A Theory of Objects

Martín Abadi & Luca Cardelli

Digital Equipment Corporation Systems Research Center

ECOOP'97 Tutorial

Outline

- Topic of this tutorial: a foundation for object-oriented languages based on object calculi.
- Part 1: Object-oriented features.
- Part 2: Object calculi.
- Part 3: Interpretation of object-oriented languages.

Object-Oriented Features

CLASS-BASED LANGUAGES

- The mainstream.
- We review only common, kernel properties.

Classes and Objects

- Classes are descriptions of objects.
- Example: storage cells.

```
class cell is
    var contents: Integer := 0;
    method get(): Integer is
        return self.contents;
    end;
    method set(n: Integer) is
        self.contents := n;
    end;
end;
end;
```

- Classes generate objects.
- Objects can refer to themselves.

Naive Storage Model

• Object = reference to a record of attributes.

Naive storage model

Object Operations

- Object creation.
 - *InstanceTypeOf(c)* indicates the type of an object of class *c*.
 var myCell: InstanceTypeOf(cell) := new cell;
- Field selection.
- Field update.
- Method invocation.

The Method-Suites Storage Model

• A more refined storage model for class-based languages.

Embedding vs. Delegation

• In the naive storage model, methods are *embedded* in objects.

In the methods-suites storage model, methods are <u>delegated</u> to the method suites.

- Naive and method-suites models are semantically equivalent for class-based languages.
- They are not equivalent (as we shall see) in object-based languages, where the difference between embedding and delegation is critical.

Method Lookup

- Method lookup is the process of finding the code to run on a method invocation *o.m*(...). The details depend on the language and the storage model.
- In class-based languages, method lookup gives the *illusion* that methods are embedded in objects (cf. *o.x*, *o.m*(...)), hiding storage model details.
- Self is always the *receiver*: the object that *appears* to contain the method.
- Features that would distinguish embedding from delegation implementations (e.g., method update) are usually avoided.

Subclasses and Inheritance

- A *subclass* is a differential description of a class.
- The *subclass relation* is the partial order induced by the subclass declarations.
- Example: restorable cells.

```
subclass reCell of cell is
var backup: Integer := 0;
override set(n: Integer) is
self.backup := self.contents;
super.set(n);
end;
method restore() is
self.contents := self.backup;
end;
end;
```

Subclasses and Self

• Because of subclasses, the meaning of **self** becomes dynamic.

self.*m*(...)

• Because of subclasses, the concept of **super** becomes useful.

super.*m*(...)

Subclasses and Naive Storage

• In the naive implementation, the existence of subclasses does not cause any change in the storage model.

Subclasses and Method Suites

 Because of subclasses, the method-suites model has to be reconsidered. In dynamically-typed class-based languages, method suites are chained:

Hierarchical method suites

• In statically-typed class-based languages, however, the method-suites model can be maintained in its original form.

Collapsed method suites

Embedding/Delegation View of Class Hierarchies

- Hierarchical method suites: *delegation* (of objects to suites) combined with *delegation* (of sub-suites to super-suites).
- Collapsed method suites: *delegation* (of objects to suites) combined with *embedding* (of super-suites in sub-suites).

Class-Based Summary

- In analyzing the meaning and implementation of classbased languages we end up inventing and analyzing sub-structures of objects and classes.
- These substructures are independently interesting: they have their own semantics, and can be combined in useful ways.
- What if these substructures were directly available to programmers?

OBJECT-BASED LANGUAGES

- Slow to emerge.
- Simple and flexible.
- Usually untyped.
- Just objects and dynamic dispatch.
- When typed, just object types and subtyping.
- Direct object-to-object inheritance.

An Object, All by Itself

- Classes are replaced by object constructors.
- Object types are immediately useful.

```
ObjectType Cell is
    var contents: Integer;
    method get(): Integer;
    method set(n: Integer);
end;
object cell: Cell is
    var contents: Integer := 0;
    method get(): Integer is return self.contents end;
    method set(n: Integer) is self.contents := n end;
end;
```

An Object Generator

• Procedures as object generators.

```
procedure newCell(m: Integer): Cell is
    object cell: Cell is
        var contents: Integer := m;
        method get(): Integer is return self.contents end;
        method set(n: Integer) is self.contents := n end;
    end;
    return cell;
end;
```

var cellInstance: Cell := newCell(0);

• Quite similar to classes!

Decomposing Class-Based Features

- General idea: decompose class-based notions and orthogonally recombine them.
- We have seen how to decompose simple classes into objects and procedures.
- We will now investigate how to decompose inheritance.
 - ~ Object generation by parameterization.
 - ~ Vs. object generation by cloning and mutation.

Prototypes and Clones

- Classes describe objects.
- Prototypes describe objects and *are* objects.
- Regular objects are clones of prototypes.

var cellClone: Cell := clone cellInstance;

• **clone** is a bit like **new**, but operates on objects instead of classes.

Mutation of Clones

- Clones are customized by mutation (e.g., update).
- Field update.

cellClone.contents := 3;

• Method update.

cellClone.get :=
 method (): Integer is
 if self.contents < 0 then return 0 else return self.contents end;
 end;</pre>

• Self-mutation possible.

Object-Based Inheritance

- Object generation can be obtained by procedures, but with no real notion of inheritance.
- Object inheritance can be achieved by cloning (reuse) and update (override), but with no shape change.
- How can one inherit with a change of shape?
- An option is object extension. But:
 - ~ Not easy to typecheck.
 - ~ Not easy to implement efficiently.
 - ~ Provided rarely or restrictively.

Donors and Hosts

- General object-based inheritance: building new objects by "reusing" attributes of existing objects.
- Two orthogonal aspects:
 - ~ obtaining the attributes of a *donor* object, and
 - ~ incorporating those attributes into a new *host* object.
- Four categories of object-based inheritance:
 - The attributes of a donor may be obtained *implicitly* or *explicitly*.
 - Orthogonally, those attributes may be either *embedded* into a host, or *delegated* to a donor.

Embedding

• Host objects contain <u>copies</u> of the attributes of donor objects.

aCell		contents	0
		get	(code for <i>get</i>)
		set	(code for <i>set</i>)
aReCell	•>	contents	0
		backup	0
		get	(new code for <i>get</i>)
		set	(new code for <i>set</i>)
		restore	(code for <i>restore</i>)

Embedding

Embedding-Based Languages

- Embedding provides the simplest explanation of the standard semantics of **self** as the receiver.
- Embedding was described by Borning as part of one of the first proposals for prototype-based languages.
- Recently, it has been adopted by languages like Kevo and Obliq. We call these languages *embedding-based* (*concatenation-based*, in Kevo terminology).

Delegation

- Host objects contain *links* to the attributes of donor objects.
- Prototype-based languages that permit the sharing of attributes across objects are called *delegation-based*.
- Operationally, delegation is the redirection of field access and method invocation from an object or prototype to another, <u>in such a way that an object can be</u> <u>seen as an extension of another</u>.
- A crucial aspect of delegation inheritance is the interaction of donor links with the binding of **self**.

(Single-parent) Delegation

• Note: similar to hierarchical method suites.

Traits: from Prototypes back to Classes?

- Prototypes were initially intended to replace classes.
- Several prototype-based languages, however, seem to be moving towards a more traditional approach based on class-like structures.
- Prototypes-based languages like Omega, Self, and Cecil have evolved usage-based distinctions between objects.

Different Kinds of Objects

- Trait objects.
- Prototype objects.
- Normal objects.

Embedding-Style Traits

Traits

Traits are not Prototypes

- This separation of roles violates the original spirit of prototype-based languages: traits objects cannot function on their own. They typically lack instance variables.
- With the separation between traits and other objects, we seem to have come full circle back to class-based languages and to the separation between classes and instances.
- Trait-based techniques looks exactly like implementation techniques for classes.

Contributions of the Object-Based Approach

- The achievement of object-based languages is to make clear that classes are just one of the possible ways of generating objects with common properties.
- Objects are more primitive than classes, and they should be understood and explained before classes.
- Different class-like constructions can be used for different purposes; hopefully, more flexibly than in strict class-based languages.

Going Further

- Language analysis:
 - ~ Class-based langs. \rightarrow Object-based langs. \rightarrow Object calculi
- Language synthesis:
 - ~ Object calculi \rightarrow Object-based langs. \rightarrow Class-based langs.
Our Approach to Modeling

- We have identified embedding and delegation as underlying many object-oriented features.
- In our object calculi, we choose embedding over delegation as the principal object-oriented paradigm.
- The resulting calculi can model classes well, although they are not class-based (since classes are not built-in).
- They can model delegation-style traits just as well, but not "true" delegation. (Object calculi for delegation exist but are more complex.)

SUMMARY

- Class-based: various implementation techniques based on embedding and/or delegation. Self is the receiver.
- Object-based: various language mechanisms based on embedding and/or delegation. Self is the receiver.
- Object-based can emulate class-based. (By traits, or by otherwise reproducing the implementations techniques of class-based languages.)

Foundations

- Objects can emulate classes (by traits) and procedures (by "stack frame objects").
- *Everything* can indeed be an object.

Future Directions

- I look forward to the continued development of typed object-based languages.
 - The notion of object type arise more naturally in object-based languages.
 - Traits, method update, and mode switching are typable (general reparenting is not easily typable).
- No need for dichotomy: object-based and class-based features can be merged within a single language, based on the common object-based semantics (Beta, O-1, O-2, O-3).

- Embedding-based languages seem to be a natural fit for distributed-objects situations. E.g. COM vs. CORBA.
 - ~ Objects are self-contained and are therefore *localized*.
 - For this reason, Obliq was designed as an embedding-based language.

A New Hierarchy

Object Calculi

Understanding Objects

- Many characteristics of object-oriented languages are different presentations of a few general ideas.
- The situation is analogous in procedural programming.

The λ -calculus has provided a basic, flexible model, and a better understanding of actual languages.

From Functions to Objects

- We develop a calculus of objects, analogous to the λ -calculus but independent.
 - ~ It is entirely based on objects, not on functions.
 - ~ We go in this direction because object types are not easily, or at all, definable in most standard formalisms.
- The calculus of objects is intended as a paradigm and a foundation for object-oriented languages.

- We have, in fact, a family of object calculi:
 - ~ functional and imperative;
 - ~ untyped, first-order, and higher-order.

Calculus:	ς	Ob ₁	Ob _{1<:}	nn	$\mathbf{Ob}_{1\mu}$	Ob _{1<:µ}	nn	impς	nn
objects	•	•	•	٠	•	•	٠	•	٠
object types		•	•	٠	•	•	•		٠
subtyping			•	٠		•	•		٠
variance				٠					
recursive types					•	•	٠		
dynamic types							٠		
side-effects								•	٠

Untyped and first-order object calculi

Higher-order object calculi

Calculus:	Ob	\mathbf{Ob}_{μ}	Ob <:	Ob<:µ	ςOb	S	S∀	nn	Οb _{ω<:μ}
objects	٠	•	•	•	•	•	•	•	•
object types	٠	•	•	•	•	•	•	•	•
subtyping			•	•	•	•	•	•	•
variance			0	0		•	•	•	•
recursive types		•		•					•
dynamic types									
side-effects								•	
quantified types	٠	•	•	•			•	•	•
Self types				0	•	●	•	•	0
structural rules						•	•	•	•
type operators									•

There are several other calculi (*e.g.*, Castagna's, Fisher&Mitchell's).

Object Calculi

- As in λ -calculi, we have:
 - ~ operational semantics,
 - ~ denotational semantics,
 - ~ type systems,
 - ~ type inference algorithms (due to J. Palsberg),
 - ~ equational theories,
 - ~ a theory of bisimilarity (due to A. Gordon and G. Rees),
 - ~ examples,
 - ~ (small) language translations,
 - ~ guidance for language design.

The Role of "Functional" Object Calculi

- Functional object calculi are object calculi without side-effects (with or without syntax for functions).
- We have developed both functional and imperative object calculi.
- Functional object calculi have simpler operational semantics.
- "Functional object calculus" sounds odd: objects are supposed to encapsulate state!
- However, many of the techniques developed in the context of functional calculi carry over to imperative calculi.
- Sometimes the same code works functionally and imperatively. Often, imperative versions require just a little more care.
- All transparencies make sense functionally, except those that say "imperative" explicitly.

An Untyped Object Calculus: Syntax

An object is a collection of methods. (Their order does not matter.) Each method has:

- ~ a bound variable for self (which denotes the object itself),
- ~ a body that produces a result.

The only operations on objects are:

- ~ method invocation,
- ~ method update.

Syntax of the *ς***-calculus**

<i>a</i> , <i>b</i> ::=	
X	
$[I_i = \zeta(x_i) b_i^{i \in 1n}$]
a.1	
$a.l \in \varsigma(x)b$	

variable object (*l_i* distinct) method invocation method update

terms

First Examples

An object *o* with two methods, *l* and *m*:

 $o \triangleq [l = \varsigma(x) [],$ $m = \varsigma(x) x.l]$

- *l* returns an empty object.
- *m* invokes *l* through self.

A storage cell with two methods, *contents* and *set*:

cell \triangleq [*contents* = $\varsigma(x) 0$, *set* = $\varsigma(x) \lambda(n) x.contents \in \varsigma(y) n$]

- *contents* returns 0.
- *set* updates *contents* through self.

An Untyped Object Calculus: Reduction

- The notation $b \rightsquigarrow c$ means that *b* reduces to *c*.
- The substitution of a term *c* for the free occurrences of a variable *x* in a term *b* is written *b*{*x*←*c*}, or *b*{*c*} when *x* is clear from context.

Let $o \equiv [l_i = \varsigma(x_i) b_i^{i \in 1..n}]$ (l_i distinct)

We are dealing with a calculus of objects, not of functions. The semantics is deterministic (Church-Rosser). It is not imperative or concurrent.

Some Example Reductions

Let $o \triangleq [l = \varsigma(x) x. l]$ divergent method then $o.l \rightsquigarrow x. l\{x \leftarrow o\} \equiv o.l \rightsquigarrow ...$

Let $o' \triangleq [l = \varsigma(x)x]$ self-returning method then $o'.l \rightsquigarrow x\{x \leftarrow o'\} \equiv o'$

Let $o^{"} \triangleq [l = \zeta(y) (y.l \in \zeta(x)x)]$ self-modifying method then $o^{"}.l \rightsquigarrow (o^{"}.l \in \zeta(x)x) \rightsquigarrow o'$

An Imperative Untyped Object Calculus

- An object is still a collection of methods.
- Method update works by side-effect ("in-place").
- Some new operations make sense:
 - ~ let (for controlling execution order),
 - ~ object cloning.

Syntax of the impς-calculus

<i>a</i> , <i>b</i> ::=	programs		
•••	(as before)		
let $x = a$ in b	let		
clone(a)	cloning		

• The semantics is given in terms of stacks and stores.

Object Calculi

Expressiveness

• Our calculus is based entirely on methods; fields can be seen as methods that do not use their self parameter:

 $[\dots, l=b, \dots] \triangleq [\dots, l=\varsigma(y)b, \dots]$ $o.l:=b \triangleq o.l \in \varsigma(y)b$

for an unused *y* for an unused *y*

- In addition, we can represent:
 - ~ basic data types,
 - ~ functions,
 - ~ classes and subclasses.
- Method update is the most exotic construct, but:
 - ~ it leads to simpler rules, and
 - ~ it corresponds to features of several languages.

Some Examples

These examples are:

- easy to write in the untyped calculus,
- patently object-oriented (in a variety of styles),
- sometimes hard to type.

A Cell

Let *cell* \triangleq [*contents* = 0, *set* = $\varsigma(x) \lambda(n) x.contents := n$]

```
Then cell.set(3)

\rightarrow (\lambda(n)[contents = 0, set = \zeta(x) \lambda(n) x.contents := n]

.contents:=n)(3)

\rightarrow [contents = 0, set = \zeta(x)\lambda(n) x.contents := n]

.contents:=3

\rightarrow [contents = 3, set = \zeta(x) \lambda(n) x.contents := n]

and cell.set(3).contents

\rightarrow ...

\rightarrow 3
```

A Cell with an Accessor

Let $gcell \triangleq$ [contents = 0, $set = \varsigma(x) \lambda(n) x.contents := n,$ $get = \varsigma(x) x.contents$]

- The *get* method fetches *contents*.
- A user of the cell may not even know about *contents*.

A Cell with Undo

```
Let uncell \triangleq

[contents = 0,

set = \varsigma(x) \lambda(n) (x.undo := x).contents := n,

undo = \varsigma(x) x]
```

- The *undo* method returns the cell before the latest call to *set*.
- The *set* method updates the *undo* method, keeping it up to date.

The code above works only if update has a functional semantics. An imperative version is:

```
uncell \triangleq

[contents = 0,

set = \varsigma(x) \lambda(n)

let y = clone(x) in

(x.undo := y).contents := n,

undo = \varsigma(x) x]
```

Object-Oriented Booleans

true and *false* are objects with methods *if*, *then*, and *else*. Initially, *then* and *else* are set to diverge when invoked.

> true \triangleq [*if* = $\zeta(x)$ *x.then*, *then* = $\zeta(x)$ *x.then*, *else* = $\zeta(x)$ *x.else*] false \triangleq [*if* = $\zeta(x)$ *x.else*, *then* = $\zeta(x)$ *x.then*, *else* = $\zeta(x)$ *x.else*]

then and *else* are updated in the conditional expression:

 $cond(b,c,d) \triangleq ((b.then:=c).else:=d).if$

So:

 $cond(true, false, true) \equiv ((true.then:=false).else:=true).if$ $\rightsquigarrow ([if = \zeta(x) x.then, then = false, else = \zeta(x) x.else].else:=true).if$ $\rightsquigarrow [if = \zeta(x) x.then, then = false, else = true].if$ $\rightsquigarrow [if = \zeta(x) x.then, then = false, else = true].then$ $\rightsquigarrow false$

Object-Oriented Natural Numbers

• Each numeral has a *case* field that contains either $\lambda(z)\lambda(s)z$ for zero, or $\lambda(z)\lambda(s)s(x)$ for non-zero, where *x* is the predecessor (self).

Informally: n.case(z)(s) = if n is zero then z else s(n-1)

• Each numeral has a *succ* method that can modify the *case* field to the non-zero version.

zero is a prototype for the other numerals:

zero
$$\triangleq$$

[case = $\lambda(z) \ \lambda(s) \ z$,
succ = $\varsigma(x) \ x.case := \lambda(z) \ \lambda(s) \ s(x)$]

So:

zero
$$\equiv [case = \lambda(z) \ \lambda(s) \ z, \ succ = ...]$$

one
$$\triangleq zero.succ \equiv [case = \lambda(z) \ \lambda(s) \ s(zero), \ succ = ...]$$

pred
$$\triangleq \lambda(n) \ n.case(zero)(\lambda(p)p)$$

A Calculator

The calculator uses method update for storing pending operations.

calculator \triangleq [arg = 0.0, acc = 0.0, enter = $\varsigma(s) \lambda(n) \ s.arg := n$, add = $\varsigma(s) \ (s.acc := s.equals).equals \neq \varsigma(s') \ s'.acc+s'.arg$, sub = $\varsigma(s) \ (s.acc := s.equals).equals \neq \varsigma(s') \ s'.acc-s'.arg$, equals = $\varsigma(s) \ s.arg$]

We obtain the following calculator-style behavior:

calculator .enter(5.0) .equals=5.0
calculator .enter(5.0) .sub .enter(3.5) .equals=1.5
calculator .enter(5.0) .add .add .equals=15.0

Functions as Objects

A function is an object with two slots:

- ~ one for the argument (initially undefined),
- ~ one for the function code.

Translation of the untyped λ -calculus

$$\begin{array}{l} \langle x \rangle & \triangleq x \\ \langle \lambda(x)b \rangle & \triangleq \\ [arg = \zeta(x) \ x.arg, \\ val = \zeta(x) \ \langle b \rangle \{x \leftarrow x.arg\}] \\ \langle b(a) \rangle & \triangleq \ (\langle b \rangle.arg := \langle a \rangle).val \end{array}$$

Self variables get statically nested. A keyword **self** would not suffice.

The translation validates the β rule:

 $\langle\!\langle (\lambda(x)b)(a)\rangle\!\rangle \rightsquigarrow \langle\!\langle b[\![x\leftarrow a]\!]\rangle\!\rangle$

For example:

 $\langle\!\langle (\lambda(x)x)(y) \rangle\!\rangle \triangleq ([arg = \zeta(x) \ x.arg, \ val = \zeta(x) \ x.arg].arg].arg := y).val$ $\rightsquigarrow [arg = \zeta(x) \ y, \ val = \zeta(x) \ x.arg].val$ $\rightsquigarrow [arg = \zeta(x) \ y, \ val = \zeta(x) \ x.arg].arg$ $\rightsquigarrow y$ $\triangleq \langle\!\langle y \rangle\!\rangle$

The translation has typed and imperative variants.

Procedures as Imperative Objects

Translation of an imperative λ **-calculus**

Cloning on application corresponds to allocating a new stack frame.

Object Calculi

A class is an object with:

- ~ a *new* method, for generating new objects,
- ~ code for methods for the objects generated from the class.

For generating the object:

 $o \triangleq [l_i = \zeta(x_i) b_i^{i \in 1..n}]$

we use the class:

$$c \triangleq [new = \zeta(z) \ [l_i = \zeta(x) \ z.l_i(x) \ ^{i \in 1..n}], \\ l_i = \lambda(x_i) \ b_i \ ^{i \in 1..n}]$$

The method *new* is a **generator**. The call *c.new* yields *o*. Each field l_i is a **pre-method**.

A Class for Cells

 $cellClass \triangleq$ $[new = \varsigma(z)$ $[contents = \varsigma(x) z.contents(x), set = \varsigma(x) z.set(x)],$ $contents = \lambda(x) 0,$ $set = \lambda(x) \lambda(n) x.contents := n]$

Writing the *new* method is tedious but straightforward.

Writing the pre-methods is like writing the corresponding methods.

cellClass.new yields a standard cell: [*contents* = 0, *set* = $\varsigma(x) \lambda(n) x.contents := n$]

Inheritance

Inheritance is the reuse of pre-methods.

Given a class *c* with pre-methods $c.l_i \stackrel{i \in 1..n}{}$ we may define a new class *c*':

 $c' \triangleq [new=..., l_i=c.l_i^{i\in 1..n}, l_j=...^{j\in n+1..m}]$

We may say that *c*' is a subclass of *c*.

Inheritance for Cells

```
cellClass \triangleq 
[new = \zeta(z) 
[contents = \zeta(x) z.contents(x), set = \zeta(x) z.set(x)], 
contents = \lambda(x) 0, 
set = \lambda(x) \lambda(n) x.contents := n]
```

```
uncellClass \triangleq

[new = \varsigma(z) [...],

contents = cellClass.contents,

set = \lambda(x) cellClass.set(x.undo := x),

undo = \lambda(x) x]
```

- The pre-method *contents* is inherited.
- The pre-method *set* is overridden, though using a call to **super**.
- The pre-method *undo* is added.

Object Types and Subtyping

An **object type** is a set of method names and of result types:

 $[l_i:B_i^{i\in 1..n}]$

An object has type $[l_i:B_i^{i\in 1..n}]$ if it has at least the methods $l_i^{i\in 1..n}$, with a self parameter of some type $A <: [l_i:B_i^{i\in 1..n}]$ and a result of type B_i , e.g., [] and $[l_1:[], l_2:[]]$.

An object type with more methods is a **subtype** of one with fewer: $[l_i:B_i^{i\in 1..n+m}] <: [l_i:B_i^{i\in 1..n}]$

A longer object can be used instead of a shorter one by **subsumption**:

 $a:A \wedge A <:B \implies a:B$

Environments:

 $E \equiv x_i: A_i^{i \in 1..n}$

Judgments:

$E \vdash \diamond$	environment <i>E</i> is well-formed
$E \vdash A$	A is a type in E
$E \vdash A <: B$	A is a subtype of B in E
$E \vdash a : A$	a has type A in E

Types:

A,B ::= Top	the biggest type
$[I_i:B_i^{i\in 1n}]$	object type

Terms: as for the untyped calculus (but with types for variables).
(Type Object) (l_i distinct) $E \vdash B_i \forall i \in 1n$	(Sub Object) (l_i distinct) $E \vdash B_i \forall i \in 1n + m$	
$E \vdash [l_i:B_i^{i \in 1n}]$	$E \vdash [l_i:B_i^{i \in 1n+m}] <: [l_i:B_i^{i \in 1n}]$	
(Val Object) (where $A \equiv [l_i: I_i]$ $E, x_i: A \vdash b_i: B_i \forall i \in 1n$	$B_i^{i \in 1n}$])	
$E \vdash [l_i = \varsigma(x_i:A) b_i^{i \in 1n}] : A$		
(Val Select) $E \vdash a : [l_i:B_i^{i \in 1n}] j \in 1n$	(Val Update) (where $A \equiv [l_i:B_i^{i \in 1n}]$) $E \vdash a : A E, x:A \vdash b : B_j j \in 1n$	
$E \vdash a.l_j : B_j$	$E \vdash a.l_j \in \varsigma(x:A)b:A$	
(Val Clone) (where $A \equiv [l_i:B]$ $E \vdash a : A$	$P_i^{i \in 1n}$])	
$E \vdash clone(a) : A$		

First-order type rules for the *ς***-calculus: rules for objects**

	Env x) $E \vdash A x \notin dom(E)$	(Val x) E',x:A,E	Ξ " \vdash \diamond
ø⊢◇	$E,x:A \vdash \diamond$	<i>E'</i> , <i>x</i> : <i>A</i> , <i>E</i>	$"\vdash x:A$
(Sub Refl) $E \vdash A$	(Sub Trans) $E \vdash A <: B$	$E \vdash B <: C$	(Val Subsumption) $E \vdash a : A \qquad E \vdash A <: B$
$E \vdash A <: A$	$E \vdash A$	<: <i>C</i>	$E \vdash a : B$
$\begin{array}{c} \text{(Type Top)} \\ E \vdash \diamond \end{array}$	(Sub Top) $E \vdash A$		
$E \vdash Top$	$E \vdash A <: Top$		
(Val Let) $E \vdash a : A$	$E, x:A \vdash b:B$		
$E \vdash let$	x=a in b : B		

First-order type rules for the *ς***-calculus: standard rules**

Some Results (for the Functional Calculus)

Each well-typed term has a minimum type:

```
Theorem (Minimum types)
```

```
If E \vdash a: A then there exists B such that E \vdash a: B and, for any A', if E \vdash a: A' then E \vdash B <: A'.
```

The type system is sound for the operational semantics:

```
Theorem (Subject reduction)
```

```
If \phi \vdash a : C
and a reduces to v
then \phi \vdash v : C.
```

Unsoundness of Covariance

Object types are **invariant** (not co/contravariant) in components.

$U \triangleq []$	The unit object type.
$L \triangleq [l:U]$	An object type with just <i>l</i> .
L <: U	
$P \triangleq [x:U, f:U]$	
$Q \triangleq [x:L, f:U]$	
Assume Q <: P	by an (erroneous) covariant rule.

 $q: Q \triangleq [x = [l = []], f = \varsigma(s:Q) \ s.x.l]$ then q: P by subsumption with Q <: Phence q.x:=[]: P that is $[x = [], f = \varsigma(s:Q) \ s.x.l]: P$

But (*q*.*x*:=[]).*f* fails!

Typed Cells

- We assume an imperative semantics (in order to postpone the use of recursive types).
- If *set* works by side-effect, its result type can be uninformative. (We can write *x.set*(3) ; *x.contents* instead of *x.set*(3).*contents*.)

Assuming a type *Nat* and function types, we let:

 $\begin{array}{ll} Cell & \triangleq & [contents : Nat, set : Nat \rightarrow []] \\ GCell & \triangleq & [contents : Nat, set : Nat \rightarrow [], get : Nat] \end{array}$

We get:

 $\begin{array}{l} GCell <: Cell \\ cell \triangleq [contents = 0, set = \varsigma(x:Cell) \lambda(n:Nat) x.contents := n] \\ has type Cell \\ gcell \triangleq [..., get = \varsigma(x:GCell) x.contents] \\ has types GCell and Cell \end{array}$

Classes, with Types

If $A \equiv [l_i:B_i^{i \in 1..n}]$ is an object type, then Class(A) is the type of the classes for objects of type A:

 $Class(A) \triangleq [new:A, l_i:A \rightarrow B_i^{i \in 1..n}]$

new: A is a **generator** for objects of type *A*. $l_i: A \rightarrow B_i$ is a **pre-method** for objects of type *A*.

```
c: Class(A) \triangleq
[new = \zeta(z: Class(A)) \ [l_i = \zeta(x:A) \ z. l_i(x) \ ^{i \in 1..n}],
l_i = \lambda(x_i:A) \ b_i\{x_i\} \ ^{i \in 1..n}]
c.new: A
```

- Types are distinct from classes.
- More than one class may generate objects of a type.

Inheritance, with Types

Let $A \equiv [l_i:B_i^{i \in 1..n}]$ and $A' \equiv [l_i:B_i^{i \in 1..n}, l_j:B_j^{j \in n+1..m}]$, with A' <: A. Note that Class(A) and Class(A') are not related by subtyping.

Let *c*: *Class*(*A*), then for $i \in 1..n$

 $c.l_i: A \rightarrow B_i <: A' \rightarrow B_i.$

Hence $c.l_i$ is a good pre-method for a class of type Class(A'). We may define a subclass c' of c:

 $c': Class(A') \triangleq [new=..., l_i=c.l_i^{i\in 1..n}, l_j=...^{j\in n+1..m}]$

where class c' inherits the methods l_i from class c.

So inheritance typechecks:

If *A*'<:*A* then a class for *A*' may inherit from a class for *A*.

 $Class(Cell) \triangleq \\[new: Cell, \\contents: Cell \rightarrow Nat, \\set: Cell \rightarrow Nat \rightarrow []]$

 $Class(GCell) \triangleq \\[new: GCell, \\contents: GCell \rightarrow Nat, \\set: GCell \rightarrow Nat \rightarrow [], \\get: GCell \rightarrow Nat]$

Class(Cell) and *Class(GCell*) are not related by subtyping, but inheritance is possible.

Object Calculi

Variance Annotations

In order to gain expressiveness within a first-order setting, we extend the syntax of object types with variance annotations: $[l_i \upsilon_i : B_i^{i \in 1..n}]$

Each v_i is a variance annotation; it is one of three symbols o , $^+$, and $^-$. Intuitively,

- + means read-only: it prevents update, but allows covariant component subtyping;
- ⁻ means write-only: it prevents invocation, but allows contravariant component subtyping;
- ^{*o*} means read-write: it allows both invocation and update, but requires exact matching in subtyping.

By convention, any omitted annotations are taken to be equal to o .

Object Calculi

Subtyping with Variance Annotations

$[I^{0}:B] <: [I^{0}:B'] \text{ if } B \equiv B'$	invariant (read-write)
$[I^+:B] <: [I^+:B'] $ if $B <: B'$	covariant (read-only)
$[\ \Gamma:B] <: [\ \Gamma:B'] $ if $B' <: B$	contravariant (write-only)
$[\ l^{0}:B] <: [\ l^{+}:B'] \text{ if } B <: B'$ $[\ l^{0}:B] <: [\ l^{-}:B'] \text{ if } B' <: B$	invariant <: variant

Protection by Subtyping

- Variance annotations can provide protection against updates from the outside.
- In addition, object components can be hidden by subsumption.

For example:

Let $GCell \triangleq [contents: Nat, set: Nat \rightarrow [], get: Nat]$ $PGCell \triangleq [set: Nat \rightarrow [], get: Nat]$ $ProtectedGCell \triangleq [set^+: Nat \rightarrow [], get^+: Nat]$ gcell: GCellthen GCell <: PGCell <: ProtectedGCellso gcell: ProtectedGCell.

Given a *ProtectedGCell*, one cannot access its *contents* directly.

From the inside, *set* and *get* can still update and read *contents*.

Object Calculi

Encoding Function Types

An invariant translation of function types:

 $\langle\!\langle A \rightarrow B \rangle\!\rangle \triangleq [arg : \langle\!\langle A \rangle\!\rangle, val : \langle\!\langle B \rangle\!\rangle]$

A covariant/contravariant translation, using annotations:

 $\langle\!\langle A \rightarrow B \rangle\!\rangle \triangleq [arg^-: \langle\!\langle A \rangle\!\rangle, val^+: \langle\!\langle B \rangle\!\rangle]$

A covariant/contravariant translation, using quantifiers:

 $\langle\!\langle A \rightarrow B \rangle\!\rangle \triangleq \forall (X <: \langle\!\langle A \rangle\!\rangle) \exists (Y <: \langle\!\langle B \rangle\!\rangle) [arg : X, val : Y]$

where \forall is for polymorphism and \exists is for data abstraction.

Recursive Types

Informally, we may want to define a recursive type as in:

Cell \triangleq [*contents* : *Nat*, *set* : *Nat* \rightarrow *Cell*]

Formally, we write instead:

Cell $\triangleq \mu(X)$ [*contents* : *Nat*, *set* : *Nat* \rightarrow *X*]

Intuitively, $\mu(X)A\{X\}$ is the solution for the equation $X = A\{X\}$.

Subtyping Recursive Types

The basic subtyping rule for recursive types is: $\mu(X)A\{X\} <: \mu(X)B\{X\}$ if either $A\{X\}$ and $B\{X\}$ are equal for all Xor $A\{X\} <: B\{Y\}$ for all X and Y such that X <: Y

There are variants, for example:

```
\begin{split} \mu(X)A\{X\} &<: \mu(X)B\{X\} \\ & \text{if} \\ & \text{either } A\{X\} \text{ and } B\{X\} \text{ are equal for all } X \\ & \text{or } A\{X\} <: B\{\mu(X)B\{X\}\} \text{ for all } X \text{ such that } X <: \mu(X)B\{X\} \end{split}
```

But $A{X} <: B{X}$ does not imply $\mu(X)A{X} <: \mu(X)B{X}$.

Object Calculi

Cells (with Recursive Types)

Let $Cell \triangleq [contents : Nat, set : Nat \rightarrow Cell]$ $cell : Cell \triangleq$ [contents = 0, $set = \varsigma(x:Cell) \lambda(n:Nat) x.contents := n]$

The type *Cell* is a recursive type. Now we can typecheck *cell.set*(3).*contents*.

Because of the recursion, we do not get interesting subtypings.

Let $GCell \triangleq [contents : Nat, set : Nat \rightarrow GCell, get : Nat]$ then GCell is not a subtype of Cell. The fact that *GCell* is not a subtype of *Cell* is unacceptable, but necessary for soundness.

Consider the following correct but somewhat strange *GCell*:

```
gcell': GCell \triangleq 
[contents = \varsigma(x:Cell) x.set(x.get).get,
set = \varsigma(x:Cell) \lambda(n:Nat) x.get := n,
get = 0]
```

If *GCell* were a subtype of *Cell* then we would have:

gcell': Cell gcell'': Cell \triangleq (gcell'.set := λ (n:Nat) cell)

where *cell* is a fixed element of *Cell*, without a *get* method. Then we can write:

 $m: Nat \triangleq gcell''.contents$

But the computation of *m* yields a "message not understood" error.

Object Calculi

Five Solutions (Overview)

• Avoid methods specialization, redefining *GCell*:

 $Cell \triangleq [contents : Nat, set : Nat \rightarrow Cell]$

 $GCell \triangleq [contents : Nat, set : Nat \rightarrow Cell, get : Nat]$

- ~ This is a frequent approach in common languages.
- ~ It requires dynamic type tests after calls to the *set* method. *E.g.*,

typecase gcell.set(3)
when (x:GCell) x.get
else ...

• Add variance annotations:

 $\begin{array}{lll} Cell & \triangleq & [contents : Nat, set^+ : Nat \rightarrow Cell] \\ GCell & \triangleq & [contents : Nat, set^+ : Nat \rightarrow GCell, get : Nat] \end{array}$

- ~ This approach yields the desired subtypings.
- ~ But it forbids even sound updates of the *set* method.
- ~ It would require reconsidering the treatment of classes in order to support inheritance of the *set* method.

• Go back to an imperative framework, where the typing problem disappears because the result type of *set* is [].

 $\begin{array}{ll} Cell & \triangleq & [contents : Nat, set : Nat \rightarrow []] \\ GCell & \triangleq & [contents : Nat, set : Nat \rightarrow [], get : Nat] \end{array}$

- ~ This works sometimes.
- ~ But methods that allocate a new object of the type of self still call for the use of recursive types:

 $UnCell \triangleq [contents : Nat, set : Nat \rightarrow [], undo : UnCell]$

• Axiomatize some notion of Self types, and write:

 $\begin{array}{lll} Cell & \triangleq & [contents : Nat, set : Nat \rightarrow Self] \\ GCell & \triangleq & [contents : Nat, set : Nat \rightarrow Self, get : Nat] \end{array}$

~ But the rules for Self types are not trivial or obvious.

• Move up to higher-order calculi, and see what can be done there.

 $\begin{array}{lll} Cell & \triangleq & \exists (Y <: Cell) \ [contents : Nat, set : Nat \rightarrow Y] \\ GCell & \triangleq & \exists (Y <: GCell) \ [contents : Nat, set : Nat \rightarrow Y, get : Nat] \end{array}$

- ~ The existential quantifiers yield covariance, so *GCell* <: *Cell*.
- ~ Intuitively, the existentially quantified type is the type of self: the Self type.
- ~ This technique is general, and suggests sound rules for primitive Self types.

We obtain:

- ~ subtyping with methods that return self,
- ~ inheritance for methods that return self or that take arguments of the type of self ("binary methods"), but without subtyping.

Typed Reasoning

In addition to a type theory, we have a simple typed proof system. There are some subtleties in reasoning about objects. Consider:

> $A \triangleq [x : Nat, f : Nat]$ $a : A \triangleq [x = 1, f = 1]$ $b : A \triangleq [x = 1, f = \varsigma(s:A) s.x]$

Informally, we may say that a.x = b.x: *Nat* and a.f = b.f: *Nat*. So, do we have a = b? It would follow that (a.x:=2).f = (b.x:=2).fand then 1 = 2. Hence:

 $a \mid b : A$

Still, as objects of [x : Nat], *a* and *b* are indistinguishable from [x = 1]. Hence:

a = *b* : [*x* : *Nat*]

Finally, we may ask:

 $a \stackrel{?}{=} b : [f: Nat]$

This is sound; it can be proved via bisimilarity.

In summary, there is a notion of typed equality that may support some interesting transformations (inlining of methods).

(Work in progress: specification and verification for a typed object-oriented language.)

Object Calculi

Object calculi are both simple and expressive.

- Functions vs. objects:
 - Functions can be translated into objects.
 Therefore, pure object-based languages are at least as expressive
 - as procedural languages.
 - (Despite all the Smalltalk philosophy, to our knowledge nobody had proved that one can build functions from objects.)
 - ~ Conversely, using sophisticated type systems, it is possible to translate objects into functions.

(But this translation is difficult and not practical.)

- Classes vs. objects:
 - ~ Classes can be encoded in object calculi, easily and faithfully. Therefore, object-based languages are just as expressive as classbased ones.

(To our knowledge, nobody had shown that one can build typecorrect classes out of objects.)

~ Method update, a distinctly object-based construct, is tractable and can be useful.

Interpretation of Object-Oriented Languages

A FIRST-ORDER LANGUAGE

- Let's assess the contributions that object calculi bring to the task of modeling programming language constructs.
- For this purpose, we study a simple object-oriented language named O–1.
- We have studied more advanced languages that include Self types and matching.

Features of O-1

- Both class-based and object-based constructs.
- First-order object types with subtyping and variance annotations.
- Classes with single inheritance; method overridding and specialization.
- Recursion.
- Typecase.
- Separation interfaces from implementations, and inheritance from subtyping.

Syntax

Syntax of O-1 types

<i>B</i> ::=	types	
X	type variable	
Тор	the biggest type	
Object (X)[$l_i \upsilon_i: B_i \stackrel{i \in 1n}{}$]	object type (<i>l_i</i> distinct)	
Class(A)	class type	

Syntax of O-1 terms

```
a.b.c ::=
                                                  terms
                                                       variable
    X
    object(x:A) l_i = b_i^{i \in 1..n} end
                                                       direct object construction
                                                       field selection / method invocation
    a.l
    a.l := b
                                                       update with a term
    a.l := \mathbf{method}(x:A) b \mathbf{end}
                                                       update with a method
                                                       object construction from a class
    new c
                                                       root class
    root
    subclass of c:C with(x:A)
                                                       subclass
         l_i = b_i^{i \in n+1..n+m}
                                                            additional attributes
          override l_i = b_i^{i \in Ovr \subseteq 1..n} end
                                                            overridden attributes
     c^l(a)
                                                       class selection
     typecase a when (x:A)b_1 else b_2 end
                                                       typecase
```

- We could drop the object-based constructs (object construction and method update). The result would be a language expressive enough for traditional class-based programming.
- Alternatively, we could drop the class-based construct (root class, subclass, new, and class selection), obtaining an object-based language.
- Classes, as well as objects, are first-class values. A parametric class can be obtained as a function that returns a class.

Abbreviations

Root ≜ Class(Object(X)[]) class with(x:A) $l_i = b_i^{i \in 1..n}$ end ≜ subclass of root:Root with(x:A) $l_i = b_i^{i \in 1..n}$ override end subclass of c:C with (x:A) ... super.l ... end ≜ subclass of c:C with (x:A) ... $c^{1}(x)$... end object(x:A) ... l copied from c ... end ≜ object(x:A) ... $l = c^{1}(x)$... end

Examples

• We assume basic types (*Bool*, *Int*) and function types $(A \rightarrow B, \text{ contravariant in } A \text{ and covariant in } B)$.

Point \triangleq **Object**(*X*)[*x*: *Int*, *eq*⁺: *X* \rightarrow *Bool*, *mv*⁺: *Int* \rightarrow *X*]

CPoint \triangleq **Object**(*X*)[*x*: *Int*, *c*: *Color*, *eq*⁺: *Point* \rightarrow *Bool*, *mv*⁺: *Int* \rightarrow *Point*]

- CPoint <: Point
- The type of *mv* in *CPoint* is *Int* \rightarrow *Point*. One can explore the effect of changing it to *Int* \rightarrow *X*.
- The type of *eq* in *CPoint* is *Point→Bool*.
 If we were to change it to *X→Bool* we would lose the subtyping *CPoint* <: *Point*.

Interpretation of Object-Oriented Languages

Class(Point)

```
pointClass: Class(Point) \triangleq \\class with (self: Point) \\x = 0, \\eq = fun(other: Point) self.x = other.x end, \\mv = fun(dx: Int) self.x := self.x+dx end \\end
```

Class(CPoint)

```
cPointClass : Class(CPoint) ≜
subclass of pointClass: Class(Point)
with (self: CPoint)
c = black
override
eq = fun(other: Point)
typecase other
when (other': CPoint) super.eq(other') and self.c = other'.c
else false
end
end
end
```

Comments

- The class *cPointClass* inherits *x* and *mv* from its superclass *pointClass*.
- Although it could inherit *eq* as well, *cPointClass* overrides this method as follows.
 - ~ The definition of *Point* requires that *eq* work with any argument *other* of type *Point*.
 - ~ In the *eq* code for *cPointClass*, the typecase on *other* determines whether *other* has a color.
 - ~ If so, *eq* works as in *pointClass* and in addition tests the color of *other*.
 - ~ If not, *eq* returns *false*.

Interpretation of Object-Oriented Languages
• We can use *cPointClass* to create color points of type *CPoint*:

cPoint : *CPoint* \triangleq **new** *cPointClass*

- Calls to *mv* lose the color information.
- In order to access the color of a point after it has been moved, a typecase is necessary:

movedColor : Color ≜ typecase cPoint.mv(1) when (cp: CPoint) cp.c else black end

Typing

• The rules of O–1 are based on the following judgments:

Judgments

$E \vdash \diamond$	environment <i>E</i> is well-formed
$E \vdash A$	A is a well-formed type in E
$E \vdash A <: B$	A is a subtype of B in E
<i>E</i> ⊢ υ <i>A</i> <: υ ' <i>B</i>	A is a subtype of B in E, with variance annotations υ and υ '
$E \vdash a : A$	a has type A in E
1	

• The rules for environments are standard:

Environments

(Env ø)	$(\operatorname{Env} X <:) \\ E \vdash A X$	ée dom(E)	$(Env x) \\ E \vdash A$	x∉ dom(E)
ø⊢◇	<i>E</i> , <i>X</i> <: <i>A</i>	$I \vdash \diamond$	<i>E</i> , 2	$x:A ⊢ \diamond$

Type Formation Rules

Types

(Type <i>X</i>) <i>E</i> ', <i>X</i> <: <i>A</i> , <i>E</i> " ⊢ ◊	$\begin{array}{c} \text{(Type Top)} \\ E \vdash \diamond \end{array}$	
$E', X <: A, E'' \vdash X$	<i>E</i> ⊢ Top	
(Type Object) $(l_i \text{ distinct}, \upsilon_i \in \{^{0,-,+}\})$ $E, X <: \mathbf{Top} \vdash B_i \forall i \in 1n$		(Type Class) (where $A \equiv \mathbf{Object}(X)[l_i \upsilon_i:B_i\{X\}^{i \in 1n}]$) $E \vdash A$
$E \vdash \mathbf{Object}(X)[I_i \upsilon_i:B_i]$		$E \vdash \mathbf{Class}(A)$

Subtyping Rules

• Note that there is no rule for subtyping class types.

Subtyping

(Sub Refl) E⊢A	(Sub Trans) $E \vdash A <: B \qquad E \vdash B <: C$	(Sub X) E', X<:A, E" $\vdash \diamond$	(Sub Top) $E \vdash A$
$E \vdash A <: A$	$E \vdash A <: C$	$E', X <: A, E'' \vdash X <: A$	$E \vdash A <: \mathbf{Top}$
	where $A \equiv \mathbf{Object}(X)[l_i \upsilon_i : B_i]$ $A' E, X <: A' \vdash \upsilon_i B_i \{X\} <:$ $E \vdash A <: A'$	$X \stackrel{i \in 1n+m}{=}, A' \equiv Object(X')[l_i]$ $v_i' B_i' [A'] \stackrel{\text{def}}{=} \forall i \in 1n$	ν _i ': B _i '{X'} ^{i∈1n}])
(Sub Invariant) $E \vdash B$	(Sub Covariant) $E \vdash B <: B' \upsilon \in \{^0, ^+\}$	(Sub Contravariant) $E \vdash B' <: B \upsilon \in \{^{0}, \}$	
$E \vdash {}^{\mathrm{o}} B <: {}^{\mathrm{o}} B$	<i>E</i> ⊢υ <i>B</i> <:+ <i>B</i> ′	<i>E</i> ⊢υ <i>B</i> <: [−] <i>B</i> ′	

Term Typing Rules

Terms

Г

(Val Subsur	nption)	(Val <i>x</i>)
$E \vdash a : A$	$E \vdash A <: B$	E' , $x:A$, $E'' \vdash \diamond$
$E \vdash$	• a : B	E' , $x:A$, $E'' \vdash x:A$

(Val Object) (where $A \equiv \mathbf{Object}(X)[l_i \upsilon_i : B_i \{X\}^{i \in 1..n}]$) $E, x: A \vdash b_i : B_i \{A\} \quad \forall i \in 1..n$ $E \vdash \mathbf{object}(x:A) \ l_i = b_i^{i \in 1..n} \mathbf{end} : A$

(Val Select) (where
$$A \equiv \mathbf{Object}(X)[l_i \upsilon_i:B_i\{X\}^{i \in 1..n}])$$

 $E \vdash a: A \quad \upsilon_j \in \{^0,^+\} \quad j \in 1..n$
 $E \vdash a.l_j: B_j\{\!\!\{A\}\!\!\}$
(Val Update) (where $A \equiv \mathbf{Object}(X)[l_i \upsilon_i:B_i\{X\}^{i \in 1..n}])$

(val opdate) (where
$$A = \text{Object}(X)[l_i \cup_{j} \cdot B_j(X)]$$

 $E \vdash a : A \quad E \vdash b : B_j[A] \quad \cup_j \in \{^0, ^-\} \quad j \in 1..n$
 $E \vdash a.l_j := b : A$

(Val Method Update) (where $A \equiv \mathbf{Object}(X)[l_i \upsilon_i : B_i[X]^{i \in 1..n}]$) $\frac{E \vdash a : A \qquad E, \ x: A \vdash b : B_j[A] \qquad \upsilon_j \in \{^0, ^-\} \qquad j \in 1..n}{E \vdash a.l_j := \mathbf{method}(x:A)b \ \mathbf{end} : A}$ (Val New) $E \vdash c : \mathbf{Class}(A)$

 $E \vdash$ **new** c : A

(Val Root)

 $E \vdash \diamond$

E ⊢ **root** : **Class**(**Object**(*X*)[])

(Val Subclass) (where $A \equiv Object(X)[l_i \upsilon_i : B_i \{X\}^{i \in 1..n+m}]$, $A' \equiv Object(X')[l_i \upsilon_i : : B_i' \{X'\}^{i \in 1..n}]$, $Ovr \subseteq 1..n$) $E \vdash c' : Class(A') \quad E \vdash A <: A'$ $E \vdash B_i' \{A'\} <: B_i \{A\} \quad \forall i \in 1..n-Ovr$ $E, x:A \vdash b_i : B_i \{A\} \quad \forall i \in Ovr \cup n+1..n+m$ $E \vdash subclass of c':Class(A') with(x:A) l_i = b_i^{i \in n+1..n+m} override l_i = b_i^{i \in Ovr} end$: Class(A) (Val Class Select) (where $A \equiv Object(X)[l_i \upsilon_i : B_i \{X\}^{i \in 1..n}]$) $E \vdash a : A \qquad E \vdash c : Class(A) \qquad j \in 1..n$ $E \vdash c^{1}_j(a) : B_j \{A\}$ (Val Typecase) $E \vdash a : A' \qquad E, x: A \vdash b_1 : D \qquad E \vdash b_2 : D$ $E \vdash typecase a when (x:A)b_1 else b_2 end : D$

- These rules are hard to read and understand.
- But they are the ultimate truth about typing in O–1.

Interpretation of Object-Oriented Languages

Translation

- We give a translation into a functional calculus (with all the features described earlier).
- A similar translation could be given into an appropriate imperative calculus.
- At the level of types, the translation is simple.
 - ~ We write $\langle\!\langle A \rangle\!\rangle$ for the translation of *A*.
 - ~ We map an object type **Object**(*X*)[$l_i v_i : B_i^{i \in 1..n}$] to a recursive object type $\mu(X)[l_i v_i : \langle B_i \rangle)^{i \in 1..n}$].
 - ~ We map a class type $Class(Object(X)[l_i v_i: B_i \{X\}^{i \in 1..n}])$ to an object type that contains components for pre-methods and a *new* component.

Interpretation of Object-Oriented Languages

Translation of Types

Translation of O-1 types

$\langle\!\langle X \rangle\!\rangle \triangleq X$
$\langle \langle \mathbf{Top} \rangle \triangleq Top$
$\langle \mathbf{Object}(X)[l_i \upsilon_i : B_i^{i \in 1n}] \rangle \triangleq \mu(X)[l_i \upsilon_i : \langle B_i \rangle^{i \in 1n}]$
$\langle \mathbf{Class}(A) \rangle \triangleq [new^+:\langle A \rangle, l_i^+:\langle A \rangle \rightarrow \langle B_i \rangle \{\langle A \rangle\} i \in 1n]$
where $A \equiv \mathbf{Object}(X)[l_i \upsilon_i : B_i \{X\}^{i \in 1n}]$

Translation of O-1 environments

 $\langle \langle \phi \rangle \rangle \triangleq \phi$ $\langle \langle E, X < :A \rangle \triangleq \langle \langle E \rangle, X < : \langle A \rangle$ $\langle \langle E, x : A \rangle \triangleq \langle \langle E \rangle, x : \langle A \rangle$

Г

Translation of Terms

- The translation is guided by the type structure.
- The translation maps a class to a collection of premethods plus a *new* method.
 - For a class **subclass of** *c*['] ... **end**, the collection of pre-methods consists of the pre-methods of *c*['] that are not overridden, plus all the pre-methods given explicitly.
 - ~ The *new* method assembles the pre-methods into an object; **new** *c* is interpreted as an invocation of the *new* method of $\langle c \rangle$.
 - The construct c^l(a) is interpreted as the extraction and the application of a pre-method.

Interpretation of Object-Oriented Languages

(Simplified) Translation of O-1 terms

 $\langle x \rangle \triangleq x$ $\langle object(x:A) \ l_i = b_i^{i \in 1..n} end \rangle \triangleq [l_i = \varsigma(x:\langle A \rangle) \langle b_i \rangle^{i \in 1..n}]$ $\langle a.l \rangle \triangleq \langle a \rangle.l$ $\langle a.l := b \rangle \triangleq \langle a \rangle.l := \langle b \rangle$ $\langle a.l := method(x:A) \ b end \rangle \triangleq \langle a \rangle.l \in \varsigma(x:\langle A \rangle) \langle b \rangle$

Usefulness of the Translation

- The translation validates the typing rules of O–1. That is, if $E \vdash J$ is valid in O–1, then $\langle\!\langle E \vdash J \rangle\!\rangle$ is valid in the object calculus.
- The translation served as an important guide in finding sound typing rules for O–1, and for "tweaking" them to make them both simpler and more general.
- In particular, typing rules for subclasses are so inherently complex that it is difficult to "guess" them correctly without the aid of some interpretation.
- Thus, we have succeeded in using object calculi as a platform for explaining a relatively rich object-oriented language and for validating its type rules.

TRANSLATIONS

- In order to give insight into type rules for object-oriented languages, translations must be judgment-preserving (in particular, type and subtype preserving).
- Translating object-oriented languages directly to typed λ-calculi is just too hard. Object calculi provide a good stepping stone in this process, or an alternative endpoint.
- Translating object calculi into λ -calculi means, intuitively, "programming in object-oriented style within a procedural language". This is the hard part.

Untyped Translations

- Give insights into the nature of object-oriented computation.
- Objects = records of functions.

Type-Preserving Translations

- Give insights into the nature of object-oriented typing and subsumption/coercion.
- Object types = recursive records-of-functions types.

Subtype-Preserving Translations

- Give insights into the nature of subtyping for objects.
- Object types = recursive bounded existential types (!!).

 $[l_i:B_i^{i\in 1..n}] \triangleq \mu(Y) \exists (X <: Y) \langle r:X, l_i^{sel}:X \rightarrow B_i^{i\in 1..n}, l_i^{upd}:(X \rightarrow B_i) \rightarrow X^{i\in 1..n} \rangle$

= very difficult to obtain, impossible to use in actual programming

CONCLUSIONS

• Foundations

- ~ Subtype-preserving translations of object calculi into λ -calculi are hard.
- ~ In contrast, subtype-preserving translations of λ -calculi into object-calculi can be easily obtained.
- ~ In this sense, object calculi are a more convenient foundation for object-oriented programming than λ -calculi.

- Language design
 - ~ Object calculi are a good basis for designing rich object-oriented type systems (including polymorphism, Self types, etc.).
 - ~ Object-oriented languages can be shown sound by fairly direct translations into object calculi.

- Other developments
 - ~ Second-order object types for Self types.
 - ~ Higher-order object types for matching.
- Potential future areas
 - Typed ς-calculi should be a good simple foundation for studying object-oriented specification and verification.
 - They should also give us a formal platform for studying objectoriented concurrent languages (as opposed to "ordinary" concurrent languages).

References

- http://www.research.digital.com/SRC/ personal/Luca_Cardelli/TheoryOfObjects.html
- M.Abadi, L.Cardelli: **A Theory of Objects**. Springer, 1996.