

Talk March 25, 1997 10:35 pm 1 of 15

Mobile Ambients

Luca Cardelli

Andrew D. Gordon

Talk March 25, 1997 10:35 pm 2 of 15

Status Report

¥ Goal of the week:

~ Settle on a set of ambient primitives.

~ Study their practical and theoretical expressive power.

¥ Esthetics for the week:

~ Small size. Theoretical power. Cute examples.

~ ÒItÕs so advanced, itÕs simpleÓ.

Talk March 25, 1997 10:35 pm 3 of 15

¥ Outcome:

~ A paper draft, a bunch of examples, a few (almost-) theorems.

~ Surprise: the primitives invented for mobility ended up being
meaningful for cryptography. The combination of mobility and
cryptography in the same formal framework seems novel and
intriguing.

~ E.g.: we have a simple example of an agent authenticating itself
with a firewall, obtaining a pass (securely), and then
ÒphysicallyÓ crossing the firewall.

Talk March 25, 1997 10:35 pm 4 of 15

Ambient Dynamics

n

in m. P

R

n

mm

→

→

R

n

Q

open n. P

→ Q

P

R

m

→P

P

in m

out m

open n copy

Q

n

out m. P
Q

m

R

n

P
Q

!
P!

P
Q

Talk March 25, 1997 10:35 pm 5 of 15

Comments

¥ We can look at ambients as

active folders

; each folder has a name on its tab, and can
contain other folders. Each folder can also contain a whole bunch of concurrent

gremlins

 that tell the folder what do and where to go. Each horizontal script line in
a folder represent one (or more) gremlins.

¥ A folder with dynamic content can send out gremlins to find information, represent-
ed by other folders, and persuade those folders to follow the gremlins to their home
folder.

¥ The

open

 operation throws away a folder and spills its content into the current folder
(where

open n.P

 lives). It requires a capability

open n

, that must have been given out
by folder

n

.

¥ The ! operation is a copy machine: if

P

 is a folder, !

P

 can make as many copies of

P

as desired.

¥ All transitions block when they cannot fire.

¥ The !

P

 transition never blocks: it is a very idealized copy machine that never breaks
and never runs out of paper. However, copying takes computation, so we can imag-
ine that the operation is blocked until a new copy of

P

 has been produced.

The set of operations on this slide (including folder creation) is Turing-complete.

Talk March 25, 1997 10:35 pm 6 of 15

Ambient I/O

→
C

(x). P{x}

P{C}

Input:

Output:

A Post-it can hold a capability:

n a name
in n
out n an action capability
open n
C. CÕ a path (e.g.: out n. in m)

read

Talk March 25, 1997 10:35 pm 7 of 15

Ambient Expressions

P ::= an activity
(νn) P new name in a scope
0 inactivity
P | P parallel
!P replication
n[P] ambient
C. P exercise of a capability
(n). P input from ether, bind to n
ÜCá output to ether (async)

C ::= a capability
in n entry capability
out n exit capability
open n open capability
n name or input variable
C. CÕ path

standard in
process calculi

ambient-specific

ambient I/O

basic capabilities

useful with I/O

Talk March 25, 1997 10:35 pm 8 of 15

Ambients as Mobile Processes

¥

tourist

@ (x). joe[x. Enjoy]

¥ ticket-desk @ Üin AF81atSFO. out AF81atCDGá

Talk March 25, 1997 10:35 pm 9 of 15

Ambients as Locks

¥ release n and do Q @ n[] | Q

¥ acquire n then do P @ open n. P

Talk March 25, 1997 10:35 pm 10 of 15

Ambients as Firewalls

¥ n[P] is a firewall called n protecting P.

¥ in n is the capability needed to enter the firewall.

¥ out n is the capability needed to exit the firewall.

¥ The context is the Internet.

¥ The Perfect-Firewall Equation:

(νn) n[P] 1 0 (if n not in P)

Talk March 25, 1997 10:35 pm 11 of 15

Ambients as Ciphertext

¥ k[Ütxtá] is the plaintext txt encrypted with key k.

¥ open k is the capability needed to open a k-envelope,
i.e. to decrypt for k (without knowing k).

¥ in k is the capability needed to put stuff in a k-
envelope, i.e. to encrypt for k (without knowing k).

¥ The context is the attacker.

P 1 Q == no attacker can tell P from Q

Talk March 25, 1997 10:35 pm 12 of 15

¥ The Perfect-Cipher Equation:

(νk1) k1[Ütxt1á] 1 (νk2) k2[Ütxt2á]

~ because (νk1) k1[Ütxt1á] 1 0 1 (νk2) k2[Ütxt2á].

Talk March 25, 1997 10:35 pm 13 of 15

Firewall Access

¥ (Very simplified.) Assume that the shared key k is
already known to the firewall and the client.

Wally @ (ν w r) (Üin rá | r[open k. in w] | w[open r. P])

Cleo @ (x). k[x. C]

Cleo | Wally
= (ν w r) ((x). k[x. C] | Üin rá | r[open k. in w] | w[open r. P])
= (ν w r) (k[in r. C] | r[open k. in w] | w[open r. P])
= (ν w r) (r[k[C] | open k. in w] | w[open r. P])
= (ν w r) (r[C | in w] | w[open r. P])
= (ν w r) (w[r[C] | open r. P])
= (ν w) (w[C | P])

Talk March 25, 1997 10:35 pm 14 of 15

Comments
¥ Two secret names are introduced: w is the name of the firewall, and r is the name of

a private room used as a customs checkpoint.

¥ We want to verify that Cleo knows the key k: this is done by open k. After that, we
want to give Cleo a capability in w to enter the firewall. The communication of this
capability must happen in a private place: we donÕt want some other process to
snatch in w in transit. The private room r is used for this purpose.

¥ The room r has a secret name, and a single capability in r is made available for enter-
ing the room. Therefore we are sure that only one process enters r (we assume that
Cleo is honest).

Talk March 25, 1997 10:35 pm 15 of 15

Turing Machine

end[extendLft | S0 |
square[S1 |

square[S2 |
...
square[Si | head |

...
square[Sn | extendRht] ..] ..]]]

