disadvantages
of Parametric Polymorphism

Advantages:

~ less code duplication,

~ stronger type information,

~ in some contexts, more computational power.

Disadvantages:

~ run-time cost of extra indirections,

~ complexity (for example, in combination with side-effects).

These disadvantages have in part been addressed in recent research.

Talk July 17, 1997 9:50 pm 360

Expressing Parametric Polymorphism
In the general case, parametric polymorphism can be expressed through universal type quanti-
fiers.

For example:

Ó(X) X→X the type of the identity function
Ó(X) Ó(Y) X×Y→Y×X the type of a permutation function
Ó(X) List(X)→List(X) the type of the reverse function
Ó(X) X a “very small” type
Ó(X) (X→X)→ (X→X) the type of Church numerals

Talk July 17, 1997 9:50 pm 361

Writing Polymorphic Values
Type parameterization permits writing polymorphic expressions that have types with universal
quantifiers.

For example:

id : Ó(X) X→X @ λ(X) λ(x:X) x the identity function

id(Int) : Int→Int its instantiation to the type Int
id(Int)(3) : Int its application to an integer

id(Ó(X) X→X) : (Ó(X) X→X)→(Ó(X) X→X)
id(Ó(X) X→X)(id) : Ó(X) X→X

Talk July 17, 1997 9:50 pm 362

Another example:

p : Ó(X) Ó(Y) X×Y→Y×X @ λ(X) λ(Y) λ(u:X×Y) Üsnd(u), fst(u)á

p(Int) : Ó(Y) Int×Y→Y×Int
p(Int)(Bool) : Int×Bool→Bool×Int
p(Int)(Bool)(Ü3, trueá) : Bool×Int

Talk July 17, 1997 9:50 pm 363

Writing Polymorphic Values: Definitions
• The notations b{X} and B{X} show the free occurrences of X in b and in B, respectively.

• bYAZ stands for bYX←AZ and BYAZ stands for BYX←AZ when X is clear from context.

• A term λ(X)b{X} represents a term b parameterized with respect to a type variable X; this is
a type abstraction.

• Correspondingly, a term a(A) is the application of a term a to a type A; this is a type applica-
tion.

• bYAZ is an instantiation of the type abstraction λ(X)b{X} for a specific type A. It is the result
of a type application (λ(X)b{X})(A).

• Ó(X)B{X} is the type of those type abstractions λ(X)b{X} that for any type A produce a result
bYAZ of type BYAZ.

Talk July 17, 1997 9:50 pm 364

Rules for the Universal Quantifier

• (Type All) forms a quantified type Ó(X)B in E, provided that B is well-formed in E extended
with X.

• (Val Fun2) constructs a type abstraction λ(X)b of type Ó(X)B, provided that the body b has
type B for an arbitrary type parameter X (which may occur in b and B).

• (Val Appl2) applies such a type abstraction to a type A.

• These rules should be complemented with standard rules for forming environments with type
variables.

(Type All) (Val Fun2) (Val Appl2)
E, X ∫ B E, X ∫ b : B E ∫ b : Ó(X)B{X} E ∫

A

E ∫ Ó(X)B E ∫ λ(X)b : Ó(X)B E ∫ b(A) : BYAZ

Talk July 17, 1997 9:50 pm 365

Semantics of Parametric Polymorphism
Intuitively, we may want to define the meaning of types inductively:

Int = the integers
A×B = the pairs of A’s and B’s
A→B = the functions from A to B
Ó(X)A = the intersection of A for all possible values of X

but this last clause assumes that we know in advance the set of sets over which X ranges!

• Reynolds first conjectured that this could be made to work, but later proved that substantial
restrictions and changes are needed.

• Much research on the semantics of polymorphism followed; e.g.:

Int = the integers, plus an undefined value
A×B = the pairs of A’s and B’s
A→B = the “continuous” functions from A to B
Ó(X)A = the intersection of A for all “ideals” X

Talk July 17, 1997 9:50 pm 366

ML-Style Polymorphism
In ML, parametric polymorphism is somewhat restricted:

• Type schemes are distinguished from ordinary, simple types (without quantifiers).

Two-level syntax of types
A,B ::= ordinary types

X type variables
Int base types
A→B function types
...

C ::= type schemes
A ordinary types
Ó(X)C quantified types

• Type quantification ranges over simple types, so λ(X)b cannot be instantiated with a type
scheme.

Talk July 17, 1997 9:50 pm 367

ML polymorphism is said to be predicative.

Predicative polymorphism is simpler semantically, and also has some practical appeal:

• Type instantiations and parameterizations need not be written explicitly in programs, but can
be inferred.

• Type inference is decidable, and efficient in practice.

Talk July 17, 1997 9:50 pm 368

ML-Style Polymorphism and Ref

• ML-style polymorphism often has problematic interactions with imperative features.

• These interactions have led to significant restrictions and to sophisticated type systems.

• In contrast, explicit polymorphism is more easily combined with imperative features.

let r = ref [] in r is a ref to an empty list: Ó(X) Ref List(X)
r := [1] ; r is a ref to an integer list: Ref List(Int)
if head(!r) but r is used as a ref to a boolean list!

then ...
else ...

Talk July 17, 1997 9:50 pm 369

Bounded Parametric Polymorphism
The requirement for a function to work with an arbitrary parameter X is sometimes relaxed.

• Suppose that we want to write a filter function for a type List(X).

We would like to assume a boolean test operation on X.

• One solution is to let the filter function take the test as argument.

• Another solution is to restrict the kind of X that can be passed, through a bound or constraint.

This idea leads to various forms of bounded polymorphism (as in CLU, Theta, Haskell, Mod-
ula-3).

There is debate about their relative merits and expressiveness.

filter : Ó(X) (X→Bool)→(List(X)→List(X))

filter : Ó(X with method test : Bool) (List(X)→List(X))

Talk July 17, 1997 9:50 pm 370

A Bounded Universal Quantifier
• We extend universally quantified types Ó(X)B to bounded universally quantified types

Ó(X<:A)B, where A is the bound on X.

• The bounded type abstraction λ(X<:A)b{X} has type Ó(X<:A)B{X} if, for any subtype A’ of
A, the instantiation bYA’Z has type BYA’Z.

(The subtyping relation is no longer decidable!)

(Type All<:) (Sub All)
E, X<:A ∫ B E ∫ A’ <: A E, X<:A’ ∫ B <: B’

E ∫ Ó(X<:A)B E ∫ Ó(X<:A)B <: Ó(X<:A’)B’

(Val Fun2<:) (Val Appl2<:)
E, X<:A ∫ b : B E ∫ b : Ó(X<:A)B{X} E ∫ A’ <: A

E ∫ λ(X<:A)b : Ó(X<:A)B E ∫ b(A’) : BYA’Z

Talk July 17, 1997 9:50 pm 371

Structural Update for Objects
When we combine bounded parametric polymorphism and objects, it is tempting to change
the rule (Val Update) as follows:

The difference between (Val Update) and (Val Structural Update) can be seen when C is a type
variable:

(Val Structural Update) (where A 7 [li:Bi iÏ1..n])
E ∫ a : C E ∫ C <: A E, x:C ∫ b : Bj jÏ1..n

E ∫ a.ljfiüς(x:C)b : C

λ(C<:[l:Nat]) λ(a:C) a.l:=3 : Ó(C<:[l:Nat]) C→[l:Nat]
via (Val Update)

λ(C<:[l:Nat]) λ(a:C) a.l:=3 : Ó(C<:[l:Nat]) C→C
via (Val Structural Update)

Talk July 17, 1997 9:50 pm 372

The new rule (Val Structural Update) appears intuitively sound.

• It implicitly relies on the invariance of object types, and on the assumption that every subtype
of an object type is an object type.

• Such an assumption is quite easily realized in programming languages, and holds in formal
systems such as ours.

But this assumption is false in standard denotational semantics where the subtype relation is
simply the subset relation.

• In such semantics, Ó(C<:[l:Nat]) C→C contains only an identity function and its approxima-
tions.

• Ó(C<:[l:Nat]) C→C does not contain λ(C<:[l:Nat]) λ(a:C) a.l:=3.

This difficulty suggests that one should proceed with caution.

Talk July 17, 1997 9:50 pm 373

Data Abstraction
Much like the universal quantifier gives parametric polymorphism, the existential quantifier
gives a form of data abstraction.

The existentially quantified type Ô(X)B{X} is the type of the pairs ÜA,bá where A is a type and b
is a term of type BYAZ.

• The type Ô(X)B{X} can be seen as an abstract data type with interface B{X} and with repre-
sentation type X.

• The pair ÜA,bá describes an element of the abstract data type with representation type A and
implementation b.

(See Mitchell and Plotkin.)

Talk July 17, 1997 9:50 pm 374

For example, we may write the type:

An implementation of this type might be a pair of a sign bit and a natural number, an integer,
or a natural number, for example.

A user of the implementation can access it only through the interface.

Ô(X) (Int→X)×(X→Int) the type of a “store” for an integer

Talk July 17, 1997 9:50 pm 375

A Bounded Existential Quantifier
The existentially quantified type Ô(X<:A)B{X} is the type of the pairs ÜA’,bá where A’ is a sub-
type of A and b is a term of type BYA’Z.

• The type Ô(X<:A)B{X} can be seen as a partially abstract data type with interface B{X} and
with representation type X known only to be a subtype of A.

• It is partially abstract in that it gives some information about the representation type, namely,
a bound.

• The pair ÜA’,bá describes an element of the partially abstract data type with representation
type A’ and implementation b.

Talk July 17, 1997 9:50 pm 376

In order to be fully explicit, we write the pair ÜA’,bá more verbosely:

where X<:A=A’ indicates that X<:A and X=A’.

An element c of type Ô(X<:A)B{X} can be used in the construct:

where

~ d has access to the representation type X and the implementation x of c;

~ d produces a result of a type D that does not depend on X.

At evaluation time, if c is ÜA’,bá, then the result is dYA’,bZ of type D.

pack X<:A=A’ with b{X}:B{X}

open c as X<:A,x:B{X} in d{X,x}:D

Talk July 17, 1997 9:50 pm 377

For example, we may write:

and then a = 1.

p : Ô(X<:Int)X×(X→X) @
pack X<:Int=Nat with Ü0,succNatá : X×(X→X)

a : Int @
open p as X<:Int,x:X×(X→X) in snd(x)(fst(x)):Int

Talk July 17, 1997 9:50 pm 378

Rules for the
Bounded Existential Quantifier

(Type Exists<:) (Sub Exists)
E, X<:A ∫ B E ∫ A <: A’ E, X<:A ∫ B <: B’

E ∫ Ô(X<:A)B E ∫ Ô(X<:A)B <: Ô(X<:A’)B’

(Val Pack<:)
E ∫ C <: A E ∫ bYCZ : BYCZ

E ∫ pack X<:A=C with b{X}:B{X} : Ô(X<:A)B{X}

(Val Open<:)
E ∫ c : Ô(X<:A)B E ∫ D E, X<:A, x:B ∫ d : D

E ∫ open c as X<:A,x:B in d:D : D

Talk July 17, 1997 9:50 pm 379

Objects, Parametric Polymorphism, and Data
Abstraction

There have been some languages with reasonable, successful combinations of parametric poly-
morphism and data abstraction.

Less is known about how to add objects.

• Are objects redundant?

~ Objects provide a kind of polymorphism.

~ Objects provide a kind of data abstraction, too.

• How should objects interact with a module (or package) system?

(Cf. Modula-3 and Java.)

• Is type inference feasible for languages with both objects and parametric polymorphism?

There have been many proposals for object-oriented extensions to ML, and some for exten-
sions of Java with parametric polymorphism.

Talk July 18, 1997 5:00 pm 380

SELF QUANTIFIER

Talk July 18, 1997 5:00 pm 381

Second-Order Calculi
Take a first-order object calculus with subtyping, and add bounded quantifiers:

Bounded universals: (contravariant in the bound)

E ∫ Ó(X<:A)B if E,X<:A ∫ B
E ∫ Ó(X<:A)B <: Ó(X<:A’)B’ if E ∫ A’ <: A and E,X<:A’ ∫ B <: B’
E ∫ λ(X<:A)b : Ó(X<:A)B if E,X<:A ∫ b : B
E ∫ b(A’) : B{A’} if E ∫ b : Ó(X<:A)B{X} and E ∫ A’<:A

Bounded existentials: (covariant in the bound)

E ∫ Ô(X<:A)B if E,X<:A ∫ B
E ∫ Ô(X<:A)B <: Ô(X<:A’)B’ if E ∫ A <: A’ and E,X<:A ∫ B <: B’
E ∫ (pack X<:A=C, b{X}:B{X}) : Ô(X<:A)B{X}

if E ∫ C <: A and E ∫ b{C} : B{C}
E ∫ (open c as X<:A,x:B in d:D) : D

if E ∫ c : Ô(X<:A)B and E ∫ D and E,X<:A,x:B ∫ d : D

Talk July 18, 1997 5:00 pm 382

Covariant Components
Suppose we have:

Point @ [x,y: Real]
ColorPoint <: Point @ [x,y: Real, c: Color]
Circle @ [center: Point, radius: Real]
ColorCircle @ [center: ColorPoint, radius: Real]

Unfortunately, ColorCircle </: Circle, because of invariance. Now redefine:

Circle @ Ô(X<:Point) [center: X, radius: Real]
ColorCircle @ Ô(X<:ColorPoint) [center: X, radius: Real]

Thus we gain ColorCircle <: Circle. But covariance in object types was supposed to be un-
sound, so we must have lost something.

We have lost the ability (roughly) to update the center component, since X is unknown.
Therefore covariant components are (roughly) read-only components.

The center component can still be extracted out of the abstraction, by subsumption from X to
ColorPoint.

Talk July 18, 1997 5:00 pm 383

Contravariant Components
There are techniques to obtain contravariant (write-only) components; but these are more
complex. (A write-only component can still be read by its sibling methods.) Here is an over-
view.

A @ [l:B, ...] which we want contravariant in B

is transformed into:

A’ @ ... [lupd:Y, l:B, ...] where Y<:(A’→B)→A’ and lupd updates l

A’ is still invariant in B, but any element of A’ can be subsumed into:

A” @ ... [lupd:Y, ...] contravariant in B, with A’<:A”

The appropriate definitions are:

A’ @ µ(X) Ô(Y<:(X→B)→X) [lupd:Y, l:B, ...]
A” @ µ(X) Ô(Y<:(X→B)→X) [lupd:Y, ...]

Then o.lfiüς(s:A)b is simulated by a definable update(o’, lupd, λ(s:A”)b”) (i.e., roughly,
o.lupd(λ(s:A)b)) for appropriate transformations of o:A into o’:A’ and b into b”.

Talk July 18, 1997 5:00 pm 384

Variant Product and Function Types
Encodings based on object types alone may be undesirably invariant. Quantifiers can intro-
duce the necessary degree of variance.

Variant product types can be define as:

A ×ÔÔ B @ Ô(X<:A) Ô(Y<:B) [fst:X, snd:Y]

With the property:

A ×ÔÔ B <: A’ ×ÔÔ B’ if A <: A’ and B <: B’

Similarly, but somewhat more surprisingly, we can obtain variant function types:

A →ÓÔ B @ Ó(X<:A) Ô(Y<:B) [arg:X, val:Y]

With the property:

A →ÓÔ B <: A’ →ÓÔ B’ if A’ <: A and B <: B’

Talk July 18, 1997 5:00 pm 385

Translation of the first-order λ-calculus with subtyping:

äA→Bã @ Ó(X<:äAã) Ô(Y<:äBã) [arg:X, val:Y]

äxAãρ @ ρ(x)

äbA→B(aA)ãρ @
open äbãρ(äAã) as Y<:äBã, y:[arg:äAã, val:Y]
in (y.arg fiü ς(x:[arg:äAã, val:Y]) äaãρ).val for Y,y,x Ì FV(äaãρ)

äλ(x:A)bBãρ @
λ(X<:äAã)

(pack Y<:äBã=äBã,
[arg = ς(x:[arg:X, val:äBã]) x.arg,
 val = ς(x:[arg:X, val:äBã]) äbãρ{x←x.arg}]

 : [arg:X, val:Y])

Talk July 18, 1997 5:00 pm 386

Self Types
Recall that µ(X)B failed to give some expect subtyping behavior. We are now looking for a
different quantifier, ς(X)B, with the expected behavior.

P1 @ ς(Self)[x:Int, mv_x:Int→Self] movable 1-D points
P2 @ ς(Self)[x,y:Int, mv_x,mv_y:Int→Self] movable 2-D points

Let P1ÑXÖ @ [x:Int, mv_x:Int→X] be the X-unfolding of P1
with P1ÑP1Ö 7 [x:Int, mv_x:Int→P1] the self-unfolding of P1.

Some properties we expect for ς(X)B, are:

Subtyping. E.g.: P2 <: P1
Creation (folding) E.g.: from P1ÑP1Ö to P1
Selection (unfolding) E.g.: p1.mv_x: Int→P1
Update (refolding)

E.g.: from p1:P1 and a “Self-parametric” method such that
for all Y<:P1 and x:P1ÑYÖ gives Int→Y,

produce a new P1 with an updated mv_x

Talk July 18, 1997 5:00 pm 387

The ς(X)B Quantifier
It turns out that Self can be formalized via a general quantifier, i.e., independently of object
types. Define:

ς(X)B @ µ(Y) Ô(X<:Y) B(Y not occurring in B)

The intuition is the following. Take A<:A’ with A¦A’:

Want: [l:A, m:C] <: [l:A’] (fails)
Do: Ô(X<:A) [l:X, m:C] <: Ô(X<:A’) [l:X] (holds)

Want: µ(Y) [l:Y, m:C] <: µ(Y) [l:Y] (fails)
Do: µ(Y) Ô(X<:Y) [l:X, m:C] <: µ(Y) Ô(X<:Y) [l:X] (holds)

This way we can have, e.g. P2<:P1. We achieve subtyping at the cost of making certain fields
covariant and, hence, essentially read-only. This suggests, in particular, that we will have diffi-
culties in updating methods that return self.

Talk July 18, 1997 5:00 pm 388

(Note)
ς(X)B satisfies the subtyping property:

E ∫ ς(X)B <: ς(X)B’ if E,X ∫ B <: B’

even though we do not have, in general, µ(X)B <: µ(X)B’.

E,X ∫ B <: B’
⇒ E,Z,Y<:Z,X<:Y ∫ B <: B’ by weakening , for fresh Y,Z
⇒ E,Z,Y<:Z ∫ Ô(X<:Y)B <: Ô(X<:Z)B’ by (Sub Exists)
⇒ E ∫ µ(Y)Ô(X<:Y)B <: µ(Z)Ô(X<:Z)B’ by (Sub Rec)

Talk July 18, 1997 5:00 pm 389

Building Elements of Type ς(X)B
Modulo an unfolding, ς(X)B 7 µ(Y)Ô(X<:Y)B (for Y not in B) is the same as:

Ô(X<:ς(X)B)B.

An element of Ô(X<:ς(X)B)B is a pair 〈C, c〉 consisting of a subtype C of ς(X)B{X} and an
element c of B{C}.

We denote by

wrap〈C, c〉

the injection of the pair 〈C, c〉 from Ô(X<:ς(X)B)B into ς(X)B.

For example, suppose we have an element x of type ς(X)X. Then, choosing ς(X)X as the re-
quired subtype of ς(X)X, we obtain wrap〈ς(X)X, x〉 : ς(X)X. Therefore we can construct:

µ(x) wrap〈ς(X)X, x〉 : ς(X)X

The fully explicit version of wrap〈C, c〉 is written:

wrap(X<:ς(X)B=C) c (or wrap(X=ς(X)B) c for C7ς(X)B)

and it binds the name X to C in c.

Talk July 18, 1997 5:00 pm 390

Building a Memory Cell
Suppose we want to build a memory cell m:M with a read operation rd:Nat and a write oper-
ation wr:Nat→M. We can define:

M @ ς(Self)[rd:Nat, wr:Nat→Self]

where the wr method should use its argument to update the rd field. For convenience, we adopt
the following abbreviation to unfold a Self quantifier:

AÑCÖ @ B{C} whenever A 7 ς(X)B{X} and C<:A

For example we have MÑMÖ 7 [rd:Nat, wr:Nat→M].

Then we can define:

m: M @ wrap〈M,
 [rd = 0,
 wr = ς(s:MÑMÖ) λ(n:Nat) wrap〈M, s.rd:=n〉]〉

Talk July 18, 1997 5:00 pm 391

Derived Rules for ς(X)B
Formally, we can define an introduction construct (wrap(Y<:A=C)b{Y}) and an elimination
construct (use c as Y<:A, y:B{Y} in d:D), for ς(X)B, such that:

(Plus the derived equational theory.)

(Type Self) (Sub Self)
E,X<:Top ∫ B E,X<:Top ∫ B <: B’

E ∫ ς(X)B E ∫ ς(X)B <: ς(X)B’

(Val Wrap) (where A 7 ς(X)B{X}) (Val Use) (where A 7 ς(X)B{X})
E ∫ C <: A E ∫ bYCZ : BYCZ E ∫ c : A E ∫ D E, Y<:A, y:BYYZ ∫ d : D

E ∫ wrap(Y<:A=C)b{Y} : A E ∫ use c as Y<:A, y:BYYZ in d:D : D

Talk July 18, 1997 5:00 pm 392

(Note)
Define, for A7ς(X)B{X}, C<:A, and b{C}:B{C}:

wrap(Y<:A=C) b{Y} @ fold(A, (pack Y<:A=C, b{Y}:B{Y}))

and, for c:A and d{Y,y}:D, where Y does not occur in D:

(use c as Y<:A, y:B{Y} in d{Y,y}:D) @
(open unfold(c) as Y<:A, y:B{Y} in d{Y,y}:D)

Talk July 18, 1997 5:00 pm 393

The ςOb Calculus
At this point we may extract a minimal second-order object calculus. We discard the uni-
versal and existential quantifiers, and recursion, and we retain the ς quantifier and the object
types:

A,B ::= a,b ::=
X x
Top [li=ς(xi:Ai)bi iÏ1..n]
[li:Bi iÏ1..n] a.l
ς(X)B a.lfiüς(x:A)b

wrap(X<:A=B)b
use a as X<:A, y:B in b:D

Talk July 18, 1997 5:00 pm 394

ς-Object Types
Now that we have a general formulation of ς(X)B, we can go back and consider its applica-
tion to object types. We consider types of the special form:

ς(X+)[li:Bi{X} iÏ1..n] @ ς(X)[li:Bi{X} iÏ1..n] when the Bi are covariant in X

Here, ς(X+)[li:Bi{X} iÏ1..n] are called ς-object types. Our goal is to discover their derived typ-
ing rules.

• The covariance requirement is necessary to get selection to work. An example of violation of
covariance are “binary methods” such as:

ς(Self)[..., eq: Self→Bool, ...]

(It turns out that p.eq cannot be given a type, because a contravariant Self occurrence is not
able to escape the scope of the existential quantifier. A covariant Self occurrence can be elim-
inated by subsumption into the object type.)

• The covariance requirements rules out “nested” Self types, because of the invariance of object
type components (ς(Y) [l2: X] is invariant in X):

ς(X) [l1: ς(Y) [l2: X]]

• These restrictions are common in languages that admit Self types.

Talk July 18, 1997 5:00 pm 395

Derived Rules for ς-Object Types
We have essentially the same rules for subtyping and construction. But now, the generic
“use” elimination construct of ς-quantifiers can be specialized to obtain selection and update:

where wrap(Y<:A, x:AÑYÖ)b is a “Self-parametric” method that must produce for every Y<:A
and x:AÑYÖ (where x is self) a result of type Bj{Y+}, parametrically in Y. In particular, it is un-
sound for the method to produce a result of type Bj{A}.

Hence the (already known) notion of Self-parametric methods falls out naturally in this
framework, as a condition for a derived rule.

(Val ςSelect) (where A 7 ς(X)[li:Bi{X+} iÏ1..n])
E ∫ a : A jÏ1..n

E ∫ aA.lj : BjYAZ

(Val ςUpdate) (where A 7 ς(X)[li:Bi{X+} iÏ1..n])
E ∫ a : A E, Y<:A, y:AÑYÖ, x:AÑYÖ ∫ b : BjYYZ jÏ1..n

E ∫ a.ljfiü(Y<:A, y:AÑYÖ)ς(x:AÑYÖ)b : A

Talk July 18, 1997 5:00 pm 396

(Note)
Assume a:A with A7ς(X+)[li:Bi{X} iÏ1..n] and AÑXÖ7[li:Bi{X+} iÏ1..n], and set, with some over-
loading of notation:

a.lj @
(use a as Z<:A, y:AÑZÖ in y.lj : Bi{A+})

a.ljfiü(Y<:A, y:AÑYÖ)ς(x:AÑYÖ)b{Y,y,x} @
(use a as Z<:A, y:AÑZÖ in wrap(Y<:A=Z) (y.ljfiüς(x:AÑYÖ)b{Y,y,x}) : A)

Talk July 18, 1997 5:00 pm 397

The Type of the Object-Oriented Naturals
We can finally give a type for the object-oriented natural numbers:

NOb @ ς(Self+)[succ:Self, case:Ó(Z)Z→(Self→Z)→Z]

Note that the covariance restriction is respected.

The zero numeral can then be typed as follows:

zeroOb : NOb @
wrap(Self=NOb)

[case = λ(Z) λ(z:Z) λ(f:Self→Z) z,
 succ = ς(n:NObÑSelfÖ)

wrap〈Self, n.case := λ(Z) λ(z:Z) λ(f:Self→Z) f(wrap〈Self,n〉)〉]

Talk July 18, 1997 5:00 pm 398

The Type of the Calculator
C @ ς(Self+)[arg,acc: Real, enter: Real→Self, add,sub: Self, equals: Real]

Calc @ ς(Self+)[enter: Real→Self, add,sub: Self, equals: Real]

Then Calc <: C; we can hide arg and acc from clients.

calculator: C @
wrap(Self=C)

[arg = 0.0,
 acc = 0.0,
 enter = ς(s:CÑSelfÖ) λ(n:Real) wrap〈Self, s.arg := n〉,
 add = ς(s:CÑSelfÖ)

wrap〈Self, (s.acc := s.equals).equals fiü ς(s’:CÑSelfÖ) s’.acc+s’.arg〉,
 sub = ς(s:CÑSelfÖ)

wrap〈Self, (s.acc := s.equals).equals fiü ς(s’:CÑSelfÖ) s’.acc-s’.arg〉,
 equals = ς(s:CÑSelfÖ) s.arg]

Talk July 18, 1997 5:00 pm 399

Overriding and Self
If we want to update a method of a ς-object o:A, the new method must work for any possible
Self<:A, because o might have been initially built as an element of an unknown B<:A.

This is a tough requirement if the method result involves the Self type, since we do not know
the “true Self” of o.

(We have no such problem at object creation time, since the “true Self” is known then. But
the same difficulty would likely surface if we were creating objects incrementally, adding one
method at a time to extensible objects.)

Talk July 18, 1997 5:00 pm 400

Consider, for example, the type:

A @ ς(Self+)[n:Int, m:Self] with AÑSelfÖ 7 [n:Int, m:Self]

According to the rule (Val ςUpdate), an updating method can use in its body the variables
Self<:A, and x:AÑSelfÖ, where x is the self of the new method.

Basically, for a method l with result type Bl{Self}, the update rule requires that we construct
a polymorphic function of type:

Ó(Self<:A) AÑSelfÖ→Bl{Self}

For n, we have no problem in returning a Bn{Self} 7 Int.

But for m, there is no obvious way of producing a Bm{Self} 7 Self from x:AÑSelfÖ, except for
x.m which loops. And we cannot construct an element of an arbitrary Self<:A.

Moreover, using Ó(Self<:A) AÑSelfÖ→B{A}, for example, would be unsound.

In conclusion, the (Val ςUpdate) rule, although sufficient for updating simple methods and
fields, is not sufficient to allow us to usefully update methods that return a value of type Self,
after object construction.

Talk July 18, 1997 5:00 pm 401

Recoup
We introduce a special method called recoup with an associated run-time invariant. Recoup
is a method that returns self immediately. The invariant asserts that the result of recoup is its
host object. These simple assumptions have surprising consequences.

A @ ς(Self+)[r:Self, n:Int, m:Self] with AÑSelfÖ 7 [r:Self, n:Int, m:Self]
a : A @ wrap(Self<:A=A) [r = ς(x:AÑSelfÖ)wrap〈Self,x〉, ...] : A

Then, the following update on m typechecks, since x.r has type Self:

a.m fiü ς(Self<:A, x:AÑSelfÖ) (x.n:=3).r: A

The reduction behavior of this term relies on the recoup invariant. I.e., recoup should be correct-
ly initialized and not subsequently corrupted.

Intuitively, recoup allows us to recover a “parametric self ” x.r which equals the object a but
has type Self<:A (the “true Self”) and not just type A (the “known Self”).

Talk July 18, 1997 5:00 pm 402

In general, if A has the form ς(Self+)[r:Self, ...] then we can write useful polymorphic func-
tions of type:

Ó(Self<:A) AÑSelfÖ→Self

that are not available without recoup. Such functions are parametric enough to be useful for
method update.

In a programming language based on these notions, recoup could be introduced as a “built-
in feature”, so that the recoup invariant is guaranteed for all objects at all times.

Talk July 18, 1997 5:00 pm 403

SELF TYPES

Talk July 18, 1997 5:00 pm 404

Self Types
We now axiomatize Self types directly, taking Self as primitive.

In order to obtain a flexible type system, we need constructions that provide both covariance
and contravariance.

~ Both variances are necessary to define function types.

There are several possible choices at this point.

~ One choice would be to take invariant object types plus the two bounded second-order
quantifiers.

~ Instead, we prefer to use variance annotations for object types.
This choice is sensible because it increases expressiveness, delays the need to use quanti-
fiers, and is relatively simple.

Talk July 18, 1997 5:00 pm 405

Object Types and Self
We consider object types with Self of the form:

Obj binds a type variable X, which represents the Self type (the type of self), as in
Cell @ Obj(X)[contentso : Nat, seto : Nat→X].

Each υi (a variance annotation) is one of –, o, and +, for contravariance, invariance, and covari-
ance, respectively.

• Invariant components are the familiar ones. They can be regarded, by subtyping, as either co-
variant or contravariant.

• Covariant components allow covariant subtyping, but prevent updating.

• Symmetrically, contravariant components allow contravariant subtyping, but prevent invoca-
tion.

Obj(X)[liυi:Bi{X+} iÏ1..n]
where B{X+} indicates that X occurs only covariantly in B

Talk July 18, 1997 5:00 pm 406

Syntax of types

A,B ::=
X
Top
Obj(X)[liυi:Bi iÏ1..n]

types
type variable
the biggest type
object type
(li distinct, υiÏ{–,o,+})

Talk July 18, 1997 5:00 pm 407

Variant occurrences

Y{X+}
Top{X+}
Obj(Y)[liυi:Bi iÏ1..n]{X+}

whether X = Y or X ¦ Y
always
if X = Y or for all iÏ1..n:

if υi7 +, then Bi{X+}
if υi7 –, then Bi{X–}
if υi7 o, then XÌFV(Bi)

Y{X–}
Top{X–}
Obj(Y)[liυi:Bi iÏ1..n]{X–}

if X ¦ Y
always
if X = Y or for all iÏ1..n:

if υi7 +, then Bi{X–}
if υi7 –, then Bi{X+}
if υi7 o, then XÌFV(Bi)

A{Xo} if neither A{X+} nor A{X–}

Talk July 18, 1997 5:00 pm 408

Terms with Self
Syntax of terms

An object has the form obj(X=A)[li=ς(xi:X)bi iÏ1..n], where A is the chosen implementation of
the Self type.

Variance information for this object is given as part of the type A.

All the variables xi have type X (so the syntax is redundant).

a,b ::=
x
obj(X=A)[li=ς(xi:X)bi iÏ1..n]
a.l
a.lfiü(Y<:A,y:Y)ς(x:Y)b

terms
variable
object (li distinct)
method invocation
method update

Talk July 18, 1997 5:00 pm 409

Method Update and Self
Method update is written a.lfiü(Y<:A,y:Y)ς(x:Y)b, where

~ a has type A,

~ Y denotes the unknown Self type of a,

~ y denotes the old self (a), and

~ x denotes self (at the time the updating method is invoked).

To understand the necessity of the parameter y, consider the case where the method body b has
result type Y.

• This method body cannot return an arbitrary object of type A, because the type A may not be
the true Self type of a.

• Since a itself has the true Self type, the method could soundly return it.

• But the typing does not work because a has type A rather than Y.

• To allow a to be returned, it is bound to y with type Y.

Talk July 18, 1997 5:00 pm 410

Abbreviations

[liυi:Bi iÏ1..n] @ Obj(X)[liυi:Bi iÏ1..n] for XÌFV(Bi), iÏ1..n

[li:Bi iÏ1..n] @ Obj(X)[lio:Bi iÏ1..n] for XÌFV(Bi), iÏ1..n

[li=ς(xi:A)bi iÏ1..n] @ for XÌFV(bi), iÏ1..n
obj(X=A)[li=ς(xi:X)bi iÏ1..n]

a.ljfiüς(x:A)b @ a.ljfiü(Y<:A,y:Y)ς(x:Y)b for Y,yÌFV(b)

Talk July 18, 1997 5:00 pm 411

Cells

GCell @ Obj(X)[contents : Nat, set : Nat → X, get : Nat]
GCell <: Cell

Cell @ Obj(X)[contents : Nat, set : Nat→X]

cell : Cell @
[contents = 0,
 set = ς(x:Cell) λ(n:Nat) x.contents := n]

7 obj(X=Cell)
[contents = ς(x:X) 0,
 set = ς(x:X) λ(n:Nat) x.contents fiü (Y<:X, y:Y) ς(z:Y) n]

Talk July 18, 1997 5:00 pm 412

Cells with Undo
A difficulty arises when trying to update fields of type Self.

This difficulty is avoided by using the old-self parameter.

The use of y in the update of undo is essential.

UnCell @ Obj(X)[contents : Nat, set : Nat→X, undo : X]

uncell : UnCell @
obj(X=UnCell)
[contents = ς(x:X) 0,
 set = ς(x:X) λ(n:Nat)

(x.undo fiü (Y<:X, y:Y) ς(z:Y) y)
.contents fiü (Y<:X, y:Y) ς(z:Y) n,

 undo = ς(x:X) x]

Talk July 18, 1997 5:00 pm 413

Operational Semantics
The operational semantics is given in terms of a reduction judgment, ∫ a Òñ v.

The results are objects of the form obj(X=A)[li=ς(xi:X)bi iÏ1..n].

Operational semantics

(Red Object) (where v 7 obj(X=A)[li=ς(xi:X)bi iÏ1..n])

∫ v Òñ v

(Red Select) (where v’ 7 obj(X=A)[li=ς(xi:X)bi{X,xi} iÏ1..n])
∫ a Òñ v’ ∫ bjYA,v’Z Òñ v jÏ1..n

∫ a.lj Òñ v

(Red Update) (where v 7 obj(X=A)[li=ς(xi:X)bi iÏ1..n])
∫ a Òñ v jÏ1..n

∫ a.ljfiü(Y<:A’,y:Y)ς(x:Y)b{Y,y} Òñ obj(X=A)[lj=ς(x:X)bYX,vZ, li=ς(xi:X)bi iÏ1..n–{j}]

Talk July 18, 1997 5:00 pm 414

Type Rules for Self
Judgments

The rules for the judgments E ∫ Q, E ∫ A, and E ∫ A <: B are standard, except of course for
the new rules for object types.

E ∫ Q

E ∫ A
E ∫ A <: B
E ∫ υA <: υ’B

E ∫ a : A

well-formed environment
judgment
type judgment
subtyping judgment
subtyping judgment
with variance
value typing judgment

Talk July 18, 1997 5:00 pm 415

Environments, types, and subtypes

(Env) (Env x) (Env X<:)
E ∫ A xÌdom(E) E ∫ A XÌdom(E)

 ∫ Q E, x:A ∫ Q E, X<:A ∫ Q

(Type X<:) (Type Top) (Type Object) (li distinct, υiÏ{o,–,+})
E’, X<:A, E” ∫ Q E ∫ Q E, X<:Top ∫ Bi{X+} ÓiÏ1..n

E’, X<:A, E” ∫ X E ∫ Top E ∫ Obj(X)[liυi:Bi{X} iÏ1..n]

(Sub Refl) (Sub Trans) (Sub Top) (Sub X)
E ∫ A E ∫ A <: B E ∫ B <: C E ∫ A E’, X<:A, E” ∫ Q

E ∫ A <: A E ∫ A <: C E ∫ A <: Top E’, X<:A, E” ∫ X <: A

(Sub Object) (where A 7 Obj(X)[liυi:Bi{X} iÏ1..n+m], A’ 7 Obj(X)[liυi’:Bi’{X} iÏ1..n])
E ∫ A E ∫ A’ E, Y<:A ∫ υi BiYYZ <: υi’ Bi’YYZ ÓiÏ1..n

E ∫ A <: A’

Talk July 18, 1997 5:00 pm 416

(Sub Invariant) (Sub Covariant) (Sub Contravariant)
E ∫ B E ∫ B <:

B’ υÏ{o,+}
E ∫ B’ <: B υÏ{o,–

}

E ∫ o B <: o B E ∫ υ B <: + B’ E ∫ υ B <: – B’

Talk July 18, 1997 5:00 pm 417

• The formation rule for object types (Type Object) requires that all the component types be
covariant in Self.

• The subtyping rule for object types (Sub Object) says, to a first approximation, that a longer
object type A on the left is a subtype of a shorter object type A’ on the right.

~ Because of variance annotations, we use an auxiliary judgment and auxiliary rules.

• The type Obj(X)[…] can be seen as an alternative to the recursive type µ(X)[…], but with dif-
ferences in subtyping.

~ (Sub Object), with all components invariant, reads:

~ An analogous property fails with µ instead of Obj.

E, X<:Top ∫ Bi{X+} ÓiÏ1..n+m

E ∫ Obj(X)[li:Bi{X} iÏ1..n+m] <: Obj(X)[li:Bi{X} iÏ1..n]

Talk July 18, 1997 5:00 pm 418

Terms with typing annotations

(Val Subsumption) (Val x)
E ∫ a : A E ∫ A <: B E’, x:A, E” ∫ Q

E ∫ a : B E’, x:A, E” ∫ x : A

(Val Object) (where A 7 Obj(X)[liυi:Bi{X} iÏ1..n])
E, xi:A ∫ biYAZ : BiYAZ ÓiÏ1..n

E ∫ obj(X=A)[li=ς(xi:X)bi{X} iÏ1..n] : A

(Val Select) (where A’ 7 Obj(X)[liυi:Bi{X} iÏ1..n])
E ∫ a : A E ∫ A <: A’ υjÏ{o,+} jÏ1..n

E ∫ a.lj : BjYAZ

(Val Update) (where A’ 7 Obj(X)[liυi:Bi{X} iÏ1..n])
E ∫ a : A E ∫ A <: A’ E, Y<:A, y:Y, x:Y ∫ b : BjYYZ υjÏ{o,–} jÏ1..n

E ∫ a.ljfiü(Y<:A,y:Y)ς(x:Y)b : A

Talk July 18, 1997 5:00 pm 419

• (Val Object) can be used for building an object of a type A from code for its methods.

~ In that code, the variable X refers to the Self type; in checking the code, X is replaced with
A, and self is assumed of type A.

~ Thus the object is built with knowledge that Self is A.

• (Val Select) treats method invocation, replacing the Self type X with a known type A for the
object a whose method is invoked.

~ The type A might not be the true type of a.

~ The result type is obtained by examining a supertype A’ of A.

• (Val Update) requires that an updating method work with a partially unknown Self type Y,
which is assumed to be a subtype of a type A of the object a being modified.

~ The updating method must be “parametric in Self”: it must return self, the old self, or a
modification of these.

~ The result type is obtained by examining a supertype A’ of A.

Talk July 18, 1997 5:00 pm 420

(Val Select) and (Val Update) rely on the structural assumption that every subtype of an ob-
ject type is an object type.

In order to understand them, it is useful to compare them with the following more obvious
alternatives:

These are special cases of (Val Select) and (Val Update) for A 7 A’.

(Val Select) and (Val Update) are more general in that they allow A to be a variable.

(Val Non-Structural Select) (where A 7 Obj(X)[liυi:Bi{X} iÏ1..n])
E ∫ a : A υjÏ{o,+} jÏ1..n

E ∫ a.lj : BjYAZ

(Val Non-Structural Update) (where A 7 Obj(X)[liυi:Bi{X} iÏ1..n])
E ∫ a : A E, Y<:A, y:Y, x:Y ∫ b : BjYYZ υjÏ{o,–} jÏ1..n

E ∫ a.ljfiü(Y<:A,y:Y)ς(x:Y)b : A

Talk July 18, 1997 5:00 pm 421

Adding the Universal Quantifier
Syntax of type parameterization

A,B ::=
…
Ó(X<:A)B

types
(as before)
bounded universal type

a,b ::=
…
λ(X<:A)b
a(A)

terms
(as before)
type abstraction
type application

Talk July 18, 1997 5:00 pm 422

We add two rules to the operational semantics.

• According to these rules, evaluation stops at type abstractions and is triggered again by type
applications.

• We let a type abstraction λ(X<:A)b be a result.

Operational semantics for type parameterization

(Red Fun2) (where v 7 λ(X<:A)b)

∫ v Òñ v

(Red Appl2)
∫ b Òñ λ(X<:A)c{X} ∫ cYA’Z Òñ v

∫ b(A’) Òñ v

Talk July 18, 1997 5:00 pm 423

Quantifier rules

Variant occurrences for quantifiers

Theorem (Subject reduction)
If ∫ a : A and ∫ a Òñ v, then ∫ v : A.

(Type All<:) (Sub All)
E, X<:A ∫ B E ∫ A’ <: A E, X<:A’ ∫ B <: B’

E ∫ Ó(X<:A)B E ∫ Ó(X<:A)B <: Ó(X<:A’)B’

(Val Fun2<:) (Val Appl2<:)
E, X<:A ∫ b : B E ∫ b : Ó(X<:A)B{X} E ∫ A’ <: A

E ∫ λ(X<:A)b : Ó(X<:A)B E ∫ b(A’) : BYA’Z

(Ó(Y<:A)B){X+} if X = Y or both A{X–} and B{X+}

(Ó(Y<:A)B){X–} if X = Y or both A{X+} and B{X–}

Talk July 18, 1997 5:00 pm 424

Classes and Self
As before, we associate a class type Class(A) with each object type A.

A 7 Obj(X)[liυi:Bi{X} iÏ1..n]

Class(A) @
[new:A,
 li:Ó(X<:A)X→Bi{X} iÏ1..n]

c : Class(A) @
[new=ς(z:Class(A)) obj(X=A)[li=ς(s:X)z.li(X)(s) iÏ1..n],
 li = λ(Self<:A) λ(s:Self) … iÏ1..n]

Now pre-methods have polymorphic types.

Talk July 18, 1997 5:00 pm 425

For example:

Class(Cell) @
[new : Cell,
 contents : Ó(Self<:Cell) Self→Nat,
 set : Ó(Self<:Cell) Self→Nat→Self]

cellClass : Class(Cell) @
[new = ς(z:Class(Cell)) obj(Self=Cell)

[contents = ς(s:Self) z.contents(Self)(s),
 set = ς(s:Self) z.set(Self)(s)],

 contents = λ(Self<:Cell) λ(s:Self) 0,
 set = λ(Self<:Cell) λ(s:Self) λ(n:Nat) s.contents := n]

Talk July 18, 1997 5:00 pm 426

Inheritance and Self
We can now reconsider the inheritance relation between classes.

Suppose that we have A’ <: A:

We say that:

• Inheritability is not an immediate consequence of A’ <: A.

• Inheritability is expected between a class type C and another class type C’ obtained as an ex-
tension of C.

A’ 7 Obj(X)[liυi’:Bi’{X} iÏ1..n+m]
Class(A’) 7 [new:A’, li : Ó(X<:A’)X→Bi’{X} iÏ1..n+m]

li is inheritable from Class(A) into Class(A’)
if and only if X <: A’ implies Bi{X} <: Bi’{X}, for all iÏ1..n

Talk July 18, 1997 5:00 pm 427

• When li is inheritable, we have:

So, if c : Class(A) and li is inheritable, we have c.li : Ó(X<:A’)X→Bi’{X}.

Then c.li can be reused when building a class c’ : Class(A’).

Ó(X<:A)X→Bi{X} <: Ó(X<:A’)X→Bi’{X}

Talk July 18, 1997 5:00 pm 428

For example, set is inheritable from Class(Cell) to Class(GCell):

Class(GCell) @
[new : GCell,
 contents : Ó(Self<:GCell) Self→Nat,
 set : Ó(Self<:GCell) Self→Nat→Self,

 get : Ó(Self<:GCell) Self→Nat]

gcellClass : Class(GCell) @
[new = ς(z:Class(GCell)) obj(Self=GCell)[…],
 contents = λ(Self<:GCell) λ(s:Self) 0,
 set = cellClass.set,
 get = λ(Self<:GCell) λ(s:Self) s.contents]

Talk July 18, 1997 5:00 pm 429

SELF TYPES AND
HIGHER-ORDER OBJECT CALCULI

Talk July 18, 1997 5:00 pm 430

Inheritance without Subtyping?
• Up to this point, subtyping justifies inheritance.

• This leads to a great conceptual economy.

• It corresponds well to the rules of most typed languages.

• But there are situations where one may want inheritance without subtyping.

• There are also a few languages that support inheritance without subtyping (e.g., Theta,
TOOPLE, Emerald).

Talk July 18, 1997 5:00 pm 431

The Problem
Consider cells with an equality method:

CellEq @
µ(X)[contents : Nat, set : Nat → X, eq : X → Bool]

CellSEq @
µ(X)[contents : Nat, set : Nat → X, sign : Bool, eq : X → Bool]

But then CellSEq is not a subtype of CellEq.

This situation is typical when there are binary methods, such as eq.

Giving up on subtyping is necessary for soundness.

On the other hand, it would be good still to be able to reuse code, for example the code eq =
ς(x)λ(y) x.contents = y.contents.

Talk July 18, 1997 5:00 pm 432

Solutions
• Avoid contravariant occurrences of recursion variables,

to preserve subtyping.

CellEq’ @ µ(X)[..., eq : Cell → Bool]
CellSEq’ @ µ(X)[..., sign : Bool, eq : Cell → Bool]

• Axiomatize a primitive matching relation between types <#, work out its theory, and relate it
somehow to code reuse.

CellSeq <# CellEq

(But the axioms are not trivial, and not unique.)

• Move up to higher-order calculi and see what can be done there.
There are two approaches:

~ F-bounded quantification (Cook et al.);

~ higher-order subtyping (us).

Talk July 18, 1997 5:00 pm 433

The Higher-Order Path
• Let us define two type operators:

CellEqOp @
λ(X)[contents : Nat, set : Nat → X, eq : X → Bool]

CellSEqOp @
λ(X)[contents : Nat, set : Nat → X, sign : Bool, eq : X → Bool]

• We write:

CellEqOp :: Ty⇒Ty
CellSEqOp :: Ty⇒Ty

to mean that these are type operators.

Talk July 18, 1997 5:00 pm 434

• Then, for each type X, we have:

CellSEqOp(X) <: CellEqOp(X)

• This is higher-order subtyping: pointwise subtyping between
type operators.

• We say that CellSEqOp is a suboperator of CellEqOp, and
we write:

CellSEqOp <: CellEqOp :: Ty⇒Ty

• Object types can be obtained as fixpoints of these operators:

CellEq @
µ(X)CellEqOp(X)

CellSEq @
µ(X)CellSEqOp(X)

• So although CellSEq is not a subtype of CellEq, these types still have something in common:
they are fixpoints of two suboperators of CellEqOp.

Talk July 18, 1997 5:00 pm 435

• We can then write polymorphic functions by quantifying over
suboperators:

eqF @
λ(F <: CellEqOp :: Ty⇒Ty) λ(x : µ(X)F(X)) λ(y : µ(X)F(X))

x.contents = y.contents
: Ó(F <: CellEqOp :: Ty⇒Ty) µ(X)F(X) → µ(X)F(X) → Bool

• This function can be instantiated at both CellEqOp and CellSEqOp.

• This function can also be used to write pre-methods for classes.
(For this we let pre-methods be polymorphic functions.)

Talk July 19, 1997 9:33 pm 436

ENCODING OBJECT CALCULI

Talk July 19, 1997 9:33 pm 437

Objects vs. Procedures
• Object-oriented programming languages have introduced (or popularized) a number of ideas

and techniques.

• In order to avoid premature commitments, so far we have avoided any explicit encoding of
objects in terms of other notions.

• However, on a case-by-case basis, one can often emulate objects in some procedural languag-
es.

Are object-oriented concepts reducible to procedural concepts?

~ It is easy to emulate the operational semantics of objects.

~ It is a little harder to translate object types.

~ It is much harder, or impossible, to preserve subtyping.

~ Apparently, this reduction is not feasible or attractive in practice.

Talk July 19, 1997 9:33 pm 438

The Translation Problem
• The problem is to find a translation from an object calculus to a λ-calculus:

~ The object calculus should be reasonably expressive.

~ The λ-calculus should be standard enough.

~ The translation should be faithful; in particular it should preserve subtyping.

We prefer to deal with calculi rather than programming languages.

• The goal of explaining objects in terms of λ-calculi is not new.

~ There have been a number of more or less successful attempts (by Kamin, Cardelli, Cook,
Reddy, Mitchell, the John Hopkins group, Pierce, Turner, Hofmann, Remy, Bruce, ...).

~ We will review some of them (fairly informally), and then see our translations (joint work
with Ramesh Viswanathan.)

Talk July 19, 1997 9:33 pm 439

The Self-Application Semantics
• It is natural to try to program objects from records and functions. The self-application seman-

tics is one of the more natural ways of doing this.

• All implementations of standard (single-dispatch) object-oriented languages are based on
self-application. In the self-application semantics,

~ methods are functions,

~ objects are records,

~ update is simply record update.

~ On method invocation, the whole object is passed to the method as a parameter.

Untyped self-application interpretation

[li=ς(xi)bi iÏ1..n] @ Üli=λ(xi)bi iÏ1..ná (li distinct)

o.lj @ o†lj(o) (jÏ1..n)

o.ljfiüς(y)b @ o†lj:=λ(y)b (jÏ1..n)

Talk July 19, 1997 9:33 pm 440

The Self-Application Semantics (Typed)
• A typed version is obtained by representing object types as recursive record types:

Self-application interpretation

• Unfortunately, the subtyping rule for object types fails to hold: a contravariant X occurs in all
method types.

[li:Bi iÏ1..n] @ µ(X)Üli:X→Bi iÏ1..ná

A 7 [li:Bi iÏ1..n] @
µ(X)Üli:X→Bi iÏ1..ná

(li distinct)

[li=ς(xi:A)bi iÏ1..n] @ fold(A,Üli=λ(xi:A)bi iÏ1..ná)

o.lj @ unfold(o)†lj(o) (jÏ1..n)

o.ljfiüς(y:A)b @ fold(A,unfold(o)†lj:=λ(y:A)b) (jÏ1..n)

Talk July 19, 1997 9:33 pm 441

The State-Application Semantics (Sketch)
For systems with only field update, it is natural to separate fields and methods:

• The fields are grouped into a state record st, separate from the method suite record mt.

• Methods receive st as a parameter on method invocation, instead of the whole object as in the
self-application interpretation.

• The update operation modifies the st component and copies the mt component.

• The method suite is bound recursively with a µ, so that each method can invoke the others.

Talk July 19, 1997 9:33 pm 442

Untyped state-application interpretation

• It is difficult to express the precise translation of method bodies (bi).

• Although it is fairly clear how to translate specific examples, it is hard to define a general
interpretation, particularly without types.

[fk=bk kÏ1..m | li=ς(xi)bi iÏ1..n] @
Üst=Ü fk=bk kÏ1..má, mt=µ(m)Üli=λ(s)bi’ iÏ1..náá

(fk, li distinct)
(for
appropriate bi’)

oP fj @ o†st† fj (jÏ1..m)
(external)

oP fj:=b @ Üst=(o†st† fj:=b), mt=o†mtá (jÏ1..m)
(external)

o.lj @ o†mt†lj(o†st) (jÏ1..n)
(external)

Talk July 19, 1997 9:33 pm 443

Essentially this difficulty arises because self is split into two parts.

• Internal operations manipulate s directly, and are thus coded differently from external oper-
ations.

• Since the self parameter s gives access only to fields, internal method invocation is done
through m.

• Methods that return self should produce a whole object, but s contains only fields, so a whole
object must be regenerated.

Untyped state-application interpretation (continued)

in the context µ(m)Üli=λ(s) ... á

xiP fj @ s† fj (jÏ1..m)
(internal)

xiP fj:=b @ s† fj:=b (jÏ1..m)
(internal)

xi.lj @ m†lj(s) (jÏ1..n)
(internal)

Talk July 19, 1997 9:33 pm 444

The State-Application Semantics (Typed)
The state of an object, represented by a collection of fields st, is hidden by existential abstrac-
tion, so external updates are not possible.

The troublesome method argument types are hidden as well, so this interpretation yields the
desired subtypings.

• In general case, code generation is driven by types.

• The encoding is rather laborious.

• Still, it accounts well for class-based languages where methods are separate from fields, and
method update is usually forbidden.

[li:Bi iÏ1..n] @ Ô(X) Üst: X, mt: Üli:X→Bi iÏ1..náá

Talk July 19, 1997 9:33 pm 445

State-application interpretation

A 7 [li:Bi iÏ1..n] @
Ô(X) C{X} where C{X} 7 Üst: X, mt: Üli:X→Bi iÏ1..náá

(li distinct)

[fk=bk kÏ1..m | li=ς(xi:A)bi{xi} iÏ1..n] @
pack X=Ü fk:Bk kÏ1..má
with Üst=Ü fk=bk kÏ1..má,

 mt=µ(m:Üli:X→Bi iÏ1..ná) Üli=λ(s:X)bi’ iÏ1..náá
: C{X}

(fk, li distinct)

(for
appropriate bi’)

xiP fj @ s† fj (jÏ1..m)
(internal)

xiP fj:=b @ s† fj:=b (jÏ1..m)
(internal)

xi.lj @ m†lj(s) (jÏ1..n)
(internal)

o.lj @ open o as X, p:C{X} in p†mt†lj(p†st) : Bj (jÏ1..n)
(external)

Talk July 19, 1997 9:33 pm 446

The Recursive-Record Semantics (Example)
This interpretation is often used to code objects within λ-calculi, for specific examples.

A typical application concerns movable color points:

(Here X is the type of self, that is, the Self type of CPoint.)

CPoint @
Obj(X)[x:Int, c:Color | mv:Int→X]

cPoint : CPoint @
[x = 0, c = black | mv = ς(s:CPoint) λ(dx:Int) sPx:=sPx+dx]

Talk July 19, 1997 9:33 pm 447

The translation is:

• An auxiliary function init is used both for field initialization and for the creation of modified
objects during update.

• Only internal field update is handled correctly.

• This translation achieves the desired effect, yielding the expected behavior for cPoint and the
expected subtypings for CPoint.

• If the code for mv had been λ(dx:Int) f(s)Px:=sPx+dx, where f is of appropriate type, it would
not have been clear how to proceed.

CPoint @
µ(X)Üx:Int, c:Color, mv:Int→Xá

cPoint : CPoint @
let rec init(x0:Int, c0:Color) =

µ(s:CPoint) fold(CPoint,
Üx = x0, c = c0,
 mv = λ(dx:Int) init(unfold(s)†x+dx, unfold(s)†c)á)

in init(0, black)

Talk July 19, 1997 9:33 pm 448

The Split-Methods Semantics
Untyped split-method interpretation

• A method lj is represented by two record components, ljsel and ljupd.

• create takes a collection of functions and produces a record.
The uses of create are encapsulated within the definition of create.

• A method lj is updated by supplying the new code for lj to the function ljupd. This code is
passed on to create.

• A method lj is invoked by applying the function ljsel to o.

[li=ς(xi)bi iÏ1..n] @
let rec create(yi iÏ1..n) =

Ülisel=yi,
 liupd=λ(yi’) create(yj jÏ1..i–1, yi’, yk kÏi+1..n) iÏ1..ná

in create(λ(xi)bi iÏ1..n)

(li distinct)

o.lj @ o†ljsel(o) (jÏ1..n)

o.ljfiüς(y)b @ o†ljupd(λ(y)b) (jÏ1..n)

Talk July 19, 1997 9:33 pm 449

The Split-Method Semantics (Typed)
• A first attempt at typing this interpretation could be to set:

but this type contains contravariant occurrences of X. Subtypings fail.

[li:Bi iÏ1..n] @ µ(X) Ülisel:X→Bi iÏ1..n, liupd:(X→Bi)→X iÏ1..ná

Talk July 19, 1997 9:33 pm 450

• As a second attempt, we can use quantifiers to obtain covariance:

~ Now the interpretation validates the subtypings for object types, since all occurrences of
X, bound by Ô, are covariant.

~ Unfortunately, it is impossible to perform method invocations: after opening the Ô we do
not have an appropriate argument of type X to pass to lisel.

~ But since this argument should be the object itself, we can solve the problem by adding a
record component, r, bound recursively to the object:

[li:Bi iÏ1..n] @
µ(Y) Ô(X<:Y) Ülisel:X→Bi iÏ1..n, liupd:(X→Bi)→X iÏ1..ná

[li:Bi iÏ1..n] @
µ(Y) Ô(X<:Y) Ür:X, lisel:X→Bi iÏ1..n, liupd:(X→Bi)→X iÏ1..ná

Talk July 19, 1997 9:33 pm 451

Split-method interpretation

A 7 [li:Bi iÏ1..n] @
µ(Y)Ô(X<:Y)C{X}

where
C{X} 7 Ür:X, lisel:X→Bi iÏ1..n, liupd:(X→Bi)→X iÏ1..ná

(li distinct)

[li=ς(xi:A)bi iÏ1..n] @
let rec create(yi:A→Bi iÏ1..n):A =

fold(A,
pack X=A
with

Ür=create(yi iÏ1..n),
 lisel=yi iÏ1..n,
 liupd=λ(yi’:A→Bi)create(yj jÏ1..i–1, yi’, yk kÏi+1..n) iÏ1..ná

: C{X})
in create(λ(xi:A)bi iÏ1..n)

Talk July 19, 1997 9:33 pm 452

oA.lj @
open unfold(o) as X<:A, p:C{X}
in p†ljsel(p†r) : Bj

(jÏ1..n)

o.ljfiüς(y:A)b @
open unfold(o) as X<:A, p:C{X}
in p†ljupd(λ(y:A)b) : A

(jÏ1..n)

Talk July 19, 1997 9:33 pm 453

• We obtain both the expected semantics and the expected subtyping properties.

• The definition of the interpretation is syntax-directed.

• The interpretation covers all of the first-order object calculus (including method update).

• It extends naturally to other constructs:

~ variance annotations,

~ Self types (with some twists),

~ a limited form of method extraction
(but in general method extraction is unsound),

~ imperative update,

~ imperative cloning.

• It suggests principles for reasoning about objects.

Talk July 19, 1997 9:33 pm 454

An Imperative Version
For an imperative split-method interpretation, it is not necessary to split methods, because up-
dates can be handled imperatively.

The imperative version correctly deals with a cloning construct.
[fk:Bk kÏ1..m | li:Bi iÏ1..n] @

µ(Y) Ô(X<:Y) Ür:X, fk:Bk kÏ1..m, li:X→Bi iÏ1..n, cl:Üá→Xá

Talk July 19, 1997 9:33 pm 455

Imperative self-application interpretation

A 7 [fk:Bk kÏ1..m | li:Bi iÏ1..n] @
µ(Y)Ô(X<:Y)C{X}

with
C{X} 7 Ür:X, fk:Bk kÏ1..m, li:X→Bi iÏ1..n, cl:Üá→Xá

(fk, li distinct)

[fk=bk kÏ1..m | li=ς(xi:A)bi iÏ1..n] @
let rec create(yk:Bk kÏ1..m, yi:A→Bi iÏ1..n):A =

let z:CYAZ = Ür=nil(A), fk=yk kÏ1..m, li=yi iÏ1..n, cl=nil(Üá→A)á
in z†r:=fold(A,pack X<:A=A with z : CYXZ);

z†cl:=λ(x:Üá)create(z† fk kÏ1..m, z†li iÏ1..n);
z†r

in create(bk kÏ1..m, λ(xi:A)bi iÏ1..n)

oAP fj @ open unfold(o) as X<:A, p:C{X} in p† fj : Bj (jÏ1..m)

oAP fj:=b @
open unfold(o) as X<:A, p:C{X}
in fold(A,pack X’<:X=X with p† fj:=b : CYX’Z) : A

(jÏ1..m)

Talk July 19, 1997 9:33 pm 456

oA.lj @
open unfold(o) as X<:A, p:C{X}
in p†lj(p†r) : Bj

(jÏ1..n)

o.ljfiüς(x:A)b @
open unfold(o) as X<:A, p:C{X}
in fold(A,pack X’<:X=X

 with p†lj:=λ(x:A)b : CYX’Z) : A

(jÏ1..n)

clone(oA) @
open unfold(o) as X<:A, p:C{X}
in p†cl(Üá) : A

(jÏ1..n)

Talk July 19, 1997 9:33 pm 457

Summary
In our interpretations:

• Objects are records of functions, after all.

• Object types combine recursive types and existential types (with a recursion going through a
bound!).

• The interpretations are direct and general enough to explain objects.

• But they are elaborate, and perhaps not definitive, and hence not a replacement for primitive
objects.

Talk July 19, 1997 10:33 pm 458

MATCHING

• The subtyping relation between object types is the foundation of subclassing and inheritance
. . . when it holds.

• Subtyping fails to hold between certain types that arise naturally in object-oriented program-
ming. Typically, recursively defined object types with binary methods.

• F-bounded subtyping was invented to solve this kind of problem.

• A new programming construction, called “matching” has been proposed to solve the same
problem, inspired by F-bounded subtyping.

• Matching achieves “covariant subtyping” for Self types. Contravariant subtyping still ap-
plies, otherwise.

• We argue that matching is a good idea, but that it should not be based on F-bounded subtyp-
ing. We show that a new interpretation of matching, based on higher-order subtyping, has
better properties.

Talk July 19, 1997 10:33 pm 459

When Subtyping Works
• A simple treatment of objects, classes, and inheritance is possible for covariant Self types

(only).

Talk July 19, 1997 10:33 pm 460

Object Types
• Consider two types Inc and IncDec containing an integer field and some methods:

• A typical object of type Inc is:

Inc @ µ(X)[n:Int, inc+:X]
IncDec @ µ(Y)[n:Int, inc+:Y, dec+:Y]

p : Inc @
[n = 0,
 inc = ς(self: Inc) self.n := self.n +1]

Talk July 19, 1997 10:33 pm 461

Subtyping
• Subtyping (<:) is a reflexive and transitive relation on types, with subsumption:

• For object types, we have the subtyping rule:

• For recursive types we have the subtyping rule:

• Combining them, we obtain a derived rule for recursive object types:

 if a : A and A <: B then a : B

[vi:Bi iÏI, mj
+:Cj jÏJ] <: [vi:Bi iÏI’, mj

+:Cj’ jÏJ’]
if Cj <: Cj’ for all jÏJ’, with I’⊆I and J’⊆J

µ(X)A{X} <: µ(Y)B{Y}
if X <: Y implies A{X} <: B{Y}

µ(X)[vi:Bi iÏI, mj
+:Cj{X} jÏJ] <: µ(Y)[vi:Bi iÏI’, mj

+:Cj’{Y} jÏJ’]
if X <: Y implies Cj{X} <: Cj’{Y} for all jÏJ’, with I’⊆I and J’⊆J

E.g.: IncDec <: Inc

Talk July 19, 1997 10:33 pm 462

Pre-Methods
• The subtyping relation (e.g. IncDec <: Inc) plays an important role in inheritance.

• Inheritance is obtained by reusing polymorphic code fragments.

• We call a code fragment such as pre-inc a pre-method.

• N.B. it is not enough to have pre-inc : Inc→Inc if we want to inherit this pre-method in In-
cDec classes. Here polymorphism is essential.

• N.B. the body of pre-inc is typed by means of a structural rule for update, which is essential
in many examples involving bounded quantification.

• We can specialize pre-inc to implement the method inc of type Inc or IncDec:

• Thus, we have reused pre-inc at different types, without retypechecking its code.

pre-inc : Ó(X<:Inc)X→X @
λ(X<:Inc) λ(self:X) self.n := self.n+1 (using a “structural” rule)

pre-inc(Inc) : Inc→Inc
pre-inc(IncDec) : IncDec→IncDec

Talk July 19, 1997 10:33 pm 463

Classes
• Pre-method reuse can be systematized by collecting pre-methods into classes.

• A class for an object type A can be described as a collection of pre-methods and initial field
values, plus a way of generating new objects of type A.

• In a class for an object type A, the pre-methods are parameterized over all subtypes of A, so
that they can be reused (inherited) by any class for any subtype of A.

• Let A be a type of the form µ(X)[vi:Bi iÏI, mj
+:Cj{X} jÏJ]. As part of a class for A, a pre-meth-

od for mj would have the type Ó(X<:A)X→Cj{X}. For example:

IncClass @
[new+: Inc,
 n: Int,
 inc: Ó(X<:Inc)X→X]

N.B.: inc: Inc→Inc
would not allow inheritance

IncDecClass @
[new+: IncDec,
 n: Int,
 inc: Ó(X<:IncDec)X→X,
 dec: Ó(X<:IncDec)X→X]

Talk July 19, 1997 10:33 pm 464

• A typical class of type IncClass reads:

The code for new is uniform: it assembles all the pre-methods into a new object.

incClass : IncClass @
[new = ς(classSelf: IncClass)

[n = classSelf.n, inc = ς(self:Inc) classSelf.inc(Inc)(self)]
 n = 0,
 inc = pre-inc]

Talk July 19, 1997 10:33 pm 465

Inheritance
• Inheritance is obtained by extracting a pre-method from a class and reusing it for constructing

another class.

For example, the pre-method pre-inc of type Ó(X<:Inc)X→X in a class for Inc could be re-
used as a pre-method of type Ó(X<:IncDec)X→X in a class for IncDec:

• This example of inheritance requires the subtyping:

Ó(X<:Inc)X→X <: Ó(X<:IncDec)X→X

which follows from the subtyping rules for quantified types and function types:

incDecClass : IncDecClass @
[new = ς(classSelf: IncDecClass)[...],
 n = 0,
 inc = incClass.inc,
 dec = ...]

Ó(X<:A)B <: Ó(X<:A’)B’ if A’<:A and if X<:A implies B<:B’
A→B <: A’→B’ if A’ <: A and B <: B’

Talk July 19, 1997 10:33 pm 466

Inheritance from Subtyping
• In summary, inheritance from a class for Inc to a class for IncDec is enabled by the subtyping

IncDec <: Inc.

• Unfortunately, inheritance is possible and desirable even in situations where such subtypings
do not exist. These situations arise with binary methods.

Talk July 19, 1997 10:33 pm 467

Binary Methods
• Consider a recursive object type Max, with a field n and a binary method max.

Consider also a type MinMax with an additional binary method min:

• Problem:

MinMax E: Max

according to the rules we have adopted, since :

Moreover, it would be unsound to assume MinMax <: Max.

• Hence, the development of classes and inheritance developed for Inc and IncDec falters in
presence of binary methods.

Max @ µ(X)[n:Int, max+:X→X]

MinMax @ µ(Y)[n:Int, max+:Y→Y, min+:Y→Y]

Y <: X öûú Y→Y <: X→X for max+

Talk July 19, 1997 10:33 pm 468

Looking for a New Relation
• If subtyping doesn’t work, maybe some other relation between types will.

• A possible replacement for subtyping: matching.

Talk July 19, 1997 10:33 pm 469

Matching
• Recently, Bruce et al. proposed axiomatizing a relation between recursive object types, called

matching.

• We write A <# B to mean that A matches B; that is, that A is an “extended version” of B. We
expect to have, for example:

• In particular, we may write X <# A, where X is a variable. We may then quantify over all
types that match a given one, as follows:

We call Ó(X<#A)B match-bounded quantification, and say that occurrences of X in B are
match-bound.

• For recursive object types we have:

IncDec <# Inc
MinMax <# Max

Ó(X<#A)B{X}

µ(X)[vi:Bi iÏI, mj
+:Cj{X} jÏJ] <# µ(X)[vi:Bi iÏI’, mj

+:Cj{X} jÏJ’]
 if I’⊆I and J’⊆J

Talk July 19, 1997 10:33 pm 470

• Using match-bounded quantification, we can rewrite the polymorphic function pre-inc in
terms of matching rather than subtyping:

• Similarly, we can write a polymorphic version of the function pre-max:

• Thus, the use of match-bounded quantification enables us to express the polymorphism of
both pre-max and pre-inc: contravariant and covariant occurrences of Self are treated uni-
formly.

pre-inc : Ó(X<#Inc)X→X @
λ(X<#Inc) λ(self:X) self.n := self.n+1

pre-inc(IncDec) : IncDec→IncDec

pre-max : Ó(X<#Max)X→X→X @
λ(X<#Max) λ(self:X) λ(other:X)

if self.n>other.n then self else other

pre-max(MinMax) : MinMax→MinMax→MinMax (didn’t hold with <:)

Talk July 19, 1997 10:33 pm 471

Matching and Subsumption
• A subsumption-like property does not hold for matching; A <# B is not quite as good as A <:

B. (Fortunately, subsumption was not needed in the examples above.)

• Thus, matching cannot completely replace subtyping. For example, forget that IncDec <: Inc
and try to get by with IncDec <# Inc. We could not typecheck:

We can circumvent this difficulty by turning inc into a polymorphic function of type
Ó(X<#Inc)X→X, but this solution requires foresight, and is cumbersome:

a : A and A <# B need not imply a : B

inc : Inc→Inc @
λ(x:Inc) x.n := x.n+1

λ(x:IncDec) inc(x)

pre-inc : Ó(X<#Inc)X→X @
λ(X<#Inc) λ(x:X) x.n := x.n+1

λ(x:IncDec) pre-inc(IncDec)(x)

Talk July 19, 1997 10:33 pm 472

Matching and Classes
• We can now revise our treatment of classes, adapting it for matching.

• A typical class of type MaxClass reads:

MaxClass @
[new+: Max,
 n: Int,
 max: Ó(X<#Max)X→X→X]

MinMaxClass @
[new+: MinMax,
 n: Int,
 max: Ó(X<#MinMax)X→X→X,
 min: Ó(X<#MinMax)X→X→X]

maxClass : MaxClass @
[new = ς(classSelf: MaxClass)

[n = classSelf.n, max = ς(self:Max) classSelf.max(Max)(self)],
 n = 0,
 max = pre-max]

Talk July 19, 1997 10:33 pm 473

Matching and Inheritance
• A typical (sub)class of type MinMaxClass reads:

• The implementation of max is taken from maxClass, that is, it is inherited. The inheritance
typechecks assuming that

Ó(X<#Max)X→X→X <: Ó(X<#MinMax)X→X→X

• Thus, we are still using some subtyping and subsumption as a basis for inheritance.

minMaxClass : MinMaxClass @
[new = ς(classSelf: MinMaxClass)[...],
 n = 0,
 max = maxClass.max,
 min = ...]

Talk July 19, 1997 10:33 pm 474

Advantages of Matching

Matching is attractive
• The fact that MinMax matches Max is reasonably intuitive.

• Matching handles contravariant Self and inheritance of binary methods.

• Matching is meant to be directly axiomatized as a relation between types.The typing rules of
a programming language that includes matching can be explained directly.

• Matching is simple from the programmer’s point of view, in comparison with more elaborate
type-theoretic mechanisms that could be used in its place.

However...
• The notion of matching is ad hoc (e.g., is defined only for object types).

• We still have to figure out the exact typing rules and properties matching.

• The rules for matching vary in subtle but fundamental ways in different languages.

• What principles will allow us to derive the “right” rules for matching?

Talk July 19, 1997 10:33 pm 475

Applications
• A language based on matching should be given a set of type rules based on the source type

system.

• The rules can be proven sound by a judgment-preserving translation into an object-calculus
with higher-order subtyping.

Talk July 19, 1997 10:33 pm 476

MATCHING AS
HIGHER-ORDER SUBTYPING

Talk July 19, 1997 10:33 pm 477

Higher-Order Subtyping
• Subtyping can be extended to operators, in a pointwise manner:

• The property:

AOp ': BOp (AOp is a suboperator of BOp)

is seen as a statement that A extends B.

F ': G if, for all X, F(X) <: G(X)

MinMaxOp 7 λ(X) [n:Int, max+:X→X, min+: X→X]
': λ(X) [n:Int, max+:X→X, min+: X→X] 7 MaxOp

Talk July 19, 1997 10:33 pm 478

• We obtain:

We can parameterize over all type operators X with the property that X ': MaxOp.

We need to be careful about how X is used in B{X}, because X is now a type operator. The
idea is to take the fixpoint of X wherever necessary.

MaxOp ': MaxOp

MinMaxOp (ÓX. [n:Int, max+:X→X, min+: X→X]
': MaxOp <: [n:Int, max+:X→X])

Ó(X':MaxOp)B{X}

pre-max : Ó(X':MaxOp)X*→X*→X* @
λ(X':MaxOp) λ(self:X*) λ(other:X*)

if self.n>other.n then self else other

pre-max(MinMaxOp) : MinMax→MinMax→MinMax

Talk July 19, 1997 10:33 pm 479

This typechecks, e.g.:

(In this derivation we have used the unfolding property X*=X(X*), but we can do without it
by introducing explicit fold/unfold terms.)

X = X(X*)
X ': MaxOp ⇒ X(X*) <: MaxOp(X*)
self : X* ⇒ self : X(X*) ⇒ self : MaxOp(X*) ⇒ self.n : Int

Talk July 19, 1997 10:33 pm 480

The Higher-Order Interpretation
• The central idea of the interpretation is:

We must be more careful about the B{X*} part, because X may occur both in type and oper-
ator contexts.

• We handle this problem by two translations for the two kinds of contexts:

A <# B 1 AOp ': BOp

Ó(X<#A)B{X} 1 Ó(X':AOp)B{X*} (not quite)

A <# B 1 OperÜAá ': OperÜBá
Ó(X<#A)B 1 Ó(X':OperÜAá)TypeÜBá

Talk July 19, 1997 10:33 pm 481

• The two translations, TypeÜAá and OperÜAá, can be summarized as follows.

For object types of the source language, we set:

For other types, we set:

OperÜXá 1 (assuming that X is match-bound)
X

OperÜµ(X)[vi:Bi iÏI, mj
+:Cj{X} jÏJ]á 1

λ(X)[vi:TypeÜBiá iÏI, mj
+:TypeÜCj{X}á jÏJ]

TypeÜXá 1 (when X is match-bound)
X*

TypeÜµ(X)[vi:Bi iÏI, mj
+:Cj{X} jÏJ]á 1

µ(X)[vi:TypeÜBiá iÏI, mj
+:TypeÜCj{X}á jÏJ]

TypeÜXá 1 X (when X is not match-bound)
TypeÜA→Bá 1 TypeÜAá→TypeÜBá
TypeÜÓ(X<#A)Bá 1 Ó(X':OperÜAá)TypeÜBá

Talk July 19, 1997 10:33 pm 482

• For instance:

This translation is well-defined on type variables, so there are no problems with cascading
quantifiers.

• A note about unfolding of recursive types:

~ The higher-order interpretation does not use the unfolding property of recursive types for
the target language; instead, it uses explicit fold and unfold primitives.

~ On the other hand, the higher-order interpretation is incompatible with the unfolding prop-
erty of recursive types in the source language, because OperÜµ(X)A{X}á and Op-
erÜA{µ(X)A{X}}á are in general different type operators.

~ Technically, the unfolding property of recursive types is not an essential feature and it is
the origin of complications; we are fortunate to be able to drop it throughout.

TypeÜÓ(X<#Max) Ó(Y<#X) X→Yá 1
Ó(X':MaxOp) Ó(Y':X) X*→Y*

Talk July 19, 1997 10:33 pm 483

Reflexivity and Transitivity
• Reflexivity is now satisfied by all object types, including variables; for every object type A,

we have:

This follows from the reflexivity of ':.

• Similarly, transitivity is satisfied by all triples A,B, and C of object types, including variables:

This follows from the transitivity of ':.

A <# A 1 OperÜAá ': OperÜAá

A <# B and B <# C imply A <# C 1
OperÜAá ': OperÜBá and OperÜBá ': OperÜCá

imply OperÜAá ': OperÜCá

Talk July 19, 1997 10:33 pm 484

Matching Self
• With the higher-order interpretation, the relation:

holds when the type operators corresponding to A and A’ are in the subtyping relation, that
is, when:

For this, it suffices that, for every j in J’:

Since Self is µ-bound, all the occurrences of Self are translated as Self*. Then, an occurrence
of Self* on the left can be matched only by a corresponding occurrence of Self* on the right,
since Self is arbitrary. In short,:

Self matches only itself.

.This makes it easy to glance at two object types and tell whether they match

A 7 µ(Self)[vi:Bi iÏI, mj
+:Cj{Self} jÏJ]

<# µ(Self)[vi:Bi iÏI, mj
+:Cj’{Self} jÏJ’] 7 A’

[vi:TypeÜBiá iÏI, mj
+:TypeÜCj{Self}á jÏJ]

<: [vi:TypeÜBiá iÏI, mj
+:TypeÜCj’{Self}á jÏJ’] for an arbitrary Self

 TypeÜCj{Self}á <: TypeÜCj’{Self}á

Talk July 19, 1997 10:33 pm 485

Inheritance and Classes
via Higher-Order Subtyping

• Applying our higher-order translation to MaxClass, we obtain:

The corresponding translation at the term level produces:

MaxClass @
[new+: Max,
 n: Int,
 max: Ó(X':MaxOp)X*→X*→X*]

maxClass : MaxClass @
[new = ς(classSelf: MaxClass)

fold(
[n = classSelf.n,
 max = ς(self:MaxOp(Max))

classSelf.max(MaxOp)(fold(self))]),
 n = 0,
 max = pre-max]

Talk July 19, 1997 10:33 pm 486

It is possible to check that pre-max is well typed.

The instantiations pre-max(MaxOp) and pre-max(MinMaxOp) are both legal. Since pre-max
has type Ó(X':MaxOp)X*→X*→X*, this pre-method can be used as a component of a class
of type MaxClass.

Moreover, a higher-order version of the rule for quantifier subtyping yields:

so pre-max has type Ó(X':MinMaxOp)X*→X*→X* by subsumption, and hence pre-max
can be reused as a component of a class of type MinMaxClass.

pre-max : Ó(X':MaxOp)X*→X*→X* @
λ(X':MaxOp) λ(self:X*) λ(other:X*)

if unfold(self).n>unfold(other).n then self else other

Ó(X':MaxOp)X*→X*→X* <: Ó(X':MinMaxOp)X*→X*→X*

Talk July 19, 1997 10:33 pm 487

• Note. We expect following typings:

The higher-order interpretation induces the following term translations:

For the first typing, we have unfold(x):X(X*). Moreover, from X':IncOp we obtain X(X*)
<: IncOp(X*) = [n:Int, inc:X*]. Therefore, unfold(x):[n:Int, inc:X*], and unfold(x).n:Int.

For the second typing, we have again unfold(x):X(X*) with X(X*) <: [n:Int, inc:X*]. We
then use a typing rule for field update in the target language. This rule says that if a:A, c:C,
and A <: [v:C,...] then (a.v:=c) : A. In our case, we have unfold(x):X(X*), b:Int, and X(X*)
<: [n:Int, inc:X*]. We obtain (unfold(x).n:=b) : X(X*). Finally, by folding, we obtain fold(un-
fold(x).n:=b) : X*.

if X<#Inc and x:X then x.n : Int
if X<#Inc and x:X and b:Int then x.n:=b : X

if X':IncOp and x:X* then unfold(x).n : Int
if X':IncOp and x:X* and b:Int then fold(unfold(x).n:=b) : X*

Talk July 19, 1997 10:33 pm 488

MATCHING AS
F-BOUNDED SUBTYPING

Talk July 19, 1997 10:33 pm 489

Type Operators
• We introduce a theory of type operators that will enable us to express various formal relation-

ships between types. Alternatives interpretations of matching will become available.

• A type operator is a function from types to types.

• Notation for fixpoints:

λ(X)B{X} maps each type X to a corresponding type B{X}
B(A) applies the operator B to the type A

(λ(X)B{X})(A) = B{A}

F* abbreviates µ(X)F(X)

AOp abbreviates λ(X)D{X} whenever A 7 µ(X)D{X}

Talk July 19, 1997 10:33 pm 490

• We obtain:

• The unfolding property of recursive types yields:

• Note that AOp is defined in terms of the syntactic form µ(X)D{X} of A. In particular, the un-
folding D{A} of A is not necessarily in a form such that D{A}Op is defined. Even if D{A}Op

is defined, it need not equal AOp. For example, consider:

• Thus, we may have two types A and B such that A = B but AOp ¦ BOp (when recursive types
are taken equal up to unfolding). This is a sign of trouble to come.

MaxOp 7 λ(X)[n:Int, max+:X→X]
MinMaxOp 7 λ(Y)[n:Int, max+:Y→Y, min+:Y→Y]

MaxOp* = µ(X) MaxOp(X) = µ(X) [n:Int, max+:X→X] = Max
MaxOp* = MaxOp(µ(X) MaxOp(X)) = MaxOp(Max)

D{X} @ µ(Y) X→Y

A @ µ(X) D{X}
D{A} 7 µ(Y) A→Y = A

AOp 7 λ(X) D{X}
D{A}Op 7 λ(Y) A→Y ¦ AOp

Talk July 19, 1997 10:33 pm 491

F-bounded Subtyping
• F-bounded subtyping was invented to support parameterization in the absence of subtyping.

• The property:

A <: BOp(A) (A is a pre-fixpoint of BOp)

is seen as a statement that A extends B.

• This view is justified because, for example, a recursive object type A such that A <: [n:Int,
max+:A→A] often has the shape µ(Y)[n:Int, max+:Y→Y, ...].

Talk July 19, 1997 10:33 pm 492

• Both Max and MinMax are pre-fixpoints of MaxOp:

So, we can parameterize over all types X with the property that X <: MaxOp(X).

This form of parameterization leads to a general typing of pre-max, and permits the inherit-
ance of pre-max:

Max <: MaxOp(Max) (= Max)
MinMax (= [n:Int, max+:MinMax→MinMax, min+: ...])

<: MaxOp(MinMax) (= [n:Int, max+:MinMax→MinMax])

Ó(X<:MaxOp(X))B{X}

pre-max : Ó(X<:MaxOp(X))X→X→X @
λ(X<:MaxOp(X)) λ(self:X) λ(other:X)

if self.n>other.n then self else other

pre-max(Max) : Max→Max→Max
pre-max(MinMax) : MinMax→MinMax→MinMax

Talk July 19, 1997 10:33 pm 493

The F-bounded Interpretation
• The central idea of the interpretation is:

• However, this interpretation is not defined when the right-hand side of <# is a variable, as in
the case of cascading quantifiers:

Since Ó(X<:AOp(X)) Ó(Y<:XOp(Y)) ... does not make sense the type structure supported by
this interpretation is somewhat irregular: type variables are not allowed in places where ob-
ject types are allowed.

A <# B 1 A <: BOp(A)
Ó(X<#A)B{X} 1 Ó(X<:AOp(X))B{X}

Ó(X<#A) Ó(Y<#X) ... 1 ?

Talk July 19, 1997 10:33 pm 494

Reflexivity and Transitivity
• We would expect A <# A to hold, e.g. to justifying the instantiation f(A) of a polymorphic

function f : Ó(X<#A)B. We have:

with A = AOp(A) by the unfolding property of recursive types. However, if A is a type vari-
able X, then XOp is not defined, so X <: XOp(X) does not make sense.
Hence, reflexivity does not hold in general.

• If A, B, and C are object types of the source language, then we would expect that A <# B and
B <# C imply A <# C; this would mean:

As in the case of reflexivity, we run into difficulties with type variables.

A <# A 1 A <: AOp(A)

 A <: BOp(A) and B <: COp(B) imply A <: COp(A)

Talk July 19, 1997 10:33 pm 495

Counterexample to Transitivity

• Worse, transitivity fails even for closed types, with the following counterexample:

We have both A <# B and B <# C, but we do not have A <# C (because [p+:A→Int, q:Int] <:
[p+:B→Int] fails).

A @ µ(X)[p+: X→Int, q: Int]
B @ µ(X)[p+: X→Int]
C @ µ(X)[p+: B→Int]

A = [p+: A→Int, q: Int] <:
BOp(A) = [p+: A→Int]

B = [p+: B→Int] <:
COp(B) = [p+: B→Int]

A = [p+: A→Int, q: Int] E :
COp(A) = [p+: B→Int]

Talk July 19, 1997 10:33 pm 496

• We can trace this problem back to the definition of DOp, which depends on the exact syntax
of the type D. Because of the syntactic character of that definition, two equal types may be-
have differently with respect to matching.

In our example, we have B = C by the unfolding property of recursive types. Despite the
equality B = C, we have A <# B but not A <# C !

Talk July 19, 1997 10:33 pm 497

Matching Self
• According to the F-bounded interpretation, two types that look rather different may match.

Consider two types A and A’ such that:

This holds when A <: A’Op(A), that is, when [vi:Bi iÏI, mj
+:Cj{A} jÏJ] <: [vi:Bi iÏI, mj

+:Cj’{A}
jÏJ’]. It suffices that, for every jÏJ’:

• For example, we have:

The variable X on the left matches the type [v:Int] on the right. Since X is the Self variable,
we may say that Self matches not only Self but also other types (here [v:Int]). This treatment
of Self is both sound and flexible. On the other hand, it can be difficult for a programmer to
see whether two types match.

A 7 µ(X)[vi:Bi iÏI, mj
+:Cj{X} jÏJ]

<# µ(X)[vi:Bi iÏI, mj
+:Cj’{X} jÏJ’] 7 A’

Cj{A} <: Cj’{A}

µ(X)[v:Int, m+:X] <# µ(X)[m+: [v:Int]]

Talk July 19, 1997 10:33 pm 498

THE LANGUAGE O–3

Talk July 19, 1997 10:33 pm 499

Matching in O–3
• Many features of O–3 are familiar: for example, object types,

class types, and single inheritance.

• The main new feature is a matching relation, written <#. The
matching relation is defined only between object types, and
between variables bounded by object types.

~ An object type A 7 Object(X)[…] matches another object type B 7
Object(X)[…] (written A <# B) when all the object components of B
are literally present in A, including any occurrence of the common
variable X.

Object(X)[l:X→X, m:X] <# Object(X)[l:X→X] Yes
Object(X)[l:X→X, m:X] <: Object(X)[l:X→X] No

Talk July 19, 1997 10:33 pm 500

• Matching is the basis for inheritance in O–3. That is, if A <# B,
then a method of a class for B may be inherited as a method of
a class for A.

~ In particular, binary methods can be inherited. For example, a method
l of a class for Object(X)[l:X→X] can be inherited as a method of a
class for Object(X)[l:X→X, m:X].

~ Matching does not support subsumption: when a has type A and A <#
B, it is not sound in general to infer that a has type B.

~ We will have that if A and B are object types and A <: B, then A <# B.
Moreover, if all occurrences of Self in B are covariant and A <# B,
then A <: B.

Talk July 19, 1997 10:33 pm 501

• With the loss of subsumption, it is often necessary to
parameterize over all types that match a given type.

~ For example, a function with type (Object(X)[l:X→X])→C may have
to be rewritten, for flexibility, with type All(Y<#Object(X)-
[l:X→X])Y→C, enabling the application to an object of type
Object(X)[l:X→X, m:X].

• No subtype relation appears in the syntax of O–3, although
subtyping is still used in its type rules.

Talk July 19, 1997 10:33 pm 502

Syntax of Types
Syntax of O–3 types

A,B ::=
X
Top
Object(X)[liυi:Bi{X} iÏ1..n]
Class(A)
All(X<#A)B

types
type variable
maximum type
object type
class type
match-quantified type

Talk July 19, 1997 10:33 pm 503

Syntax of Programs
Syntax of O–3 terms

a,b,c ::=
x
object(x:X=A) li=bi{X,x} iÏ1..n end
a.l
a.l := method(x:X<#A) b end
new c
root
subclass of c:C with(x:X<#A)

li=bi{X,x} iÏn+1..n+m
override li=bi{X,x} iÏOvr⊆1..n end

c^l(A,a)
fun(X<#A) b end
b(A)

terms
variable
direct object construction
field/method selection
update
object construction from a class
root class
subclass

additional attributes
overridden attributes

class selection
match-polymorphic abstraction
match-polymorphic instantiation

Talk July 19, 1997 10:33 pm 504

Abbreviations

Root @
Class(Object(X)[])

class with(x:X<#A) li=bi{X,x} iÏ1..n end @
subclass of root:Root with(x:X<#A) li=bi{X,x} iÏ1..n override end

subclass of c:C with(x:X<#A) ... super.l ... end @
subclass of c:C with(x:X<#A) ... c^l(X,x) ... end

object(x:X=A) ... l copied from c ... end @
object(x:X=A) ... l=c^l(X,x) ... end

a.l := b @ where X,xÌFV(b) and a:A,
a.l := method(x:X<#A) b end with A clear from context

Talk July 19, 1997 10:33 pm 505

Example: Points

~ These definitions freely use covariant and contravariant occurrences
of Self types. The liberal treatment of Self types in O–3 yields CPoint
<# Point.

~ In O–1, the same definitions of Point and CPoint are valid, but they
are less satisfactory because CPoint <: Point fails; therefore the O–1
definitions adopt a different type for eq.

~ In O–2, contravariant occurrences of Self types are illegal; therefore
the O–2 definitions have a different type for eq, too.

Point @ Object(X)[x: Int, eq+: X→Bool, mv+: Int→X]

CPoint @ Object(X)[x: Int, c: Color, eq+: X→Bool, mv+: Int→X]

Talk July 19, 1997 10:33 pm 506

~ We define two classes pointClass and cPointClass that correspond to
the types Point and CPoint, respectively:

pointClass : Class(Point) @
class with (self: X<#Point)

x = 0,
eq = fun(other: X) self.x = other.x end,
mv = fun(dx: Int) self.x := self.x+dx end

end

cPointClass : Class(CPoint) @
subclass of pointClass: Class(Point)
with (self: X<#CPoint)

c = black
override

eq = fun(other: X) super.eq(other) and self.c = other.c end,
mv = fun(dx: Int) super.mv(dx).c := red end

end

Talk July 19, 1997 10:33 pm 507

~ The subclass cPointClass could have inherited both mv and eq.
However, we chose to override both of these methods in order to adapt
them to deal with colors.

~ In contrast with the corresponding programs in O–1 and O–2, no uses
of typecase are required in this code. The use of typecase is not needed
for accessing the color of a point after moving it. (Typecase is needed
in O–1 but not in O–2.) Specifically, the overriding code for mv does
not need a typecase on the result of super.mv(dx) in the definition of
cPointClass.

Talk July 19, 1997 10:33 pm 508

~ Other code that moves color points does not need a typecase either:

~ Moreover, O–3 allows us to specialize the binary method eq as we
have done in the definition of cPointClass (unlike O–2). This
specialization does not require dynamic typing: we can write
super.eq(other) without first doing a typecase on other.

~ Thus the treatment of points in O–3 circumvents the previous needs
for dynamic typing. The price for this is the loss of the subtyping
CPoint <: Point, and hence the loss of subsumption between CPoint
and Point.

cPoint : CPoint @ new cPointClass

movedColor : Color @ cPoint.mv(1).c

Talk July 19, 1997 10:33 pm 509

Example: Binary Trees

• The definition of the object type Bin is the same one we could have given in O–1, but it would
be illegal in O–2 because of the contravariant occurrences of X.

• The method bodies rely on some new facts about typing; in particular, if self has type X and
X<#Bin, then self.lft and self.isLeaf:=false have type X.

Bin @
Object(X)[isLeaf: Bool, lft: X, rht: X, consLft: X→X, consRht: X→X]

binClass : Class(Bin) @
class with(self: X<#Bin)

isLeaf = true,
lft = self.lft,
rht = self.rht,
consLft = fun(lft: X) ((self.isLeaf := false).lft := lft). rht := self end,
consRht = fun(rht: X) ((self.isLeaf := false).lft := self). rht := rht end

end

leaf : Bin @
new binClass

Talk July 19, 1997 10:33 pm 510

• Let us consider now a type NatBin of binary trees with natural number components.

• We have NatBin <# Bin, although NatBin </: Bin.

• If b has type Bin and nb has type NatBin, then b.consLft(b) and nb.consLft(nb) are allowed,
but b.consLft(nb) and nb.consLft(b) are not.

• The methods consLft and consRht can be used as binary operations on any pair of objects
whose common type matches Bin. O–3 allows inheritance of consLft and consRht. A class for
NatBin may inherit consLft and consRht from binClass.

NatBin @
Object(X)[n: Nat, isLeaf: Bool, lft: X, rht: X, consLft: X→X, consRht: X→X]

Talk July 19, 1997 10:33 pm 511

• Because NatBin is not a subtype of Bin, generic operations must be explicitly parameterized
over all types that match Bin. For example, we may write:

• Explicit parameterization must be used systematically in order to guarantee future flexibility
in usage, especially for object types that contain binary methods.

selfCons : All(X<#Bin)X→X @
fun(X<#Bin) fun(x: X) x.consLft(x) end end

selfCons(NatBin)(nb) : NatBin for nb : NatBin

Talk July 19, 1997 10:33 pm 512

Example: Cells
• In this version, the proper methods are indicated with variance annotations +; the contents and

backup attributes are fields.

Cell @
Object(X)[contents: Nat, get+: Nat, set+: Nat→X]

cellClass : Class(Cell) @
class with(self: X<#Cell)

contents = 0,
get = self.contents,
set = fun(n: Nat) self.contents := n end

end

Talk July 19, 1997 10:33 pm 513

ReCell @
Object(X)[contents: Nat, get+: Nat, set+: Nat→X, backup: Nat, restore+: X]

reCellClass : Class(ReCell) @
subclass of cellClass:Class(Cell)
with(self: X<#ReCell)

backup = 0,
restore = self.contents := self.backup

override
set = fun(n: Nat) cellClass^set(X, self.backup := self.contents)(n) end

end

Talk July 19, 1997 10:33 pm 514

• We can also write a version of ReCell that uses method update instead of a backup field:

ReCell’ @
Object(X)[contents: Nat, get+: Nat, set+: Nat→X, restore: X]

reCellClass’ : Class(ReCell’) @
subclass of cellClass:Class(Cell)
with(self: X<#ReCell’)

restore = self.contents := 0
override

set = fun(n: Nat)
let m = self.contents
in cellClass^set(X,

self.restore := method(y: X) y.contents := m end)
(n)

end
end

end

Talk July 19, 1997 10:33 pm 515

• We obtain ReCell <: Cell and ReCell’ <: Cell, because of the covariance of X and the positive
variance annotations on the method types of Cell where X occurs.

• On the other hand, we have also ReCell <# Cell and ReCell’ <# Cell, and this does not depend
on the variance annotations.

• A generic doubling function for all types that match Cell can be written as follows:

double : All(X<#Cell) X→X @
fun(X<#Cell) fun(x: X) x.set(2*x.get) end end

Talk July 19, 1997 10:33 pm 516

Typing
Judgments

Environments

E ∫ Q
E ∫ A
E ∫ A :: Obj

environment E is well formed
A is a well formed type in E
A is a well formed object type in E

E ∫ A <: B
E ∫ A <# B
E ∫ a : A

A is a subtype of B in E
A matches B in E
a has type A in E

(Env) (Env X<:) (Env X<#) (Env x)
E ∫ A XÌdom(E) E ∫ A :: Obj XÌdom(E) E ∫ A xÌdom(E)

 ∫ Q E, X<:A ∫ Q E, X<#A ∫ Q E, x:A ∫ Q

Talk July 19, 1997 10:33 pm 517

Type Formation Rules

Types

Object Types

• The judgments for types and object types are connected by the (Type Obj) rule.

(Type Obj) (Type X) (Type Top)
E ∫ A :: Obj E’, X<:A, E” ∫ Q E ∫ Q

E ∫ A E’, X<:A, E” ∫ X E ∫ Top

(Type Class) (where A 7 Object(X)[liυi:Bi iÏ1..n]) (Type All<#)
E, X<#A ∫ Bi ÓiÏ1..n E, X<#A ∫ B

E ∫ Class(A) E ∫ All(X<#A)B

(Obj X) (Obj Object) (li distinct, υiÏ{o,–,+})
E’, X<#A, E” ∫ Q E, X<:Top ∫ Bi ÓiÏ1..n

E’, X<#A, E” ∫ X :: Obj E ∫ Object(X)[liυi:Bi iÏ1..n] :: Obj

Talk July 19, 1997 10:33 pm 518

Subtyping Rules

Subtyping

(Sub Refl) (Sub Trans) (Sub X) (Sub Top)
E ∫ A E ∫ A<:B E ∫ B<:C E’, X<:A, E” ∫ Q E ∫ A

E ∫ A<:A E ∫ A<:C E’, X<:A, E” ∫ X<:A E ∫ A<:Top

(Sub Object)
E ∫ Object(X)[liυi:Bi iÏ1..n+m] E ∫Object(Y)[liυi’:Bi’ iÏ1..n]

E, Y<:Top, X<:Y ∫ υiBi <: υi’ Bi’ Ó iÏ1..n E, X<:Top ∫ Bi Ó iÏn+1..m

E ∫ Object(X)[liυi:Bi iÏ1..n+m] <: Object(Y)[liυi’:Bi’ iÏ1..n]

(Sub All<#)
E ∫ A’ <# A E, X<#A’ ∫ B <: B’

E ∫ All(X<#A)B <: All(X<#A’)B’

Talk July 19, 1997 10:33 pm 519

(Sub Invariant) (Sub Covariant) (Sub Contravariant)
E ∫ B E ∫ B <:

B’ υÏ{o,+}
E ∫ B’ <: B υÏ{o,–

}

E ∫ o B <: o B E ∫ υ B <: + B’ E ∫ υ B <: – B’

Talk July 19, 1997 10:33 pm 520

Matching Rules

Matching

(Match Refl) (Match Trans) (Match X)
E ∫ A :: Obj E ∫ A<#B E ∫ B<#C E’, X<#A, E” ∫ Q

E ∫ A<#A E ∫ A<#C E’, X<#A, E” ∫ X<#A

(Match Object) (li distinct)
E, X<:Top ∫ υiBi <: υi’ Bi’ Ó iÏ1..n E, X<:Top ∫ Bi Ó iÏn+1..m

E ∫ Object(X)[liυi:Bi iÏ1..n+m] <# Object(X)[liυi’:Bi’ iÏ1..n]

Talk July 19, 1997 10:33 pm 521

Program Typing Rules

Terms

(Val Subsumption) (Val x)
E ∫ a : A E ∫ A <: B E’, x:A, E” ∫ Q

E ∫ a : B E’, x:A, E” ∫ x : A

(Val Object) (where A 7 Object(X)[liυi:Bi{X} iÏ1..n])
E, x:A ∫ biYAZ : BiYAZ ÓiÏ1..n

E ∫ object(x:X=A) li=bi{X} iÏ1..n end : A

(Val Select) (where A 7 Object(X)[liυi:Bi{X} iÏ1..n])
E ∫ a : A’ E ∫ A’ <# A υjÏ{o,+} jÏ1..n

E ∫ a.lj : BjYA’Z

(Val Method Update) (where A 7 Object(X)[liυi:Bi iÏ1..n])
E ∫ a : A’ E ∫ A’ <# A E, X<#A’, x:X ∫ b : Bj υjÏ{o,–} jÏ1..n

E ∫ a.lj := method(x:X<#A’)b end : A’

Talk July 19, 1997 10:33 pm 522

(Val New)
E ∫ c : Class(A)

E ∫ new c : A

(Val Root)
E ∫ Q

E ∫ root : Class(Object(X)[])

(Val Subclass) (where A 7 Object(X)[liυi:Bi iÏ1..n+m], A’ 7 Object(X’)[liυi’:Bi’ iÏ1..n], Ovr⊆1..n)
E ∫ Class(A) E ∫ c’ : Class(A’) E ∫ A<#A’

E, X<#A ∫ Bi’ <: Bi ÓiÏ1..n–Ovr
E, X<#A, x:X ∫ bi : Bi ÓiÏOvr∪n+1..n+m

E ∫ subclass of c’:Class(A’) with(x:X<#A) li=bi iÏn+1..n+m override li=bi iÏOvr end
: Class(A)

(Val Class Select) (where A 7 Object(X)[liυi:Bi{X} iÏ1..n])
E ∫ a : A’ E ∫ A’ <# A E ∫ c : Class(A) jÏ1..n

E ∫ c^lj(A’,a) : BjYA’Z

Talk July 19, 1997 10:33 pm 523

(Val Fun<#) (Val Appl<#)
E, X<#A ∫ b : B E ∫ b : All(X<#A)B{X} E ∫ A’ <# A

E ∫ fun(X<#A) b end : All(X<#A)B E ∫ b(A’) : BYA’Z

Talk July 19, 1997 10:33 pm 524

Translation of O–3
• We give a translation into a functional calculus:

Syntax of Obω<:µ

K,L ::=
Ty
K⇒L

kinds
types
operators from K to L

A,B ::=
X
Top
[liυi:Bi iÏ1..n]
Ó(X<:A::K)B
µ(X)A
λ(X::K)B
B(A)

constructors
constructor variable
the biggest constructor at kind Ty
object type (li distinct, υiÏ{o,–,+})
bounded universal type
recursive type
operator
operator application

Talk July 19, 1997 10:33 pm 525

a,b ::=
x
[l=ς(xi:Ai)bi iÏ1..n]
a.l
a.lfiüς(x:A)b
λ(X<:A::K)b
b(A)
fold(A,a)
unfold(a)

terms
variable
object formation (li distinct)
method invocation
method update
constructor abstraction
constructor application
recursive fold
recursive unfold

Talk July 19, 1997 10:33 pm 526

Translation (Sketch)

• The symbol 5 means “informally translates to”, with 5Ty for
translations that yield types, and 5Op for translations that yield
operators.

• We represent the translation of a term a by a, the type
translation of a type A by A, and its operator translation by A.

• We say that a variable X is subtype-bound when it is
introduced as X<:A for some A; we say that X is match-bound
when it is introduced as X<#A for some A.

Talk July 19, 1997 10:33 pm 527

Translation summary

X 5Op X (where X is match-bound in the environment)

Object(X)[liυi:Bi iÏ1..n] 5Op λ(X)[liυi:Bi iÏ1..n]

X 5Ty X (when X is subtype-bound in the environment)

X 5Ty X* (when X is match-bound in the environment)

Top 5Ty Top

Object(X)[liυi:Bi iÏ1..n] 5Ty (λ(X)[liυi:Bi iÏ1..n])*

Class(A) 5Ty [new+:A, li+:Ó(X':A)X*→Bi iÏ1..n]
where A 7 Object(X)[liυi:Bi iÏ1..n]

All(X<#A)B 5Ty Ó(X':A)B

Talk July 19, 1997 10:33 pm 528

x 5 x

object(x:A) li=bi{x} iÏ1..n end 5 fold(A,[li=ς(x:A(A))biYfold(A,x)Z iÏ1..n])

a.lj 5 unfold(a).lj

a.lj := method(x:A’)b{x} end 5
fold(A’,unfold(a).ljfiüς(x:A’(A’))bY fold(A’,x)Z)

new c 5 c.new

root 5 [new=ς(z:[new+:µ(X)[]])fold(µ(X)[],[])]

subclass of c’:C’ with(x:X<#A) li=bi iÏn+1..n+m override li=bi iÏOvr end 5
[new=ς(z:C)fold(A,[li=ς(s:A(A))z.li(A)(fold(A,s)) iÏ1..n+m])
 li=ς(z:C) c’.li iÏ1..n–Ovr,
 li=ς(z:C)λ(X':A)λ(x:X*)bi iÏOvr∪n+1..n+m]
where C 7 Class(A)

c^lj(A’,a) 5 c.lj(A’)(a)

fun(X<#A)b end 5 λ(X':A)b

b(A’) 5 b(A’)

Talk July 19, 1997 10:33 pm 529

Summary on Matching
• There are situations in programming where one would like to parameterize over all “exten-

sions” of a recursive object type, rather than over all its subtypes.

• Both F-bounded subtyping and higher-order subtyping can be used in explaining the match-
ing relation.

We have presented two interpretations of matching:

• Both interpretations can be soundly adopted, but they require different assumptions and yield
different rules. The higher-order interpretation validates reflexivity and transitivity.

Technically, the higher-order interpretation need not assume the equality of recursive types
up to unfolding (which seems to be necessary for the F-bounded interpretation). This leads to
a simpler underlying theory, especially at higher order.

A <# B 1 A <: BOp(A) (F-bounded interpretation)

A <# B 1 AOp ': BOp (higher-order interpretation)

Talk July 19, 1997 10:33 pm 530

• Thus, we believe that the higher-order interpretation is preferable; it should be a guiding prin-
ciple for programming languages that attempt to capture the notion of type extension.

• Matching achieves “covariant subtyping” for Self types and inheritance of binary methods at
the cost not validating subsumption.

• Subtyping is still useful when subsumption is needed. Moreover, matching is best understood
as higher-order subtyping. Therefore, subtyping is still needed as a fundamental concept,
even though the syntax of a programming language may rely only on matching.

Talk July 19, 1997 11:51 pm 530

TRANSLATIONS

• In order to give insight into type rules for object-oriented
languages, translations must be judgment-preserving (in
particular, type and subtype preserving).

• Translating object-oriented languages directly to typed λ-
calculi is just too hard. Object calculi provide a good stepping
stone in this process, or an alternative endpoint.

• Translating object calculi into λ-calculi means, intuitively,
“programming in object-oriented style within a procedural
language”. This is the hard part.

Talk July 19, 1997 11:51 pm 531

Untyped Translations
• Give insights into the nature of object-oriented computation.

• Objects = records of functions.

o-o language

λ-calculusς-calculus

= easy translation

Talk July 19, 1997 11:51 pm 532

Type-Preserving Translations
• Give insights into the nature of object-oriented typing and

subsumption/coercion.

• Object types = recursive records-of-functions types.

[li:Bi
iÏ1..n] @ µ(X)Üli:X→Bi

iÏ1..ná

typed

λ-calculusς-calculus

= useful for semantic purposes,
impractical for programming,
loses the “oo-flavor”

o-o language

typed typed

without <:

Talk July 19, 1997 11:51 pm 533

Subtype-Preserving Translations
• Give insights into the nature of subtyping for objects.

• Object types = recursive bounded existential types (!!).

[li:Bi
iÏ1..n] @ µ(Y)Ô(X<:Y)Ür:X, li

sel:X→Bi
iÏ1..n, li

upd:(X→Bi)→X iÏ1..ná

o-o language

λ-calculusς-calculus

= very difficult to obtain,
impossible to use

typed

typed typed

with <:

 in actual programming

Talk July 19, 1997 11:51 pm 534

CONCLUSIONS

Talk July 19, 1997 11:51 pm 535

Functions vs. Objects

• Functions can be translated into objects.
Therefore, pure object-based languages are at least as
expressive as procedural languages.
(Despite all the Smalltalk philosophy, to our knowledge
nobody had proved that one can build functions from objects.)

• Conversely, using sophisticated type systems, it is possible to
translate objects into functions.
(But this translation is difficult and not practical.)

Talk July 19, 1997 11:51 pm 536

Classes vs. Objects

• Classes can be encoded in object calculi, easily and faithfully.
Therefore, object-based languages are just as expressive as
class-based ones.
(To our knowledge, nobody had shown that one can build
type-correct classes out of objects.)

• Method update, a distinctly object-based construct, is tractable
and can be useful.

Talk July 19, 1997 11:51 pm 537

Foundations

• We can make sense of object-oriented constructs.

~ Object calculi are simple enough to permit precise definitions and
proofs.

~ Object calculi are quite expressive and object-oriented.

• Object calculi are fundamental

~ Subtype-preserving translations of object calculi into λ-calculi are
hard.

~ In contrast, subtype-preserving translations of λ-calculi into object-
calculi can be easily obtained.

~ In this sense, object calculi are a more convenient foundation for
object-oriented programming than λ-calculi.

Talk July 19, 1997 11:51 pm 538

Language Design

• Object calculi are a good basis for designing rich object-
oriented type systems (including polymorphism, Self types,
etc.).

• Object-oriented languages can be shown sound by fairly direct
translations into object calculi.

Talk July 19, 1997 11:51 pm 539

Future Areas

• Typed ς-calculi should be a good simple foundation for
studying object-oriented specification and verification.

• They should also give us a formal platform for studying
object-oriented concurrent languages (as opposed to
“ordinary” concurrent languages).

Talk July 19, 1997 11:51 pm 540

References
• http://www.research.digital.com/SRC/

personal/Luca_Cardelli/TheoryOfObjects.html

• M.Abadi, L.Cardelli: A Theory of Objects.
Springer, 1996.

Talk July 19, 1997 11:51 pm 541

EXTRA SLIDES

Talk July 19, 1997 11:51 pm 542

Unsoundness of Naive Object Subtyping with
Binary Methods

Consider:

Assume MinMax <: Max, then:

But (Eiffel, O2, ...):

Max @ µ(X)[n:Int, max+:X→X]
MinMax @ µ(Y)[n:Int, max+:Y→Y, min+:Y→Y]

m : Max @ [n = 0, max = ...]
mm : MinMax @

[n = 0, min = ... ,
 max = ς(s:MinMax) λ(o:MinMax)

if o.min(o).n > s.n then o else s]

mm : Max (by subsumption)
mm.max(m) : Max

mm.max(m) Òñ if m.min(m).n > mm.n then m else mm Òñ CRASH!

Talk July 19, 1997 11:51 pm 543

Unsoundness of Covariant Object Types
With record types, it is unsound to admit covariant subtyping of record components in presence
of imperative field update. With object types, the essence of that couterexample can be repro-
duced even in a purely functional setting.

U @ [] The unit object type.
L @ [l:U] An object type with just l.
L <: U

P @ [x:U, f:U]
Q @ [x:L, f:U]
Assume Q <: P by an (erroneous) covariant rule for object subtyping

q : Q @ [x = [l=[]], f = ς(s:Q) s.x.l]
then q : P by subsumption with Q <: P
hence q.x:=[] : P that is [x = [], f = ς(s:Q) s.x.l] : P

But (q.x:=[]).f fails!

Talk July 19, 1997 11:51 pm 544

Unsoundness of Method Extraction
It is unsound to have an operation that extracts a method as a function.

P @ [f:[]]
Q @ [f:[], y:[]] Q <: P

p : P @ [f=[]]
q : Q @ [f=ς(s:Q)s.y, y=[]]
then q : P by subsumption with Q <: P
hence q†f : P→[] that is λ(s:Q)s.y : P→[]

But q.f(p) fails!

(Val Extract) (where A 7 [li:Bi iÏ1..n])
E ∫ a : A jÏ1..n

E ∫ a†lj : A→Bj

(Eval Extract) (where A 7 [li:Bi iÏ1..n], a 7 [li=ς(xi:A’)bi iÏ1..n+m])
E ∫ a : A jÏ1..n

E ∫ a†lj ↔ λ(xj:A)bj : A→Bj

Talk July 19, 1997 11:51 pm 545

Unsoundness of a Naive
Recursive Subtyping Rule

Assume:

A 7 µ(X)X→Nat <: µ(X)X→Int 7 B

Let: Type-erased:

f : Nat →Nat (given)
a : A = fold(A, λ(x:A) 3) = λ(x) 3
b : B = fold(B, λ(x:B) –3) = λ(x) –3

c : A = fold(A, λ(x:A) f(unfold(x)(a))) = λ(x) f(x(a))

By subsumption:

c : B

Hence:

unfold(c)(b) : Int Well-typed! = c(b)

But:

unfold(c)(b) = f(–3) Error!

Talk July 20, 1997 2:52 pm 546

Operationally Sound Update

Luca Cardelli
Digital Equipment Corporation

Systems Research Center

Talk July 20, 1997 2:52 pm 547

Outline
• The type rules necessary for “sufficiently polymorphic” update operations on records and ob-

jects are based on unusual operational assumptions.

• These update rules are sound operationally, but not denotationally (in standard models). They
arise naturally in type systems for programming, and are not easily avoidable.

• Thus, we have a situation where operational semantics is clearly more advantageous than de-
notational semantics.

• However (to please the semanticists) I will show how these operationally-based type systems
can be translated into type systems that are denotationally sound.

Talk July 20, 1997 2:52 pm 548

The polymorphic update problem
L.Cardelli, P.Wegner

“The need for bounded quantification arises very frequently in object-oriented programming.
Suppose we have the following types and functions:

It is typical in (type-free) object-oriented programming to reuse functions like moveX on ob-
jects whose type was not known when moveX was defined. If we now define:

we may want to use moveX to move tiles, not just points.”

type Point = [x: Int, y: Int]
value moveX0 = λ(p: Point, dx: Int) p.x := p.x + dx; p
value moveX = λ(P <: Point) λ(p: P, dx: Int) p.x := p.x + dx; p

type Tile = [x: Int, y: Int, hor: Int, ver: Int]

Tile <: Point

moveX0([x=0, y=0, hor=1, ver=1], 1).hor fails

moveX(Tile)([x=0, y=0, hor=1, ver=1], 1).hor succeeds

Talk July 20, 1997 2:52 pm 549

• In that paper, bounded quantification was justified as a way of handling polymorphic update,
and was used in the context of imperative update.

• The examples were inspired by object-oriented applications. Object-oriented languages com-
bine subtyping and polymorphism with state encapsulation, and hence with imperative up-
date. Some form of polymorphic update is inevitable.

• Simplifying the situation a bit, let’s consider the equivalent example in a functional setting.
We might hope to achieve the following typing:

But ...

bump @ λ(P <: Point) λ(p: P) p.x := p.x + 1

bump : Ó(P <: Point) P→P

Talk July 20, 1997 2:52 pm 550

There is no bump there!

Neither semantically
J.Mitchell

In standard models, the type Ó(P<:Point)P→P contains only the identity function.

Consider {p} for any pÏPoint. If f : Ó(P<:Point)P→P, then f({p}) : {p}→{p}, therefore f
must map every point to itself, and must be the identity.

Nor parametrically
M.Abadi, L.Cardelli, G.Plotkin

By parametricity (for bounded quantifiers), we can show that if f : Ó(P<:Point)P→P, then
Ó(P<:Point) Ó(x:P) f(P)(x) =P x. Thus f is an identity.

Nor by standard typing rules
As shown next ...

Talk July 20, 1997 2:52 pm 551

The simple rule for update

• According to this rule, bump does not typecheck as desired:

We must go from p:P to p:Point by subsumption before we can apply the rule. Therefore we
obtain only:

(Val Simple Update)
E ∫ a : [li:Bi iÏ1..n] E ∫ b :

Bj jÏ1..n

E ∫ a.lj:=b : [li:Bi iÏ1..n]

bump @ λ(P <: Point) λ(p: P) p.x := p.x + 1

bump : Ó(P <: Point) P→Point

Talk July 20, 1997 2:52 pm 552

The “structural” rule for update

• According to this rule, bump typechecks as desired, using the special case where A is a type
variable.

• Therefore, (Val Structural Update) is not sound in most semantic models, because it popu-
lates the type Ó(P<:Point)P→P with a non-identity function.

• However, (Val Structural Update) is in practice highly desirable, so the interesting question
is under which conditions it is sound.

(Val Structural Update)
E ∫ a : A E ∫ A <: [li:Bi iÏ1..n] E ∫ b : Bj jÏ1..n

E ∫ a.lj:=b : A

bump @ λ(P <: Point) λ(p: P) p.x := p.x + 1

bump : Ó(P <: Point) P→P

Talk July 20, 1997 2:52 pm 553

Can’t allow too many subtypes
• Suppose we had:

then:

unsound!

• To recover from this problem, the subtyping rule for records/objects must forbid certain sub-
typings:

• Therefore, for soundness, the rule for structural updates makes implicit assumptions about
the subtype relationships that may exist.

BoundedPoint @ {x: 0..9, y: 0..9}
BoundedPoint <: Point

bump(BoundedPoint)({x=9, y=9}) : BoundedPoint

(Sub Object)
E ∫ Bi ÓiÏ1..m

E ∫ [li:Bi iÏ1..n+m] <: [li:Bi iÏ1..n]

Talk July 20, 1997 2:52 pm 554

Relevant rules for structural update

(Sub Object) (Val Subsumption)
E ∫ Bi ÓiÏ1..m E ∫ a : A E ∫ A <: B

E ∫ [li:Bi iÏ1..n+m] <: [li:Bi iÏ1..n] E ∫ a : B

(Val Object) (Val Structural Update)
E ∫ bi : Bi ÓiÏ1..n E ∫ a : A E ∫ A <: [li:Bi iÏ1..n] E ∫ b : Bj jÏ1..n

E ∫ [li=bi iÏ1..n] : [li:Bi iÏ1..n] E ∫ a.lj:=b : A

(Red Update)
∫ a Òñ [li=vi iÏ1..n] ∫ b Òñ v jÏ1..n

∫ a.lj:=b Òñ [lj=v, li=vi iÏ1..n–{j}]

Talk July 20, 1997 2:52 pm 555

The structural subtyping lemmas
Lemma (Structural subtyping)

If E ∫ [li:Bi iÏI]<:C then either C 7 Top, or C 7 [li:Bi iÏJ] with J⊆I.
If E ∫ C<:[li:Bi iÏJ] then either C 7 [li:Bi iÏI] with J⊆I,
 or C 7 X1 and E contains a chain X1 <: ... <: Xp <: [li:Bi iÏI] with J⊆I.

Proof

By induction on the derivations of E ∫ [li:Bi iÏI]<:C and E ∫ C<:[li:Bi iÏI].
M

Talk July 20, 1997 2:52 pm 556

Soundness by subject reduction
Theorem (Subject reduction)

If ∫ a : A and ∫ a Òñ v then ∫ v : A.

Proof By induction on the derivation of ∫ a Òñ v.

Talk July 20, 1997 2:52 pm 557

Case (Red Update)

By hypothesis ∫ c.lj:=b : A. This must have come from (1) an application of (Val Struc-
tural Update) with assumptions ∫ c : C, and ∫ C <: D where D 7 [lj:Bj, ...], and ∫ b :
Bj, and with conclusion ∫ c.lj:=b : C, followed by (2) a number of subsumption steps im-
plying ∫ C <: A by transitivity.
By induction hypothesis, since ∫ c : C and ∫ c Òñ z 7 [li=zi iÏ1..n], we have ∫ z : C.
By induction hypothesis, since ∫ b : Bj and ∫ b Òñ w, we have ∫ w : Bj.
Now, ∫ z : C must have come from (1) an application of (Val Object) with assumptions
 ∫ zi : Bi’ and C’ 7 [li’:Bi’ iÏ1..n], and with conclusion ∫ z : C’, followed by (2) a number
of subsumption steps implying ∫ C’ <: C by transitivity. By transitivity, ∫ C’ <: D.
Hence by the Structural Subtyping Lemma, we must have Bj 7 Bj’. Thus ∫ w : Bj’. Then,
by (Val Object), we obtain ∫ [lj=w, li=zi iÏ1..n–{j}] : C’. Since ∫ C’<:A by transitivity, we
have ∫ [lj=w, li=zi iÏ1..n–{j}] : A by subsumption.

∫ c Òñ [li=zi iÏ1..n] ∫ b Òñ w jÏ1..n

∫ c.lj:=b Òñ [lj=w, li=zi iÏ1..n–{j}]

Talk July 20, 1997 2:52 pm 558

Other structural rules
• Rules based on structural assumptions (structural rules, for short) are not restricted to record/

object update. They also arise in:

~ method invocation with Self types,

~ object cloning,

~ class encodings,

~ unfolding recursive types.

• The following is one of the simplest examples of the phenomenon (although not very useful
in itself):

Talk July 20, 1997 2:52 pm 559

A structural rule for product types
M.Abadi

• The following rule for pairing enables us to mix two pairs a and b of type C into a new pair
of the same type. The only assumption on C is that it is a subtype of a product type B1×B2.

The soundness of this rule depends on the property that every subtype of a product type B1×B2

is itself a product type C1×C2.

• This property is true operationally for particular systems, but fails in any semantic model
where subtyping is interpreted as the subset relation. Such a model would allow the set {a,b}
as a subtype of B1×B2 whenever a and b are elements of B1×B2. If a and b are different, then
Ü fst(a),snd(b)á is not an element of {a,b}. Note that {a,b} is not a product type.

E ∫ C <: B1×B2 E ∫ a : C E ∫ b : C

E ∫ Ü fst(a),snd(b)á : C

Talk July 20, 1997 2:52 pm 560

A structural rule for recursive types
M.Abadi, L.Cardelli, R.Viswanathan

• In the paper “An Interpretation of Objects and Object types” we give a translation of object
types into ordinary types:

this works fine for non-structural rules.

• In order to validate a structural update rule in the source calculus, we need a structural update
rule in the target calculus. It turns out that the necessary rule is the following, which is oper-
ationally sound:

[li:Bi iÏ1..n] @
µ(Y) Ô(X<:Y) Ür:X, lisel:X→Bi iÏ1..n, liupd:(X→Bi)→X iÏ1..ná

E ∫ C <: µ(X)B{X} E ∫ a : C

E ∫ unfold(a) : BYCZ

Talk July 20, 1997 2:52 pm 561

A structural rule for method invocation
• In the context of object types with Self types:

This structural rule is necessary to “encapsulate” structural update inside methods:

(Val Select)
E ∫ a : A E ∫ A <: Obj(X)[li:Bi{X} iÏ1..n] jÏ1..n

E ∫ a.lj : BjYAZ

A @ Obj(X)[n: Int, bump: X]

λ(Y <: A) λ(y: Y) y.bump
: Ó(Y <: A) Y→Y

Talk July 20, 1997 2:52 pm 562

Structural rules and class encodings
Types of the form Ó(X<:A)X→B{X} are needed also for defining classes as collections of pre-
methods. Each pre-method must work for all possible subclasses, parametrically in self, so that
it can be inherited.

A @ Obj(X)[li:Bi{X} iÏ1..n]

Class(A) @ [new: A, li: Ó(X<:A)X→Bi{X} iÏ1..n]

Bump @ Obj(X)[n: Int, bump: X]

Class(Bump) @ [new: Bump, bump: Ó(X<:Bump)X→X]

c : Class(Bump) @
[new = ς(c: Class(Bump)) [n = 0, bump = ς(s: Bump) c.bump(Bump)(s)],
 bump = λ(X<:Bump) λ(x:X) x.n:=x.n+1}]

Talk July 20, 1997 2:52 pm 563

A structural rule for cloning
• In the context of imperative object calculi:

This structural rule is necessary for bumping and returning a clone instead of the original ob-
ject:

(Val Clone)
E ∫ a : A E ∫ A <: [li:Bi iÏ1..n] jÏ1..n

E ∫ clone(a) : A

bump @ λ(P <: Point) λ(p: P) clone(p).x := p.x + 1

bump : Ó(P <: Point) P→P

Talk July 20, 1997 2:52 pm 564

Comments
• Structural rules are quite satisfactory. The operational semantics is the right one, the typing

rules are the right ones for writing useful programs, and the rules are sound for the semantics.

• We do not have a denotational semantics (yet?). (The paper “Operations on Records” by
L.Cardelli and J.Mitchell contains a limited model for structural update; no general models
seems to be known.)

• Even without a denotational semantcs, there is an operational semantics from which one
could, hopefully, derive a theory of typed equality.

• Still, I would like to understand in what way a type like Ó(X<:Point)X→X does not mean
what most people in this room might think.

• Insight may come from translating a calculus with structural rules, into one without structural
rules for which we have a standard semantics.

Talk July 20, 1997 2:52 pm 565

Translating away structural rules
• The “Penn translation” can be used to map F<: into F by threading coercion functions.

• Similarly, we can map an F<:-like calculus with structural rules into a normal F<:-like calculus
by threading update functions (c.f. M.Hofmann and B.Pierce: Positive <:).

• Example :

translates to:

• Next: a simplified, somewhat ad-hoc, calculus to formalize this translation.

f : Ó(X <: [l: Int]) X → X @
λ(X <: [l: Int]) λ(x: X) x.l := 3

 f ([l: Int])

 (N.B. the update x.l:=3 uses the structural rule)

f : Ó(X <: [l: Int]) [l: X→Int→X] → X → X @
λ(X <: [l: Int]) λ(πX: [l: X→Int→X]) λ(x: X) πX.l(x)(3)

f ([l: Int]) ([l = λ(x: [l: Int]) λ(y: Int) x.l := y])

 (N.B. the update x.l:=y uses the non-structural rule)

Talk July 20, 1997 2:52 pm 566

Syntax

• We consider method update instead of field update (aA.l:=b @ a.lfiüς(x:A)b).

• We do not consider object types with Self types.

• We do not consider arbitrary bounds for type variables, only object-type bounds.

A,B ::=
X
[li:Bi iÏ1..n]
A→B
Ó(X<:[li:Bi iÏ1..n])B

types
type variable
object type (li distinct)
function types
bounded universal type

a,b ::=
x
[li=ς(xi:Ai)bi iÏ1..n]
a.l
a.lfiüς(x:A)b
λ(x:A)b
b(a)
λ(X<:[li:Bi iÏ1..n])b
b(A)

terms
variable
object (li distinct)
method invocation
method update
function
application
polymorphic function
polymorphic instantiation

Talk July 20, 1997 2:52 pm 567

Environments

Types

(Env) (Env x) (Env X<:) (where A 7 [li:Bi iÏ1..n])
E ∫ A xÌdom(E) E ∫ A XÌdom(E)

 ∫ Q E, x:A ∫ Q E, X<:A ∫ Q

(Type X<:) (Type Object) (li distinct)
E’, X<:A, E” ∫ Q E ∫ Bi ÓiÏ1..n

E’, X<:A, E” ∫ X E ∫ [li:Bi iÏ1..n]

(Type Arrow) (Type All<:)
E ∫ A E ∫ B E, X<:A ∫ B

E ∫ A→B E ∫ Ó(X<:A)B

Talk July 20, 1997 2:52 pm 568

Subtyping

(Sub Refl) (Sub Trans)
E ∫ A E ∫ A <: B E ∫ B <: C

E ∫ A <: A E ∫ A <: C

(Sub X) (Sub Object) (li distinct)
E’, X<:A,E” ∫ Q E ∫ Bi ÓiÏ1..n+m

E’, X<:A, E” ∫ X<:A E ∫ [li:Bi iÏ1..n+m] <: [li:Bi iÏ1..n]

(Sub Arrow) (Sub All)
E ∫ A’ <: A E ∫ B <: B’ E ∫ A’ <: A E, X<:A’ ∫ B <: B’

E ∫ A→B <: A’→B’ E ∫ Ó(X<:A)B <: Ó(X<:A’)B’

Talk July 20, 1997 2:52 pm 569

Typing

(Val Subsumption) (Val x)
E ∫ a : A E ∫ A <: B E’, x:A, E” ∫ Q

E ∫ a : B E’, x:A, E” ∫ x:A

(Val Object) (where A 7 [li:Bi iÏ1..n]) (Val Select)
E, xi:A ∫ bi : Bi ÓiÏ1..n E ∫ a : [li:Bi iÏ1..n] jÏ1..n

E ∫ [li=ς(xi:A)bi iÏ1..n] : A E ∫ a.lj : Bj

(Val Update Obj) (where A 7 [li:Bi iÏ1..n]) (Val Update X) (where A 7 [li:Bi iÏ1..n])
E ∫ a : A E, x:A ∫ b : Bj jÏ1..n E ∫ a : X E ∫ X<:A E, x:X ∫ b : Bj jÏ1..n

E ∫ a.ljfiüς(x:A)b : A E ∫ a.ljfiüς(x:X)b : X

(Val Fun) (Val Appl)
E, x:A ∫ b : B E ∫ b : A→B E ∫ a : A

E ∫ λ(x:A)b : A→B E ∫ b(a) : B

(Val Fun2<:) (Val Appl2<:) (where A’ 7 [li:Bi iÏ1..n] or A’ 7 Y)
E, X<:A ∫ b : B E ∫ b : Ó(X<:A)B{X} E ∫ A’<:A

E ∫ λ(X<:A)b : Ó(X<:A)B E ∫ b(A’) : BYA’Z

Talk July 20, 1997 2:52 pm 570

• The source system for the translation is the one given above. The target system is the one giv-
en above minus the (Val Update X) rule.

• Derivations in the source system can be translated to derivations that do not use (Val Update
X). The following tables give a slightly informal summary of the translation on derivations.

Translation of Environments

where each li: X→(X→äBiã)→X is an updator that takes an object of type X, takes a pre-method
for X (of type X→äBiã), updates the i-th method of the object, and returns the modified object
of type X.

äã @

äE, x:Aã @ äEã, x:äAã

äE, X<:[li:Bi iÏ1..n]ã @ äEã, X<:ä[li:Bi iÏ1..n]ã, πX:[li:X→(X→äBiã)→X iÏ1..n]

Talk July 20, 1997 2:52 pm 571

Translation of Types

• N.B. the translation preserves subtyping. In particular:

since:

• We have a calculus with polymorphic update where quantifier and arrow types are contravar-
iant on the left (c.f. Positive Subtyping).

äXã @ X

ä[li:Bi iÏ1..n]ã @ [li:äBiã iÏ1..n]

äA→Bã @ äAã→äBã

äÓ(X<:[li:Bi iÏ1..n])Bã @ Ó(X<:ä[li:Bi iÏ1..n]ã)[li:X→(X→äBiã)→X iÏ1..n]→äBã

äÓ(X<:[li:Bi iÏ1..n])Bã <: äÓ(X<:[li:Bi iÏ1..n+m])Bã

Ó(X<:ä[li:Bi iÏ1..n]ã) [li:X→(X→äBiã)→X iÏ1..n]→äBã <:

Ó(X<:ä[li:Bi iÏ1..n+m]ã) [li:X→(X→äBiã)→X iÏ1..n+m]→äBã

Talk July 20, 1997 2:52 pm 572

Translation of Terms

äxã @ x

ä[li=(xi:Ai)bi iÏ1..n]ã @ [li=ς(xi:äAiã)äbiã iÏ1..n]

äa.ljã @ äaã.lj
äa.lfiüς(x:A)bã @ äaã.lfiü(x:äAã)äbã) for (Val Update Obj)

äa.lfiüς(x:X)bã @ πX.l(äaã)(λ(x:X)äbã) for (Val Update X)

äλ(x:A)bã @ λ(x:äAã)äbã

äb(a)ã @ äbã(äaã)

äλ(X<:[li:Bi iÏ1..n])bã @
λ(X<:ä[li:Bi iÏ1..n]ã) λ(πX:[li:X→(X→äBiã)→X iÏ1..n]) äbã

äb(A)ã @ for A = [li:Bi iÏ1..n]
äbã(äAã) ([li = λ(xi:äAã) λ(f:äAã→äBiã) x.lifiüς(z:äAã)f(z) iÏ1..n])

äb(Y)ã @ äbã(Y)(πY)

Talk July 20, 1997 2:52 pm 573

Conclusions
• Structural rules for polymorphic update are sound for operational semantics. They work

equally well for functional and imperative semantics.

• Structural rules can be translated into non structural rules. I have shown a translation for a
restricted form of quantification.

• Theories of equality for systems with structural rules have not been studied directly yet. Sim-
ilarly, theories of equality induced by the translation have not been studied.

	A Theory of Objects
	Luca Cardelli
	joint work with Martín Abadi
	Digital Equipment Corporation Systems Research Center
	Sydney ’97

	Outline
	. Topic: a foundation for object-oriented languages based on object calculi.
	. Plan:

	Object-Oriented Features
	Easy Language Features
	The early days
	The days of structured programming
	End of the easy part

	Hard Language Features
	Four major innovations
	Confusion

	O-O Programming
	Objects
	Classes
	Subtypes
	Subclasses
	Subtyping and subsumption
	A Touch of Skepticism
	. Object-oriented languages have been plagued, possibly more than languages of any other kind, by confusion and unsoundness.
	. How do we keep track of the interactions of the numerous object-oriented features?
	. How can we be sure that they all make sense, and that their interactions make sense?

	Why Objects?
	. Who needs object-oriented languages, anyway?
	. Still, the object-oriented approach has been uniquely successful:

	Foundations
	. Many characteristics of object-oriented languages are different presentations of a few general ideas. The situation is analogous in procedural programming.
	. The l-calculus has provided a basic, flexible model, and a better understanding of procedural languages.
	. A Theory of Objects develops a calculus of objects, analogous to the l-calculus but independent.

	Class-Based Languages
	. Mainstream object-oriented languages are class-based.
	. Some of them are Simula, Smalltalk, C++, Modula-3, and Java.
	. Class-based constructs vary significantly across languages.
	. We cover only core features.
	Basic Characteristics
	Classes and Objects
	. Classes are descriptions of objects.
	. Example: storage cells.
	. Classes generate objects.
	. Objects can refer to themselves.
	Naive Storage Model
	. Object = reference to a record of attributes.
	Naive storage model

	Object Operations
	. Object creation.
	. Field selection.
	. Field update.
	. Method invocation.

	The Method-Suites Storage Model
	. A more refined storage model for class-based languages.
	Method suites

	Embedding vs. Delegation
	. In the naive storage model, methods are embedded in objects.
	. In the methods-suites storage model, methods are delegated to the method suites.

	Comparison of Storage Models
	. Naive and method-suites models are semantically equivalent for class-based languages.
	. They are not equivalent (as we shall see) in object-based languages, where the difference between embedding and delegation is critical.

	Method Lookup
	. Method lookup is the process of finding the code to run on a method invocation o.m(…). The details depend on the language and the storage model.
	. In class-based languages, method lookup gives the illusion that methods are embedded in objects.
	This hides the details of the storage model.
	. Self is always the receiver: the object that appears to contain the method being invoked.

	Subclasses and Inheritance
	. A subclass is a differential description of a class.
	. The subclass relation is the partial order induced by the subclass declarations.
	. Example: restorable cells.
	Subclasses and Self
	. Because of subclasses, the meaning of self becomes dynamic.
	. Because of subclasses, the concept of super becomes useful.

	Subclasses and Naive Storage
	. In the naive implementation, the existence of subclasses does not cause any change in the storage model.

	Subclasses and Method Suites
	. Because of subclasses, the method-suites model has to be reconsidered. In dynamically-typed class-based languages, method suites are chained:
	Hierarchical method suites

	. In statically-typed class-based languages, however, the method-suites model can be maintained in its original form.
	Collapsed method suites

	Embedding/Delegation View of Class Hierarchies
	. Hierarchical method suites:
	. Collapsed method suites:

	Subclasses and Type Compatibility
	. Subclasses are not just a mechanism to avoid rewriting definitions.Consider the following code fragments:
	. Both code fragments would be illegal in Pascal, since InstanceTypeOf(cell) and InstanceTypeOf(reCell) do not match.
	Polymorphism
	. In object-oriented languages these code fragments are made legal by the following rule, which embodies what is often called (subtype) polymorphism:
	or, from the point of view of the typechecker:

	The Subtype Relation
	. We analyze this further, by a reflexive and transitive subtype relation (<:) between InstanceTypeOf types.

	The Subtype Relation: Subsumption
	. This property, called subsumption, is the characteristic property of subtype relations.

	Subclassing is Subtyping
	. This property, which we may call subclassing-is-subtyping, is the characteristic of classical class-based languages.
	Static versus Dynamic Dispatch
	. With the introduction of subsumption, we have to reexamine the meaning of method invocation. For example, given the code:
	we should determine what is the meaning of x.set(3) during the invocation of g.
	. The declared type of x is InstanceTypeOf(cell), while its value is myReCell, which is an instance of reCell.
	. Since set is overridden in reCell, there are two possibilities:
	. We may say that InstanceTypeOf(reCell) is the true type of x during the execution of g(myReCell), and that the true type determines the choice of method.
	. Dynamic dispatch is found in all object-oriented languages, to the point that it can be regarded as one of their defining properties.
	. Dynamic dispatch is an important component of object abstraction.
	. A consequence of dynamic dispatch is that subsumption should have no run-time effect on objects.

	Class-Based Summary
	. In analyzing the meaning and implementation of class-based languages we end up inventing and analyzing sub-structures of objects and classes.
	. These substructures are independently interesting: they have their own semantics, and can be combined in useful ways.
	. What if these substructures were directly available to programmers?

	Object-Based Languages
	. Slow to emerge.
	. Simple and flexible.
	. Usually untyped.
	. Just objects and dynamic dispatch.
	. When typed, just object types and subtyping.
	. Direct object-to-object inheritance.
	An Object, All by Itself
	. Classes are replaced by object constructors.
	. Object types are immediately useful.

	An Object Generator
	. Procedures as object generators.
	. Quite similar to classes!

	Decomposing Class-Based Features
	. General idea: decompose class-based notions and orthogonally recombine them.
	. We have seen how to decompose simple classes into objects and procedures.
	. We will now investigate how to decompose inheritance.

	Prototypes and Clones
	. Classes describe objects.
	. Prototypes describe objects and are objects.
	. Regular objects are clones of prototypes.
	. clone is a bit like new, but operates on objects instead of classes.

	Mutation of Clones
	. Clones are customized by mutation (e.g., update).
	. Field update.
	. Method update.
	. Self-mutation possible.

	Self-Mutation
	. Restorable cells with no backup field.
	. The set method updates the restore method!

	Forms of Mutation
	. Method update is an example of a mutation operation. It is simple and statically typable.
	. Forms of mutation include:

	Object-Based Inheritance
	. Object generation can be obtained by procedures, but with no real notion of inheritance.
	. Object inheritance can be achieved by cloning (reuse) and update (override), but with no shape change.
	. How can one inherit with a change of shape?
	. An option is object extension. But:
	Donors and Hosts
	. General object-based inheritance: building new objects by “reusing” attributes of existing objects.
	. Two orthogonal aspects:
	. Four categories of object-based inheritance:

	Implicit vs. Explicit Inheritance
	. A difference in declaration.
	. Implicit inheritance: one or more objects are designated as the donors (explicitly!), and their attributes are implicitly inherited.
	. Explicit inheritance, individual attributes of one or more donors are explicitly designated and inherited.
	. Super and override make sense for implicit inheritance, not for explicit inheritance.
	. Intermediate possibility: explicitly designate a named collection of attributes that, however, does not form a whole object. E.g. mixin inheritance.
	. (We can see implicit and explicit inheritance, as the extreme points of a spectrum.)

	Embedding vs. Delegation Inheritance
	. A difference in execution.
	. Embedding inheritance: the attributes inherited from a donor become part of the host (in principle, at least).
	. Delegation inheritance: the inherited attributes remain part of the donor, and are accessed via an indirection from the host.
	. Either way, self is the receiver.
	. In embedding, host objects are independent of their donors. In delegation, complex webs of dependencies may be created.

	Embedding
	. Host objects contain copies of the attributes of donor objects.
	Embedding

	Embedding-Based Languages
	. Embedding provides the simplest explanation of the standard semantics of self as the receiver.
	. Embedding was described by Borning as part of one of the first proposals for prototype-based languages.
	. Recently, it has been adopted by languages like Kevo and Obliq. We call these languages embedding-based (concatenation-based, in Kevo terminology).

	Embedding-Based Inheritance
	. Embedding inheritance can be specified explicitly or implicitly.

	Explicit Embedding Inheritance
	. Individual methods and fields of specific objects (donors) are copied into new objects (hosts).
	. We write
	to embed the method m of object o into the current object.
	. The meaning of embed cell.set(n) is to execute the set method of cell with self bound to the current self, and not with self bound to cell as in a normal invocation cell.set(n).
	. Moreover, the code of set is embedded in reCellExp.

	reCellExp
	. The code for get could be abbreviated to:

	Implicit Embedding Inheritance
	. Whole objects (donors) are copied to form new objects (hosts).
	. We write
	to designate a donor object o’ for o.
	. As a consequence of this declaration, o is an object containing a copy of the attributes of o’, with independent state.

	reCellImp
	Alternate reCellImp via method update
	. We could define an equivalent object by a pure extension of cell followed by a method update.
	This code works because, with embedding, method update affects only the object to which it is applied. (This is not true for delegation.)

	Stand-alone reCell
	. The definitions of both reCellImp and reCellExp can be seen as convenient abbreviations:

	Delegation
	. Host objects contain links to the attributes of donor objects.
	. Prototype-based languages that permit the sharing of attributes across objects are called delegation-based.
	. Operationally, delegation is the redirection of field access and method invocation from an object or prototype to another, in such a way that an object can be seen as an extension of another.
	. Note: similar to hierarchical method suites.
	Delegation and Self
	. A crucial aspect of delegation inheritance is the interaction of donor links with the binding of self.
	. On an invocation of a method called m, the code for m may be found only in the donor cell. But the occurrences of self within the code of m refer to the original receiver, not to the donor.
	. Therefore, delegation is not redirected invocation.

	Implicit Delegation Inheritance (Traditional Delegation)
	. Whole objects (donors/parents) are shared to from new objects (hosts/children).
	. We write
	to designate a parent object o’ for o.
	. As a consequence of this declaration, o is an object containing a single parent link to o’, with parent state shared among children. Parent links are followed in the search for attributes.
	(Single-parent) Delegation

	reCellImp
	. A first attempt.
	. This is almost identical to the code of reCellImp for embedding.
	. But for delegation, this definition is wrong: the contents field is shared by all the children.
	. A proper definition must include a local copy of the contents field, overriding the contents field of the parent.
	. On an invocation of reCellImp.get(), the get method is found only in the parent cell, but the occurrences of self within the code of get refer to the original receiver, reCellImp, and not to the parent, cell.
	. Hence the result of get() is, as desired, the integer stored in the contents field of reCellImp, not the one in the parent cell.

	Explicit Delegation Inheritance
	. Individual methods and fields of specific objects (donors) are linked into new objects (hosts).
	. We write
	to execute the m method of o with self bound to the current self (not to o).
	. The difference between delegate and embed is that the former obtains the method from the donor at the time of method invocation, while the latter obtains it earlier, at the time of object creation.
	(An example of) Delegation

	reCellExp
	. Explicit delegation provides a clean way of delegating operations to multiple objects. It provides a clean semantics for multiple donors.

	Dynamic Inheritance
	. Inheritance is called static when inherited attributes are fixed for all time.
	. It is dynamic when the collection of inherited attributes can be updated dynamically (replaced, increased, decreased).
	Mode Switching
	. Although dynamic inheritance is in general a dangerous feature, it enables rather elegant and disciplined programming techniques.
	. In particular, mode-switching is the special case of dynamic inheritance where a collection of (inherited) attributes is swapped with a similar collection of attributes. (This is even typable.)

	Delegation-Style Mode Switching
	Reparenting

	Embedding-Style Mode Switching
	Method Update

	Embedding vs. Delegation Summary
	. In embedding inheritance, a freshly created host object contains copies of donor attributes.
	. Access to the inherited donor attributes is no different than access to original attributes, and is quick.
	. Storage use may be comparatively large, unless optimizations are used.
	. In delegation inheritance, a host object contains links to external donor objects.
	. During method invocation, the attribute-lookup procedure must preserve the binding of self to the original receiver, even while following the donor links.
	. In class-based languages the embedding and delegation models are normally (mostly) equivalent.
	. In object-based languages they are distinguishable.
	. Thus, embedding and delegation are two fundamentally distinct ways of achieving inheritance with prototypes.
	. Interesting languages exist that explore both possibilities.
	Advantages of Delegation
	. Space efficiency by sharing.
	. Convenience in performing dynamic, pervasive changes to all inheritors of an object.
	. Well suited for integrated languages/environments.

	Advantages of Embedding
	. Delegation can be criticized because it creates dynamic webs of dependencies that lead to fragile systems. Embedding is not affected by this problem since objects remain autonomous.
	. In embedding-based languages such as Kevo and Omega, pervasive changes are achieved even without donor hierarchies.
	. Space efficiency, while essential, is best achieved behind the scenes of the implementation.

	Traits: from Prototypes back to Classes?
	. Prototypes were initially intended to replace classes.
	. Several prototype-based languages, however, seem to be moving towards a more traditional approach based on class- like structures.
	. Prototypes-based languages like Omega, Self, and Cecil have evolved usage-based distinctions between objects.
	Different Kinds of Objects
	. Trait objects.
	. Prototype objects.
	. Normal objects.
	Traits

	Embedding-Style Traits
	Traits

	Traits are not Prototypes
	. In the spirit of classless languages, traits and prototypes are still ordinary objects. But there are distinctions:
	. These distinctions may be methodological or enforced: some operations on traits and prototypes may be forbidden to protect them from accidental damage.

	Trait Treason
	. This separation of roles violates the original spirit of prototype-based languages: traits objects cannot function on their own. They typically lack instance variables.
	. With the separation between traits and other objects, we seem to have come full circle back to class-based languages and to the separation between classes and instances.

	Object Constructions vs. Class Implementations
	. The traits-prototypes partition in delegation-based languages looks exactly like an implementation technique for classes.
	. A similar traits-prototypes partition in embedding-based languages corresponds to a different implementation technique for classes that trades space for access speed.
	. Class-based notions and techniques are not totally banned in object-based languages. Rather, they resurface naturally.

	Contributions of the Object-Based Approach
	. The achievement of object-based languages is to make clear that classes are just one of the possible ways of generating objects with common properties.
	. Objects are more primitive than classes, and they should be understood and explained before classes.
	. Different class-like constructions can be used for different purposes; hopefully, more flexibly than in strict class-based languages.

	Future Directions
	. I look forward to the continued development of typed object- based languages.
	. No need for dichotomy: object-based and class-based features can be merged within a single language, based on the common object-based semantics (Beta, O-1, O-2, O-3).
	. Embedding-based languages seem to be a natural fit for distributed-objects situations. E.g. COM vs. CORBA.

	Advanced Subtyping Issues
	Covariance
	Contravariance
	Invariance

	Method Specialization
	Specialization on Override
	Specialization on Inheritance

	The Variance Controversy
	Self Type Specialization
	The Type Self
	Variance of the Type Self

	Inheritance, Subclassing, Subtyping
	Object Types
	Subtyping without Subclassing
	Multiple Subtyping
	Subclassing Implies Subtyping (Still)
	Subclassing without Subtyping
	Type Parameters
	Object Protocols
	Type Information, Lost and Found
	Typecase

	O-O Summary
	. Class-based: various implementation techniques based on embedding and/or delegation. Self is the receiver.
	. Object-based: various language mechanisms based on embedding and/or delegation. Self is the receiver.
	. Object-based can emulate class-based. (By traits, or by otherwise reproducing the implementations techniques of class-based languages.)
	One Step Further
	. Language analysis:
	. Language synthesis:

	Our Approach to Modeling
	. We have identified embedding and delegation as underlying many object-oriented features.
	. In our object calculi, we choose embedding over delegation as the principal object-oriented paradigm.
	. The resulting calculi can model classes well, although they are not class-based (since classes are not built-in).
	. They can model delegation-style traits just as well, but not “true” delegation. (Object calculi for delegation exist but are more complex.)

	Foundations
	. Objects can emulate classes (by traits) and procedures (by “stack frame objects”).
	. Everything can indeed be an object.

	A Taxonomy

	Type Systems
	(transparencies by Martín Abadi, largely based on the paper “Type Systems” by Luca Cardelli)
	Types
	Typed and Untyped Languages
	Properties of Type Systems
	Type Soundness
	Caveats
	Advantages of Typed Languages
	Execution Errors in More Detail
	Good Behavior
	Checking Good Behavior
	Type Equivalence
	When Types Do Not Match: Coercions?
	The Language of Type Systems
	The Typing Judgment
	Type Rules
	Type Derivations
	Well Typing and Type Soundness
	First-Order Type Systems
	Study of a First-Order Type System
	lx:KÆK. ly:K. y
	lx:KÆK. ly:K. x(y)
	lx:KÆK. ly:K. x(x(y))
	lx:KÆK. ly:K. x(x(x(y)))
	...
	lx:?. x(x)
	If ð º M : A and M Æl N then ð º N : A.

	Basic Types: Unit
	Basic Types: Booleans
	Basic Types: Natural Numbers
	Structured Types: Products
	Structured Types: Unions
	Structured Types: Records
	Structured Types: Variants
	Enumeration Types
	Other First-Order Types
	Recursive Types
	List Types
	Value-Level Recursion
	Untyped Programming via Recursive Types
	A Type System for an Imperative Language
	Type Inference
	A Type Inference Algorithm for F1

	Introduction to Object Calculi
	Understanding Objects
	From Functions to Objects
	Object Calculi
	The Role of “Functional” Object Calculi
	Just Objects, No Classes
	Class-based languages Æ Object-based languages Æ Object calculi
	Object calculi Æ Object-based languages Æ Class-based languages

	Embedding and Delegation

	An Untyped Object Calculus
	An Untyped Object Calculus: Syntax
	Syntax of the V-calculus
	a,b ::= terms
	x variable
	[li=V(xi)bi iÏ1..n] object (li distinct)
	a.l method invocation
	a.lﬁüV(x)b method update

	First Examples
	o @
	[l = V(x) [],
	m = V(x) x.l]
	cell @
	[contents = V(x) 0,
	set = V(x) l(n) x.contents ﬁü V(y) n]

	An Untyped Object Calculus: Reduction
	Let o 7 [li=V(xi)bi iÏ1..n] (li distinct)
	o.lj îïñ bjYxj¨oZ (jÏ1..n)
	o.ljﬁüV(y)b îïñ [lj=V(y)b, li=V(xi)bi iÏ(1..n)-{j}] (jÏ1..n)
	In addition, if a îïñ b then C[a] îïñ C[b] where C[-] is any context.

	Some Example Reductions
	Let o @ [l=V(x)x.l] divergent method
	then o.l îïñ x.lYx¨oZ 7 o.l îïñ ...
	Let o’ @ [l = V(x)x] self-returning method
	then o’.l îïñ xYx¨o’Z 7 o’
	Let o” @ [l = V(y) (y.lﬁüV(x)x)] self-modifying method
	then o”.l îïñ (o”.lﬁüV(x)x) îïñ o’

	Static Scoping and Substitution, in Detail
	Object scoping
	FV(V(y)b)
	@ FV(b)-{y}
	FV(x)
	FV([li=V(xi)bi iÏ1..n])
	FV(a.l)
	FV(a.lﬁüV(y)b)
	@ {x}
	@ »iÏ1..n FV(V(xi)bi)
	@ FV(a)
	@ FV(a) » FV(V(y)b)
	Object substitution

	(V(y)b)Yx¨cZ
	@ V(y’)(bYy¨y’ZYx¨cZ) for y’ÌFV(V(y)b)»FV(c)»{x}
	xYx¨cZ
	yYx¨cZ
	[li=V(xi)bi iÏ1..n]Yx¨cZ
	(a.l)Yx¨cZ
	(a.lﬁüV(y)b)Yx¨cZ
	@ c
	@ y for y = x
	@ [li=(V(xi)bi)Yx¨cZ iÏ1..n]
	@ (aYx¨cZ).l
	@ (aYx¨cZ).lﬁü((V(y)b)Yx¨cZ)

	Notation
	Expressiveness
	[..., l=b, ...] @ [..., l=V(y)b, ...] for an unused y
	o.l:=b @ o.lﬁüV(y)b for an unused y
	Terminology

	object attributes
	fields
	methods
	object operations
	selection
	field selection
	method invocation
	update
	field update
	method update

	Some Examples
	A Cell
	Let cell @
	[contents = 0,
	set = V(x) l(n) x.contents := n]
	Then cell.set(3)
	îïñ (l(n)[contents = 0, set = V(x) l(n) x.contents := n]
	.contents:=n)(3)
	îïñ [contents = 0, set = V(x)l(n) x.contents := n] .contents:=3
	îïñ [contents = 3, set = V(x) l(n) x.contents := n]
	and cell.set(3). contents
	îïñ ...
	îïñ 3

	A Cell with an Accessor
	gcell @
	[contents = 0,
	set = V(x) l(n) x.contents := n,
	get = V(x) x.contents]

	A Cell with Undo
	uncell @
	[contents = 0,
	set = V(x) l(n) (x.undo := x).contents := n,
	undo = V(x) x]

	Geometric Points
	origin1 @
	[x = 0,
	mv_x = V(s) l(dx) s.x := s.x+dx]
	origin2 @
	[x = 0, y = 0,
	mv_x = V(s) l(dx) s.x := s.x+dx,
	mv_y = V(s) l(dy) s.y := s.y+dy]

	Object-Oriented Booleans
	true @ [if = V(x) x.then, then = V(x) x.then, else = V(x) x.else]
	false @ [if = V(x) x.else, then = V(x) x.then, else = V(x) x.else]
	cond(b,c,d) @ ((b.then:=c).else:=d).if
	cond(true, false, true) 7 ((true.then:=false).else:=true).if
	îïñ ([if = V(x) x.then, then = false, else = V(x) x.else].else:=true).if
	îïñ [if = V(x) x.then, then = false, else = true].if
	îïñ [if = V(x) x.then, then = false, else = true].then
	îïñ false

	Object-Oriented Natural Numbers
	zero @
	[case = l(z) l(s) z,
	succ = V(x) x.case := l(z) l(s) s(x)]
	zero 7 [case = l(z) l(s) z, succ = ...]
	one @ zero.succ 7 [case = l(z) l(s) s(zero), succ = ...]
	pred @ l(n) n.case(zero)(l(p)p)

	A Calculator
	calculator @
	[arg = 0.0,
	acc = 0.0,
	enter = V(s) l(n) s.arg := n,
	add = V(s) (s.acc := s.equals).equals ﬁü V(s’) s’.acc+s’.arg,
	sub = V(s) (s.acc := s.equals).equals ﬁü V(s’) s’.acc-s’.arg,
	equals = V(s) s.arg]
	calculator .enter(5.0) .equals = 5.0
	calculator .enter(5.0) .sub .enter(3.5) .equals = 1.5
	calculator .enter(5.0) .add .add .equals = 15.0

	Functions as Objects
	Translation of the untyped l-calculus
	äxã @ x
	äl(x)bã @
	[arg = V(x) x.arg,
	val = V(x) äbãYx¨x.argZ]
	äb(a)ã @ (äbã.arg := äaã).val
	ä(l(x)b)(a)ã îïññ äbYx¨aZã
	ä(l(x)x)(y)ã @ ([arg = V(x) x.arg, val = V(x) x.arg].arg := y).val
	îïñ [arg = V(x) y, val = V(x) x.arg].val
	îïñ [arg = V(x) y, val = V(x) x.arg].arg
	îïñ y
	@ äyã

	Functions as Objects, with Defaults
	Translation of default parameters
	äl(x=c)b{x}ã @ [arg=äcã, val=V(x)äb{x}ãYx¨x.argZ]
	äb(a)ã @ äbã¢äaã where p¢q @ (p.arg:=q).val
	äb()ã @ äbã.val

	Recursion
	äm(x)b{x}ã @
	[rec=V(x)äb{x}ãYx¨x.recZ].rec
	äm(x)b{x}ã
	7 [rec=V(x)äb{x}ãYx¨x.recZ].rec
	= äb{x}ãYx¨x.recZYx¨[rec=V(x)äb{x}ãYx¨x.recZ]Z
	7 äb{x}ãYx¨[rec=V(x)äb{x}ãYx¨x.recZ].recZ
	7 äb{x}ãYx¨äm(x)b{x}ãZ
	7 äbYm(x)b{x}Zã

	Classes
	o @ [li = V(xi) bi iÏ1..n]
	c @
	[new = V(z) [li = V(x) z.li(x) iÏ1..n],
	li = l(xi) bi iÏ1..n]

	A Class for Cells
	cellClass @
	[new = V(z)
	[contents = V(x) z.contents(x), set = V(x) z.set(x)],
	contents = l(x) 0,
	set = l(x) l(n) x.contents := n]
	cellClass.new yields a standard cell:
	[contents = 0, set = V(x) l(n) x.contents := n]

	Inheritance
	c’ @ [new=..., li=c.li iÏ1..n, lj=... jÏn+1..m]

	Inheritance for Cells
	cellClass @
	[new = V(z)
	[contents = V(x) z.contents(x), set = V(x) z.set(x)],
	contents = l(x) 0,
	set = l(x) l(n) x.contents := n]
	uncellClass @
	[new = V(z) [...],
	contents = cellClass.contents,
	set = l(x) cellClass.set(x.undo := x),
	undo = l(x) x]

	An Operational Semantics
	An Operational Semantics: Results
	Operational semantics
	If º a Òñ v and º a Òñ v’, then v 7 v’.
	Proposition
	(Soundness of weak reduction)
	Theorem
	(Completeness of weak reduction)

	An Interpreter
	Outcome([li=V(xi)bi iÏ1..n]) @
	[li=V(xi)bi iÏ1..n]
	Outcome(a.lj) @
	let o = Outcome(a)
	in if o is of the form [li=V(xi)bi{xi} iÏ1..n] with jÏ1..n
	then Outcome(bjYoZ)
	else wrong
	Outcome(a.lj ﬁü V(x)b) @
	let o = Outcome(a)
	in if o is of the form [li=V(xi)bi iÏ1..n] with jÏ1..n
	then [lj=V(x)b, li=V(xi)bi iÏ(1..n)-{j}]
	else wrong

	Objects and Imperative Features
	An Imperative Untyped Object Calculus
	Syntax of the impV-calculus

	Order of Evaluation
	Fields, Revisited
	Fields via Let
	Let via Fields
	A Cell with Undo (Revisited)
	A Prime-Number Sieve
	Procedures as Imperative Objects
	Translation of an imperative l-calculus

	Imperative Operational Semantics
	Example Executions
	Classes
	Subclasses
	Global Change
	Or No Global Change
	Imperative Examples of Classes

	A First-Order Type System for Objects
	Object Types and Subtyping
	Subtyping
	A First-Order Type System
	An Operational Semantics (with Types)
	A Typed Divergent Term
	Typed Object-Oriented Booleans
	Notation

	Typed Cells
	Some Results
	Theorem (Minimum types)
	Theorem (Subject reduction)

	Minimum Types
	Proposition
	(MinOb1<: typings are Ob1<: typings)
	Proposition
	(MinOb1<: has unique types)
	Proposition
	(MinOb1<: has smaller types than Ob1<:)
	Proposition
	(Ob1<: has minimum types)
	Proof

	Subject Reduction
	Lemma
	(Bound weakening)
	Lemma
	(Substitution)
	Theorem
	(Subject reduction)
	Proof
	Case (Red Object)
	Case (Red Select)
	Case (Red Update)

	Type Soundness
	Theorem
	(Reductions cannot go wrong)

	Unsoundness of Covariance
	Unsoundness of Method Extraction
	Classes, with Types
	Inheritance, with Types
	Class Types for Cells
	Typed Reasoning

	Variance Annotations
	Variance Annotations
	Subtyping with Variance Annotations
	Subtyping Rules with Variance Annotations
	Typing Rules with Variance Annotations
	Protection by Subtyping
	Protection for Classes
	Class Types for Cells (with Protection)
	Encoding Function Types

	Recursive Object Types
	Recursive Types
	Typing Examples with Recursive Types
	Subtyping Recursive Types
	Subtyping Examples with Recursive Types
	Five Solutions (Overview)

	Typecase
	A Typecase Construct
	Typecase: Operational Semantics
	Typecase: Typing
	Typecase: Discussion

	The Language O-1
	Synthesis of a Language
	. O-1 is a language built out of constructs from object calculi.

	Some Features of O-1
	. Both class-based and object-based constructs.
	. First-order object types with subtyping and variance annotations.
	. Classes with single inheritance.
	. Method overridding and specialization.
	. Recursion.
	. Typecase. (To compensate for, e.g., lack of Self types.)
	. Separation of interfaces from implementations.
	. Separation of inheritance from subtyping.

	Some Non-Features of O-1
	. No public/private/protected/abstract, etc.,
	. No cloning,
	. No basic types, such as integers,
	. No arrays and other data structures,
	. No procedures,
	. No concurrency.

	Syntax of Types
	. Roughly, we may think Object = m. But the fold/unfold coercions do not appear in the syntax of O- 1.
	. Usually, + variance is for methods, and o variance is for fields.

	Syntax of Programs
	Comments
	. Superclass attributes are inherited “automatically”. (No copying premethods by hand as in the encodings of classes.)
	. Inheritance “by hand” still possible by class selection c^l(a).
	. Classes are first-class values.
	. Parametric classes can be written as functions that return classes.

	Language Fragments
	. We could drop the object-based constructs (object construction and method update). The result would be a language expressive enough for traditional class-based programming.
	. Alternatively, we could drop the class-based construct (root class, subclass, new, and class selection). The result would be a little object-based language.

	Abbreviations

	Examples: Types and Classes
	. We assume basic types (Bool, Int) and function types (AÆB, contravariant in A and covariant in B).
	. CPoint <: Point
	. The type of mv in CPoint is IntÆPoint. One can explore the effect of changing it to IntÆX.
	. The type of eq in CPoint is PointÆBool. If we were to change it to XÆBool we would lose the subtyping CPoint <: Point.
	Class(Point)
	Class(CPoint)
	Comments
	. The class cPointClass inherits x and mv from its superclass pointClass.
	. Although it could inherit eq as well, cPointClass overrides this method as follows.

	Creating Objects
	. We can use cPointClass to create color points of type CPoint:
	. But points of the same type can also be created independently:

	Using Objects
	. Calls to mv lose the color information.
	. In order to access the color of a point after it has been moved, a typecase is necessary:

	Alternative Types
	. A stronger type of color points that would preserve type information on move is:
	CPoint2 <: Point, by the read-only annotation on mv.
	. To define a subclass for CPoint2, one must override mv. Subtyping does not imply inheritability!
	. The new code for mv may be just super.mv followed by a typecase.
	. But typecase is no longer needed after a color point is moved:
	. By switching from CPoint to CPoint2 we have shifted typecase from the code that uses color points to the code that creates them.
	. This shift may be attractive, for example because it may help in localizing the use of typecase.

	Typing
	. The rules of O-1 are based on the following judgments:
	. The rules for environments are standard:
	Type Formation Rules
	Subtyping Rules
	. Note that there is no rule for subtyping class types.

	Program Typing Rules

	Translation
	. We give a translation into a functional calculus (with all the features described earlier).
	. A similar translation could be given into an appropriate imperative calculus.
	. At the level of types, the translation is simple.
	Translation of Types
	Translation of Programs
	. Officially, the translation is guided by the type structure.
	. Most of the clauses are straightforward.
	. A class is mapped to an object with a collection of pre- methods plus a new method.
	. new c is interpreted as an invocation of the new method of äcã.

	Soundness
	. If E º J is valid in O-1, then äE º Jã is valid in the object calculus.
	. The object subtyping rule relies on the following rule for recursive types:
	. The most interesting case is for subclass. We need to check:
	That is:

	Usefulness of the Translation
	. The translation validates the typing rules of O-1. If E º J is valid in O-1, then äE º Jã is valid in the object calculus.
	. The translation served as an important guide in finding sound typing rules for O-1, and for “tweaking” them to make them both simpler and more general.
	. In particular, typing rules for subclasses are so inherently complex that it is difficult to “guess” them correctly without the aid of some interpretation.
	. Thus, we have succeeded in using object calculi as a platform for explaining a relatively rich object-oriented language and for validating its type rules.

	Polymorphism
	Types of Polymorphism
	Ad Hoc Polymorphism
	Subtype (or Inclusion) Polymorphism
	Parametric Polymorphism
	Languages with Parametric Polymorphism
	Some Advantages and Disadvantages of Parametric Polymorphism
	Expressing Parametric Polymorphism
	Writing Polymorphic Values
	Writing Polymorphic Values: Definitions
	Rules for the Universal Quantifier
	Semantics of Parametric Polymorphism
	ML-Style Polymorphism
	Two-level syntax of types

	ML-Style Polymorphism and Ref
	Bounded Parametric Polymorphism
	A Bounded Universal Quantifier
	Structural Update for Objects
	Data Abstraction
	A Bounded Existential Quantifier
	Rules for the Bounded Existential Quantifier
	Objects, Parametric Polymorphism, and Data Abstraction

	Self Quantifier
	Second-Order Calculi
	Covariant Components
	Contravariant Components
	Variant Product and Function Types
	Self Types
	The V(X)B Quantifier
	(Note)
	Building Elements of Type V(X)B
	Building a Memory Cell
	Derived Rules for V(X)B
	(Note)
	The VOb Calculus
	V-Object Types
	Derived Rules for V-Object Types
	(Note)
	The Type of the Object-Oriented Naturals
	The Type of the Calculator
	Overriding and Self
	Recoup

	Self Types
	Self Types
	Object Types and Self
	Terms with Self
	Method Update and Self
	Abbreviations
	Cells
	Cells with Undo
	Operational Semantics
	Type Rules for Self
	Adding the Universal Quantifier
	Theorem
	(Subject reduction)

	Classes and Self
	Inheritance and Self

	Self Types and Higher-Order Object Calculi
	Inheritance without Subtyping?
	The Problem
	Solutions
	The Higher-Order Path

	Encoding Object Calculi
	Objects vs. Procedures
	The Translation Problem
	The Self-Application Semantics
	Untyped self-application interpretation

	The Self-Application Semantics (Typed)
	[li:Bi iÏ1..n] @ m(X)Üli:XÆBi iÏ1..ná
	Self-application interpretation

	The State-Application Semantics (Sketch)
	Untyped state-application interpretation
	Untyped state-application interpretation (continued)

	The State-Application Semantics (Typed)
	[li:Bi iÏ1..n] @ Ô(X) Üst: X, mt: Üli:XÆBi iÏ1..náá
	State-application interpretation

	The Recursive-Record Semantics (Example)
	CPoint @
	Obj(X)[x:Int, c:Color | mv:IntÆX]
	cPoint : CPoint @
	[x = 0, c = black | mv = V(s:CPoint) l(dx:Int) sPx:=sPx+dx]
	CPoint @
	m(X)Üx:Int, c:Color, mv:IntÆXá
	cPoint : CPoint @
	let rec init(x0:Int, c0:Color) =
	m(s:CPoint) fold(CPoint,
	Üx = x0, c = c0,
	mv = l(dx:Int) init(unfold(s)†x+dx, unfold(s)†c)á)
	in init(0, black)

	The Split-Methods Semantics
	Untyped split-method interpretation

	The Split-Method Semantics (Typed)
	[li:Bi iÏ1..n] @ m(X) Ülisel:XÆBi iÏ1..n, liupd:(XÆBi)ÆX iÏ1..ná
	[li:Bi iÏ1..n] @
	m(Y) Ô(X<:Y) Ülisel:XÆBi iÏ1..n, liupd:(XÆBi)ÆX iÏ1..ná
	[li:Bi iÏ1..n] @
	m(Y) Ô(X<:Y) Ür:X, lisel:XÆBi iÏ1..n, liupd:(XÆBi)ÆX iÏ1..ná
	Split-method interpretation

	An Imperative Version
	[fk:Bk kÏ1..m | li:Bi iÏ1..n] @
	m(Y) Ô(X<:Y) Ür:X, fk:Bk kÏ1..m, li:XÆBi iÏ1..n, cl:ÜáÆXá
	Imperative self-application interpretation

	Summary

	Matching
	When Subtyping Works
	Object Types
	Subtyping
	Pre-Methods
	Classes
	Inheritance
	Inheritance from Subtyping
	Binary Methods
	Looking for a New Relation
	Matching
	Matching and Subsumption
	Matching and Classes
	Matching and Inheritance
	Advantages of Matching
	Matching is attractive
	However...

	Applications

	Matching as Higher-Order Subtyping
	Higher-Order Subtyping
	The Higher-Order Interpretation
	Reflexivity and Transitivity
	Matching Self
	Inheritance and Classes via Higher-Order Subtyping

	Matching as F-bounded Subtyping
	Type Operators
	F-bounded Subtyping
	The F-bounded Interpretation
	Reflexivity and Transitivity
	Counterexample to Transitivity

	Matching Self

	The Language O-3
	Matching in O-3
	. Many features of O-3 are familiar: for example, object types, class types, and single inheritance.
	. The main new feature is a matching relation, written <#. The matching relation is defined only between object types, and between variables bounded by object types.
	. Matching is the basis for inheritance in O-3. That is, if A <# B, then a method of a class for B may be inherited as a method of a class for A.
	. With the loss of subsumption, it is often necessary to parameterize over all types that match a given type.
	. No subtype relation appears in the syntax of O-3, although subtyping is still used in its type rules.

	Syntax of Types
	A,B ::=
	X
	Top
	Object(X)[liui:Bi{X} iÏ1..n]
	Class(A)
	All(X<#A)B
	types
	type variable
	maximum type
	object type
	class type
	match-quantified type

	Syntax of Programs
	a,b,c ::=
	x
	object(x:X=A) li=bi{X,x} iÏ1..n end
	a.l
	a.l := method(x:X<#A) b end
	new c
	root
	subclass of c:C with(x:X<#A)
	li=bi{X,x} iÏn+1..n+m
	override li=bi{X,x} iÏOvrÕ1..n end
	c^l(A,a)
	fun(X<#A) b end
	b(A)
	terms
	variable
	direct object construction
	field/method selection
	update
	object construction from a class
	root class
	subclass
	additional attributes
	overridden attributes
	class selection
	match-polymorphic abstraction
	match-polymorphic instantiation
	Abbreviations

	Example: Points
	Example: Binary Trees
	Example: Cells
	Typing
	E º Q
	E º A
	E º A :: Obj
	environment E is well formed
	A is a well formed type in E
	A is a well formed object type in E
	E º A <: B
	E º A <# B
	E º a : A
	A is a subtype of B in E
	A matches B in E
	a has type A in E
	Type Formation Rules
	Subtyping Rules
	Matching Rules
	Program Typing Rules

	Translation of O-3
	. We give a translation into a functional calculus:
	K,L ::=
	Ty
	KﬁL
	kinds
	types
	operators from K to L
	A,B ::=
	X
	Top
	[liui:Bi iÏ1..n]
	Ó(X<:A::K)B
	m(X)A
	l(X::K)B
	B(A)
	constructors
	constructor variable
	the biggest constructor at kind Ty
	object type (li distinct, uiÏ{o,-,+})
	bounded universal type
	recursive type
	operator
	operator application
	a,b ::=
	x
	[l=V(xi:Ai)bi iÏ1..n]
	a.l
	a.lﬁüV(x:A)b
	l(X<:A::K)b
	b(A)
	fold(A,a)
	unfold(a)
	terms
	variable
	object formation (li distinct)
	method invocation
	method update
	constructor abstraction
	constructor application
	recursive fold
	recursive unfold
	Translation (Sketch)
	. The symbol 5 means “informally translates to”, with 5Ty for translations that yield types, and 5Op for translations that yield operators.
	. We represent the translation of a term a by a, the type translation of a type A by A, and its operator translation by A.
	. We say that a variable X is subtype-bound when it is introduced as X<:A for some A; we say that X is match-bound when it is introduced as X<#A for some A.
	X 5Op X (where X is match-bound in the environment)
	Object(X)[liui:Bi iÏ1..n] 5Op l(X)[liui:Bi iÏ1..n]
	X 5Ty X (when X is subtype-bound in the environment)
	X 5Ty X* (when X is match-bound in the environment)
	Top 5Ty Top
	Object(X)[liui:Bi iÏ1..n] 5Ty (l(X)[liui:Bi iÏ1..n])*
	Class(A) 5Ty [new+:A, li+:Ó(X':A)X*ÆBi iÏ1..n]
	where A 7 Object(X)[liui:Bi iÏ1..n]
	All(X<#A)B 5Ty Ó(X':A)B
	x 5 x
	object(x:A) li=bi{x} iÏ1..n end 5 fold(A,[li=V(x:A(A))biYfold(A,x)Z iÏ1..n])
	a.lj 5 unfold(a).lj
	a.lj := method(x:A’)b{x} end 5
	fold(A’,unfold(a).ljﬁüV(x:A’(A’))bY fold(A’,x)Z)
	new c 5 c.new
	root 5 [new=V(z:[new+:m(X)[]])fold(m(X)[],[])]
	subclass of c’:C’ with(x:X<#A) li=bi iÏn+1..n+m override li=bi iÏOvr end 5
	[new=V(z:C)fold(A,[li=V(s:A(A))z.li(A)(fold(A,s)) iÏ1..n+m])
	li=V(z:C) c’.li iÏ1..n-Ovr,
	li=V(z:C)l(X':A)l(x:X*)bi iÏOvr»n+1..n+m]
	where C 7 Class(A)
	c^lj(A’,a) 5 c.lj(A’)(a)
	fun(X<#A)b end 5 l(X':A)b
	b(A’) 5 b(A’)

	Summary on Matching

	Translations
	. In order to give insight into type rules for object-oriented languages, translations must be judgment-preserving (in particular, type and subtype preserving).
	. Translating object-oriented languages directly to typed l- calculi is just too hard. Object calculi provide a good stepping stone in this process, or an alternative endpoint.
	. Translating object calculi into l-calculi means, intuitively, “programming in object-oriented style within a procedural language”. This is the hard part.
	Untyped Translations
	. Give insights into the nature of object-oriented computation.
	. Objects = records of functions.

	Type-Preserving Translations
	. Give insights into the nature of object-oriented typing and subsumption/coercion.
	. Object types = recursive records-of-functions types.

	Subtype-Preserving Translations
	. Give insights into the nature of subtyping for objects.
	. Object types = recursive bounded existential types (!!).

	Conclusions
	Functions vs. Objects
	. Functions can be translated into objects. Therefore, pure object-based languages are at least as expressive as procedural languages. (Despite all the Smalltalk philosophy, to our knowledge nobody had proved that one can build functions from objects.)
	. Conversely, using sophisticated type systems, it is possible to translate objects into functions. (But this translation is difficult and not practical.)

	Classes vs. Objects
	. Classes can be encoded in object calculi, easily and faithfully. Therefore, object-based languages are just as expressive as class-based ones. (To our knowledge, nobody had shown that one can build type-correct classes out of objects.)
	. Method update, a distinctly object-based construct, is tractable and can be useful.

	Foundations
	. We can make sense of object-oriented constructs.
	. Object calculi are fundamental

	Language Design
	. Object calculi are a good basis for designing rich object- oriented type systems (including polymorphism, Self types, etc.).
	. Object-oriented languages can be shown sound by fairly direct translations into object calculi.

	Future Areas
	. Typed V-calculi should be a good simple foundation for studying object-oriented specification and verification.
	. They should also give us a formal platform for studying object-oriented concurrent languages (as opposed to “ordinary” concurrent languages).

	References
	. http://www.research.digital.com/SRC/ personal/Luca_Cardelli/TheoryOfObjects.html
	. M.Abadi, L.Cardelli: A Theory of Objects. Springer, 1996.

	Extra Slides
	Unsoundness of Naive Object Subtyping with Binary Methods
	Unsoundness of Covariant Object Types
	Unsoundness of Method Extraction
	Unsoundness of a Naive Recursive Subtyping Rule
	Operationally Sound Update
	Luca Cardelli
	Digital Equipment Corporation Systems Research Center

	Outline
	The polymorphic update problem
	There is no bump there!
	Neither semantically
	Nor parametrically
	Nor by standard typing rules

	The simple rule for update
	The “structural” rule for update
	Can’t allow too many subtypes
	Relevant rules for structural update
	The structural subtyping lemmas
	Lemma
	(Structural subtyping)
	Proof

	Soundness by subject reduction
	Theorem
	(Subject reduction)
	Proof By induction on the derivation of º a Òñ v.
	Case (Red Update)

	Other structural rules
	A structural rule for product types
	A structural rule for recursive types
	A structural rule for method invocation
	Structural rules and class encodings
	A structural rule for cloning
	Comments
	Translating away structural rules
	Conclusions

