Program Fragments, Linking, and Modularization

Luca Cardelli

Digital Equipment Corporation Systems Research Center

POPL'97

Introduction

- Current module/class systems do not support well a basic requirement of software engineering: software development that is separate in time and space.
- How could we determine whether such a requirement is satisfied? We need a framework in which we can discuss the properties of the process that turns separate program fragments into whole programs. That process is *linking*.
- We aim to study:
 - Separate typechecking and compilation of program fragments, including modules/classes.
 - ~ Type-correct linking of program fragments.

POPL'97 January 24, 1997 3:45 am 1 of 27	POPL'97 January 24, 1997 3:45 am 2 of 27
State of Affairs	Type Safety
 Anomalies in module systems. Module systems that do not support separate compilation (SML, some versions). Class systems where inherited methods must be retypechecked. Anomalies in development cycles. Separate compilation pitfalls exist at <i>every</i> step of the software development cycle; see paper introduction. 	 Type safety for whole programs: A program that typechecks can be compiled in such a way that the resulting executable will not exhibit certain run-time errors. Type safety <i>for modular programs</i>: Program fragments that typecheck <i>and are compatible</i> can be compiled <i>and linked</i> in such a way that the resulting executable will not exhibit certain run-time errors. Linking is whatever process is needed to combine separately compiled fragments into bigger compiled fragments (libraries) or executables.
	fragments (libraries) or executables.

Inferences about Linking	Program Fragments
• We would like to enable the formal description of inferences such as:	• A <i>term judgment</i> represents a <i>program fragment</i> . $E \vdash a : A$
 If module <i>M</i> typechecks, then its compiled fragments (one or more) can be safely linked. If modules <i>M</i>₁ and <i>M</i>₂ separately typecheck and have compatible interfaces, then their compiled fragments can be merged and safely linked. If modules <i>M</i>₁, <i>M</i>₂, and <i>M</i>₃ separately typecheck and have compatible interfaces, then the compiled fragments of <i>M</i>₁, and <i>M</i>₂ can be safely pre-linked, and the result can be safely linked with the compiled fragments of <i>M</i>₃. Etc. 	 The environment E contains type information about other fragments. The term a is the program fragment in question. The type A is the type of the fragment. In programming notation: fragment import E export : A begin a end.
POPL'97 January 24, 1997 3:45 am 5 of 27	POPL'97 January 24, 1997 3:45 am 6 of 27
	Linksets
• Examples: $\emptyset, x:Nat \vdash x+1: Nat$ $\emptyset, f:Nat \rightarrow Nat \vdash \lambda(x:Nat) f(x)+1: Nat \rightarrow Nat$	 A <i>linkset</i> is a collection of linkable fragments. It is represented by a <i>labeled collection of judgments</i>. x₁ ⊢ E₁ ⊢ a₁ : A₁
 N.B.: The intended interpretation of <i>E</i> ⊢ <i>a</i> : <i>A</i> is that <i>a</i> represents a compiled code fragment, and <i>E</i> and <i>A</i> capture <i>a</i>'s typing. For simplicity, however, we let the object language coincide with the source language: <i>a</i> is a source term. Even so, there will be a notion of compilation: the translation of <i>modules</i> to <i>linksets</i>. 	 x_n ⊢ E_n ⊢ a_n : A_n The x_i are names of fragments; they match the names in the E_j. That is, the x_i (exports) and the E_j (imports) describe how the various fragments of a linkset plug together. N.B.:
	Each linkset also has an environment E_0 that collects the global imports of the linkset. We skip this detail for now.

7 of 27

POPL'97

January 24, 1997 3:45 am

8 of 27

0		
Substitution represents linking.		
To perform a single linking step, we find two distinct labeled judgments in <i>L</i> of the form:		
$x \mapsto \emptyset \vdash a : A$ $y \mapsto \emptyset, x : A, E \vdash \mathfrak{I}$		
 and we replace the second labeled judgment as follows: y ⊢ Ø, E ⊢ ℑ{x←a} (The rest of the linkset remains the same.) A <i>linking algorithm</i> is a way of applying linking steps until no longer possible. 		
POPL'97 January 24, 1997 3:45 am 10 of 27		
• This view of linking is not totally accurate because:		
 It expands code instead of threading it. But we could use <i>explicit substitutions</i> (a technique that represents substitutions symbolically and can delay expansion indefinitely). It works at the source level. But we can easily imagine the same mechanisms operating at the object code level. (In fact, λ-calculus is sometimes object code.) In any case, a linkset should be seen as the target of a translation. The source of the translation is a collection of modules. 		

POPL'9

12 of 27

Modules			
• A <i>binding judgment</i> represents a <i>module</i> .	• Example:		
$E \vdash d \therefore S$	module	module	
 The <i>environment E</i> describes needed imports. The <i>binding d</i> is a collection of definitions. The <i>signature S</i> is the interface of the module. In programming notation: module import <i>E</i> export <i>S</i> 	<pre>import nothing export x:Nat begin</pre>	import x:N export f:Na begin f: Na m: Na end.	Nat at→Nat, m:Nat t→Nat = $\lambda(y:Nat)y+x$, at = f(x)
begin d end.			
POPL'97 January 24, 1997 3:45 am 13 of 27	POPL'97	January 24, 1997 3:45 am	14 of 27
		Typing	
Those two modules are written as the two judgments:	Typing rules for F ₁		
$\phi \vdash x:Nat=3, \phi \therefore x:Nat, \phi$	$(Env \phi) \qquad (Env x) \\ \hline \phi \vdash \diamond \qquad \frac{E \vdash A x \notin a}{E, x:A \vdash}$	dom(E) · ♦	
\emptyset , x:Nat ⊢ f:Nat→Nat= λ (y:Nat)y+x, m:Nat=f(x), \emptyset ∴ f:Nat→Nat, m:Nat, \emptyset	(Type Const) (Type Arrow $ $	$ \frac{E \vdash B}{\rightarrow B} \\ \stackrel{n)}{x:A \vdash b:B} $	(Val Appl) $E \vdash b : A \rightarrow B E \vdash a : A$
The <i>import lists</i> are <i>environments</i> ,	$\overline{E \vdash x : E(x)} \qquad \overline{E \vdash \lambda}$	$(x:A)b:A \rightarrow B$	$E \vdash b(a) : B$
the <i>export lists</i> are <i>signatures</i> , the <i>module bodies</i> are <i>bindings</i> .			

POPL'97

	Separate compilation
Signatures and Bindings for F1 $(Signature ø)$ $(Signature x)$ $E \vdash \diamond$ $E, x:A \vdash S$ $E \vdash \phi$ $E \vdash x:A, S$ (Binding ø)(Binding x) $E \vdash \phi \therefore \phi$ $E, x:A \vdash d \therefore S$ $E \vdash \phi \therefore \phi$ $E \vdash (x:A=a, d) \therefore (x:A, S)$	• Bindings can be (separately) compiled to linksets. For example, the binding judgment: $\emptyset, x:Nat \vdash$ $f:Nat \rightarrow Nat = \lambda(y:Nat)y + x, m:Nat = f(x), \emptyset$ $\therefore f:Nat \rightarrow Nat, m:Nat, \emptyset$ can be translated to the linkset $\emptyset, x:Nat \mid$ $f \vdash \emptyset \vdash \lambda(y:Nat)y + x : Nat \rightarrow Nat,$ $m \vdash \emptyset, f:Nat \rightarrow Nat \vdash f(x) : Nat$ where the environment of the binding judgment ($\emptyset, x:Nat$)
OPL'97 January 24, 1997 3:45 am 17 of 27	Decomes a prenx for each environment in the infisset. POPL 97 Jamary 24, 1997 3.45 am Well-formedness conditions for linksets
 The general form of the translation of bindings to linksets, (-), is given by the following definition. 	• In general, a linkset <i>L</i> has the shape: $E_0 \mid x_1 \mapsto E_1 \vdash a_1 : A_1 \dots x_n \mapsto E_n \vdash a_n : A_n$
$\langle\!\langle E \vdash d \therefore S \rangle\!\rangle \triangleq E \mid \langle\!\langle \varphi \vdash d \therefore S \rangle\!\rangle^\circ$	$\sim linkset(L)$ if (there are no trivial name clashes and): each E_i is covered by the x_j E_0 is disjoint from the x_i
$\begin{array}{lll} \langle\!\langle E \vdash \emptyset \therefore \emptyset \rangle\!\rangle^{\circ} & \triangleq & empty fragment list \\ \langle\!\langle E \vdash (x:A=a, d) \therefore (x:A, S) \rangle\!\rangle^{\circ} & \triangleq \\ & x \vdash E \vdash a:A, \langle\!\langle E, x:A \vdash d \therefore S \rangle\!\rangle^{\circ} \end{array}$	~ <i>intra-checked</i> (<i>L</i>) if in addition: $E_0, E_i \vdash a_i : A_i$ for each $i \in 1n$ ~ <i>inter-checked</i> (<i>L</i>) if in addition: $x_j:A \in E_i \implies A \equiv A_j$ for each $i \in 1n$

POPL'97

19 of 27

January 24, 1997 3:45 am

20 of 27

POPL'97

January 24, 1997 3:45 am

Properties	Linkset Merge	
• Separate compilation produces good linksets: If $E \vdash d \therefore S$ then <i>inter-checked</i> ($\langle\!\langle E \vdash d \therefore S \rangle\!\rangle$).	 Each modules is compiled to a linksets. In order to combine multiple modules into linkable entities, the corresponding linksets must be <i>merged</i>. 	
 Linking preserves good linksets: If <i>inter-checked</i>(L) and L~>>L' then <i>inter-checked</i>(L'). 		
9. Let's display a linkset $E_0 + x_1 \mapsto E_1 \vdash a_1 : A_1 \dots x_n \mapsto E_n \vdash a_n : A_n$ as: $\underbrace{inports exports}_{E_n; a_n x_n : A_n} \text{ or } \underbrace{E_0 E_i; a_i x_i : A_i}_{(=E_ex)}_{fragments}$	• Then the merge of two linksets is then defined as: $ \underbrace{F,F}_{R,F} \xrightarrow{H_{P}; a_{P}} \xrightarrow{E'}_{R,F'} + \underbrace{F,F'}_{R,F} \xrightarrow{K_{R}; b_{R}} \xrightarrow{E}_{R,F'} \xrightarrow{K_{R}; b_{S}} \xrightarrow{G}_{R,F'} \xrightarrow{E,H_{P}; a_{P}} \xrightarrow{E'}_{E,H_{Q}; a_{Q}} \xrightarrow{G'}_{E',K_{R}; b_{R}} \xrightarrow{E}_{E',K_{S}; b_{S}} \xrightarrow{G}_{R,F'} \xrightarrow{E',K_{S}; b_{S}} \xrightarrow{G}_{R,F'} \xrightarrow{E',K_{S}; b_{S}} \xrightarrow{G}_{R,F'} $	
POPL'97 January 24, 1997 3:45 am 23 of 27	POPL'97 January 24, 1997 3:45 am 24 of 27	

Properties	
 The linksets of separately compiled modules can be safely merged (and then safely linked): Assume <i>E</i> ⊢ <i>d</i> ∴ <i>S</i>, <i>E</i>′ ⊢ <i>d</i>′ ∴ <i>S</i>′, and (<i>E</i> ⊢ <i>S</i>) ÷ (<i>E</i>′ ⊢ <i>S</i>′). Then, <i>inter-checked</i>(⟨<i>E</i> ⊢ <i>d</i> ∴ <i>S</i>⟩+⟨<i>E</i>′ ⊢ <i>d</i>′ ∴ <i>S</i>′⟩). 	 Also in the paper: Confluence of linking reductions. A linking algorithm and its properties (termination, soundness, completeness). A high-level inference system for separate compilation and linking.
Where $(E \vdash S) \div (E' \vdash S')$ iff $E \div E'$, $E \div S'$, $E' \div S$, and the domains of <i>S</i> and <i>S'</i> are disjoint. Where $E \div E'$ iff $E(x) = E'(x)$ for every <i>x</i> in the domain of both. Similarly for $E \div S$.	
POPL 97 January 24, 1997 3:45 am 25 of 27 Conclusions	POPL'97 January 24, 1997 3:45 am 26 of 2
 Reasoning about linking is becoming important. We have shown that linking can be reasonably formalized. Separate compilation can now be understood as the ability to translate separate modules to separate linksets (which are then merged and linked). 	
 Future directions: More realistic formalization of linking. More advanced module systems. What about dynamic linking? 	