Program Fragments,
Linking, and Modularization

Luca Cardelli

Digital Equipment Corporation
Systems Research Center

Introduction

e Current module/class systems do not support well a
basic requirement of software engineering: software
development that is separate in time and space.

e How could we determine whether such a requirement is
satisfied? We need a framework in which we can discuss
the properties of the process that turns separate program
fragments into whole programs. That process is linking.

* We aim to study:

POPL/97 ~ Separate typechecking and compilation of program fragments,
including modules/ classes.
~ Type-correct linking of program fragments.
State of Affairs Type Safety

* Anomalies in module systems.

~ Module systems that do not support separate compilation
(SML, some versions).

~ Class systems where inherited methods must be
retypechecked.
¢ Anomalies in development cycles.

~ Separate compilation pitfalls exist at every step of the software
development cycle; see paper introduction.

POPL’97 January 24, 1997 3:45 am 3of 27

e Type safety for whole programs:

A program that typechecks can be compiled in such a way that
the resulting executable will not exhibit certain run-time errors.

* Type satety for modular programs:

Program fragments that typecheck and are compatible can be
compiled and linked in such a way that the resulting executable
will not exhibit certain run-time errors.

e Linking is whatever process is needed to combine
separately compiled fragments into bigger compiled
fragments (libraries) or executables.

POPL'97 January 24, 1997 3:45 am 4of 27

Inferences about Linking

e We would like to enable the formal description of
inferences such as:

~ If module M typechecks, then its compiled fragments (one or
more) can be safely linked.

~ If modules M; and M, separately typecheck and have
compatible interfaces, then their compiled fragments can be
merged and safely linked.

~ If modules M;, M», and M; separately typecheck and have
compatible interfaces, then the compiled fragments of M;, and
M can be safely pre-linked, and the result can be safely linked
with the compiled fragments of M;.

~ Etc.

Program Fragments

POPL’97 January 24, 1997 3:45 am 5of 27

* A term judgment represents a program fragment.
Eba:A

The environment E contains type information about other
fragments.

The term a is the program fragment in question.

The type A is the type of the fragment.

¢ In programming notation:
fragment
import E
export: A
begin a end.

POPL’97 January 24, 1997 3:45 am 60f 27

e Examples:

@, x:Nat - x+1 : Nat

@, f:Nat - Nat - N(x:Nat) f(x)+1 : Nat - Nat

e N.B.:

The intended interpretation of E - a : A is that a represents a
compiled code fragment, and E and A capture a’s typing.

For simplicity, however, we let the object language coincide
with the source language: 4 is a source term.

Even so, there will be a notion of compilation: the translation of
modules to linksets.

Linksets

POPL’97 January 24, 1997 3:45 am 7of27

* A linkset is a collection of linkable fragments.

¢ Itis represented by a labeled collection of judgments.

X1HE1|—(111A1

The x; are names of fragments; they match the names in the E;.

That is, the x; (exports) and the E; (imports) describe how the
various fragments of a linkset plug together.

e N.B.:

Each linkset also has an environment E that collects the global
imports of the linkset. We skip this detail for now.

POPL’97 January 24, 1997 3:45 am 8of 27

¢ Example:
f+ (g F Ax:Nat)x : Nat—Nat),
main = (@, f:Nat—=Nat F f(3) : Nat)

¢ In programming notation:

fragment
import f: Nat—Nat
export main : Nat

fragment
import nothing
export f : Nat—Nat

Linking

* Substitution represents linking.

To perform a single linking step, we find two distinct labeled
judgments in L of the form:

x+Hghlka:A
yrg xA EFD
and we replace the second labeled judgment as follows:
y+g EFUO{x—al

(The rest of the linkset remains the same.)

begin begin A linking algorithm i f applying linking st
[J
Ae:Nab)x 3) inking algorithm is a way of applying linking steps
until no longer possible.
end. end.
e Example: e This view of linking is not totally accurate because:

f+ (g F Ax:Nat)x : Nat—Nat),
main = (@, f:Nat—=Nat F f(3) : Nat)

fr (g A(x:Nat)x : Nat—Nat),
main + (g F (A(x:Nat)x)(3) : Nat)

No further linking: all environments are now empty.

POPL’97 January 24, 1997 3:45 am

1lof 27

~ It expands code instead of threading it.

But we could use explicit substitutions (a technique that
represents substitutions symbolically and can delay expansion
indefinitely).

~ It works at the source level.
But we can easily imagine the same mechanisms operating at

the object code level. (In fact, A-calculus is sometimes object
code.)

In any case, a linkset should be seen as the target of a
translation. The source of the translation is a collection of
modules.

POPL’97 January 24, 1997 3:45 am 120f 27

Modules

* A binding judgment represents a module.
Ebd. S

The environment E describes needed imports.

¢ Example:

module
import nothing

module
import x:Nat

The binding d is a collection of definitions. export x:Nat export f:Nat — Nat, m:Nat
The signature S is the interface of the module. begin begin
e In programming notation: x:Nat=3 f: Nat - Nat = ANy:Nat)y+x,
end. m : Nat = f(x)
module
. end.
import E
export S
begin d end.
Typing
Those two modules are written as the two judgments: Typing rules for F;
I (Env @) (Env x) |

¢ F x:Nat=3, @ x:Nat, @
@, x:Nat -
f:Nat — Nat=A(y:Nat)y+x, m:Nat=f(x), ¢
-. f:Nat - Nat, m:Nat, @

The import lists are environments,
the export lists are signatures,

the module bodies are bindings.

POPL’97 January 24, 1997 3:45 am

150f 27

Er-A x¢dom(E)

gF o E,x:AF o
(Type Const) (Type Arrow)
Etro E+-A EFRB
EFK E-A-B
(Val x) (Val Fun) (Val Appl)
EFo E,x:AFb:B EFb:A-B Ela:A
Et+x:E(x) EFAx:Ab: A-B E+ba):B

POPL’97

January 24, 1997 3:45 am 160f 27

Separate compilation

Signatures and Bindings for F;
I (Signature @) (Signature x)
EFo E,x:AFS
Etg EFxA,S
(Binding ¢) (Binding x)
EFo E, x:AFd.S EFraA
EFg. ¢ Et (x:A=a, d) - (x:A, S)

170of 27

January 24, 1997 3:45 am

POPL’97

 Bindings can be (separately) compiled to linksets.
For example, the binding judgment:
@, x:Nat -
f:Nat - Nat=A(y:Nat)y+x, m:Nat=f(x), ¢
- f:Nat - Nat, m:Nat, @

can be translated to the linkset

@, x:Nat |
f+ @+ Ay:Nat)y+x : Nat - Nat,
m + @, f:Nat - Nat - f(x) : Nat

where the environment of the binding judgment (g, x:Nat)
becomes a prefix for each environment in the linkset.

180of 27

January 24,1997 3:45 am

POPL’97

Well-formedness conditions for linksets

e The general form of the translation of bindings to
linksets, (-), is given by the following definition.

(E-d.-.S) & E|l{gtd.S)°

2 empty fragment list

A

(EFg . g)°
(EF (x:A=a,d) - (x:A, S))°
x-EFaA, (E x:Akd . S)°

e In general, a linkset L has the shape:
Eo | xymEilFa1:A; ... x,~E,Fa,:A,
~ linkset(L) if (there are no trivial name clashes and):
each E; is covered by the x;
Ey is disjoint from the x;

~ intra-checked(L) if in addition:
Eo, Ei - a;: Ai
~ inter-checked(L) if in addition:

xpAeE; O A= A4

for each iel..n

for each iel..n

200f 27

January 24, 1997 3:45 am

190f 27 POPL’97

January 24, 1997 3:45 am

POPL’97

Properties

* Separate compilation produces good linksets:
IfEFd..S
then inter-checked((E + d .. SY)).

* Linking preserves good linksets:

If inter-checked(L) and L~>>L’
then inter-checked(L’).

(This property does not hold for intra-checked.)

POPL’97 January 24, 1997 3:45 am

Linkset Merge

e Each modules is compiled to a linksets.

* In order to combine multiple modules into linkable
entities, the corresponding linksets must be merged.

POPL’97 January 24, 1997 3:45 am

¢ Let’s display a linkset
E() | leEll—al:Al anEnI—an:An

as:
imports exports
Eia; [XA
Eo| ... or Eol| Bia |X:A
En; @ | % A (=Ee)
fragments

POPL’97 January 24, 1997 3:45 am

e Then the merge of two linksets is then defined as:

Hp:ap | E Kribr | E
E.F + |E,F
Hoi ag |G Ksbs |G
EHp; ap | E
_ E,Ho; G
= | pplere®
E' Kr br | E
E'Kgbs |G

POPL’97 January 24, 1997 3:45 am

Properties

 The linksets of separately compiled modules can be
safely merged (and then safely linked):

Assume EFd .S, E'+d .- S
and (EFS)+(E'F S).
Then, inter-checked((E & d . S)y+{E’+d’ -. S).

Where (EFS)+(E'+S)iff E-E,E+S’,E’+ S, and the
domains of S and S’ are disjoint.

Where E + E’ iff E(x) = E'(x) for every x in the domain of
both. Similarly for E + S.

POPL’97 January 24, 1997 3:45 am 250f 27

 Also in the paper:

~ Confluence of linking reductions.

~ A linking algorithm and its properties (termination,
soundness, completeness).

~ A high-level inference system for separate compilation and
linking.

POPL’97 January 24, 1997 3:45 am

260f 27

Conclusions

* Reasoning about linking is becoming important. We
have shown that linking can be reasonably formalized.

e Separate compilation can now be understood as the
ability to translate separate modules to separate linksets
(which are then merged and linked).

¢ Future directions:
~ More realistic formalization of linking.
~ More advanced module systems.

~ What about dynamic linking?

POPL’97 January 24, 1997 3:45 am 270f 27

