

POPL’97 January 24, 1997 3:45 am 1 of 27

Program Fragments,
Linking, and Modularization

Luca Cardelli

Digital Equipment Corporation
Systems Research Center

POPLÕ97

POPL’97 January 24, 1997 3:45 am 2 of 27

Introduction

¥ Current module/class systems do not support well a
basic requirement of software engineering: software
development that is separate in time and space.

¥ How could we determine whether such a requirement is
satisfied? We need a framework in which we can discuss
the properties of the process that turns separate program
fragments into whole programs. That process is

linking

.

¥ We aim to study:

~ Separate typechecking and compilation of program fragments,
including modules/classes.

~ Type-correct linking of program fragments.

POPL’97 January 24, 1997 3:45 am 3 of 27

State of Affairs

¥ Anomalies in module systems.

~ Module systems that do not support separate compilation
(SML, some versions).

~ Class systems where inherited methods must be
retypechecked.

¥ Anomalies in development cycles.

~ Separate compilation pitfalls exist at

every

 step of the software
development cycle; see paper introduction.

POPL’97 January 24, 1997 3:45 am 4 of 27

Type Safety

¥ Type safety for whole programs:

A program that typechecks can be compiled in such a way that
the resulting executable will not exhibit certain run-time errors.

¥ Type safety

for modular programs

:

Program fragments that typecheck

and are compatible

 can be
compiled

and linked

 in such a way that the resulting executable
will not exhibit certain run-time errors.

¥ Linking is whatever process is needed to combine
separately compiled fragments into bigger compiled
fragments (libraries) or executables.

POPL’97 January 24, 1997 3:45 am 5 of 27

Inferences about Linking

¥ We would like to enable the formal description of
inferences such as:

~ If module

M

 typechecks, then its compiled fragments (one or
more) can be safely linked.

~ If modules

M

1

 and

M

2

 separately typecheck and have
compatible interfaces, then their compiled fragments can be
merged and safely linked.

~ If modules

M

1

,

M

2

, and

M

3

 separately typecheck and have
compatible interfaces, then the compiled fragments of

M

1

, and

M

2

 can be safely pre-linked, and the result can be safely linked
with the compiled fragments of

M

3

.

~ Etc.

POPL’97 January 24, 1997 3:45 am 6 of 27

Program Fragments

¥ A

term judgment

 represents a

program fragment

.

E

∫

a

 :

A

The

 environment E

contains type information about other
fragments.

The

 term a

is the program fragment in question.

The

 type A

is the type of the fragment.

¥ In programming notation:

fragment

import

E

export

 :

A

begin

a

end

.

POPL’97 January 24, 1997 3:45 am 7 of 27

¥ Examples:



,

x

:

Nat

∫

x

+1

:

Nat



,

f:Nat→Nat ∫ λ(x:Nat) f(x)+1 : Nat→Nat

¥ N.B.:

The intended interpretation of E ∫ a : A is that a represents a
compiled code fragment, and E and A capture aÕs typing.

For simplicity, however, we let the object language coincide
with the source language: a is a source term.

Even so, there will be a notion of compilation: the translation of
modules to linksets.

POPL’97 January 24, 1997 3:45 am 8 of 27

Linksets

¥ A linkset is a collection of linkable fragments.

¥ It is represented by a labeled collection of judgments.

x1 ÷◊ E1 ∫ a1 : A1

...
xn ÷◊ En ∫ an : An

The xi are names of fragments; they match the names in the Ej.

That is, the xi (exports) and the Ej (imports) describe how the
various fragments of a linkset plug together.

¥ N.B.:

Each linkset also has an environment E0 that collects the global
imports of the linkset. We skip this detail for now.

POPL’97 January 24, 1997 3:45 am 9 of 27

¥ Example:

f ÷◊ ( ∫ λ(x:Nat)x : NatîïñNat),
main ÷◊ (, f:NatîïñNat ∫ f(3) : Nat)

¥ In programming notation:

fragment
import nothing
export f : NatîïñNat
begin

λ(x:Nat)x
end.

fragment
import f : NatîïñNat
export main : Nat
begin

f(3)
end.

POPL’97 January 24, 1997 3:45 am 10 of 27

 Linking

¥ Substitution represents linking.

To perform a single linking step, we find two distinct labeled
judgments in L of the form:

x ÷◊  ∫ a : A
y ÷◊ , x:A, E ∫ ℑ

and we replace the second labeled judgment as follows:

y ÷◊ , E ∫ ℑ {x←a}
(The rest of the linkset remains the same.)

¥ A linking algorithm is a way of applying linking steps
until no longer possible.

POPL’97 January 24, 1997 3:45 am 11 of 27

¥ Example:

f ÷◊ ( ∫ λ(x:Nat)x : NatîïñNat),
main ÷◊ (, f:NatîïñNat ∫ f(3) : Nat)

Òñ

f ÷◊ ( ∫ λ(x:Nat)x : NatîïñNat),
main ÷◊ ( ∫ (λ(x:Nat)x)(3) : Nat)

No further linking: all environments are now empty.

POPL’97 January 24, 1997 3:45 am 12 of 27

¥ This view of linking is not totally accurate because:

~ It expands code instead of threading it.

But we could use explicit substitutions (a technique that
represents substitutions symbolically and can delay expansion
indefinitely).

~ It works at the source level.

But we can easily imagine the same mechanisms operating at
the object code level. (In fact, λ-calculus is sometimes object
code.)

In any case, a linkset should be seen as the target of a
translation. The source of the translation is a collection of
modules.

POPL’97 January 24, 1997 3:45 am 13 of 27

Modules

¥ A binding judgment represents a module.

E ∫ d a S
The environment E describes needed imports.

The binding d is a collection of definitions.

The signature S is the interface of the module.

¥ In programming notation:

module
import E
export S
begin d end.

POPL’97 January 24, 1997 3:45 am 14 of 27

¥ Example:

module
import nothing
export x:Nat
begin

x : Nat = 3
end.

module
import x:Nat
export f:Nat→Nat, m:Nat
begin

f : Nat→Nat = λ(y:Nat)y+x,
m : Nat = f(x)

end.

POPL’97 January 24, 1997 3:45 am 15 of 27

Those two modules are written as the two judgments:

 ∫ x:Nat=3,  a x:Nat, 

, x:Nat ∫
f:Nat→Nat=λ(y:Nat)y+x, m:Nat=f(x), 

a f:Nat→Nat, m:Nat, 

The import lists are environments,

the export lists are signatures,

the module bodies are bindings.

POPL’97 January 24, 1997 3:45 am 16 of 27

Typing

Typing rules for F1

(Env ) (Env x)

E ∫ A xÌdom(E)

 ∫ Q E, x:A ∫ Q

(Type Const) (Type Arrow)

E ∫ Q E ∫ A E ∫ B

E ∫ K E ∫ A→B

(Val x) (Val Fun) (Val Appl)

E ∫ Q E, x:A ∫ b : B E ∫ b : A→B E ∫ a : A

E ∫ x : E(x) E ∫ λ(x:A)b : A→B E ∫ b(a) : B

POPL’97 January 24, 1997 3:45 am 17 of 27

Signatures and Bindings for F1

(Signature ) (Signature x)

E ∫ Q E, x:A ∫ S

E ∫  E ∫ x:A, S

(Binding ) (Binding x)

E ∫ Q E, x:A ∫ d a S E ∫ a:A

E ∫  a  E ∫ (x:A=a, d) a (x:A, S)

POPL’97 January 24, 1997 3:45 am 18 of 27

Separate compilation

¥ Bindings can be (separately) compiled to linksets.

For example, the binding judgment:

, x:Nat ∫
f:Nat→Nat=λ(y:Nat)y+x, m:Nat=f(x), 

a f:Nat→Nat, m:Nat, 
can be translated to the linkset

, x:Nat |
f ÷◊  ∫ λ(y:Nat)y+x : Nat→Nat,
m ÷◊ , f:Nat→Nat ∫ f(x) : Nat

where the environment of the binding judgment (, x:Nat)
becomes a prefix for each environment in the linkset.

POPL’97 January 24, 1997 3:45 am 19 of 27

¥ The general form of the translation of bindings to
linksets, äÐã, is given by the following definition.

äE ∫ d a Sã @ E | ä ∫ d a Sã°

äE ∫  a ã° @ empty fragment list
äE ∫ (x:A=a, d) a (x:A, S)ã° @

 x ÷◊ E ∫ a:A, äE, x:A ∫ d a Sã°

POPL’97 January 24, 1997 3:45 am 20 of 27

Well-formedness conditions for linksets

¥ In general, a linkset L has the shape:

E0 | x1 ÷◊ E1 ∫ a1 : A1 ... xn ÷◊ En ∫ an : An

~ linkset(L) if (there are no trivial name clashes and):

each Ei is covered by the xj

E0 is disjoint from the xj

~ intra-checked(L) if in addition:

E0, Ei ∫ ai : Ai for each iÏ1..n
~ inter-checked(L) if in addition:

xj:A Ï Ei ⇒ A 7 Aj for each iÏ1..n

POPL’97 January 24, 1997 3:45 am 21 of 27

Properties

¥ Separate compilation produces good linksets:

If E ∫ d a S
then inter-checked(äE ∫ d a Sã).

¥ Linking preserves good linksets:

If inter-checked(L) and LÒññLÕ
then inter-checked(LÕ).

(This property does not hold for intra-checked.)

POPL’97 January 24, 1997 3:45 am 22 of 27

Linkset Merge

¥ Each modules is compiled to a linksets.

¥ In order to combine multiple modules into linkable
entities, the corresponding linksets must be merged.

POPL’97 January 24, 1997 3:45 am 23 of 27

¥ LetÕs display a linkset

E0 | x1 ÷◊ E1 ∫ a1 : A1 ... xn ÷◊ En ∫ an : An

as:

E0

x1 : A1

xn : An

E1; a1

En; an

... ... E0 xi : AiEi; aior

imports

fragments

exports

(7Eex)

POPL’97 January 24, 1997 3:45 am 24 of 27

¥ Then the merge of two linksets is then defined as:

F,F’

E’E,HP; aP

E,HQ; aQ G’
EE’,KR; bR

E’,KS; bS G

E,F

E’HP; aP

HQ; aQ G’
E’,F’

EKR; bR

KS; bS G
+

=

POPL’97 January 24, 1997 3:45 am 25 of 27

Properties

¥ The linksets of separately compiled modules can be
safely merged (and then safely linked):

Assume E ∫ d a S, EÕ ∫ dÕ a SÕ,
and (E ∫ S) ÷ (EÕ ∫ SÕ).
Then, inter-checked(äE ∫ d a Sã+äEÕ ∫ dÕ a SÕã).

Where (E ∫ S) ÷ (EÕ ∫ SÕ) iff E ÷ EÕ, E ÷ SÕ, EÕ ÷ S, and the
domains of S and SÕ are disjoint.

Where E ÷ EÕ iff E(x) = EÕ(x) for every x in the domain of
both. Similarly for E ÷ S.

POPL’97 January 24, 1997 3:45 am 26 of 27

¥ Also in the paper:

~ Confluence of linking reductions.

~ A linking algorithm and its properties (termination,
soundness, completeness).

~ A high-level inference system for separate compilation and
linking.

POPL’97 January 24, 1997 3:45 am 27 of 27

Conclusions

¥ Reasoning about linking is becoming important. We
have shown that linking can be reasonably formalized.

¥ Separate compilation can now be understood as the
ability to translate separate modules to separate linksets
(which are then merged and linked).

¥ Future directions:

~ More realistic formalization of linking.

~ More advanced module systems.

~ What about dynamic linking?

