

FOOL’97 Talk January 24, 1997 12:40 pm 1

Objects, Classes,
Abstractions

Luca Cardelli

Digital Equipment Corporation
Systems Research Center

Based on joint work with Mart�n Abadi,
ML2000 Committee discussions,

and other relevant literature

FOOLÕ97

FOOL’97 Talk January 24, 1997 12:40 pm 2

Convergence of O-O and Polymorphism

¥ Polymorphic languages want to be more object-oriented

~ Quest (polymorphism + subtyping)

~ Abel (polymorphism + F-bounded subtyping)

~ Rapide (modules/polymorphism + F-bounded subtyping)

~ ML2000 (modules/polymorphism + objects +? classes)

¥ Object-oriented languages want to be more polymorphic

~ Modula-3 (modules + classes + templates)

~ C++ (classes + templates)

~ Java (classes +? templates)

¥ How can we make this work?

FOOL’97 Talk January 24, 1997 12:40 pm 3

Reductionist Strategy

¥ Working hypothesis

Smooth combination and integration of complex language
features requires a good understanding of their typing
properties.

¥ Strategy

Try to explain complex ad-hoc features by less complex and
more general features.

FOOL’97 Talk January 24, 1997 12:40 pm 4

¥ Problems

~ Very general features may be incompatible with each other.

~ Combinations of orthogonal general features may fail to
capture desired ÒinvariantsÓ of ad-hoc features.

¥ Results

~ Has the reductionist strategy worked well so far?

~ Will it always work?

¥ Cop-out

~ Failed reductionism begets reductionism at a different level.

FOOL’97 Talk January 24, 1997 12:40 pm 5

Objects, Classes, Abstractions

¥ Objects

~ Reductionist strategy only partially successful.

Better take object types as primitive after all.

Problems in capturing structural invariants.

~ Still, it inspired greater understanding and considerable
simplifications.

~ Neo-reductionism: take objects as primitive, but nothing else.

¥ Classes

~ Reductionist strategy might be successful.

~ It had better be.

FOOL’97 Talk January 24, 1997 12:40 pm 6

¥ Abstractions

~ Reductionism highly successful.
(Abstractions

1

 Existentials

1

 Universals

1

 Polymorphism.)

¥ Objects + Abstraction
(state/behavior control and encapsulation)

~ Successful by a variety of different techniques. (Scoping,
typing.)

¥ Classes + Abstraction
(inheritance control and encapsulation)

~ Open.

FOOL’97 Talk January 24, 1997 12:40 pm 7

Outline

¥ Interpretations of objects

~ Summary of various techniques.

¥ Interpretations of classes

~ One particular basic technique.

¥ Interpretations of abstraction

~ Brief summary of well-known material.

¥ Combining interpretations of classes and abstractions

~ Difficulties and speculations.

Talk January 24, 1997 12:39 pm 8

Objects vs. Procedures

¥ Object-oriented programming languages have
introduced (or popularized) a number of ideas and
techniques.

¥ However, on a case-by-case basis, one can often emulate
objects in procedural languages. Are object-oriented
concepts reducible to procedural concepts?

~ It is easy to emulate the operational semantics of objects.

~ It is a little harder to emulate object types.

~ It is much harder to emulate object types and their subtyping
properties.

~ In practice, this reduction is not feasible or attractive.

Talk January 24, 1997 12:39 pm 9

The Translation Problem

¥ N.B.: we deal with calculi as an approximation to what
would happen in full-blown programming languages.

¥ The problem is to find a translation from an object
calculus to a

λ

-calculus:

~ The object calculus should be reasonably expressive.

~ The

λ

-calculus should be standard enough.

~ The translation should be faithful; in particular it should
preserve subtyping.

Talk January 24, 1997 12:39 pm 10

¥ Aims:

~ Provide a semantics that uses ÒordinaryÓ concepts.

~ Provide an explanation of object typing.

~ Suggest and validate reasoning principles for objects.

¥ Numerous attempts and techniques.

Talk January 24, 1997 12:39 pm 11

Notation

¥ Object notation, used informally:

a

,

b

 ::= terms

x

variable
[

f

k

=

b

k

k

Ï

1..

p

 |

l

i

=

ς

(

x

i

)

b

i

i

Ï

1..

n

] objects with fields & methods

a

P

l

field selection

a

P

l

:=

b

field update

a

.

l

method invocation

a

.

l

fiü

ς

(

x

)

b

method update

~ Plus typing annotation whenever convenient.

¥ Object type notation:

[

f

k

:

B

k kÏ1..p| li:Bi iÏ1..n]

Obj(X) [fk:Bk kÏ1..p| li:Bi{X} iÏ1..n]

Talk January 24, 1997 12:39 pm 12

The Self-Application Semantics

¥ The self-application interpretation maps an object to a
record of functions.

¥ On method invocation, the whole object is passed to the
method as a parameter.

Untyped self-application interpretation

[li=ς(xi)bi iÏ1..n] @ Üli=λ(xi)bi iÏ1..ná (li distinct)

o.lj @ o†lj(o) (jÏ1..n)

o.ljfiüς(y)b @ o†lj:=λ(y)b (jÏ1..n)

Talk January 24, 1997 12:39 pm 13

The Self-Application Semantics (Typed)

¥ A typed version is obtained by representing object types
as recursive record types:

Self-application interpretation

¥ Unfortunately, the subtyping rule for object types fails to
hold: a contravariant X occurs in all method types.

[li:Bi iÏ1..n] @ µ(X)Üli:X→Bi iÏ1..ná

A 7 [li:Bi iÏ1..n] @
µ(X)Üli:X→Bi iÏ1..ná

(li distinct)

[li=ς(xi:A)bi iÏ1..n] @ fold(A,Üli=λ(xi:A)bi iÏ1..ná)

o.lj @ unfold(o)†lj(o) (jÏ1..n)

o.ljfiüς(y:A)b @ fold(A,unfold(o)†lj:=λ(y:A)b) (jÏ1..n)

Talk January 24, 1997 12:39 pm 14

The State-Application Semantics (Typed)

¥ The state of an object, represented by a collection of
fields st, is hidden by existential abstraction, so external
updates are not possible.

~ The troublesome method argument types are hidden as well, so
this interpretation yields the desired subtypings.

~ In the general case, code generation is driven by types (i.e. it is
not syntax-directed).

~ The typed translation is technically elegant, but in practice
must be automated.

~ It accounts well for class-based languages where methods are
separate from fields, and where there is no method update.

[li:Bi iÏ1..n] @ Ô(X) Üst: X, mt: Üli:X→Bi iÏ1..náá

Talk January 24, 1997 12:39 pm 15

The Split-Method Semantics (Typed)

¥ Has great properties

~ We obtain both the expected semantics and the expected
subtyping properties.

~ The definition of the interpretation is syntax-directed.

~ The interpretation covers method update. It extends naturally
to other constructs: variance annotations, Self types (with some
twists), imperative update, imperative cloning.

¥ But, clearly, cannot be used directly.

[li:Bi iÏ1..n] @
µ(Y) Ô(X<:Y) Ür:X, lisel:X→Bi iÏ1..n, liupd:(X→Bi)→X iÏ1..ná

Talk January 24, 1997 12:39 pm 16

Summary of Object Encodings

¥ Some interpretations are good enough to explain objects
in reasonable detail. But they require very advanced
type systems and are elaborate.

¥ Although they are intellectually satisfying, they are not
a practical replacement for primitive objects in
programming languages.

¥ They suggest particularly simple object systems, akin to
the ones found in object-based languages rather than
those found in class-based languages.

Talk January 24, 1997 12:40 pm 17

How to Understand Classes?

¥ Many styles of interpretation are possible.

¥ We consider an interpretation that builds on the
previous study of objects.

¥ The same kind of interpretation can be layered on top of
module structures, instead of object structures.

¥ Initially, we do not consider abstraction/hiding/
inheritance-control.

Talk January 24, 1997 12:40 pm 18

Review: Objects and Object Types
¥ Objects are packages of data (instance variables) and code (methods).

¥ Object types describe the shape of objects.

where a : A means that the program a has type A. So, cell : CellType.

ObjectType CellType;
var contents: Integer;
method get(): Integer;
method set(n: Integer);

end;

object cell: CellType;
var contents: Integer := 0;
method get(): Integer; return self.contents end;
method set(n: Integer); self.contents := n end;

end;

Talk January 24, 1997 12:40 pm 19

Review: Classes
¥ Classes are ways of describing and generating collections of objects.

class cellClass for CellType;
var contents: Integer := 0;
method get(): Integer; return self.contents end;
method set(n: Integer); self.contents := n end;

end;

var cell : CellType := new cellClass;

procedure double(aCell: CellType);
aCell.set(2 * aCell.get());

end;

Talk January 24, 1997 12:40 pm 20

Review: Subclasses
¥ Subclasses are ways of describing classes incrementally, reusing code.

ObjectType ReCellType;
var contents: Integer;
var backup: Integer;
method get(): Integer;
method set(n: Integer);
method restore();

end;

subclass reCellClass of cellClass for ReCellType; (Inherited:
var backup: Integer := 0; var contents
override set(n: Integer); method get)

self.backup := self.contents;
super.set(n);

end;
method restore(); self.contents := self.backup end;

end;

Talk January 24, 1997 12:40 pm 21

Review: Subtyping and Subsumption

¥ Subtyping relation, A <: B

An object type is a subtype of any object type with fewer
components.

(e.g.: ReCellType <: CellType)

¥ Subsumption rule

if a : A and A <: B then a : B

(e.g.: reCell : CellType)

¥ Subclass rule

cClass can be a subclass of dClass only if cType <: dType

(e.g.: reCellClass can indeed be declared as a subclass of
cellClass)

Talk January 24, 1997 12:40 pm 22

An Interpretation of Classes

¥ Inheritance is method reuse.

~ But one cannot reuse methods of existing objects: method
extraction is not type-sound in typed languages.

~ Therefore, we need classes, in addition to objects, to achieve
inheritance. (Or delegation...)

¥ A pre-method is a function that is later used as a method.

¥ A class is a collection of pre-methods plus a way of
generating new objects.

Talk January 24, 1997 12:40 pm 23

Classes as Objects

¥ A class is an object with:

~ a new method, for generating new objects,

~ code for methods for the objects generated from the class.

¥ For generating the object:

o @ [li = ς(xi) bi iÏ1..n]

we use the class:

c @ [new = ς(z) [li = ς(x) z.li(x) iÏ1..n],
 li = λ(xi) bi iÏ1..n]

~ The method new is a generator. The call c.new yields o.

~ Each field li is a pre-method.

Talk January 24, 1997 12:40 pm 24

Ex.: A Class for Cells

¥ Consider the object:
cell @ [contents = 0,

 set = ς(x) λ(n) x.contents := n]

¥ We obtain the class code:
cellClass @

[new = ς(z) [contents = ς(x) z.contents(x), set = ς(x) z.set(x)],
 contents = λ(x) 0,
 set = λ(x) λ(n) x.contents := n]

~ Writing the new method is tedious but straightforward.

~ Writing the pre-methods is like writing the corresponding
methods.

~ cellClass.new yields a standard cell:

 [contents = 0, set = ς(x) λ(n) x.contents := n]

Talk January 24, 1997 12:40 pm 25

Inheritance

¥ Inheritance is the reuse of pre-methods.

~ Given a class c with pre-methods c.li iÏ1..n we may define a new
class cÕ:

cÕ @ [new=..., li=c.li iÏ1..n, lj=... jÏn+1..m]

We may say that cÕ is a subclass of c.

¥ Multiple inheritance is no sweat.

Talk January 24, 1997 12:40 pm 26

Ex.: Inheritance for Cells

¥ Consider a subclass of cell with ÒundoÓ.

¥ We obtain the subclass code:
uncellClass @

[new = ς(z) [...],
 contents = cellClass.contents,
 set = λ(x) cellClass.set(x.undo := x),
 undo = λ(x) x]

~ The pre-method contents is inherited.

~ The pre-method set is overridden, though using a call to super.

~ The pre-method undo is added.

Talk January 24, 1997 12:40 pm 27

Object Types

¥ An object type

[li:Bi iÏ1..n]

is the type of those objects with methods li, with a self
parameter of type A <: [li:Bi iÏ1..n] and a result of type Bi.

¥ An object type with more methods is a subtype of one
with fewer methods:

[li:Bi iÏ1..n+m] <: [li:Bi iÏ1..n]

Talk January 24, 1997 12:40 pm 28

¥ Properties of object types:

~ Object types are invariant (not covariant, not contravariant) in
their components.

~ An object can be used in place of another object with fewer
methods, by subsumption:

a : A ∧ A <: B ⇒ a : B

~ Subsumption is the basis for object-style polymorphism, and
useful for inheritance:

f : B→C ∧ a : A ∧ A <: B ⇒ f(a) : C

f implements l in B ∧ A <: B ⇒
f can implement l in A

Talk January 24, 1997 12:40 pm 29

Classes, with Typing

¥ If A 7 [li:Bi iÏ1..n] is an object type, then Class(A) is the
type of the classes for objects of type A:

Class(A) @ [new:A, li:A→Bi iÏ1..n]

new:A is a generator for objects of type A.
li:A→Bi is a pre-method for objects of type A.

c : Class(A) @
[new = ς(z:Class(A)) [li = ς(x:A) z.li(x) iÏ1..n],

 li = λ(xi:A) bi{xi} iÏ1..n]

c.new : A

~ Types are distinct from classes.

~ More than one class may generate objects of a type.

Talk January 24, 1997 12:40 pm 30

Inheritance, with Typing

¥ Inheritance is well-typed.

~ Let A 7 [li:Bi iÏ1..n] and AÕ 7 [li:Bi iÏ1..n, lj:Bj jÏn+1..m],
with AÕ <: A.

~ Note that Class(A) and Class(AÕ) are not related by subtyping.
Nor they need to be.

~ Let c: Class(A), then for iÏ1..n

c.li: A→Bi <: AÕ→Bi.

Hence c.li is a good pre-method for a class of type Class(AÕ).

Talk January 24, 1997 12:40 pm 31

~ We may now define a subclass cÕ of c:

cÕ : Class(AÕ) @
[new=..., li=c.li iÏ1..n, lj=... jÏn+1..m]

where class cÕ inherits the methods li from class c.

~ So inheritance typechecks:

If AÕ<:A then a class for AÕ may inherit from a class
for A.

Talk January 24, 1997 12:40 pm 32

Ex.: Class Types for Cells
Class(Cell) @

[new : Cell,
 contents : Cell → Nat,
 set : Cell → Nat → []]

Class(GCell) @
[new : GCell,
 contents : GCell → Nat,
 set : GCell → Nat → [],
 get : GCell → Nat]

¥ Class(GCell) <: Class(Cell) does not hold, but inheritance
is possible:

Cell → Nat <: GCell → Nat
Cell → Nat → [] <: GCell → Nat → []

Talk January 24, 1997 12:40 pm 33

Variance Annotations

¥ Aim: finer control on field/method usage and on pre-
method reuse.

~ In order to gain expressiveness in a simple way (without
resorting to quantifiers) we extend the syntax of object types
with variance annotations:

Each υi is a variance annotation; it is one of o, +, and Ð.

[liυi:Bi iÏ1..n]

Talk January 24, 1997 12:40 pm 34

¥ Intuitively,

~ + means read-only: it prevents update, but allows covariant
component subtyping;

~ Ð means write-only: it prevents invocation, but allows
contravariant component subtyping;

~ o means read-write: it allows both invocation and update, but
requires exact matching in subtyping.

~ By convention, any omitted annotations are taken to be equal
to o.

Talk January 24, 1997 12:40 pm 35

Subtyping with Variance Annotations

[... lo:B ...] <: [... lo:BÕ ...] if B 7 BÕ invariant
(read-write)

[... l+:B ...] <: [... l+:BÕ ...] if B <: BÕ covariant
(read-only)

[... lÐ:B ...] <: [... lÐ:BÕ ...] if BÕ <: B contravariant
(write-only)

[... lo:B ...] <: [... l+:BÕ ...] if B <: BÕ invariant <: variant
[... lo:B ...] <: [... lÐ:BÕ ...] if BÕ <: B

Talk January 24, 1997 12:40 pm 36

Protection for Objects

¥ Variance annotations can provide protection against
updates from the outside. In addition, object
components can be hidden by subsumption.

Let GCell @ [contents : Nat, set : Nat → [], get : Nat]
PGCell @ [set : Nat → [], get : Nat]
ProtectedGCell @ [set+ : Nat → [], get+ : Nat]
gcell : GCell

then GCell <: PGCell <: ProtectedGCell
so gcell : ProtectedGCell.

~ Given a ProtectedGCell, one cannot access its contents directly.

~ From the inside, set and get can still update and read contents.

Talk January 24, 1997 12:40 pm 37

Protection for Classes

¥ Using subtyping, we can provide protection for classes.

¥ We may associate two separate interfaces with a class
type:

~ The first interface is the collection of methods that are available
in instances.

~ The second interface is the collection of methods that can be
inherited in subclasses.

¥ For an object type A 7 [li:Bi iÏI] with methods li iÏI we
consider:

~ a restricted instance interface, determined by a set Ins ⊆ I, and

~ a restricted subclass interface, determined by a set Sub ⊆ I.

Talk January 24, 1997 12:40 pm 38

¥ For an object type A 7 [li:Bi iÏI], and Ins, Sub ⊆ I, we
define:

~ Class(A) <: Class(A)Ins,Sub holds, so we get protection by
subsumption.

Class(A)Ins,Sub @
[new+ :[li:Bi iÏIns], li:A→Bi iÏSub]

Talk January 24, 1997 12:40 pm 39

¥ Particular values of Ins and Sub correspond to common
situations.

c : Class(A),Sub is an abstract class based on A
c : Class(A)Ins, is a leaf class based on A
c : Class(A)I,I is a concrete class based on A
c : Class(A)Pub,Pub has public methods li iÏPub

and private methods li iÏIÐPub

c : Class(A)Pub,Pub∪ Pro has public methods li iÏPub,
protected methods li iÏPro,
and private methods li iÏIÐPub∪ Pro

Talk January 24, 1997 12:40 pm 40

Classes and Self

¥ As before, we associate a class type Class(A) with each
object type A.

¥ Now pre-methods have polymorphic types.

A 7 Obj(X)[liυi:Bi{X} iÏ1..n]

Class(A) @
[new:A,
 li:Ó(X<:A)X→Bi{X} iÏ1..n]

c : Class(A) @
[new=ς(z:Class(A)) obj(X=A)[li=ς(s:X)z.li(X)(s) iÏ1..n],
 li = λ(Self<:A) λ(s:Self) É iÏ1..n]

Talk January 24, 1997 12:41 pm 41

Interpretations of Abstraction

¥ Untyped abstractions (value visibility).

~ Scoping restrictions (static).

~ Access restrictions (dynamic).

¥ Typed abstractions (type visibility).

~ Restricted ÒviewsÓ, e.g. subtyping, variance annotations.

~ Representation hiding (ADTÕs).

~ Partial representation hiding (combining the previous two).

Talk January 24, 1997 12:41 pm 42

The Bounded Existential QuantiÞer

¥ A natural candidate for flexible abstraction.

¥ The existentially quantified type Ô(X<:A)B{X} is the type
of the pairs ÜAÕ,bá where AÕ is a subtype of A and b is a
term of type BYAÕZ.

~ The type Ô(X<:A)B{X} can be seen as a partially abstract data
type with interface B{X} and with representation type X known
only to be a subtype of A.

~ It is partially abstract in that it gives some information about
the representation type, namely, a bound.

¥ The pair ÜAÕ,bá describes an element of the partially
abstract data type with representation type AÕ and
implementation b.

Talk January 24, 1997 12:41 pm 43

Object-Oriented Abstractions

¥ The famous Òstate encapsulationÓ property of objects is
achieved mostly by value visibility restrictions (e.g. in
untyped languages). Just as in closures.

¥ The more sophisticated ÒprivateÓ and ÒprotectedÓ
properties of classes are also fairly simple value
visibility restrictions that can be handled by restricting
visibility.

¥ There is also a strong desire to use type visibility
restrictions, e.g. to hide the representation of classes
while still allowing extensions. This is where abstraction
and classes start interfering in interesting ways.

Talk January 24, 1997 12:41 pm 44

Classes are not Abstract

¥ Classes are not abstractions. Classes are raw code that
nobody should ever look at (contrary to common
practice). They are the equivalent of values or modules,
not of types or interfaces.

¥ Central question: how to combine abstraction with
inheritance? Desired consequences:

~ Representation hiding for classes.

~ Modeling Òfinal methodsÓ and Òfinal classesÓ.

~ Abstract hierarchies.

~ Inheritance from abstracted classes.

~ Creation of elements of abstracted classes.

Talk January 24, 1997 12:41 pm 45

Possible Approaches

¥ Abstraction first

~ Put classes inside of modules (as in Modula-3). Classes provide
inheritance, modules/interfaces provide abstraction.

~ Unfortunately, standard modules are not extensible.

¥ Inheritability first

~ There is a lot of momentum towards classes taking the role of
modules.

~ Therefore we should devise Òclass interfacesÓ that provide
abstraction in addition to inheritability. (As opposed to Òobject
interfacesÓ that just describe objects.)

Talk January 24, 1997 12:41 pm 46

Technical Problems

¥ Modeling final things

~ Type systems do not distinguish between different values of
the same type.

~ But some concepts, such as Òfinal methodÓ are based on fixing
a certain value.

~ Since classes are value, Òfinal classesÓ exhibit the same
problem.

~ There is hope though, since abstraction can be used to control
the creation of values.

Talk January 24, 1997 12:41 pm 47

¥ Enforcing abstraction

~ If we take an interpretation of classes, e.g.:

Class(A) 7 [new:A, li : A→Bi iÏ1..n]

where exactly do we sprinkle the abstractions?

~ It might seem natural to abstract over the object type of a class:

 AbsClass(A) 7 Ô(X<:A) [new:X, li : X→Bi iÏ1..n]

then, the li cannot be inherited.

Moreover, consider AÕ<:A:

 AbsClass(AÕ) 7 Ô(Y<:AÕ) [new:Y, li : Y→Bi iÏ1..n+m]

then, new cannot be defined from the previous new.

Talk January 24, 1997 12:41 pm 48

~ One might give the pre-methods concrete types:

 Ô(X<:A) [new:X, li : A→Bi iÏ1..n]

then, the pre-methods cannot use the (full) representation.

FOOL’97 Talk January 24, 1997 12:39 pm 49

Conclusions

¥ We should have better type-theoretical understanding
of O-O constructs. (Remember the working hypothesis.)

~ Object encodings have been thrashed around quite a bit.

~ Class encodings have still a long way to go, especially if we
want to account for advanced features.

¥ Interactions of classes and abstraction are still
mysterious, both in programming practice and in
theory.

~ There has always been a tension between inheritance and
abstraction: classes are commonly used as leaky ADTÕs.

~ Is this conflict hopeless? Foundational studies should help
bring this question into focus.

