
Talk May 6, 1997 10:50 pm 1

Abstractions for
Mobile Computation

Luca Cardelli

(with Andrew D. Gordon)

Talk May 6, 1997 10:50 pm 2

Outline

• Mobility in the real and virtual world.

~ Informal review of what’s out there.

• Modeling mobility.

~ Previous work.

~ The ambient calculus.

~ Examples.

• Applications.

~ Verification of combined security and mobility properties.

~ New mobility libraries/languages.

Talk May 6, 1997 10:50 pm 3

Three Mental Pictures

Talk May 6, 1997 10:50 pm 4

(Traditional) Distributed Computing

Administrative Domain

Talk May 6, 1997 10:50 pm 5

Immobility
(Traditional Distributed Object Systems)

• RPC/RMI.

(CORBA, OLE, Modula-3 Network Objects, Java RMI.)

• Control mobility, data mobility, link mobility.

• No code mobility, no thread/process mobility.

• Static and often trivial topology (everything 1 logical step

apart).

Talk May 6, 1997 10:50 pm 6

Virtual Mobility
(Pre-Web Software Systems)

• Tcl. (Code mobility.)

• Telescript. (Agent mobility.)

• Obliq. (Closure mobility.)

Talk May 6, 1997 10:50 pm 7

The Web

Talk May 6, 1997 10:50 pm 8

Virtual Mobility
(Post-Web Software Systems)

• Basic Java Applets. (Downstream code mobility.)

• Java Servlets, and beyond. (Upstream code mobility.)

• Countless Tcl-based and Java-based ongoing projects.

• Still no (native) thread mobility. (But see, e.g., Sumatra)

Talk May 6, 1997 10:50 pm 9

The Real World (detail)

US

NSA

Digital
SRC

Digital
CRL

AF 81
EU

CH

Talk May 6, 1997 10:50 pm 10

Physical Mobility
(Gadgets)

• Smart cards (wired).

• Active badges, pagers (wireless).

• Cellphones (wireless).

• Palm/Laptops (wired, wireless).

Talk May 6, 1997 10:50 pm 11

Two Overlapping Views of Mobility

• Mobile Computing.

~ I.e. mobile hardware, physical mobility.

• Mobile Computation.

~ I.e. mobile software, virtual mobility.

• But the borders are fuzzy:

~ Agents may move by traversing a network (virtually), or by being

carried on a laptop (physically).

~ Computers may move by lugging them around (physically), or by

telecontrol software (virtually).

~ Boundaries may be physical (buildings) or virtual (firewalls).

Talk May 6, 1997 10:50 pm 12

Obstacles to Mobility

• Address spaces.

~ Stop pointer mobility. Circumvented by network proxies.

• Firewalls

~ Stop packet mobility. Circumvented by secure tunnels.

• Sandboxes.

~ Stop agent mobility. Circumvented by trust mechanisms.

• Building guards.

~ Stop laptop mobility. Circumvented by removal passes.

Talk May 6, 1997 10:50 pm 13

Firewalls Everywhere

• A (nasty) fundamental change in the way we compute.

~ Bye bye, flat IP addressing, transparent routing.

~ Bye bye, single universal address space.

~ Bye bye, transparent distributed object systems.

~ Bye bye, roaming agents.

~ Bye bye, action-at-a-distance computing.

• Big firewalls (for intranets), small firewalls (for applets).

• Becoming pervasive. 1 PC Firewall = $99.95.

• Firewall are designed impede access. Our task: make rightful

access simple.

Talk May 6, 1997 10:50 pm 14

Summary: Mobility Postulates

• If different locations have different properties, then both

people and programs will want to move between them.

• Barriers to mobility will be erected to preserve certain

properties of certain locations.

• Some people and some programs will still need to cross those

barriers.

Talk May 6, 1997 10:50 pm 15

Modeling Mobility

Talk May 6, 1997 10:50 pm 16

Mobility/Security Formalisms

• CSP/CCS. (Static/immutable connectivity.)

• π-calculus. (Channel mobility.)

• CHOCS. (Process mobility.)

• Spi-calculus. (Channel mobility and security)

• Join calculus. (Channel mobility and locality.)

• Various calculi with failure. (Locality = Partial Failure.)

• Ambient calculus.

(Process mobility. Locality = Topology.)

Talk May 6, 1997 10:50 pm 17

Ambients

• We want to capture in an abstract way, notions of locality, of

mobility, and of ability to move.

• An ambient is a place, delimited by a boundary, where

computation happens.

• Ambients have a name, a collection of local processes, and a

collection of subambients.

• Ambients can move in an out of other ambients, subject to

capabilities that are associated with ambient names.

• Ambient names are unforgeable.

Talk May 6, 1997 10:50 pm 18

Metaphor: The Folder Calculus

n

in m. P

R

n

mm

→

→

R

n

Q

open n. P

→ Q

P

R

m

→
P

in m

out m

open n copy

Q

n

out m. P

Q

m

R

n

P

Q

!

P

Q

P

!
P

Talk May 6, 1997 10:50 pm 19

Comments

• We can look at ambients as active folders; each folder has a name on its tab, and can contain

other folders. Each folder can also contain a whole bunch of concurrent gremlins that tell the

folder what do and where to go. Each horizontal script line in a folder represent one (or more)

gremlins.

• A folder with dynamic content can send out gremlins to find information, represented by oth-

er folders, and persuade those folders to follow the gremlins to their home folder.

• The open operation throws away a folder and spills its content into the current folder (where

open n.P lives). It requires a capability open n, that must have been given out by folder n.

• The ! operation is a copy machine: if P is a folder, !P can make as many copies of P as de-

sired.

• All transitions block when they cannot fire.

• The !P transition never blocks: it is a very idealized copy machine that never breaks and never

runs out of paper. However, copying takes computation, so we can imagine that the operation

is blocked until a new copy of P has been produced.

The set of operations on this slide (including folder creation) is Turing-complete.

Talk May 6, 1997 10:50 pm 20

Metaphor: Post-It I/O

→
C

(x). P{x}

P{C}

Input:

Output:

A Post-it can hold a capability:

n a name
in n

out n an action capability
open n

C. C’ a path (e.g.: out n. in m)

read

Talk May 6, 1997 10:50 pm 21

The Ambient Calculus

P ::= an activity

(νn) P new name n in a scope

0 inactivity

P | P parallel

!P replication

a[P] ambient (a ::= n or x)

C. P exercise a capability

(x). P input locally, bind to x

ÜCá output locally (async)

C ::= a capability

in a entry capability

out a exit capability

open a open capability

a name or input variable

C. C’ path

standard in
process calculi

ambient-specific

ambient I/O

basic capabilities

useful with I/O

data structures

actions

scoping

Talk May 6, 1997 10:50 pm 22

• Typical shape of an ambient:

• Main operations:

~ In. Enter an ambient. (Requires an entry capability.)

~ Out. Exit an ambient. (Requires an exit capability.)

~ Open. Spill the contents of an ambient. (Requires an opening

capability.)

n

P1 Pp

...

...

m1 mq

n [
 P1 | ... | Pp |

 m1[...] | ... | mq[...]

]

name

processes

sub-ambients
... ...

Talk May 6, 1997 10:50 pm 23

Semantics

• Behavior

~ The semantics of the ambient calculus is given in non-deterministic

“chemical style” (as in Berry&Boudol’s Chemical Abstract Machine,

and in Milner’s π-calculus).

~ The semantics is factored into a reduction relation P îïïñ P’ describing

the evolution of a process P into a process P’, and a process

equivalence indicated by Q 7 Q’.

~ Here, îïïñ is real computation, while 7 is “rearrangement”.

• Equivalence

~ On the basis of behavior, a substitutive observational equivalence, P

1 Q, is defined between processes, enabling reasoning.

~ Standard process calculi proof techniques (context lemmas,

bisimulation, etc.) can be adapted.

Talk May 6, 1997 10:50 pm 24

Parallel

• Parallel execution is denoted by a binary operator:

P|Q

• It is commutative and associative:

P | Q 7 Q | P

(P | Q) | R 7 P | (Q | R)

• It obeys the reduction rule:

P îïïñ Q ⇒ P | R îïïñ Q | R

Talk May 6, 1997 10:50 pm 25

Replication

• Replication is a technically convenient way of representing

iteration and recursion.

!P

• It denotes the unbounded replication of a process P.

!P 7 P | !P

• There are no reduction rules for !P; in particular, the process P

under ! cannot begin to reduce until it is expanded out as P|!P.

Talk May 6, 1997 10:50 pm 26

Restriction

• The restriction operator creates a new (forever unique)

ambient name n within a scope P.

(νn)P

• As in the π-calculus, the (νn) binder can float as necessary to

extend or restrict the scope of a name. E.g.:

(νn)(P | Q) 7 P | (νn)Q if n Ì fn(P)

• Reduction rule:

P îïïñ Q ⇒ (νn)P îïïñ (νn)Q

Talk May 6, 1997 10:50 pm 27

Inaction

• The process that does nothing:

0

• Some garbage-collection equivalences:

P | 0 7 P

!0 7 0

(νn)0 7 0

• This process does not reduce.

Talk May 6, 1997 10:50 pm 28

Ambients

• An ambient is written as follows, where n is the name of the

ambient, and P is the process running inside of it.

n[P]

• In n[P], it is understood that P is actively running:

P îïïñ Q ⇒ n[P] îïïñ n[Q]

• Multiple ambients may have the same name, (e.g., replicated

servers).

Talk May 6, 1997 10:50 pm 29

Actions and Capabilities

• Operations that change the hierarchical structure of ambients

are sensitive. They can be interpreted as the crossing of

firewalls or the decoding of ciphertexts.

• Hence these operations are restricted by capabilities.

C. P

This executes an action regulated by the capability C, and then

continues as the process P.

• The reduction rules for C. P depend on C.

Talk May 6, 1997 10:50 pm 30

Entry Capability

• An entry capability, in m, can be used in the action:

in m. P

• The reduction rule (non-deterministic and blocking) is:

n[in m. P | Q] | m[R] îïïñ m[n[P | Q] |R]

in m.P | Q

n

R

m

| îïïñ P | Q

n

 | R

m

Talk May 6, 1997 10:50 pm 31

Exit Capability

• An exit capability, out m, can be used in the action:

out m. P

• The reduction rule (non-deterministic and blocking) is:

m[n[out m. P | Q] | R] îïïñ n[P | Q] | m[R]

îïïñout m. P | Q

n

 | R

m

P | Q

n

R

m

|

Talk May 6, 1997 10:50 pm 32

Open Capability

• An opening capability, open m, can be used in the action:

open n. P

• The reduction rule (non-deterministic and blocking) is:

open n. P | n[Q] îïïñ P | Q

îïïñQ

n

open n. P | P | Q

Talk May 6, 1997 10:50 pm 33

• An open operation may be upsetting to both P and Q above.

~ From the point of view of P, there is no telling in general what Q

might do when unleashed.

~ From the point of view of Q, its environment is being ripped open.

• Still, this operation is relatively well-behaved because:

~ The dissolution is initiated by the agent open n. P, so that the

appearance of Q at the same level as P is not totally unexpected;

~ open n is a capability that is given out by n, so n[Q] cannot be

dissolved if it does not wish to be.

Talk May 6, 1997 10:50 pm 34

Design Principle

• An ambient should not get killed or trapped unless:

~ It talks too much. (By making its capabilities public.)

~ It poisons itself. (By opening an untrusted intruder.)

~ It steps into quicksand. (By entering an untrusted ambient.)

• Some natural primitives violate this principle. E.g.:

n[burst n. P | Q] îïïñ P | Q

Then a mere in capability gives a kidnapping ability:

entrap(C) @ (ν k m) (m[C. burst m. in k] | k[])

entrap(in n) | n[P] îïïñ* (νk) (n[in k | P] | k[])

îïïñ* (νk) k[n[P]]

Talk May 6, 1997 10:50 pm 35

Ambient I/O

• Local anonymous communication within an ambient:

(x). P input action

ÜCá async output action

• We have the reduction:

(x). P | ÜCá îïïñ P{x←C}

• This mechanism fits well with the ambient intuitions.

~ Long-range communication, like long-range movement, should not

happen automatically because messages may have to cross firewalls

and other obstacles. (C.f., Telescript.)

~ Still, this is sufficient to emulate communication over named

channels, etc.

Talk May 6, 1997 10:50 pm 36

Structural Equivalence Summary

P 7 P

P 7 Q ⇒ Q 7 P

P 7 Q, Q 7 R ⇒ P 7 R

(Struct Refl)

(Struct Symm)

(Struct Trans)

P 7 Q ⇒ (νn)P 7 (νn)Q

P 7 Q ⇒ P | R 7 Q | R

P 7 Q ⇒ n[P] 7 n[Q]

(Struct Res)

(Struct Par)

(Struct Amb)

P | Q 7 Q | P

(P | Q) | R 7 P | (Q | R)

!P 7 P | !P

(νn)(νm)P 7 (νm)(νn)P

(νn)(P | Q) 7 P | (νn)Q if n Ì fn(P)

(νn)(m[P]) 7 m[(νn)P] if n ≠ m

(Struct Par Comm)

(Struct Par Assoc)

(Struct Repl Par)

(Struct Res Res)

(Struct Res Par)

(Struct Res Amb)

P | 0 7 P

(νn)0 7 0

!0 7 0

(Struct Zero Par)

(Struct Zero Res)

(Struct Zero Repl)

ε.P 7 P

(C.C’).P 7 C.C’.P

(Struct ε)

(Struct .)

Talk May 6, 1997 10:50 pm 37

• In addition, we identify terms up to renaming of bound names:

(νn)P = (νm)P{n←m} if m Ì fn(P)

By this we mean that these terms are understood to be identical

(for example, by choosing an appropriate representation of

terms), as opposed to structurally equivalent.

Talk May 6, 1997 10:50 pm 38

Noticeable Inequivalences

• Replication creates new names:

!(νn)P ? (νn)!P

• Multiple n ambients have separate identity:

n[P]|n[Q] ? n[P|Q]

Talk May 6, 1997 10:50 pm 39

Reduction Summary

n[in m. P | Q] | m[R] îïïñ m[n[P | Q] |R]

m[n[out m. P | Q] | R] îïïñ n[P | Q] | m[R]

open n. P | n[Q] îïïñ P | Q

(Red In)

(Red Out)

(Red Open)

(x). P | ÜCá îïïñ P{x←C} (Red Comm)

P îïïñ Q ⇒ (νn)P îïïñ (νn)Q

P îïïñ Q ⇒ n[P] îïïñ n[Q]

P îïïñ Q ⇒ P | R îïïñ Q | R

(Red Res)

(Red Amb)

(Red Par)

P’ 7 P, P îïïñ Q, Q 7 Q’ ⇒ P’ îïïñ Q’ (Red 7)

îïïñ* reflexive and transitive closure of îïïñ

Talk May 6, 1997 10:50 pm 40

• An unexpected outcome.

~ The primitives invented exclusively for process mobility end up being

meaningful for security. (Various caveats apply.)

~ In any case, we could extend our ambient calculus with the spi-

calculus primitives, whose security features have been studied.

~ The combination of mobility and cryptography in the same formal

framework seems novel and intriguing.

~ E.g., we can represent both mobility and (some) security aspects of

“crossing a firewall”.

Talk May 6, 1997 10:50 pm 41

Expressiveness

• Old concepts that can be represented:

~ Synchronization and communication mechanisms.

~ Turing machines. (Natural encoding, no I/O required.)

~ Arithmetic. (Tricky, no I/O required.)

~ Data structures.

~ π-calculus. (Easy, channels are ambients.)

~ λ-calculus. (Hard, different than encoding λ in π.)

~ Spi-calculus concepts. (Being debated.)

Talk May 6, 1997 10:50 pm 42

• Net-centric concepts that can be represented:

~ Named machines and services on complex networks.

~ Encrypted data and firewalls.

~ Data packets, routing, RPC.

~ Mobile computation. (Telescript agents, applets, etc.)

~ Dynamically linked libraries.

~ Mobile devices.

~ Public transportation.

Talk May 6, 1997 10:50 pm 43

Ambients as Locks

• We can use open to encode locks:

release n. P @ n[] | P

acquire n. P @ open n. P

• This way, two processes can “shake hands” before proceeding

with their execution:

acquire n. release m. P | release n. acquire m. Q

Talk May 6, 1997 10:50 pm 44

Ambients as Mobile Processes

tourist @ (x). joe[x. enjoy]

ticket-desk @ ! Üin AF81SFO. out AF81CDGá

SFO[ticket-desk | tourist | AF81SFO[route]]

 îïïñ* SFO[ticket-desk |

joe[in AF81SFO. out AF81CDG. enjoy] |

AF81SFO[route]]

 îïïñ* SFO[ticket-desk |

AF81SFO[route | joe[out AF81CDG. Enjoy]]]

Talk May 6, 1997 10:50 pm 45

Ambients as Firewalls

• Assume that the shared key k is already known to the firewall

and the client.

Wally @ (ν w r) (Üin rá | r[open k. in w] | w[open r. P])

Cleo @ (x). k[x. C]

Cleo | Wally

îïïñ* (ν w r) ((x). k[x. C] | Üin rá | r[open k. in w] | w[open r. P])

îïïñ* (ν w r) (k[in r. C] | r[open k. in w] | w[open r. P])

îïïñ* (ν w r) (r[k[C] | open k. in w] | w[open r. P])

îïïñ* (ν w r) (r[C | in w] | w[open r. P])

îïïñ* (ν w r) (w[r[C] | open r. P])

îïïñ* (ν w) (w[C | P])

Talk May 6, 1997 10:50 pm 46

Comments

• Two secret names are introduced: w is the name of the firewall, and r is the name of a private

room used as a customs checkpoint.

• We want to verify that Cleo knows the key k: this is done by open k. After that, we want to

give Cleo a capability in w to enter the firewall. The communication of this capability must

happen in a private place: we don’t want some other process to snatch in w in transit. The

private room r is used for this purpose.

• The room r has a secret name, and a single capability in r is made available for entering the

room. Therefore we are sure that only one process enters r (we assume that Cleo is honest).

Talk May 6, 1997 10:50 pm 47

Turing Machine

end[extendLft | S0 |

square[S1 |

square[S2 |

...

square[Si | head |

...

square[Sn-1 |

square[Sn | extendRht]] ..] ..]]]

Talk May 6, 1997 10:50 pm 48

The Asynchronous π-calculus

• A named channel is represented by an ambient.

~ The name of the channel is the name of the ambient.

~ Communication on a channel is becomes local I/O inside a channel-ambient.

~ A conventional name, io, is used to transport I/O requests into the channel.

• These definitions satisfy the expected reduction:

n(x).P | nÜCá îïïñ* P{x←C}

in presence of a channel for n.

(ch n)P @ (νn) (n[!open io] | P)

n(x).P @ (νp) (io[in n. (x). p[out n. P]] | open p)

nÜCá @ io[in n. ÜCá]

Talk May 6, 1997 10:50 pm 49

• Therefore:

ä(νn)Pã @ (νn) (n[!open io]|äPã)

än(x).Pã @ (νp) (io[in n. (x). p[out n. äPã]]|open p)

änÜmáã @ io[in n. Ümá]

äP|Qã @ äPã|äQã

ä!Pã @ !äPã

~ The choice-free synchronous π-calculus, can be encoded within the

asynchronous π-calculus.

~ The λ-calculus can be encoded within the asynchronous π-calculus.

Talk May 6, 1997 10:50 pm 50

Contextual Equivalence

• Exhibition

P↓n ⇔ P 7 (νn1...np)(n[Q]|R) ∧ nÌ{n1...np}

• Convergence

P⇓ ⇔ Ôn. P îïïñ* Q ∧ Q↓n

• Contextual Equivalence

P 1 Q ⇔ ÓCY¢Z. CYPZ⇓ ⇔ CYQZ⇓

Talk May 6, 1997 10:50 pm 51

Security Applications

Talk May 6, 1997 10:50 pm 52

Firewalls

• n[P] is a firewall named n protecting P.

• in n is the capability needed to enter the firewall.

• out n is the capability needed to exit the firewall.

• The context is the Internet.

• The Perfect-Firewall Equation:

(νn) n[P] 1 0 (if n not in P)

Talk May 6, 1997 10:50 pm 53

Cryptography

• The ambient calculus can, without special extensions, model

certain cryptographic procedures.

~ In particular, it can model the most basic subset of the spi-calculus:

{M}N shared-key encryption of M by N

decrypt M with N shared-key decryption

• It does not embrace a particular implementation:

~ It does not model the ability an attacker may have to compare bit

patterns.

~ It does not model the ability an attacker may have to exploit properties

of a specific underlying crypto.

Talk May 6, 1997 10:50 pm 54

Nonces

• A nonce is simply a fresh name that can, for example, be

communicated by an output action.

Q | (νn) (Üná | P) output a nonce n for Q

When the nonce comes back to P, it can be verified by open n.

Talk May 6, 1997 10:50 pm 55

Shared Keys

• A name can be used as a shared key, as long as it is kept secret

and shared only by certain parties.

k[Ütxtá] encrypt txt with the shared key k

open k. (x). P decrypt with the shared key k

and read the message

• Anybody who knows k can decrypt a message k[Ütxtá]:

~ Either by open k (destructively).

~ Or by in k followed by out k (non-destructively).

Talk May 6, 1997 10:50 pm 56

Public Keys: Signed Messages

• If k[Ütxtá] is the plaintext txt encrypted by k, then open k

represents the (public) ability to open a k-envelope, without

knowing k.

Principal A

(νk) create a new signature key

!Üopen ká publish the signature verifier

| k[Ütxtá] sign a message

Principal B

(open-cap). acquire the signature verifier

open-cap. verify an available message

(msg). P read the message and proceed

Talk May 6, 1997 10:50 pm 57

Public Keys: Coded Message

• If k[Ütxtá] is the plaintext txt encrypted by k, then

(x). k[Üxá] represents the (public) ability to insert a plaintext in

a k-envelope, without knowing k.

Principal A

(νk) create a new encryption key

!(x). k[Üxá] publish message encryptors (possibly route them)

| !open k. (x). P decrypt incoming messages and proceed

Principal B

Ütxtá encrypt a message for A

(assuming an encryptor for A is available here)

(possibly route it back to A)

Talk May 6, 1997 10:50 pm 58

Ciphers

• k[Ütxtá] is the plaintext txt encrypted with key k.

• P 1 Q means “no attacker can tell P from Q”.

• The Perfect-Cipher Equation:

(νk1) k1[Ütxt1á] 1 (νk2) k2[Ütxt2á]

~ Simply because (νk1) k1[Ütxt1á] 1 0 1 (νk2) k2[Ütxt2á].

~ This is a consequence of (a) the reductions allowed in the calculus, (b)

the absence of other reductions that might make distinctions, (c) the

(debatable) interpretation of ambient operations as crypto operations.

Talk May 6, 1997 10:50 pm 59

Calculi vs. Reality

• Calculi make “implicit security assumptions”.

~ Nominal calculi, like π, spi, assume that nobody can guess the name

of a private channel.

~ The ambient calculus assumes that nobody can extract a name from a

capability.

~ Consequences include the perfect-cipher equation.

• A) This is good.

~ These assumptions are “security abstraction” that enable high-level

reasoning (via 1).

~ These assumptions can be realized by different implementation

(crypto) techniques.

~ They may increase practical security by providing a programming

model that is more transparent.

Talk May 6, 1997 10:50 pm 60

• B) This is bad.

~ Such assumption are dangerous since they are not obviously

“realistic”. How do they map to algebraic properties of the underlying

crypto primitives?

~ They may hold within the calculus, but do they keep holding under

low-level attacks (if somebody can dissect an agent)?

• (Speculation.) Implicit security assumptions must be made

explicit and must be “securely implemented”.

~ One must describe an implementation of the calculus in terms of

realistic cryptographic primitives.

~ One must prove that the implementation is (1) correct and (2) prevents

certain low-level attacks. [Abadi, Gonthier, Fournet]

Talk May 6, 1997 10:50 pm 61

Language Applications

Talk May 6, 1997 10:50 pm 62

Ambient-like Languages

• No “hard” pointers.

All references are URLs, symbolic links, or such.

• Migration/Transportation

Thread migration.

Data migration.

Whole-application migration.

• Dynamic linking.

A missing library or plug-in may suddenly show up.

• No communication exceptions.

Blocking/exactly-once semantics.

Talk May 6, 1997 10:50 pm 63

Transportation

let train(stationX stationY XYatX XYatY tripTime) =

 new moving. // assumes the train originates inside stationX

 moving[rec T.

 be XYatX. wait 2.0.

 be moving. go out stationX. wait tripTime. go in stationY.

 be XYatY. wait 2.0.

 be moving. go out stationY. wait tripTime. go in stationX.

 T];

new stationA stationB stationC ABatA ABatB BCatB BCatC.

 stationA[train(stationA stationB ABatA ABatB 10.0)] |

 stationB[train(stationB stationC BCatB BCatC 20.0)] |

 stationC[train(stationC stationB BCatC BCatB 30.0)] |

stationA stationB stationC

trainAB

trainBC

trainBC
joe

nancy

Talk May 6, 1997 10:50 pm 64

new joe.

 joe[

 go in stationA.

 go in ABatA. go out ABatB.

 go in BCatB. go out BCatC.

 go out stationC] |

new nancy.

 nancy[

 go in stationC.

 go in BCatC. go out BCatB.

 go in ABatB. go out ABatA.

 go out stationA]

Talk May 6, 1997 10:50 pm 65

Execution trace

moving: Be ABatA

moving: Be BCatC

moving: Be BCatB

nancy: Moved in stationC

nancy: Moved in BCatC

joe: Moved in stationA

joe: Moved in ABatA

ABatA: Be moving

BCatC: Be moving

moving: Moved out stationC

BCatB: Be moving

moving: Moved out stationB

moving: Moved out stationA

moving: Moved in stationB

moving: Be ABatB

joe: Moved out ABatB

ABatB: Be moving

moving: Moved out stationB

moving: Moved in stationC

moving: Be BCatC

BCatC: Be moving

moving: Moved out stationC

moving: Moved in stationA

moving: Be ABatA

ABatA: Be moving

moving: Moved out stationA

moving: Moved in stationB

Talk May 6, 1997 10:50 pm 66

moving: Be BCatB

nancy: Moved out BCatB

joe: Moved in BCatB

BCatB: Be moving

moving: Moved out stationB

moving: Moved in stationB

moving: Be ABatB

nancy: Moved in ABatB

ABatB: Be moving

moving: Moved out stationB

moving: Moved in stationB

moving: Be BCatB

BCatB: Be moving

moving: Moved out stationB

moving: Moved in stationA

moving: Be ABatA

nancy: Moved out ABatA

nancy: Moved out stationA

ABatA: Be moving

moving: Moved out stationA

moving: Moved in stationB

moving: Be ABatB

moving: Moved in stationC

moving: Be BCatC

joe: Moved out BCatC

joe: Moved out stationC

moving: Moved in stationC

...

Talk May 6, 1997 10:50 pm 67

Conclusions

• The notion of named, active, hierarchical, mobile ambients

captures the structure of complex networks and of mobile

computing/computation.

• The ambient calculus formalizes ambient notions simply and

powerfully.

~ It is no more complex than common process calculi.

~ It supports reasoning about mobility and (hopefully) security.

• We can now envision new programming methodologies/

libraries/languages for global computation.

Talk May 6, 1997 10:50 pm 68

Extra

Talk May 6, 1997 10:50 pm 69

Locality and Computation

• “Model of Computation” = “What can be observed”.

• Observable Locality.

~ Survival.

~ Resource availability.

~ Meaning of names/references.

~ Barriers.

• Observable Quality of Service (Between Locations).

~ Latency and bandwidth.

~ Price.

~ Convenience.

Talk May 6, 1997 10:50 pm 70

• Examples

~ An active badge enters a room.

~ A infrared-enabled PDA enters a room.

~ A wireless laptop enters a building.

~ A mobile phone enters a cell.

~ A smart card enters an NC.

~ A Java applet enters a firewall, then a browser.

Talk May 6, 1997 10:50 pm 71

Movement from the Inside or the Outside: Sub-
jective vs. Objective

There are two natural kinds of movement primitives for ambients. The distinction is between “I

make you move” from the outside (objective move) or “I move” from the inside (subjective

move). Subjective moves, the ones we have already seen, obey the rules:

Objective moves (indicated by an mv prefix), instead obey the rules:

These two kinds of move operations are not trivially interdefinable. The objective moves

have simpler rules. However, they operate only on ambients that are not active; they provide no

way of moving an existing running ambient. The subjective moves, in contrast, cause active am-

bients to move and, together with open, can approximate the effect of objective moves (as we

discuss later).

Another kind of objective moves one could consider is:

n[in m. P | Q] | m[R] îïïñ m[n[P | Q] |R]

m[n[out m. P | Q] | R] îïïñ n[P | Q] | m[R]

mv in m. P | m[R] îïïñ m[P | R]

m[mv out m. P | R] îïïñ P | m[R]

mv n in m. P| n[Q]| m[R] îïïñ P | m[n[Q] |R]

m[mv n out m. P| n[Q]| R] îïïñ P | m[P |R] | n[Q]

Talk May 6, 1997 10:50 pm 72

These are objective moves that work on active ambients. However they are not as simple as the

previous objective moves and, again, they can be approximated by subjective moves and open.

In examining these variations, one should consider who has the authority to move whom.

In the case of the subjective moves, the authority rests in the top-level agents of an ambient,

which naturally act as control agents for the ambient. In the case of objective moves, one should

be careful to require enough capabilities so that ambients cannot be arbitrarily kidnapped.

Talk May 6, 1997 10:50 pm 73

Ambients as Storage Cells

A cell cell c v stores a value v at a location c, where a value is a capability. The cell is set to

output its current contents destructively, and is set to be “refreshed” with either the old contents

(by get) or a new contents (by set).

Note that set is essentially an output operation, but it is a synchronous one: its sequel P runs

only after the cell has been set.

Parallel get and set operations do not interfere. It is also possible to code an atomic get-and-

set primitive, which could be used to code test-and-set; in that case the value expression v below

would contain a test depending on x.

0.0.1 Records

A record is a named collection of cells. Since each cell has its own name, those names can be

used as field labels:

cell c v @ cËÁ[Üvá | !(x). Üxá]

get c (x). P @ mv in c. (x). (Üxá | mv out c. P)

set c Üvá. P @ mv in c. (x). (Üvá | mv out c. P)

get-and-set c (x) Üvá. P @ mv in c. (x). (Üvá | mv out c. P)

Talk May 6, 1997 10:50 pm 74

A record can contain the name of another record in one of its fields. Therefore sharing and cycles

are possible.

record r(l1=v1 ... ln=vn) @ rËÁ[cell l1 v1| ... | cell ln vn]

getr r l (x). P @ mv in r. get l (x). mv out r. P

setr r l Üvá. P @ mv in r. set l Üvá. mv out r. P

